[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2023157369A1 - Laminate and metal-clad laminate board having said laminate - Google Patents

Laminate and metal-clad laminate board having said laminate Download PDF

Info

Publication number
WO2023157369A1
WO2023157369A1 PCT/JP2022/036101 JP2022036101W WO2023157369A1 WO 2023157369 A1 WO2023157369 A1 WO 2023157369A1 JP 2022036101 W JP2022036101 W JP 2022036101W WO 2023157369 A1 WO2023157369 A1 WO 2023157369A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin film
sps
metal
film
laminate
Prior art date
Application number
PCT/JP2022/036101
Other languages
French (fr)
Japanese (ja)
Inventor
昭紘 小泉
一義 吉田
Original Assignee
信越ポリマー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越ポリマー株式会社 filed Critical 信越ポリマー株式会社
Priority to JP2024500943A priority Critical patent/JPWO2023157369A1/ja
Publication of WO2023157369A1 publication Critical patent/WO2023157369A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C63/00Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor
    • B29C63/02Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor using sheet or web-like material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/44Joining a heated non plastics element to a plastics element
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/027Thermal properties
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate

Definitions

  • the present invention relates to a laminate and a metal-clad laminate having the laminate.
  • Metal-clad laminates e.g., copper-clad laminates (CCL)
  • CTL copper-clad laminates
  • insulating resin which is the main material of a circuit board
  • Performance similar to that of circuit boards is required.
  • Various improved metal-clad laminates and laminates used for the metal-clad laminates have been proposed (see, for example, Patent Document 1).
  • the copper-clad laminate (CCL) described in Patent Document 1 also has good electrical properties (dielectric properties) compatible with 5G, and the adhesiveness (adhesion) between the base film and the metal film. From the viewpoint of providing a copper-clad laminate (CCL) excellent in dimensional stability and suppressing curling, it was not sufficient. In addition, many base films with low CTE, which are used to improve film shrinkage and dimensional stability, have poor dielectric properties. A problem arises that a metal-clad laminate having excellent properties cannot be obtained.
  • the present invention has been made in view of the above circumstances, and has good electrical properties (dielectric properties) compatible with 5G, and the adhesiveness (adhesion) between the base film (laminate) and the metal film. ), excellent in dimensional stability, and suppressing curling (for example, a copper clad laminate (CCL)).
  • Another object of the present invention is to provide a laminate for a printed wiring board, which is used to form the metal-clad laminate.
  • a syndiotactic structure is formed on both sides of a low CTE resin film that has a low coefficient of linear thermal expansion (CTE) and does not have a melting point below 300 ° C.
  • the inventors have found that a laminate having a resin film (SPS resin film) made of a styrene-based polymer (SPS) having a styrenic polymer (SPS resin film) can solve the above problems, and have completed the present invention.
  • the present invention includes the following aspects.
  • SPS resin film a resin film made of a styrene polymer (SPS) having a syndiotactic structure on both sides of the low CTE resin film.
  • SPS resin film a resin film made of a resin selected from polyimide (PI), liquid crystal polymer (LCP), and stretched polyetheretherketone (stretched PEEK). laminate.
  • PI polyimide
  • LCP liquid crystal polymer
  • stretched PEEK stretched polyetheretherketone
  • the ratio of the thickness of the SPS resin film to the thickness of the low-CTE resin film is 1:10 to 10:1, [1] to [7]
  • the surface of the low CTE resin film and/or the SPS resin film is subjected to any surface treatment selected from corona treatment, plasma treatment, and ultraviolet treatment, [1] to [9] The laminate according to any one of .
  • thermocompression bonding is performed in a temperature range of -10°C to 30°C with respect to the melting point of the SPS resin film.
  • thermocompression bonding is performed in a temperature range of -10°C to 30°C with respect to the melting point of the SPS resin film.
  • the method of manufacturing the board [17] The method for producing a metal-clad laminate according to [15] or [16], wherein the thermocompression bonding is performed at a temperature range of -10°C to 30°C relative to the melting point of the SPS resin film.
  • a metal-clad laminate for example, a copper-clad laminate (CCL)
  • CTL copper-clad laminate
  • the melting point in the present invention can be measured according to JIS K7121. Specifically, about 5 mg of a measurement sample was weighed from a melt-extruded resin film, and a differential scanning calorimeter (manufactured by SII Technologies, Inc.: high-sensitivity differential scanning calorimeter X-DSC 7000) was used. The temperature is increased at a rate of 10°C/min, and the measurement temperature range is from 20°C to 380°C.
  • the film thickness of a resin film, a metal film (metal foil film), etc. is a value obtained by observing the cross section of a measurement target using a microscope, measuring the thickness at five locations, and averaging the thickness.
  • the laminate is a laminate for a printed wiring board, and can be used for producing a metal-clad laminate (copper-clad laminate (CCL)).
  • the laminate is formed by laminating three layers of resin films.
  • the laminate comprises a low CTE resin film having a coefficient of linear thermal expansion (CTE) (CTE at 20° C. to 140° C.) of 50 ppm/° C. or less, and a styrene-based film having a syndiotactic structure on both sides of the low CTE resin film. and a resin film made of a polymer (SPS) (hereinafter also referred to as "SPS resin film”).
  • SPS resin film a resin film made of a polymer
  • Low CTE resin films do not have a melting point below 300°C.
  • the coefficient of linear thermal expansion (CTE) is also referred to as coefficient of thermal expansion, coefficient of linear thermal expansion, or coefficient of thermal expansion.
  • FIG. 1 is a cross-sectional view showing an example of the structure of the laminate of the present invention.
  • the laminate 11 has an SPS resin film 13, a low CTE resin film 12, and an SPS resin film 14, which are laminated in this order.
  • the low-CTE resin film is arranged in the middle of a laminate obtained by laminating three layers of resin films.
  • the low CTE resin film has a coefficient of linear thermal expansion (CTE) (CTE from 20° C. to 140° C.) of 50 ppm/° C. or less. Also, the low CTE resin film does not have a melting point below 300°C.
  • the coefficient of linear thermal expansion (CTE) (CTE of 20 ° C. to 140 ° C.) of the low CTE resin film is a metal film (e.g., copper film) laminated as a metal clad laminate (e.g., copper clad laminate (CCL)). ) is more excellent in suppressing curling and in dimensional stability.
  • CTE coefficient of linear thermal expansion
  • the coefficient of linear expansion (CTE) can be measured using a thermomechanical analysis (TMA) device in accordance with JIS K 7197:1991.
  • TMA thermomechanical analysis
  • ppm/°C coefficient of linear expansion
  • the low-CTE resin film does not have a melting point below 300° C.
  • it is preferably a thermosetting resin or a film made of a thermoplastic resin having a melting point higher than 300° C.
  • examples include polyimide (PI) and liquid crystal.
  • It is preferably a film made of a resin selected from polymer (LCP) and stretched polyetheretherketone (stretched PEEK).
  • LCP polymer
  • SPS resin film stretched polyetheretherketone
  • the melting point of the low-CTE resin film is preferably higher than the sum of the melting point of the SPS resin film and 30°C.
  • a resin with high flame retardancy is selected as the resin that forms the low CTE resin film, and the low CTE resin film is a resin film with high flame resistance, thereby improving the flame retardancy. you can get a body
  • the low-CTE resin film can contain fillers and various additives in order to impart various functions such as adjusting the strength, insulation, heat resistance, and coefficient of linear thermal expansion (CTE) of the resin film.
  • additives include antioxidants, light stabilizers, ultraviolet absorbers, crystal nucleating agents (nucleating agents), plasticizers, filler dispersants, and the like.
  • fillers include inorganic fillers and organic fillers, which can be used alone or in combination.
  • inorganic fillers examples include mica, talc, boron nitride, magnesium oxide, silica, diatomaceous earth, titanium oxide, and zinc oxide. Among them, inorganic fillers such as mica, talc, boron nitride, magnesium oxide and silica are preferred.
  • organic fillers include, but are not limited to, polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polystyrene, polyamide, polycarbonate, polyimide, polyetherketone, polyetheretherketone, polymethylmethacrylate, liquid crystal polymer, and polytetrafluoroethylene. and other organic particles.
  • One of the inorganic fillers and organic fillers may be selected from the above and used alone, or two or more thereof may be used in combination. When two or more types are combined, a combination of an inorganic filler and an organic filler may be used.
  • the film thickness of the low-CTE resin film is not particularly limited, and can be appropriately selected according to the purpose. is more preferable. If it is too thick, the dielectric properties may deteriorate, and if it is too thin, curling may be suppressed and dimensional stability may become unstable.
  • the surface roughness (Rz) of the low-CTE resin film is not particularly limited and can be appropriately selected depending on the purpose, but is preferably 1 to 10 ⁇ m, for example. If the surface roughness is too small, the film cannot be wound well, and if it is too large, problems such as unstable adhesive strength and inclusion of air bubbles when laminating the film to the SPS resin film are likely to occur.
  • the surface roughness (Rz) refers to the ten-point average roughness of the film surface.
  • the ten-point average roughness RzJIS can be obtained based on JIS B 0601:2013 (ISO 4287:1997 Amd.1:2009). In this specification, the surface roughness of each layer determined by the ten-point average roughness Rz JIS is expressed as "surface roughness (Rz)".
  • the ten-point average roughness RzJIS ( ⁇ m) of the surface of the sheet is obtained by measuring the roughness curve of the test piece using a laser microscope, and from this roughness curve, JIS B 0601: 2013 (ISO 4287: 1997 Amd.1: 2009), 10 samples are measured and the average value is obtained.
  • the dielectric constant and dielectric loss tangent of the low-CTE resin film are not particularly limited, and can be appropriately selected according to the purpose. and the dielectric loss tangent is preferably 0.025 or less.
  • the dielectric constant of the low-CTE resin film is preferably lower, but as a practically possible range, for example, it is preferably 2.5 to 3.5, preferably 3.0 to 3.5. more preferred.
  • the dielectric loss tangent of the low-CTE resin film is, for example, preferably 0.001 to 0.025, more preferably 0.001 to 0.01, and 0.001 to 0.008. is more preferred.
  • the water absorption rate of the low-CTE resin film is preferably, for example, 0 to 2.5%, and is 0.01 to 2.0%. more preferably 0.03 to 1.5%, particularly preferably 0.05 to 1.2%.
  • the surface of the low-CTE resin film is preferably subjected to any surface treatment selected from corona treatment, plasma treatment, and ultraviolet treatment for reasons such as improved adhesion. Further, the surface of the low-CTE resin film may be surface-treated with a coupling agent for reasons such as improved adhesion.
  • a silane coupling agent a known silane coupling agent such as alkoxysilane can be used.
  • the SPS resin film refers to a resin film made of a styrene-based polymer (SPS) having a syndiotactic structure, as described above.
  • SPS resin film is formed using a styrenic polymer having a syndiotactic structure or a resin composition containing the styrenic polymer.
  • the syndiotactic structure in the styrenic polymer having a syndiotactic structure means that the stereochemical structure is a syndiotactic structure, that is, the phenyl groups that are side chains alternate with respect to the main chain formed from carbon-carbon bonds. They have tertiary structures located in opposite directions, and their tacticity is quantified by nuclear magnetic resonance spectroscopy (13C-NMR) using carbon isotopes.
  • the tacticity measured by the 13C-NMR method can be indicated by the abundance ratio of a plurality of consecutive constitutional units, for example, a dyad for 2 units, a triad for 3 units, and a pentad for 5 units.
  • the styrenic polymer having a syndiotactic structure referred to in the present invention is usually 75% or more, preferably 85% or more, as racemic diad, or 30% or more, preferably 50% or more, as racemic pentad.
  • Polystyrene poly(alkylstyrene), poly(arylstyrene), poly(halogenated styrene), poly(halogenated alkylstyrene), poly(alkoxystyrene), poly(vinyl benzoic acid ester) having otakuticity, these It refers to hydrogenated polymers, mixtures thereof, or copolymers containing these as main components.
  • poly(alkylstyrene) includes poly(methylstyrene), poly(ethylstyrene), poly(isopropylstyrene), poly(tert-butylstyrene), etc.
  • poly(arylstyrene) includes: Examples include poly(phenylstyrene), poly(vinylnaphthalene), and poly(vinylstyrene).
  • poly(halogenated styrene) include poly(chlorostyrene), poly(bromostyrene), and poly(fluorostyrene).
  • poly(halogenated alkylstyrene) examples include poly(chloromethylstyrene), and examples of poly(alkoxystyrene) include poly(methoxystyrene) and poly(ethoxystyrene).
  • preferred styrene polymers include polystyrene, poly(p-methylstyrene), poly(m-methylstyrene), poly(p-tertiary butylstyrene), poly(p-chlorostyrene), poly (m-chlorostyrene), poly(p-fluorostyrene), hydrogenated polystyrene and copolymers containing these structural units.
  • a styrenic polymer having such a syndiotactic structure can be prepared, for example, in an inert hydrocarbon solvent or in the absence of a solvent, using a titanium compound, a condensation product of water and a trialkylaluminum as a catalyst, and a styrenic monomer.
  • JP-A-62-187708 Further, poly(halogenated alkylstyrene) can be obtained by the method described in JP-A-1-46912, and hydrogenated polymers thereof can be obtained by the method described in JP-A-1-178505.
  • tacticity 70% or more in terms of racemic pentad and weight average molecular weight is 5 to 80. Anything is preferred.
  • the SPS resin film according to the present invention is not only a resin film formed using the syndiotactic polystyrene (SPS), but also a resin film formed using a resin composition containing syndiotactic polystyrene. can.
  • this resin composition it is necessary to contain (a) syndiotactic polystyrene as a resin component.
  • a thermoplastic resin other than the styrenic polymer having a syndiotactic structure may be included.
  • fillers and various additives are contained within a range that does not hinder the purpose of the present invention. can do.
  • the fillers and various additives are as described in the section ⁇ Low CTE resin film> above.
  • antiblocking agents, antistatic agents, process oils, mold release agents, compatibilizers, flame retardants, flame retardant aids, pigments, inorganic fillers, etc. may be blended.
  • compatibilizers, flame retardants, flame retardant aids, pigments, inorganic fillers, etc. may be blended.
  • flame retardants flame retardant aids, pigments, inorganic fillers, etc.
  • the kneading of the above components can be carried out by various methods such as blending and melt-kneading in any stage of the syndiotactic polystyrene manufacturing process, or blending and melt-kneading the components constituting the composition. Just do it.
  • Each component contained in the resin composition containing syndiotactic polystyrene is described below.
  • rubber-like elastic body >>>>>>>> Specific examples of rubber-like elastomers include natural rubber, polybutadiene, polyisoprene, polyisobutylene, neoprene, polysulfide rubber, thiocol rubber, acrylic rubber, urethane rubber, silicone rubber, epichlorohydrin rubber, and styrene-butadiene block copolymer.
  • SBR coalescence
  • SEB hydrogenated styrene-butadiene block copolymer
  • SBS styrene-butadiene-styrene block copolymer
  • SEBS hydrogenated styrene-butadiene-styrene block copolymer
  • SEBS hydrogenated styrene-butadiene-styrene block copolymer
  • SIR hydrogenated styrene-isoprene block copolymer
  • SEP hydrogenated styrene-isoprene block copolymer
  • SIS hydrogenated styrene-isoprene-styrene block copolymer
  • SEPS hydrogenated styrene-isoprene-styrene block copolymer
  • ethylene Olefin rubber such as propylene rubber (EPM), ethylene propylene diene rubber (EPDM), linear low density polyethylene elastomer
  • SEBS hydrogenated styrene-butadiene-styrene block copolymer
  • Thermoplastic resins other than syndiotactic polystyrene include linear high-density polyethylene, linear low-density polyethylene, high-pressure low-density polyethylene, isotactic polypropylene, syndiotactic polypropylene, block polypropylene, random polypropylene, polybutene, Polyolefin resins represented by 1,2-polybutadiene, 4-methylpentene, cyclic polyolefins and copolymers thereof, atactic polystyrene, isotactic polystyrene, HIPS, ABS, AS, styrene-methacrylic acid copolymers, Styrene-methacrylic acid/alkyl ester copolymer, styrene-methacrylic acid/glycidyl ester copolymer, styrene-acrylic
  • Antiblocking agents include inorganic or organic particles such as: Examples of inorganic particles include oxides, hydroxides, sulfides, nitrides and halogens of group IA, IIA, IVA, VIA, VIIA, VIII, IB, IIB, IIIB, and IVB elements. compounds, carbonates, sulfates, acetates, phosphates, phosphites, organic carboxylates, silicates, titanates, borates, their hydrous compounds, composite compounds centering on them, and natural mineral particles mentioned.
  • lithium fluoride group IA element compounds such as borax (sodium borate hydrate), magnesium carbonate, magnesium phosphate, magnesium oxide (magnesia), magnesium chloride, magnesium acetate, magnesium fluoride, magnesium titanate, Magnesium silicate, magnesium silicate hydrate (talc), calcium carbonate, calcium phosphate, calcium phosphite, calcium sulfate (gypsum), calcium acetate, calcium terephthalate, calcium hydroxide, calcium silicate, calcium fluoride, calcium titanate, titanium Group IIA element compounds such as strontium oxide, barium carbonate, barium phosphate, barium sulfate, and barium sulfite; group IVA element compounds such as titanium dioxide (titania), titanium monoxide, titanium nitride, zirconium dioxide (zirconia), and zirconium monoxide; VIA group element compounds such as molybdenum dioxide, molybdenum trioxide and molybdenum sulf
  • group IIB element compounds such as zinc oxide and zinc acetate
  • group IIIB element compounds such as aluminum oxide (alumina), aluminum hydroxide, aluminum fluoride, alumina silicate (alumina silicate, kaolin, kaolinite), silicon oxide (silica , silica gel), IVB group element compounds such as graphite, carbon, graphite, and glass, and particles of natural minerals such as carnalite, kainite, mica (mica, cinnamon), and biroseite.
  • Organic particles include Teflon, melamine-based resins, styrene-divinylbenzene copolymers, acrylic resins, and crosslinked products thereof.
  • the antioxidant can be arbitrarily selected from known antioxidants such as phosphorus-based, phenol-based, and sulfur-based antioxidants. In addition, these antioxidants can be used individually by 1 type, or in combination of 2 or more types.
  • Nucleating agents include carboxylic acid metal salts such as aluminum di(pt-butylbenzoate), phosphoric acid metal salts such as methylenebis(2,4-di-t-butylphenol) acid phosphate sodium, and talc. , phthalocyanine derivatives, etc., can be arbitrarily selected and used. These nucleating agents can be used singly or in combination of two or more.
  • the plasticizer can be arbitrarily selected from known ones such as polyethylene glycol, polyamide oligomer, ethylene bis-stearamide, phthalate ester, polystyrene oligomer, polyethylene wax, and silicone oil. In addition, these plasticizers can be used individually by 1 type, or in combination of 2 or more types.
  • release agent As the release agent, it is possible to arbitrarily select and use known ones such as polyethylene wax, silicone oil, long-chain carboxylic acid, and long-chain carboxylic acid metal salt. These release agents can be used singly or in combination of two or more.
  • process oil may be further blended.
  • Process oils are broadly classified into paraffinic oils, naphthenic oils, and aromatic oils, depending on the type of oil, with paraffinic oils being preferred.
  • the viscosity of the process oil the kinematic viscosity at 40° C. is preferably 15 to 600 cs, more preferably 15 to 500 cs. These process oils can be used singly or in combination of two or more.
  • the compatibilizer as used in the present invention improves the affinity between syndiotactic polystyrene and thermoplastic resin and/or rubber-like elastomer to effectively compatibilize the syndiotactic polystyrene and inorganic filler. Blended to improve affinity with. Specific examples include polymers having compatibility or affinity with syndiotactic polystyrene and having polar groups.
  • a polymer having compatibility or affinity with syndiotactic polystyrene means a polymer containing a chain exhibiting compatibility or affinity with syndiotactic polystyrene in the polymer chain.
  • Polymers exhibiting compatibility or affinity for these include, for example, syndiotactic polystyrene, atactic polystyrene, isotactic polystyrene, styrenic copolymers, polyphenylene ether, polyvinyl methyl ether, etc. as main chains, blocks or grafts. Those having as a chain, etc. are mentioned.
  • the polar group as used herein may be any group that improves adhesion to the inorganic filler, and specifically includes an acid anhydride group, a carboxylic acid group, a carboxylic acid ester group, and a carboxylic acid chloride group.
  • carboxylic acid amide group carboxylic acid group, sulfonic acid group, sulfonic acid ester group, sulfonic acid chloride group, sulfonic acid amide group, sulfonic acid group, epoxy group, amino group, imide group, oxazoline group and the like.
  • This compatibilizing agent can be obtained by reacting the above polymer having compatibility or affinity with syndiotactic polystyrene with a modifying agent described later in the presence or absence of a solvent or other resin.
  • a modifying agent for example, compounds containing an ethylenic double bond and a polar group in the same molecule can be used.
  • maleic anhydride, maleic acid, maleic acid ester, maleimide and its N-substituted products maleic acid derivatives such as maleate, fumaric acid such as fumaric acid, fumaric acid ester, and fumarate derivatives, itaconic anhydride, itaconic acid, itaconic acid esters, itaconic acid derivatives including itaconic acid salts, acrylic acid, acrylic acid esters, acrylic acid amides, acrylic acid derivatives including acrylic acid salts, methacrylic acid, methacrylic acid Acid esters, methacrylic acid amides, methacrylic acid salts, methacrylic acid derivatives such as glycidyl methacrylate, and the like.
  • maleic anhydride, fumaric acid and glycidyl methacrylate are particularly preferred.
  • a preferred modification method is a method of melt-kneading in the presence of a radical generator.
  • other resins may be added during modification.
  • Specific examples of compatibilizers include styrene-maleic anhydride copolymer (SMA), styrene-glycidyl methacrylate copolymer, terminal carboxylic acid-modified polystyrene, terminal epoxy-modified polystyrene, terminal oxazoline-modified polystyrene, terminal amine-modified polystyrene, Sulfonated polystyrene, styrene ionomer, styrene-methyl methacrylate-graft polymer, (styrene-glycidyl methacrylate)-methyl methacrylate-graft copolymer, acid-modified acrylic-styrene-graft polymer, (styrene-glycidyl methacrylate)-sty
  • modified PS and modified polyphenylene ether are particularly preferred. Two or more of the above polymers can be used in combination.
  • the polar group content in the compatibilizer is preferably in the range of 0.01 to 20% by mass, more preferably 0.05 to 10% by mass based on 100% by mass of the compatibilizer. If it is less than 0.01% by mass, it is necessary to add a large amount of a compatibilizing agent in order to exhibit an adhesive effect with the inorganic filler, and this is preferable because there is a possibility that the mechanical properties, heat resistance, and moldability of the composition may be deteriorated. do not have. On the other hand, if it exceeds 20% by mass, the compatibility with syndiotactic polystyrene may decrease, which is not preferable.
  • the content of the compatibilizer is 0.1 to 10 parts by mass, preferably 0.5 to 8 parts by mass, based on 100 parts by mass of the syndiotactic polystyrene resin, the thermoplastic resin and/or the rubber-like elastic body. More preferably, it is 1 to 5 parts by mass. If it is less than 0.1 part by mass, the effect of adhesion to the inorganic filler is small, resulting in insufficient adhesion between the resin and the inorganic filler. become.
  • inorganic filler As inorganic fillers, granular and powdery fillers are preferred, and examples include talc, carbon black, graphite, titanium dioxide, silica, mica, calcium carbonate, calcium sulfate, barium carbonate, magnesium carbonate, magnesium sulfate, barium sulfate, oxy Sulfate, tin oxide, alumina, kaolin, silicon carbide, metal powder, glass powder, glass flakes, glass beads and the like.
  • surface-treated ones may be used as these fillers.
  • the coupling agent used for the surface treatment is used to improve the adhesion between the filler and the resin. Any one can be selected and used.
  • any one can be selected and used.
  • only 1 type can be used individually or in combination of 2 or more types.
  • the film thickness of each SPS resin film arranged on both sides of the low-CTE resin film is not particularly limited, and can be appropriately selected according to the purpose. More preferably 20 ⁇ m to 55 ⁇ m.
  • the ratio of the thickness of each SPS resin film (single-layer SPS resin film) arranged on both sides of the low-CTE resin film to the thickness of the low-CTE resin film (SPS resin film: low-CTE resin film) is 1:10. ⁇ 10:1 is preferred, 1:5 to 5:1 is more preferred, and 1:3 to 3:1 is even more preferred. If the SPS resin film is too thin, transmission characteristics may deteriorate, and if the SPS resin film is too thick, curling may occur and dimensional stability may deteriorate. Moreover, the thickness of the SPS resin film is more preferably the same as or thinner than the thickness of the low-CTE resin film. Therefore, the ratio of SPS resin film:low CTE resin film is particularly preferably 1:2 to 1:1.
  • the surface roughness (Rz) of the SPS resin film at the interface between the low CTE resin film and the SPS resin film is not particularly limited and can be appropriately selected according to the purpose. preferable.
  • the surface roughness (Rz) of the SPS resin film at the interface between the SPS resin film and the metal film is not particularly limited and can be appropriately selected depending on the purpose. preferable.
  • the melting point of the SPS resin film is preferably 250° C. or higher.
  • the SPS resin film preferably has a dielectric constant of 2.6 or less.
  • the dielectric loss tangent of the SPS resin film is preferably less than 0.0020, more preferably 0.0016 or less, even more preferably 0.0012 or less.
  • the water absorption rate of the SPS resin film is preferably 0.2% or less, more preferably 0.15% or less, and even more preferably 0.10% or less.
  • a metal-clad laminate for example, a copper-clad laminate (CCL) having an SPS resin film that satisfies these properties has good electrical properties (dielectric properties) compatible with 5G.
  • the relative dielectric constant of the SPS resin film is preferably as low as possible, but from the necessity of the resin having solder heat resistance, for example, it is preferably 2.0 to 2.6, and 2.1 to 2.4. It is more preferable to have In addition, the dielectric loss tangent of the SPS resin film is preferably as low as possible. 0.0016 is more preferred, 0.0005 to 0.0012 is even more preferred, and 0.0005 to 0.0007 is particularly preferred.
  • the base material absorbs moisture, the dielectric properties are significantly deteriorated, so the water absorption rate of the SPS resin film is preferably, for example, 0 to 0.2%, and preferably 0.01 to 0.15%. is more preferable, and 0.03 to 0.06% is even more preferable.
  • the elongation at tensile break in the machine direction (MD direction) of the SPS resin film is preferably 400% or less.
  • the tensile elongation at break in the longitudinal direction (MD direction) of the SPS resin film (also called the extrusion direction of the film) is 400% or less as described above, but preferably 2 to 350%, for example. If the elongation is too large, problems such as wrinkles may occur during lamination with a low-CTE film or metal film.
  • the elongation at break of the SPS resin film is obtained by measuring the elongation in the longitudinal direction of the film (that is, the extrusion direction of the film) at a tensile speed of 50 mm / min and a temperature of 23 ° C. in accordance with JIS K7127. can be done.
  • the relative crystallinity of the SPS resin film is preferably 25-85%, more preferably 30-80%, even more preferably 35-70%. This is because, if the relative crystallinity of the SPS resin film is within the above range, it can be expected to ensure the peel strength and heat dimensional stability that can be used as a laminate.
  • the crystallinity of the SPS resin film can be represented by relative crystallinity.
  • the relative crystallinity of the SPS resin film can be measured, for example, by peeling off only the SPS resin film portion from the prepared metal-clad laminate, and using a differential scanning calorimeter on the SPS resin film at a heating rate of 10 ° C./min. It can be obtained by calculating from the following formula based on the thermal analysis results measured in .
  • Relative crystallinity (%) ⁇ (
  • ⁇ Hc heat quantity (J/g) at recrystallization peak
  • ⁇ Hm heat quantity (J/g) at melting peak.
  • the SPS resin films are arranged on both sides of the low CTE resin film 12, and the SPS resin films 13 and 14 have the same composition as long as they satisfy the above requirements. It may be a resin film of the same composition or a resin film of a different composition.
  • the surface of the SPS resin film is preferably subjected to any surface treatment selected from corona treatment, plasma treatment, and ultraviolet treatment for reasons such as improved adhesion.
  • the surface of the SPS resin film may be surface-treated with a coupling agent for reasons such as improved adhesion.
  • a resin film can be obtained, for example, by molding a resin into a film by a melt extrusion molding method.
  • the melt extrusion molding method is a molding method in which a resin material is melt-kneaded using a melt extruder, and the resin material is continuously extruded from a T-die of the melt extruder.
  • a resin material melt-kneaded by a melt extruder is continuously extruded into a belt-shaped resin film by a T-die at the tip of the melt extruder, and this continuous resin film is placed next. It is placed between rolls, cooled, and then wound on a winder.
  • the extruder is not particularly limited, and any molding machine such as a single-screw extruder or a twin-screw extruder can be used.
  • the metal-clad laminate of the present invention is obtained by laminating a metal film on one or both sides of the laminate of the present invention.
  • An SPS resin film, a low CTE resin film, an SPS resin film, and a metal film are laminated in this order.
  • metal films may be laminated on both sides of the base film.
  • the metal-clad laminate in this case is formed by laminating a metal film, an SPS resin film, a low-CTE resin film, an SPS resin film, and a metal film in this order.
  • FIG. 2 is a cross-sectional view showing an example of the configuration of the metal-clad laminate of the present invention.
  • FIG. 2 shows an example in which metal films are laminated on both sides of the laminate.
  • the metal-clad laminate 21 has a metal film 25, an SPS resin film 23, a low CTE resin film 22, an SPS resin film 24, and a metal film 26, which are laminated in this order.
  • the metal constituting the metal film is not particularly limited and can be appropriately selected depending on the intended purpose.
  • An alloy or the like containing one or more selected types may be mentioned. Among them, copper and alloys containing copper are preferable from the viewpoint of shielding properties and economy.
  • a preferred embodiment of the metal-clad laminate of the present invention is a metal-clad laminate in which a metal foil film is attached to a laminate. Among them, a copper-clad laminate obtained by bonding a copper foil film (copper foil film) to a laminate, in which the metal foil is copper foil, is more preferable.
  • a preferred embodiment of the metal film is a metal foil film.
  • the type of metal foil is not particularly limited, and for example, an electrolytic metal foil, a rolled metal foil, or the like can be used. Among metal foils, copper foil is more preferable.
  • the film thickness of the metal foil is preferably 0.05 ⁇ m to 20 ⁇ m from the viewpoint of ensuring sufficient electrical signal transmission characteristics and enabling a fine pitch of the circuit pattern, and 0.1 ⁇ m. More preferably ⁇ 15 ⁇ m.
  • the surface roughness (Rz) of the metal foil film at the interface between the metal foil film and the SPS resin film is preferably 0.5 ⁇ m or less from the viewpoint of transmission characteristics due to the skin effect, and is 0.3 ⁇ m or less. is more preferable.
  • the film thickness of the metal-clad laminate is not particularly limited and can be appropriately selected according to the purpose, but is preferably 10 to 300 ⁇ m, for example.
  • the film thickness of the metal-clad laminate is at least the lower limit value of the above range, the handleability is excellent and the strength can be ensured.
  • the thickness is equal to or less than the upper limit of the above range, lightness, thinness, shortness and flexibility can be imparted.
  • the laminate is produced by arranging an SPS resin film, a low CTE resin film, and an SPS resin film in this order, sandwiching them with a heat press or between heating rolls or between heating belts, followed by heating and pressing. It includes a step of bonding each resin film by thermocompression bonding.
  • the thermocompression bonding is preferably carried out in a temperature range of ⁇ 10° C. to 30° C., more preferably ⁇ 10° C. to 20° C. relative to the melting point of the SPS resin film.
  • the pressure in the thermocompression bonding is preferably 0.2 to 10 MPa, more preferably 1 to 5 MPa, for example, in the case of a hot press or a heating belt, and the thermocompression bonding time is 1 to 30 minutes.
  • the line pressure is 4-60 kN/m and the line speed is 0.5-5.0 m/min.
  • a method for producing a metal-clad laminate includes the steps of disposing metal films on both or one side of the laminate, thermally compressing the laminate, and laminating the laminate and the metal film.
  • a metal film, an SPS resin film, a low CTE resin film, and an SPS resin film are arranged in this order, and these are placed in a hot press or between heating rolls or between heating belts. Then, the metal film and each resin film are bonded together by heat and pressure and thermocompression bonding, or the metal film, the SPS resin film, the low CTE resin film, the SPS resin film, and the metal film are bonded together.
  • thermocompression bonding is preferably carried out in a temperature range of ⁇ 10° C. to 30° C., more preferably ⁇ 10° C. to 20° C. relative to the melting point of the SPS resin film.
  • metal-clad laminate is a metal-clad laminate having metal films on both sides of the laminate as shown in FIG.
  • a metal-clad laminate may be produced by laminating a film and then laminating a metal film on the other side of the laminate in the same manner, or alternatively, The metal films may be laminated together to produce a metal clad laminate with the metal films on both sides at once.
  • the surface of the SPS resin film in contact with the metal film may be surface-treated by corona treatment, plasma treatment, ultraviolet treatment, or the like.
  • the laminate (particularly, the double-sided metal-clad laminate) of the present invention has good electrical properties (dielectric properties) and excellent adhesiveness (adhesion) between the base film (laminate) and the metal film. Since it is excellent in dimensional stability and curl suppression, it can be suitably used for manufacturing flexible printed circuit boards and rigid printed circuit boards. For example, by etching or electroplating (semi-additive method (SAP method), modified semi-additive method (MSAP method)), the metal substrate of the metal-clad laminate of the present invention is formed into a transmission circuit (conductor circuit) having a predetermined shape. If processed, printed circuit boards can be produced.
  • SAP method etching or electroplating
  • MSAP method modified semi-additive method
  • an interlayer insulating film may be formed on the transmission circuit, and a further transmission circuit may be formed on the interlayer insulating film. Moreover, you may laminate
  • Dielectric properties (relative permittivity, dielectric loss tangent) were measured using an electronic measuring instrument (product name: compact USB vector network analyzer MS46122B: manufactured by Anritsu) using the Fabry-Perot method, which is a kind of open resonator method, at a frequency of around 28 GHz. Dielectric properties were measured at 23° C. ⁇ 50 RH %. An open-type resonator (product name: Fabry-Perot resonator Model No. DPS03: manufactured by Keycom Co., Ltd.) was used.
  • CTE Coefficient of linear thermal expansion
  • ppm/°C The coefficient of linear thermal expansion (CTE) is 10° C. under the conditions of a load of 50 mN and a heating rate of 5° C./min in a tensile mode using a thermomechanical analyzer (product name: SII//SS7100, manufactured by Hitachi High-Tech Science Co., Ltd.). to 200°C, and the coefficient of linear thermal expansion (ppm/°C) was obtained from the slope in the range from 20°C to 140°C.
  • the width direction (TD) of the resin film was measured.
  • melting point (°C) The melting point was measured according to JIS K7121. Specifically, about 5 mg of a measurement sample was weighed from a melt-extruded resin film, and a differential scanning calorimeter (manufactured by SII Technologies, Inc.: high-sensitivity differential scanning calorimeter X-DSC 7000) was used. The temperature was raised at a rate of 10°C/min, and the measurement temperature range was from 20°C to 380°C.
  • the resin films and copper foil films used in the following examples and comparative examples are as follows. Also, the properties of the resin film are shown in Table 1 below.
  • the SPS resin used for the SPS(2) film and the SPS(3) film is the SPS resin used for molding the SPS(1) film.
  • SPS film SPS (1) film manufactured by Shin-Etsu Polymer Co., Ltd.
  • SPS resin: synthetic mica 95:5 mass ratio
  • PI film PI Kapton (registered trademark) H series manufactured by DuPont Toray PI film: PI Kapton (registered trademark) LK series manufactured by DuPont Toray PI film: PI Kapton (registered trademark) EN series manufactured by DuPont Toray LCP film: Shin-Etsu polymer High melting point LCP (1) film manufactured by Co., Ltd.
  • Stretched PEEK film Stretched PEEK film manufactured by Kurabo Industries Unstretched PEEK (polyetheretherketone) film: Unstretched PEEK film manufactured by Shin-Etsu Polymer Co., Ltd.
  • PPS polyphenylene sulfide film: PPS manufactured by Shin-Etsu Polymer Co., Ltd.
  • Film TPI thermoplastic polyimide
  • LCP film Low melting point LCP (2) film (copper foil film) manufactured by Shin-Etsu Polymer Co., Ltd.
  • Copper foil CF-T9DA-SV-12 manufactured by Fukuda Metal Foil and Powder Co., Ltd. (Rz: 0.21 ⁇ m, CTE: 18 ppm/° C.)
  • Example 1 A polyimide film (PI) (PI Kapton (registered trademark) LK series manufactured by DuPont-Toray Co., Ltd.) shown in Table 1 having a thickness of 50 ⁇ m was prepared. The front and back surfaces of the polyimide film were subjected to corona treatment. On both sides of the polyimide film, 25 ⁇ m-thick SPS films shown in Table 1 (manufactured by Shin-Etsu Polymer Co., Ltd., a resin film made of a styrene-based polymer having a syndiotactic structure) were placed.
  • PI PI Kapton (registered trademark) LK series manufactured by DuPont-Toray Co., Ltd.
  • a copper foil film with a thickness of 12 ⁇ m (CF-T9DA manufactured by Fukuda Metal Foil & Powder Co., Ltd.) is placed on both sides of the outermost surface, sandwiched between stainless steel plates (SUS plates) with a thickness of 1 mm using a heat press, and pressure is applied.
  • the pressure was set to 3 MPa and the hot plate temperature of the hot press machine was set to 285° C., and thermocompression bonding was performed for 5 minutes. After thermocompression, the hot plate of the hot press was cooled to 270°C at a rate of 4°C/min (this cooling method is referred to as cooling 1), and then the pressure was released to obtain the copper of Example 1.
  • the tension laminate (CCL) was removed.
  • the structure of the copper-clad laminate of Example 1 thus obtained is shown in Table 2 below. Only the SPS resin film was peeled off from the obtained copper-clad laminate of Example 1, and the relative crystallinity of the SPS resin film was determined according to the following procedure. Such values are also shown in Table 2 below.
  • Relative crystallinity (%) ⁇ (
  • the copper-clad laminate of Example 1 was evaluated for curl, 250°C dimension, transmission characteristics, and peel strength by the following evaluation methods. The results are shown in Table 4 below.
  • ⁇ 4-point average is 3 cm or less ⁇ 4-point average is greater than 3 cm and 5 cm or less ⁇ 4-point average is greater than 5 cm
  • the 250° C. dimensional shrinkage rate test was measured in accordance with JIS C 6481:1996. First, a copper clad laminate (CCL) was cut into a size of 300 x 300 mm, holes were made at four points at the ends of the laminate, and the distance between the centers of the holes was measured. It was removed with an aqueous iron solution, placed in an oven at 250° C. for 30 minutes, taken out, and then measured. A two-dimensional length measuring machine (product name: VMH600, manufactured by Mino Group) was used for measuring the dimensions.
  • ⁇ Shrinkage rate is 0.2% or less (good shrinkage rate) ⁇ Shrinkage rate greater than 0.2% and 0.4% or less ⁇ Shrinkage rate greater than 0.4% (poor shrinkage rate)
  • Transmission characteristic test In the transmission characteristics test, a microstrip line with a length of 10 cm and an impedance of 50 ⁇ was prepared by etching the copper foil in the copper clad laminate (CCL), and the transmission characteristics at 30 GHz were measured under the conditions of a temperature of 25°C and a humidity of 50%. It was measured. As a measuring instrument, a network analyzer E8363B (manufactured by Keysight Technologies) was used.
  • peel strength test In the peel strength test, a copper-clad laminate (CCL) was cut into a test piece with a width of 25 mm. The plate (CCL) was fixed to a support, the copper foil was fixed to a tension jig, and the peel strength was measured when the copper foil was pulled from the copper clad laminate (CCL).
  • Examples 2 to 18 Copper clads of Examples 2 to 18 were prepared in the same manner as in Example 1, except that the type of resin film used, the thermocompression bonding temperature, and the cooling method conditions were changed as shown in Table 2. A laminate was produced.
  • cooling method 2 cooling method 2
  • cooling method 3 cooling method 3
  • Cooling 2 After thermocompression, the hot plate of the hot press is cooled to 230°C at a rate of 4°C/min, the pressure is released, and the copper-clad laminate is taken out.
  • Cooling 3 After thermocompression bonding, the pressure is released without cooling the hot plate of the hot press, and the copper-clad laminate is taken out.
  • the relative crystallinity of the SPS resin film was determined in the same manner as in Example 1 for the copper clad laminates produced in Examples 2 to 18. Also, in the same manner as in Example 1, the curl, 250° C. dimension, transmission characteristics, and peel strength were evaluated.
  • Table 2 shows the relative crystallinity results of the SPS resin films in the copper clad laminates of Examples 2 to 18.
  • Table 4 shows evaluation results of curl, 250° C. dimension, transmission characteristics, and peel strength for the copper clad laminates of Examples 2 to 18.
  • Comparative Examples 1 to 5 Copper clads of Comparative Examples 1 to 5 were prepared in the same manner as in Example 1 except that the type of resin film used, the thermocompression bonding temperature, and the cooling method conditions were changed as shown in Table 3. A laminate was produced.
  • the relative crystallinity of the SPS resin film was determined in the same manner as in Example 1 for the copper clad laminates produced in Comparative Examples 1 to 5. Also, in the same manner as in Example 1, the curl, 250° C. dimension, transmission characteristics, and peel strength were evaluated. Table 3 shows the results of the relative crystallinity of the SPS resin films in the copper clad laminates of Comparative Examples 1 to 5. Table 4 shows evaluation results of curl, 250° C. dimension, transmission characteristics, and peel strength for the copper-clad laminates of Comparative Examples 1 to 5.
  • the metal-clad laminate of the present invention has good electrical properties (dielectric properties), excellent adhesiveness (adhesion) between the base film (laminate) and the metal film, and dimensional stability. It was confirmed that the metal-clad laminate was excellent in curling and suppressed in curling.
  • the metal-clad laminate of the present invention can be suitably used for manufacturing FPC-related products for electronic devices such as smart phones, mobile phones, optical modules, digital cameras, game machines, notebook computers, and medical instruments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Laminated Bodies (AREA)

Abstract

Provided is a metal-clad laminate board (for example, a copper-clad laminate board (CCL)) that, while having good electric characteristics (dielectric characteristics) adapted to 5G, has an excellent bonding property (adhesive property) between a base material film (laminate) and a metal film and has excellent dimensional stability, and of which curling is suppressed. Also, provided is a laminate for a printed wiring board that is used to form the above metal-clad laminate board. The laminate comprises: a low CTE resin film that has a linear coefficient of thermal expansion (CTE) of 50 ppm/℃ or less and does not have a melting point at or below 300℃; and resin films (SPS resin films) made of a styrene-based polymer having a syndiotactic structure (SPS) that are laminated on both surfaces of the low CTE resin film.

Description

積層体、及び該積層体を有する金属張積層板Laminate and metal-clad laminate having the laminate

 本発明は、積層体、及び該積層体を有する金属張積層板に関する。 The present invention relates to a laminate and a metal-clad laminate having the laminate.

 近年、スマートフォンに代表される通信機器における通信速度の高速化・大容量化に伴い、これら通信機器に使用される回路基板には、電気信号の低損失化や回路パターンのファインピッチ化、高精度で微細な回路形成が求められている。
 回路基板の主材料である金属張積層板、いわゆる絶縁性樹脂からなる基材フィルムの表面に金属膜を載せ積層させた金属張積層板(例えば、銅張積層板(CCL))にも、上記回路基板と同様の性能が求められる。
 各種の改良がなされた金属張積層板、及び該金属張積層板に用いる積層体が、提案されている(例えば、特許文献1参照)。
In recent years, with the increase in communication speed and capacity in communication devices such as smartphones, the circuit boards used in these communication devices are required to have lower electrical signal loss, finer pitch circuit patterns, and higher precision. Therefore, fine circuit formation is demanded.
Metal-clad laminates (e.g., copper-clad laminates (CCL)) in which a metal film is placed and laminated on the surface of a base film made of a so-called insulating resin, which is the main material of a circuit board, also have the above-mentioned properties. Performance similar to that of circuit boards is required.
Various improved metal-clad laminates and laminates used for the metal-clad laminates have been proposed (see, for example, Patent Document 1).

特開2021-75030号公報Japanese Unexamined Patent Application Publication No. 2021-75030

 ところで、次世代移動体通信システムの5Gなどの本格導入のため、低誘電材料の基材フィルムを用いた金属張積層板の提供が望まれている。
 しかしながら、低誘電材料の基材フィルムはCTEが大きな材質が多く、低誘電材料の基材フィルムを用いて金属張積層板を形成させると、フィルム収縮が大きく、金属張積層板の寸法安定性が悪かったり、金属張積層板が変形しカールが発生するという問題が生じることがわかった。一方、フィルム収縮による寸法安定性やカールが問題ないとしても、基材フィルムと金属膜との接着性(密着性)が悪い場合があることがわかった。
 例えば、上記特許文献1に記載の銅張積層板(CCL)も、5G対応可能な良好な電気特性(誘電特性)を有しつつ、基材フィルムと金属膜との接着性(密着性)に優れ、寸法安定性に優れ、カールを抑制した銅張積層板(CCL)を提供するという観点からは、十分なものとはいえなかった。
 また、フィルムの収縮や寸法安定性を向上するためのCTEが小さな基材フィルムには誘電特性の悪い材質が多いため、低CTEの基材フィルムを用いて金属張積層板を形成させると、誘電特性に優れた金属張積層板が得られない問題が生じる。
By the way, for the full-scale introduction of next-generation mobile communication systems such as 5G, it is desired to provide a metal-clad laminate using a base film of a low dielectric material.
However, many base films of low dielectric materials have a high CTE, and when a metal clad laminate is formed using a base film of low dielectric materials, the film shrinkage is large and the dimensional stability of the metal clad laminate is poor. In some cases, it was found that the metal-clad laminate deformed and curled. On the other hand, it has been found that even if there is no problem of dimensional stability or curling due to film shrinkage, the adhesiveness (adhesion) between the substrate film and the metal film may be poor.
For example, the copper-clad laminate (CCL) described in Patent Document 1 also has good electrical properties (dielectric properties) compatible with 5G, and the adhesiveness (adhesion) between the base film and the metal film. From the viewpoint of providing a copper-clad laminate (CCL) excellent in dimensional stability and suppressing curling, it was not sufficient.
In addition, many base films with low CTE, which are used to improve film shrinkage and dimensional stability, have poor dielectric properties. A problem arises that a metal-clad laminate having excellent properties cannot be obtained.

 本発明は、上記事情に鑑みてなされたものであって、5G対応可能な良好な電気特性(誘電特性)を有しつつ、基材フィルム(積層体)と金属膜との接着性(密着性)に優れ、寸法安定性に優れ、カールを抑制した金属張積層板(例えば、銅張積層板(CCL))を提供することを目的とする。
 また、本発明は、上記金属張積層板を形成するために用いる、プリント配線板用の積層体を提供することを目的とする。
The present invention has been made in view of the above circumstances, and has good electrical properties (dielectric properties) compatible with 5G, and the adhesiveness (adhesion) between the base film (laminate) and the metal film. ), excellent in dimensional stability, and suppressing curling (for example, a copper clad laminate (CCL)).
Another object of the present invention is to provide a laminate for a printed wiring board, which is used to form the metal-clad laminate.

 本発明者らは、上記課題を解決するために鋭意研究を重ねた結果、線熱膨張係数(CTE)が低く、300℃以下に融点を持たない低CTE樹脂フィルムの両面にシンジオタクチック構造を有するスチレン系重合体(SPS)からなる樹脂フィルム(SPS樹脂フィルム)を配した積層体が、上記課題を解決できることを見出し、本発明を完成するに至った。 As a result of extensive research to solve the above problems, the present inventors have found that a syndiotactic structure is formed on both sides of a low CTE resin film that has a low coefficient of linear thermal expansion (CTE) and does not have a melting point below 300 ° C. The inventors have found that a laminate having a resin film (SPS resin film) made of a styrene-based polymer (SPS) having a styrenic polymer (SPS resin film) can solve the above problems, and have completed the present invention.

 本発明は、以下の態様を包含するものである。
[1]線熱膨張係数(CTE)が50ppm/℃以下であり、300℃以下に融点を持たない低CTE樹脂フィルムと、
 前記低CTE樹脂フィルムの両面に、シンジオタクチック構造を有するスチレン系重合体(SPS)からなる樹脂フィルム(SPS樹脂フィルム)と、を積層してなる積層体。
[2]前記低CTE樹脂フィルムは、ポリイミド(PI)、液晶ポリマー(LCP)、及び延伸ポリエーテルエーテルケトン(延伸PEEK)のいずれかから選ばれる樹脂からなるフィルムである、[1]に記載の積層体。
[3]前記SPS樹脂フィルムの融点は、250℃以上である、[1]又は[2]に記載の積層体。
[4]前記SPS樹脂フィルムの比誘電率は2.6以下である、[1]~[3]のいずれかに記載の積層体。
[5]前記SPS樹脂フィルムの誘電正接は0.0020未満である、[1]~[4]のいずれかに記載の積層体。
[6]前記SPS樹脂フィルムの吸水率は0.2%以下である、[1]~[5]のいずれかに記載の積層体。
[7]前記低CTE樹脂フィルムの吸水率は2.5%以下である、[1]~[6]のいずれかに記載の積層体。
[8]前記SPS樹脂フィルムの厚みと前記低CTE樹脂フィルムの厚みの比(前記SPS樹脂フィルム:前記低CTE樹脂フィルム)が、1:10~10:1である、[1]~[7]のいずれかに記載の積層体。
[9]前記SPS樹脂フィルムの相対結晶化度は25%~85%である、[1]~[8]のいずれかに記載の積層体。
[10]前記低CTE樹脂フィルム及び/又は前記SPS樹脂フィルムの表面が、コロナ処理、プラズマ処理、及び紫外線処理から選択されるいずれかの表面処理が施されている、[1]~[9]のいずれかに記載の積層体。
[11]前記低CTE樹脂フィルム及び/又は前記SPS樹脂フィルムの表面が、カップリング剤による表面処理が施されている、[1]~[9]のいずれかに記載の積層体。
[12][1]~[11]のいずれかに記載の積層体の両面又は片面に、金属膜が積層されてなる金属張積層板。
[13][1]~[11]のいずれかに記載の積層体の製造方法であって、前記SPS樹脂フィルムと、前記低CTE樹脂フィルムと、前記SPS樹脂フィルムとを、この順に配置し、熱圧着して、前記積層体を得る、積層体の製造方法。
[14]前記熱圧着が、前記SPS樹脂フィルムの融点の温度に対し、-10℃~30℃の温度範囲で行う、[13]に記載の積層体の製造方法。
[15][12]に記載の金属張積層板の製造方法であって、[13]又は[14]により製造された積層体の両面又は片面に金属膜を配置し、熱圧着して、前記金属張積層板を得る、金属張積層板の製造方法。
[16][12]に記載の金属張積層板の製造方法であって、
 金属膜と、前記SPS樹脂フィルムと、前記低CTE樹脂フィルムと、前記SPS樹脂フィルムとを、この順に配置し、熱圧着するか、
 金属膜と、前記SPS樹脂フィルムと、前記低CTE樹脂フィルムと、前記SPS樹脂フィルムと、金属膜とを、この順に配置し、熱圧着するかにより、前記金属張積層板を得る、金属張積層板の製造方法。
[17]前記熱圧着が、前記SPS樹脂フィルムの融点の温度に対し、-10℃~30℃の温度範囲で行う、[15]又は[16]に記載の金属張積層板の製造方法。
The present invention includes the following aspects.
[1] A low CTE resin film having a coefficient of linear thermal expansion (CTE) of 50 ppm/° C. or less and having no melting point of 300° C. or less;
A laminate obtained by laminating a resin film (SPS resin film) made of a styrene polymer (SPS) having a syndiotactic structure on both sides of the low CTE resin film.
[2] The low-CTE resin film according to [1], which is a film made of a resin selected from polyimide (PI), liquid crystal polymer (LCP), and stretched polyetheretherketone (stretched PEEK). laminate.
[3] The laminate according to [1] or [2], wherein the SPS resin film has a melting point of 250°C or higher.
[4] The laminate according to any one of [1] to [3], wherein the SPS resin film has a dielectric constant of 2.6 or less.
[5] The laminate according to any one of [1] to [4], wherein the dielectric loss tangent of the SPS resin film is less than 0.0020.
[6] The laminate according to any one of [1] to [5], wherein the SPS resin film has a water absorption rate of 0.2% or less.
[7] The laminate according to any one of [1] to [6], wherein the low CTE resin film has a water absorption rate of 2.5% or less.
[8] The ratio of the thickness of the SPS resin film to the thickness of the low-CTE resin film (the SPS resin film: the low-CTE resin film) is 1:10 to 10:1, [1] to [7] The laminate according to any one of .
[9] The laminate according to any one of [1] to [8], wherein the SPS resin film has a relative crystallinity of 25% to 85%.
[10] The surface of the low CTE resin film and/or the SPS resin film is subjected to any surface treatment selected from corona treatment, plasma treatment, and ultraviolet treatment, [1] to [9] The laminate according to any one of .
[11] The laminate according to any one of [1] to [9], wherein the surface of the low CTE resin film and/or the SPS resin film is surface-treated with a coupling agent.
[12] A metal-clad laminate obtained by laminating a metal film on one or both sides of the laminate according to any one of [1] to [11].
[13] The method for producing a laminate according to any one of [1] to [11], wherein the SPS resin film, the low CTE resin film, and the SPS resin film are arranged in this order, A method for producing a laminate, comprising thermocompression bonding to obtain the laminate.
[14] The method for producing a laminate according to [13], wherein the thermocompression bonding is performed in a temperature range of -10°C to 30°C with respect to the melting point of the SPS resin film.
[15] The method for producing a metal-clad laminate according to [12], wherein a metal film is arranged on both or one side of the laminate produced by [13] or [14], and thermocompression bonding is performed to obtain the A method for producing a metal-clad laminate to obtain a metal-clad laminate.
[16] A method for manufacturing a metal-clad laminate according to [12],
The metal film, the SPS resin film, the low CTE resin film, and the SPS resin film are arranged in this order and thermally compressed, or
The metal-clad laminate is obtained by arranging the metal film, the SPS resin film, the low-CTE resin film, the SPS resin film, and the metal film in this order and thermally compressing them to obtain the metal-clad laminate. The method of manufacturing the board.
[17] The method for producing a metal-clad laminate according to [15] or [16], wherein the thermocompression bonding is performed at a temperature range of -10°C to 30°C relative to the melting point of the SPS resin film.

 本発明によれば、5G対応可能な良好な電気特性(誘電特性)を有しつつ、基材フィルム(積層体)と金属膜との接着性(密着性)に優れ、寸法安定性に優れ、カールを抑制した金属張積層板(例えば、銅張積層板(CCL))を提供することができる。
 また、本発明によれば、上記金属張積層板を形成するために用いる、プリント配線板用の積層体を提供することができる。
According to the present invention, while having good electrical properties (dielectric properties) compatible with 5G, excellent adhesion (adhesion) between the base film (laminate) and the metal film, excellent dimensional stability, A metal-clad laminate (for example, a copper-clad laminate (CCL)) that suppresses curling can be provided.
Moreover, according to this invention, the laminated body for printed wiring boards used in order to form the said metal-clad laminated board can be provided.

本発明の積層体の構成の一例を示す断面図である。It is a sectional view showing an example of composition of a layered product of the present invention. 本発明の金属張積層板の構成の一例を示す断面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is sectional drawing which shows an example of a structure of the metal-clad laminated board of this invention.

 以下、本発明のプリント配線板用の積層体、及び該積層体を用いて形成された本発明の金属張積層板について詳細に説明するが、以下に記載する構成要件の説明は、本発明の一実施態様としての一例であり、これらの内容に特定されるものではない。
 以下の用語の定義は、本明細書及び特許請求の範囲にわたって適用される。
 本発明における融点とは、JIS K 7121に準拠して測定することができる。具体的には、溶融押出成形した樹脂フィルムから測定用試料を約5mg秤量し、示差走査熱量計(エスアイアイ・テクノロージーズ社製:高感度型示差走査熱量計X-DSC 7000)を使用して昇温速度10℃/min、測定温度範囲20℃から380℃まで加熱して測定する。
 樹脂フィルム、金属膜(金属箔膜)等の膜厚は、顕微鏡を用いて測定対象の断面を観察し、5箇所の厚さを測定し、平均した値である。
Hereinafter, the laminate for a printed wiring board of the present invention and the metal-clad laminate of the present invention formed using the laminate will be described in detail. It is an example as one embodiment, and is not specified by these contents.
The following term definitions apply throughout the specification and claims.
The melting point in the present invention can be measured according to JIS K7121. Specifically, about 5 mg of a measurement sample was weighed from a melt-extruded resin film, and a differential scanning calorimeter (manufactured by SII Technologies, Inc.: high-sensitivity differential scanning calorimeter X-DSC 7000) was used. The temperature is increased at a rate of 10°C/min, and the measurement temperature range is from 20°C to 380°C.
The film thickness of a resin film, a metal film (metal foil film), etc. is a value obtained by observing the cross section of a measurement target using a microscope, measuring the thickness at five locations, and averaging the thickness.

(積層体)
 積層体は、プリント配線板用の積層体であり、金属張積層板(銅張積層板(CCL))の作製に用いることができる。
 積層体は、樹脂フィルムが3層積層されてなる。
 積層体は、線熱膨張係数(CTE)(20℃~140℃のCTE)が50ppm/℃以下である低CTE樹脂フィルムと、該低CTE樹脂フィルムの両面に、シンジオタクチック構造を有するスチレン系重合体(SPS)からなる樹脂フィルム(以下、「SPS樹脂フィルム」ともいう)と、を積層してなる。
 低CTE樹脂フィルムは、300℃以下に融点を持たない。
 なお、本明細書において、線熱膨張係数(CTE)は、熱膨張係数、線熱膨張率、又は熱膨張率ともいう。
(Laminate)
The laminate is a laminate for a printed wiring board, and can be used for producing a metal-clad laminate (copper-clad laminate (CCL)).
The laminate is formed by laminating three layers of resin films.
The laminate comprises a low CTE resin film having a coefficient of linear thermal expansion (CTE) (CTE at 20° C. to 140° C.) of 50 ppm/° C. or less, and a styrene-based film having a syndiotactic structure on both sides of the low CTE resin film. and a resin film made of a polymer (SPS) (hereinafter also referred to as "SPS resin film").
Low CTE resin films do not have a melting point below 300°C.
In this specification, the coefficient of linear thermal expansion (CTE) is also referred to as coefficient of thermal expansion, coefficient of linear thermal expansion, or coefficient of thermal expansion.

<積層体の層構成>
 図1は、本発明の積層体の構成の一例を示す断面図である。
 積層体11は、SPS樹脂フィルム13と、低CTE樹脂フィルム12と、SPS樹脂フィルム14とを有し、これらの順で積層されてなる。
<Layer structure of laminate>
FIG. 1 is a cross-sectional view showing an example of the structure of the laminate of the present invention.
The laminate 11 has an SPS resin film 13, a low CTE resin film 12, and an SPS resin film 14, which are laminated in this order.

<低CTE樹脂フィルム>
 低CTE樹脂フィルムは、3層の樹脂フィルムが積層されてなる積層体において、真ん中に配される。該低CTE樹脂フィルムは、線熱膨張係数(CTE)(20℃~140℃のCTE)が50ppm/℃以下である。
 また、低CTE樹脂フィルムは、300℃以下に融点を持たない。
 このような低CTE樹脂フィルムを積層体の真ん中に配することで、積層体の寸法安定性の悪化や積層体のカールを、有効に防止することができる。
<Low CTE resin film>
The low-CTE resin film is arranged in the middle of a laminate obtained by laminating three layers of resin films. The low CTE resin film has a coefficient of linear thermal expansion (CTE) (CTE from 20° C. to 140° C.) of 50 ppm/° C. or less.
Also, the low CTE resin film does not have a melting point below 300°C.
By arranging such a low-CTE resin film in the middle of the laminate, it is possible to effectively prevent deterioration of the dimensional stability of the laminate and curling of the laminate.

 低CTE樹脂フィルムの線熱膨張係数(CTE)(20℃~140℃のCTE)としては、金属張積層板(例えば、銅張積層板(CCL))として貼り合わされる金属膜(例えば、銅膜)のCTEと近い値のほうがカールの抑制や寸法安定性に優れるため、例えば、5~50ppm/℃であることが好ましく、10~30ppm/℃であることがより好ましい。 The coefficient of linear thermal expansion (CTE) (CTE of 20 ° C. to 140 ° C.) of the low CTE resin film is a metal film (e.g., copper film) laminated as a metal clad laminate (e.g., copper clad laminate (CCL)). ) is more excellent in suppressing curling and in dimensional stability.

 線膨張係数(CTE)の測定は、JIS K 7197:1991に準拠して、熱機械分析(TMA)装置により求めることができる。例えば、熱機械分析装置(製品名:SII//SS7100 日立ハイテクサイエンス株式会社製)を用いた引張モードにより、荷重50mN、昇温速度5℃/minの条件で10℃から200℃の範囲で測定し、20℃から140℃までの範囲の傾きから線膨張係数(ppm/℃)を求めることにより、行うことができる。 The coefficient of linear expansion (CTE) can be measured using a thermomechanical analysis (TMA) device in accordance with JIS K 7197:1991. For example, in a tensile mode using a thermomechanical analyzer (product name: SII//SS7100 manufactured by Hitachi High-Tech Science Co., Ltd.), measurement is performed in the range of 10°C to 200°C under the conditions of a load of 50 mN and a heating rate of 5°C/min. Then, the coefficient of linear expansion (ppm/°C) is obtained from the slope in the range from 20°C to 140°C.

 低CTE樹脂フィルムは、300℃以下に融点を持たないため、熱硬化性樹脂であるか、融点が300℃より大きい熱可塑性樹脂からなるフィルムであることが好ましく、例えば、ポリイミド(PI)、液晶ポリマー(LCP)、及び延伸ポリエーテルエーテルケトン(延伸PEEK)のいずれかから選ばれる樹脂からなるフィルムであることが好ましい。
 低CTE樹脂フィルムが、熱可塑性樹脂からなり、300℃より大きい融点を示す場合、さらに本発明では、低CTE樹脂フィルムが、SPS樹脂フィルムの融点に30℃足し合わせた温度において、溶融しないものであることがより好ましい。つまり、本発明において、低CTE樹脂フィルムの融点は、SPS樹脂フィルムの融点に30℃足し合わせた温度より高いものとなっていることがより好ましい。
 また、本発明においては、低CTE樹脂フィルムを形成する樹脂として難燃性の高い樹脂を選択し、低CTE樹脂フィルムが難燃性の高い樹脂フィルムとすることにより、難燃性が向上した積層体を得ることができる。
Since the low-CTE resin film does not have a melting point below 300° C., it is preferably a thermosetting resin or a film made of a thermoplastic resin having a melting point higher than 300° C. Examples include polyimide (PI) and liquid crystal. It is preferably a film made of a resin selected from polymer (LCP) and stretched polyetheretherketone (stretched PEEK).
When the low-CTE resin film is made of a thermoplastic resin and exhibits a melting point higher than 300°C, in the present invention, the low-CTE resin film must not melt at a temperature obtained by adding 30°C to the melting point of the SPS resin film. It is more preferable to have That is, in the present invention, the melting point of the low-CTE resin film is preferably higher than the sum of the melting point of the SPS resin film and 30°C.
In addition, in the present invention, a resin with high flame retardancy is selected as the resin that forms the low CTE resin film, and the low CTE resin film is a resin film with high flame resistance, thereby improving the flame retardancy. you can get a body

 低CTE樹脂フィルムには、樹脂フィルムの強度、絶縁性、耐熱性、線熱膨張係数(CTE)の調整等各種の機能を付与するため、フィラーや、各種添加剤を含有することができる。例えば、添加剤としては、酸化防止剤、光安定剤、紫外線吸収剤、結晶核剤(核剤)、可塑剤、フィラーの分散剤等が挙げられる。 The low-CTE resin film can contain fillers and various additives in order to impart various functions such as adjusting the strength, insulation, heat resistance, and coefficient of linear thermal expansion (CTE) of the resin film. Examples of additives include antioxidants, light stabilizers, ultraviolet absorbers, crystal nucleating agents (nucleating agents), plasticizers, filler dispersants, and the like.

<<フィラー>>
 フィラーとしては、例えば、無機フィラー及び有機フィラーが挙げられ、これらを単独で又は組み合わせて使用することができる。
<<Filler>>
Examples of fillers include inorganic fillers and organic fillers, which can be used alone or in combination.

 無機フィラーとしては、例えば、マイカ、タルク、窒化ホウ素、酸化マグネシウム、シリカ、珪藻土、酸化チタン、酸化亜鉛等が挙げられる。中でも、マイカ、タルク、窒化ホウ素、酸化マグネシウム、シリカの無機フィラーが好ましい。
 有機フィラーとしては特に限定されないが、例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリスチレン、ポリアミド、ポリカーボネート、ポリイミド、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリメチルメタクリレート、液晶ポリマー、ポリテトラフルオロエチレン等の有機粒子が挙げられる。
 無機フィラー及び有機フィラーは、上記のなかから1種を選択して単独で使用してもよいし、2種以上を組み合わせて使用してもよい。2種以上を組合せる場合は無機フィラーと有機フィラーの組合せであってもよい。
Examples of inorganic fillers include mica, talc, boron nitride, magnesium oxide, silica, diatomaceous earth, titanium oxide, and zinc oxide. Among them, inorganic fillers such as mica, talc, boron nitride, magnesium oxide and silica are preferred.
Examples of organic fillers include, but are not limited to, polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polystyrene, polyamide, polycarbonate, polyimide, polyetherketone, polyetheretherketone, polymethylmethacrylate, liquid crystal polymer, and polytetrafluoroethylene. and other organic particles.
One of the inorganic fillers and organic fillers may be selected from the above and used alone, or two or more thereof may be used in combination. When two or more types are combined, a combination of an inorganic filler and an organic filler may be used.

<<低CTE樹脂フィルムの特性>>
 低CTE樹脂フィルムの膜厚は、特に限定されず、目的に応じて適宜選択することができるが、5μm~150μmであることが好ましく、10μm~80μmであることがより好ましく、12μm~60μmであることがより好ましい。厚すぎると誘電特性が悪化することもあり、また、薄すぎるとカールの抑制や寸法安定性が不安定になるなどすることがある。
<<Characteristics of low CTE resin film>>
The film thickness of the low-CTE resin film is not particularly limited, and can be appropriately selected according to the purpose. is more preferable. If it is too thick, the dielectric properties may deteriorate, and if it is too thin, curling may be suppressed and dimensional stability may become unstable.

 低CTE樹脂フィルムの表面粗さ(Rz)は、特に限定されず、目的に応じて適宜選択することができるが、例えば、1~10μmであることが好ましい。表面粗さが小さすぎるとフィルムを巻き取る際にうまく巻きとれなくなり、大きすぎるとSPS樹脂フィルムと張り合わせる際に接着強度が不安定になったり、気泡が混入するなどの不具合を生じやすい。
 本明細書において、表面粗さ(Rz)とは、膜表面の十点平均粗さをいう。十点平均粗さRzJISは、JIS B 0601:2013(ISO 4287:1997 Amd.1:2009)に基づいて求めることができる。なお、本明細書では、十点平均粗さRzJISで求められる各層の表面粗さに対して、「表面粗さ(Rz)」と表記する。
The surface roughness (Rz) of the low-CTE resin film is not particularly limited and can be appropriately selected depending on the purpose, but is preferably 1 to 10 μm, for example. If the surface roughness is too small, the film cannot be wound well, and if it is too large, problems such as unstable adhesive strength and inclusion of air bubbles when laminating the film to the SPS resin film are likely to occur.
As used herein, the surface roughness (Rz) refers to the ten-point average roughness of the film surface. The ten-point average roughness RzJIS can be obtained based on JIS B 0601:2013 (ISO 4287:1997 Amd.1:2009). In this specification, the surface roughness of each layer determined by the ten-point average roughness Rz JIS is expressed as "surface roughness (Rz)".

[十点平均粗さRzJISの測定]
 シートの表面の十点平均粗さRzJIS(μm)は、試験片についてレーザー顕微鏡を用いて粗さ曲線を測定し、この粗さ曲線から、JIS B 0601:2013(ISO 4287:1997 Amd.1:2009)に基づいて、それぞれ10サンプルずつ測定し、それらの平均値を求めることにより得る。
[Measurement of ten-point average roughness RzJIS]
The ten-point average roughness RzJIS (μm) of the surface of the sheet is obtained by measuring the roughness curve of the test piece using a laser microscope, and from this roughness curve, JIS B 0601: 2013 (ISO 4287: 1997 Amd.1: 2009), 10 samples are measured and the average value is obtained.

 低CTE樹脂フィルムの比誘電率、及び誘電正接は、特に限定されず、目的に応じて適宜選択することができるが、電気信号の伝送損失の低減の理由から比誘電率は、3.5以下で、誘電正接は0.025以下であることが好ましい。
 低CTE樹脂フィルムの比誘電率としては、低いほうが望ましいが、現実的に可能な範囲として、例えば、2.5~3.5であることが好ましく、3.0~3.5であることがより好ましい。また、低CTE樹脂フィルムの誘電正接としては、例えば、0.001~0.025であることが好ましく、0.001~0.01であることがより好ましく、0.001~0.008であることがさらに好ましい。
The dielectric constant and dielectric loss tangent of the low-CTE resin film are not particularly limited, and can be appropriately selected according to the purpose. and the dielectric loss tangent is preferably 0.025 or less.
The dielectric constant of the low-CTE resin film is preferably lower, but as a practically possible range, for example, it is preferably 2.5 to 3.5, preferably 3.0 to 3.5. more preferred. Further, the dielectric loss tangent of the low-CTE resin film is, for example, preferably 0.001 to 0.025, more preferably 0.001 to 0.01, and 0.001 to 0.008. is more preferred.

[比誘電率及び誘電正接]
 樹脂フィルムの比誘電率及び誘電正接は、ネットワークアナライザーMS46122B(Anritsu社製)と開放型共振器ファブリペローDPS-03(KEYCOM社製)とを使用し、開放型共振器法で、温度23℃、湿度50%、周波数28GHzの条件で測定することができる。
[Relative permittivity and dielectric loss tangent]
The dielectric constant and dielectric loss tangent of the resin film were measured by the open resonator method using a network analyzer MS46122B (manufactured by Anritsu) and an open resonator Fabry-Perot DPS-03 (manufactured by KEYCOM) at a temperature of 23°C. Measurement can be performed under the conditions of 50% humidity and 28 GHz frequency.

 基材が吸湿することにより誘電特性が大幅に悪化するため、低CTE樹脂フィルムの吸水率としては、例えば、0~2.5%であることが好ましく、0.01~2.0%であることがより好ましく、0.03~1.5%であることがさらに好ましく、0.05~1.2%であることが特に好ましい。 Since the base material absorbs moisture, the dielectric properties are significantly deteriorated, so the water absorption rate of the low-CTE resin film is preferably, for example, 0 to 2.5%, and is 0.01 to 2.0%. more preferably 0.03 to 1.5%, particularly preferably 0.05 to 1.2%.

[吸水率]
 吸水率は、JIS K7209A法に準拠し、23℃水浸漬×24時間の条件で測定することにより求めることができる。
 浸水前後の質量変化から吸水率を求める。
  吸水率=((24時間含水試験後の質量-試験前の質量)/試験前の質量)×100
[Water absorption rate]
The water absorption can be obtained by measuring under the conditions of immersion in water at 23° C. for 24 hours in accordance with the JIS K7209A method.
Calculate the water absorption from the change in mass before and after immersion in water.
Water absorption = ((mass after 24-hour water content test-mass before test)/mass before test) x 100

 低CTE樹脂フィルムの表面は、密着性向上等の理由により、コロナ処理、プラズマ処理、及び紫外線処理から選択されるいずれかの表面処理が施されていることが好ましい。
 また、低CTE樹脂フィルムの表面は、密着性向上等の理由により、カップリング剤による表面処理が施されていてもよい。
 シランカップリング剤としては、公知のシランカップリング剤を用いることができ、例えば、アルコキシシラン等を用いることができる。
The surface of the low-CTE resin film is preferably subjected to any surface treatment selected from corona treatment, plasma treatment, and ultraviolet treatment for reasons such as improved adhesion.
Further, the surface of the low-CTE resin film may be surface-treated with a coupling agent for reasons such as improved adhesion.
As the silane coupling agent, a known silane coupling agent such as alkoxysilane can be used.

<SPS樹脂フィルム>
 SPS樹脂フィルムは、低CTE樹脂フィルムの両面に配される。
 このようなSPS樹脂フィルムを設けることで、上記低CTE樹脂フィルムと相まって、積層体の寸法安定性の悪化や積層体のカールを、有効に防止することができる。
 SPS樹脂フィルムは、上述したように、シンジオタクチック構造を有するスチレン系重合体(SPS)からなる樹脂フィルムをいう。
 SPS樹脂フィルムは、シンジオタクチック構造を有するスチレン系重合体、又は該スチレン系重合体を含む樹脂組成物を用いて形成される。
<SPS resin film>
SPS resin films are placed on both sides of the low CTE resin film.
By providing such an SPS resin film, it is possible to effectively prevent deterioration of the dimensional stability of the laminate and curling of the laminate together with the low CTE resin film.
The SPS resin film refers to a resin film made of a styrene-based polymer (SPS) having a syndiotactic structure, as described above.
The SPS resin film is formed using a styrenic polymer having a syndiotactic structure or a resin composition containing the styrenic polymer.

<<シンジオタクチック構造を有するスチレン系重合体(SPS)>>
 シンジオタクチック構造を有するスチレン系重合体におけるシンジオタクチック構造とは、立体化学構造がシンジオタクチック構造、即ち炭素-炭素結合から形成される主鎖に対して側鎖であるフェニル基が交互に反対方向に位置する立体構造を有するものであり、そのタクティシティーは同位体炭素による核磁気共鳴法(13C-NMR)により定量される。13C-NMR法により測定されるタクティシティーは、連続する複数個の構成単位の存在割合、例えば2個の場合はダイアッド、3個の場合はトリアッド、5個の場合はペンタッドによって示すことができるが、本発明にいうシンジオタクチック構造を有するスチレン系重合体とは、通常はラセミダイアッドで75%以上、好ましくは85%以上、若しくはラセミペンタッドで30%以上、好ましくは50%以上のシンジオタクティシティーを有するポリスチレン、ポリ(アルキルスチレン)、ポリ(アリールスチレン)、ポリ(ハロゲン化スチレン)、ポリ(ハロゲン化アルキルスチレン)、ポリ(アルコキシスチレン)、ポリ(ビニル安息香酸エステル)、これらの水素化重合体およびこれらの混合物、あるいはこれらを主成分とする共重合体を指称する。なお、ここでポリ(アルキルスチレン)としては、ポリ(メチルスチレン)、ポリ(エチルスチレン)、ポリ(イソピルスチレン)、ポリ(ターシャリーブチルスチレン)等であり、ポリ(アリールスチレン)としては、ポリ(フェニルスチレン)、ポリ(ビニルナフタレン)、ポリ(ビニルスチレン)などがあり、ポリ(ハロゲン化スチレン)としては、ポリ(クロロスチレン)、ポリ(ブロモスチレン)、ポリ(フルオロスチレン)などがある。また、ポリ(ハロゲン化アルキルスチレン)としては、ポリ(クロロメチルスチレン)など、またポリ(アルコキシスチレン)としては、ポリ(メトキシスチレン)、ポリ(エトキシスチレン)などがある。
<<Styrene-based polymer (SPS) having a syndiotactic structure>>
The syndiotactic structure in the styrenic polymer having a syndiotactic structure means that the stereochemical structure is a syndiotactic structure, that is, the phenyl groups that are side chains alternate with respect to the main chain formed from carbon-carbon bonds. They have tertiary structures located in opposite directions, and their tacticity is quantified by nuclear magnetic resonance spectroscopy (13C-NMR) using carbon isotopes. The tacticity measured by the 13C-NMR method can be indicated by the abundance ratio of a plurality of consecutive constitutional units, for example, a dyad for 2 units, a triad for 3 units, and a pentad for 5 units. The styrenic polymer having a syndiotactic structure referred to in the present invention is usually 75% or more, preferably 85% or more, as racemic diad, or 30% or more, preferably 50% or more, as racemic pentad. Polystyrene, poly(alkylstyrene), poly(arylstyrene), poly(halogenated styrene), poly(halogenated alkylstyrene), poly(alkoxystyrene), poly(vinyl benzoic acid ester) having otakuticity, these It refers to hydrogenated polymers, mixtures thereof, or copolymers containing these as main components. Here, poly(alkylstyrene) includes poly(methylstyrene), poly(ethylstyrene), poly(isopropylstyrene), poly(tert-butylstyrene), etc., and poly(arylstyrene) includes: Examples include poly(phenylstyrene), poly(vinylnaphthalene), and poly(vinylstyrene). Examples of poly(halogenated styrene) include poly(chlorostyrene), poly(bromostyrene), and poly(fluorostyrene). . Examples of poly(halogenated alkylstyrene) include poly(chloromethylstyrene), and examples of poly(alkoxystyrene) include poly(methoxystyrene) and poly(ethoxystyrene).

 なお、これらのうち好ましいスチレン系重合体としては、ポリスチレン、ポリ(p-メチルスチレン)、ポリ(m-メチルスチレン)、ポリ(p-ターシャリープチルスチレン)、ポリ(p-クロロスチレン)、ポリ(m-クロロスチレン)、ポリ(p-フルオロスチレン)、水素化ポリスチレン及びこれらの構造単位を含む共重合体が挙げられる。 Among these, preferred styrene polymers include polystyrene, poly(p-methylstyrene), poly(m-methylstyrene), poly(p-tertiary butylstyrene), poly(p-chlorostyrene), poly (m-chlorostyrene), poly(p-fluorostyrene), hydrogenated polystyrene and copolymers containing these structural units.

 このようなシンジオタクチック構造を有するスチレン系重合体は、例えば不活性炭化水素溶媒中または溶媒の不存在下に、チタン化合物及び水とトリアルキルアルミニウムの縮合生成物を触媒として、スチレン系単量体(上記スチレン系重合体に対応する単量体)を重合することにより製造することができる(特開昭62-187708号公報)。また、ポリ(ハロゲン化アルキルスチレン)については特開平1-46912号公報、これらの水素化重合体は特開平1-178505号公報記載の方法などにより得ることができる。 A styrenic polymer having such a syndiotactic structure can be prepared, for example, in an inert hydrocarbon solvent or in the absence of a solvent, using a titanium compound, a condensation product of water and a trialkylaluminum as a catalyst, and a styrenic monomer. (JP-A-62-187708). Further, poly(halogenated alkylstyrene) can be obtained by the method described in JP-A-1-46912, and hydrogenated polymers thereof can be obtained by the method described in JP-A-1-178505.

 尚、これらのシンジオタクチック構造を有するスチレン系重合体の中でも、本発明においては、耐熱性及び機械的強度の点から、特にタクティシティがラセミペンタッドで70%以上、重量平均分子量5~80万のものが好ましい。 Among these styrenic polymers having a syndiotactic structure, in the present invention, from the viewpoint of heat resistance and mechanical strength, tacticity is 70% or more in terms of racemic pentad and weight average molecular weight is 5 to 80. Anything is preferred.

<<シンジオタクチックポリスチレンを含む樹脂組成物>>
 本発明にかかるSPS樹脂フィルムは、上記シンジオタクチックポリスチレン(SPS)を用いて形成された樹脂フィルムだけではなく、シンジオタクチックポリスチレンを含む樹脂組成物を用いて形成された樹脂フィルムも好適に使用し得る。
 この樹脂組成物においては、樹脂成分として(a)シンジオタクチックポリスチレンが含まれていることが必要であるが、強度等の機械物性の向上を図る意味から、さらに(b)ゴム状弾性体及び/又はシンジオタクチック構造を有するスチレン系重合体以外の熱可塑性樹脂を含んでいてもよい。
 さらには、樹脂フィルムの強度、絶縁性、耐熱性、線熱膨張係数(CTE)の調整等各種の機能を付与するため、本発明の目的を阻害しない範囲で、フィラーや、各種添加剤を含有することができる。
 フィラーや各種添加剤としては、上記<低CTE樹脂フィルム>の欄で説明した通りである。
 なお、上述した添加剤以外にも、例えば、アンチブロッキング剤、帯電防止剤、プロセスオイル、離型剤、相溶化剤,難燃剤、難燃助剤、顔料,無機充填材等を配合することができる。本発明においては、フィラーや各種添加剤の間に明確な区別を設ける必要はなく、例えば、フィラーにも無機充填材にも該当するものもあれば、アンチブロッキング剤にも無機充填材にも該当するものもあるが、本発明では、上述したフィラーや各種添加剤のいずれかに該当するとして使用することができれば、樹脂組成物中に含有させることができる。
<<Resin Composition Containing Syndiotactic Polystyrene>>
The SPS resin film according to the present invention is not only a resin film formed using the syndiotactic polystyrene (SPS), but also a resin film formed using a resin composition containing syndiotactic polystyrene. can.
In this resin composition, it is necessary to contain (a) syndiotactic polystyrene as a resin component. / Or a thermoplastic resin other than the styrenic polymer having a syndiotactic structure may be included.
Furthermore, in order to impart various functions such as strength, insulation, heat resistance, and adjustment of the coefficient of linear thermal expansion (CTE) of the resin film, fillers and various additives are contained within a range that does not hinder the purpose of the present invention. can do.
The fillers and various additives are as described in the section <Low CTE resin film> above.
In addition to the additives described above, for example, antiblocking agents, antistatic agents, process oils, mold release agents, compatibilizers, flame retardants, flame retardant aids, pigments, inorganic fillers, etc. may be blended. can. In the present invention, there is no need to provide a clear distinction between fillers and various additives. For example, some apply to both fillers and inorganic fillers, while others apply to both antiblocking agents and inorganic fillers. However, in the present invention, if it can be used as one of the fillers and various additives described above, it can be contained in the resin composition.

 また、上記各成分の混練については、シンジオタクチックポリスチレン製造工程のいずれかの段階においてブレンドし溶融混練する方法や、組成物を構成する各成分をブレンドし溶融混練する方法など様々な方法で行なえばよい。
 シンジオタクチックポリスチレンを含む樹脂組成物に含有される各成分について、以下説明する。
Further, the kneading of the above components can be carried out by various methods such as blending and melt-kneading in any stage of the syndiotactic polystyrene manufacturing process, or blending and melt-kneading the components constituting the composition. Just do it.
Each component contained in the resin composition containing syndiotactic polystyrene is described below.

<<<ゴム状弾性体>>>
 ゴム状弾性体の具体例としては、例えば、天然ゴム、ポリブタジエン、ポリイソプレン、ポリイソブチレン、ネオプレン、ポリスルフィドゴム、チオコールゴム、アクリルゴム、ウレタンゴム、シリコーンゴム、エピクロロヒドリンゴム、スチレン-ブタジエンブロック共重合体(SBR)、水素添加スチレン-ブタジエンブロック共重合体(SEB)、スチレン-ブタジエン-スチレンブロック共重合体(SBS)、水素添加スチレン-ブタジエン-スチレンブロック共重合体(SEBS)、スチレン-イソプレンブロック共重合体(SIR)、水素添加スチレン-イソプレンブロック共重合体(SEP)、スチレン-イソプレン-スチレンブロック共重合体(SIS)、水素添加スチレン-イソプレン-スチレンブロック共重合体(SEPS)、またはエチレンプロピレンゴム(EPM)、エチレンプロピレンジエンゴム(EPDM)、直鎖状低密度ポリエチレン系エラストマー等のオレフィン系ゴム、あるいはブタジエン-アクリロニトリル-スチレン-コアシェルゴム(ABS)、メチルメタクリレート-ブタジエン-スチレン-コアシェルゴム(MBS)、メチルメタクリレート-ブチルアクリレート-スチレン-コアシェルゴム(MAS)、オクチルアクリレート-ブタジエン-スチレン-コアシェルゴム(MABS)、アルキルアクリレート-ブタジエン-アクリロニトリル-スチレン-コアシェルゴム(AABS)、ブタジエン-スチレン-コアシェルゴム(SBR)、メチルメタクリレート-ブチルアクリレート-シロキサンをはじめとするシロキサン含有コアシェルゴム等のコアシェルタイプの粒子状弾性体、またはこれらを変性したゴム等が挙げられる。
<<<rubber-like elastic body>>>
Specific examples of rubber-like elastomers include natural rubber, polybutadiene, polyisoprene, polyisobutylene, neoprene, polysulfide rubber, thiocol rubber, acrylic rubber, urethane rubber, silicone rubber, epichlorohydrin rubber, and styrene-butadiene block copolymer. coalescence (SBR), hydrogenated styrene-butadiene block copolymer (SEB), styrene-butadiene-styrene block copolymer (SBS), hydrogenated styrene-butadiene-styrene block copolymer (SEBS), styrene-isoprene block copolymer (SIR), hydrogenated styrene-isoprene block copolymer (SEP), styrene-isoprene-styrene block copolymer (SIS), hydrogenated styrene-isoprene-styrene block copolymer (SEPS), or ethylene Olefin rubber such as propylene rubber (EPM), ethylene propylene diene rubber (EPDM), linear low density polyethylene elastomer, or butadiene-acrylonitrile-styrene-core-shell rubber (ABS), methyl methacrylate-butadiene-styrene-core-shell rubber (MBS), methyl methacrylate-butyl acrylate-styrene-core-shell rubber (MAS), octyl acrylate-butadiene-styrene-core-shell rubber (MABS), alkyl acrylate-butadiene-acrylonitrile-styrene-core-shell rubber (AABS), butadiene-styrene- Examples include core-shell type elastic particles such as core-shell rubber (SBR), siloxane-containing core-shell rubber such as methyl methacrylate-butyl acrylate-siloxane, and rubber modified from these.

 これらのゴム状弾性体の中でも、本発明においては、耐熱性及び誘電特性の点から水素添加スチレン-ブタジエン-スチレンブロック共重合体(SEBS)が好ましい。 Among these rubber-like elastic bodies, hydrogenated styrene-butadiene-styrene block copolymer (SEBS) is preferable in the present invention from the viewpoint of heat resistance and dielectric properties.

<<<シンジオタクチックポリスチレン以外の熱可塑性樹脂>>>
 シンジオタクチックポリスチレン以外の熱可塑性樹脂としては、直鎖状高密度ポリエチレン、直鎖状低密度ポリエチレン、高圧法低密度ポリエチレン、アイソタクチックポリプロピレン、シンジオタクチックポリプロピレン、ブロックポリプロピレン、ランダムポリプロピレン、ポリブテン、1,2-ポリブタジエン、4-メチルペンテン、環状ポリオレフィン及びこれらの共重合体に代表されるポリオレフィン系樹脂、アタクチックポリスチレン、アイソタクチックポリスチレン、HIPS、ABS、AS、スチレン-メタクリル酸共重合体、スチレン-メタクリル酸・アルキルエステル共重合体、スチレン-メタクリル酸・グリシジルエステル共重合体、スチレン-アクリル酸共重合体、スチレン-アクリル酸・アルキルエステル共重合体、スチレン-マレイン酸共重合体、スチレン-フマル酸共重合体に代表されるはじめとするポリスチレン系樹脂、ポリカーボネート、ポリエチレンテレフタレート、ポリブチレンテレフタレートをはじめとするポリエステル系樹脂、ポリアミド6、ポリアミド6,6をはじめとするポリアミド系樹脂、ポリフェニレンエーテル、ポリアリーレンスルフィド,ポリ-4-フッ化エチレン(PTFE)等のフッ素化ポリエチレン系樹脂等公知のものから任意に選択して用いることができる。中でも、ポリエチレン、ポリプロピレン等のポリオレフィン又はポリフェニレンエーテルが好ましい。
 なお、これらの熱可塑性樹脂は一種のみを単独で、または、二種以上を組み合わせて用いることができる。
<<<thermoplastic resin other than syndiotactic polystyrene>>>
Thermoplastic resins other than syndiotactic polystyrene include linear high-density polyethylene, linear low-density polyethylene, high-pressure low-density polyethylene, isotactic polypropylene, syndiotactic polypropylene, block polypropylene, random polypropylene, polybutene, Polyolefin resins represented by 1,2-polybutadiene, 4-methylpentene, cyclic polyolefins and copolymers thereof, atactic polystyrene, isotactic polystyrene, HIPS, ABS, AS, styrene-methacrylic acid copolymers, Styrene-methacrylic acid/alkyl ester copolymer, styrene-methacrylic acid/glycidyl ester copolymer, styrene-acrylic acid copolymer, styrene-acrylic acid/alkyl ester copolymer, styrene-maleic acid copolymer, styrene - polystyrene resins represented by fumaric acid copolymer, polyester resins such as polycarbonate, polyethylene terephthalate, polybutylene terephthalate, polyamide 6, polyamide resins such as polyamide 6,6, polyphenylene ether , polyarylene sulfide, poly-4-fluoroethylene (PTFE), and other known fluorinated polyethylene resins. Among them, polyolefins such as polyethylene and polypropylene, and polyphenylene ethers are preferred.
In addition, these thermoplastic resins can be used individually by 1 type, or in combination of 2 or more types.

<<<各種添加剤>>>
 本発明の目的を阻害しない限り、以下に例示する各種の添加剤を配合することができる。
<<<Additives>>>
Various additives exemplified below can be blended as long as they do not hinder the object of the present invention.

[アンチブロッキング剤(AB剤)]
 アンチブロッキング剤としては、以下のような無機粒子又は有機粒子が挙げられる。
 無機粒子としては、IA族、IIA族、IVA族、VIA族、VIIA族、VIII族、IB族、IIB族、IIIB族、IVB族元素の酸化物、水酸化物、硫化物、窒素化物、ハロゲン化物、炭酸塩、硫酸塩、酢酸塩、燐酸塩、亜燐酸塩、有機カルボン酸塩、珪酸塩、チタン酸塩、硼酸塩及びそれらの含水化合物、それらを中心とする複合化合物及び天然鉱物粒子が挙げられる。
[Anti-blocking agent (AB agent)]
Antiblocking agents include inorganic or organic particles such as:
Examples of inorganic particles include oxides, hydroxides, sulfides, nitrides and halogens of group IA, IIA, IVA, VIA, VIIA, VIII, IB, IIB, IIIB, and IVB elements. compounds, carbonates, sulfates, acetates, phosphates, phosphites, organic carboxylates, silicates, titanates, borates, their hydrous compounds, composite compounds centering on them, and natural mineral particles mentioned.

 具体的には、弗化リチウム、ホウ砂(硼酸ナトリウム含水塩)等のIA族元素化合物、炭酸マグネシウム、燐酸マグネシウム、酸化マグネシウム(マグネシア)、塩化マグネシウム、酢酸マグネシウム、弗化マグネシウム、チタン酸マグネシウム、珪酸マグネシウム、珪酸マグネシウム含水塩(タルク)、炭酸カルシウム、燐酸カルシウム、亜燐酸カルシウム、硫酸カルシウム(石膏)、酢酸カルシウム、テレフタル酸カルシウム、水酸化カルシウム、珪酸カルシウム、弗化カルシウム、チタン酸カルシウム、チタン酸ストロンチウム、炭酸バリウム、燐酸バリウム、硫酸バリウム、亜硫酸バリウム等のIIA族元素化合物、二酸化チタン(チタニア)、一酸化チタン、窒化チタン、二酸化ジルコニウム(ジルコニア)、一酸化ジルコニウム等のIVA族元素化合物、二酸化モリブデン、三酸化モリブデン、硫化モリブデン等のVIA族元素化合物、塩化マンガン、酢酸マンガン等のVIIA族元素化合物、塩化コバルト、酢酸コバルト等のVIII族元素化合物、沃化第一銅等のIB族元素化合物、酸化亜鉛、酢酸亜鉛等のIIB族元素化合物、酸化アルミニウム(アルミナ)、水酸化アルミニウム、弗化アルミニム、アルミナシリケート(珪酸アルミナ、カオリン、カオリナイト)等のIIIB族元素化合物、酸化珪素(シリカ、シリカゲル)、石墨、カーボン、グラファイト、ガラス等のIVB族元素化合物、カーナル石、カイナイト、雲母(マイカ、キンウンモ)、バイロース鉱等の天然鉱物の粒子が挙げられる。 Specifically, lithium fluoride, group IA element compounds such as borax (sodium borate hydrate), magnesium carbonate, magnesium phosphate, magnesium oxide (magnesia), magnesium chloride, magnesium acetate, magnesium fluoride, magnesium titanate, Magnesium silicate, magnesium silicate hydrate (talc), calcium carbonate, calcium phosphate, calcium phosphite, calcium sulfate (gypsum), calcium acetate, calcium terephthalate, calcium hydroxide, calcium silicate, calcium fluoride, calcium titanate, titanium Group IIA element compounds such as strontium oxide, barium carbonate, barium phosphate, barium sulfate, and barium sulfite; group IVA element compounds such as titanium dioxide (titania), titanium monoxide, titanium nitride, zirconium dioxide (zirconia), and zirconium monoxide; VIA group element compounds such as molybdenum dioxide, molybdenum trioxide and molybdenum sulfide; VIIA group element compounds such as manganese chloride and manganese acetate; VIII group element compounds such as cobalt chloride and cobalt acetate; and IB group elements such as cuprous iodide. Compounds, group IIB element compounds such as zinc oxide and zinc acetate, group IIIB element compounds such as aluminum oxide (alumina), aluminum hydroxide, aluminum fluoride, alumina silicate (alumina silicate, kaolin, kaolinite), silicon oxide (silica , silica gel), IVB group element compounds such as graphite, carbon, graphite, and glass, and particles of natural minerals such as carnalite, kainite, mica (mica, cinnamon), and biroseite.

 有機粒子としては、テフロン、メラミン系樹脂、スチレン・ジビニルベンゼン共重合体、アクリル系レジン及びおよびそれらの架橋体が挙げられる。 Organic particles include Teflon, melamine-based resins, styrene-divinylbenzene copolymers, acrylic resins, and crosslinked products thereof.

[酸化防止剤]
 酸化防止剤としてはリン系、フェノール系、イオウ系等公知のものから任意に選択して用いることができる。なお、これらの酸化防止剤は一種のみを単独で、または、二種以上を組み合わせて用いることができる。
[Antioxidant]
The antioxidant can be arbitrarily selected from known antioxidants such as phosphorus-based, phenol-based, and sulfur-based antioxidants. In addition, these antioxidants can be used individually by 1 type, or in combination of 2 or more types.

[核剤]
 核剤としてはアルミニウムジ(p-t-ブチルベンゾエート)をはじめとするカルボン酸の金属塩、メチレンビス(2,4-ジ-t-ブチルフェノール)アシッドホスフェートナトリウムをはじめとするリン酸の金属塩、タルク、フタロシアニン誘導体等、公知のものから任意に選択して用いることができる。なお、これらの核剤は一種のみを単独で、または、二種以上を組み合わせて用いることができる。
[Nucleating agent]
Nucleating agents include carboxylic acid metal salts such as aluminum di(pt-butylbenzoate), phosphoric acid metal salts such as methylenebis(2,4-di-t-butylphenol) acid phosphate sodium, and talc. , phthalocyanine derivatives, etc., can be arbitrarily selected and used. These nucleating agents can be used singly or in combination of two or more.

[可塑剤]
 可塑剤としてはポリエチレングリコール、ポリアミドオリゴマー、エチレンビスステアロアマイド、フタル酸エステル、ポリスチレンオリゴマー、ポリエチレンワックス、シリコーンオイル等公知のものから任意に選択して用いることができる。なお、これらの可塑剤は一種のみを単独で、または、二種以上を組み合わせて用いることができる。
[Plasticizer]
The plasticizer can be arbitrarily selected from known ones such as polyethylene glycol, polyamide oligomer, ethylene bis-stearamide, phthalate ester, polystyrene oligomer, polyethylene wax, and silicone oil. In addition, these plasticizers can be used individually by 1 type, or in combination of 2 or more types.

[離型剤]
 離型剤としてはポリエチレンワックス、シリコーンオイル、長鎖カルボン酸、長鎖カルボン酸金属塩等公知のものから任意に選択して用いることができる。なお、これらの離型剤は一種のみを単独で、または、二種以上を組み合わせて用いることができる。
[Release agent]
As the release agent, it is possible to arbitrarily select and use known ones such as polyethylene wax, silicone oil, long-chain carboxylic acid, and long-chain carboxylic acid metal salt. These release agents can be used singly or in combination of two or more.

[プロセスオイル]
 本発明においては、さらにプロセスオイルを配合してもよい。プロセスオイルは油種により、パラフィン系オイル、ナフテン系オイル、アロマ系オイルに大別されるが、中でもパラフィン系オイルが好ましい。プロセスオイルの粘度としては、40℃での動粘度が15~600csが好ましく、15~500csが更に好ましい。
 なおこれらのプロセスオイルは一種のみを単独または、二種以上を組み合わせて用いることができる。
[Process oil]
In the present invention, process oil may be further blended. Process oils are broadly classified into paraffinic oils, naphthenic oils, and aromatic oils, depending on the type of oil, with paraffinic oils being preferred. As for the viscosity of the process oil, the kinematic viscosity at 40° C. is preferably 15 to 600 cs, more preferably 15 to 500 cs.
These process oils can be used singly or in combination of two or more.

[相溶化剤]
 本発明でいう相溶化剤は、シンジオタクチックポリスチレンと熱可塑性樹脂及び/又はゴム状弾性体との間の親和性を向上させ効果的に相溶化し、また、シンジオタクチックポリスチレンと無機充填材との親和性を向上させるために配合する。具体的には、シンジオタクチックポリスチレンとの相溶性又は親和性を有し、かつ極性基を有する重合体が挙げられる。
[Compatibilizer]
The compatibilizer as used in the present invention improves the affinity between syndiotactic polystyrene and thermoplastic resin and/or rubber-like elastomer to effectively compatibilize the syndiotactic polystyrene and inorganic filler. Blended to improve affinity with. Specific examples include polymers having compatibility or affinity with syndiotactic polystyrene and having polar groups.

 ここでシンジオタクチックポリスチレンとの相溶性又は親和性を有する重合体とは、シンジオタクチックポリスチレンとの相溶性又は親和性を示す連鎖をポリマー鎖中に含有するものをいう。これらの相溶性又は親和性を示す重合体としては、例えば、シンジオタクチックポリスチレン、アタクチックポリスチレン、アイソタクチックポリスチレン、スチレン系共重合体、ポリフェニレンエーテル、ポリビニルメチルエーテル等を主鎖、ブロックまたはグラフト鎖として有するもの等が挙げられる。 Here, a polymer having compatibility or affinity with syndiotactic polystyrene means a polymer containing a chain exhibiting compatibility or affinity with syndiotactic polystyrene in the polymer chain. Polymers exhibiting compatibility or affinity for these include, for example, syndiotactic polystyrene, atactic polystyrene, isotactic polystyrene, styrenic copolymers, polyphenylene ether, polyvinyl methyl ether, etc. as main chains, blocks or grafts. Those having as a chain, etc. are mentioned.

 また、ここでいう極性基とは、無機充填剤との接着性を向上させるものであればよく、具体的には、酸無水物基、カルボン酸基、カルボン酸エステル基、カルボン酸塩化物基、カルボン酸アミド基、カルボン酸塩基、スルホン酸基、スルホン酸エステル基、スルホン酸塩化物基、スルホン酸アミド基、スルホン酸塩基、エポキシ基、アミノ基、イミド基、オキサゾリン基等が挙げられる。 In addition, the polar group as used herein may be any group that improves adhesion to the inorganic filler, and specifically includes an acid anhydride group, a carboxylic acid group, a carboxylic acid ester group, and a carboxylic acid chloride group. , carboxylic acid amide group, carboxylic acid group, sulfonic acid group, sulfonic acid ester group, sulfonic acid chloride group, sulfonic acid amide group, sulfonic acid group, epoxy group, amino group, imide group, oxazoline group and the like.

 この相溶化剤は溶媒、他樹脂の存在下、または非存在下、上記のシンジオタクチックポリスチレンと相溶性又は親和性を有する重合体と後述する変性剤を反応させることにより得ることができる。
 変性剤としては、例えば、エチレン性二重結合と極性基を同一分子内に含む化合物が使用できる。具体的には、無水マレイン酸、マレイン酸、マレイン酸エステル、マレイミド及びそのN置換体、マレイン酸塩をはじめとするマレイン酸誘導体、フマル酸、フマル酸エステル、フマル酸塩をはじめとするフマル酸誘導体、無水イタコン酸、イタコン酸、イタコン酸エステル、イタコン酸塩をはじめとするイタコン酸誘導体、アクリル酸、アクリル酸エステル、アクリル酸アミド、アクリル酸塩をはじめとするアクリル酸誘導体、メタクリル酸、メタクリル酸エステル、メタクリル酸アミド、メタクリル酸塩、グリシジルメタクリレ-トをはじめとするメタクリル酸誘導体等が挙げられる。その中でも特に好ましくは無水マレイン酸、フマル酸、グリシジルメタクリレ-トが用いられる。
This compatibilizing agent can be obtained by reacting the above polymer having compatibility or affinity with syndiotactic polystyrene with a modifying agent described later in the presence or absence of a solvent or other resin.
As modifiers, for example, compounds containing an ethylenic double bond and a polar group in the same molecule can be used. Specifically, maleic anhydride, maleic acid, maleic acid ester, maleimide and its N-substituted products, maleic acid derivatives such as maleate, fumaric acid such as fumaric acid, fumaric acid ester, and fumarate derivatives, itaconic anhydride, itaconic acid, itaconic acid esters, itaconic acid derivatives including itaconic acid salts, acrylic acid, acrylic acid esters, acrylic acid amides, acrylic acid derivatives including acrylic acid salts, methacrylic acid, methacrylic acid Acid esters, methacrylic acid amides, methacrylic acid salts, methacrylic acid derivatives such as glycidyl methacrylate, and the like. Among them, maleic anhydride, fumaric acid and glycidyl methacrylate are particularly preferred.

 変性には公知の方法が用いられるが、ロ-ルミル、バンバリーミキサー、押出機等を用いて150℃~350℃の温度で溶融混練し、反応させる方法、また、ベンゼン、トルエン、キシレン等の溶媒中で加熱反応させる方法などを挙げることができる。さらにこれらの反応を容易に進めるため、反応系にベンゾイルパーオキサイド、ジ-t-ブチルパーオキサイド、ジクミルパーオキサイド、t-ブチルパーオキシベンゾエ-ト、アゾビスイソブチロニトリル、アゾビスイソバレロニトリル、2,3-ジフェニル-2,3-ジメチルブタン等のラジカル発生剤を存在させることは有効である。このうち特に2,3-ジフェニル-2,3-ジメチルブタンが好ましく用いられる。 Known methods are used for modification, but a method of melt-kneading and reacting at a temperature of 150° C. to 350° C. using a roll mill, a Banbury mixer, an extruder, etc., and a method of reacting with a solvent such as benzene, toluene, xylene, etc. A method of heat-reacting in the inside can be exemplified. Furthermore, in order to facilitate these reactions, benzoyl peroxide, di-t-butyl peroxide, dicumyl peroxide, t-butyl peroxybenzoate, azobisisobutyronitrile, and azobisiso are added to the reaction system. The presence of a radical generator such as valeronitrile, 2,3-diphenyl-2,3-dimethylbutane is effective. Of these, 2,3-diphenyl-2,3-dimethylbutane is particularly preferred.

 また、好ましい変性方法としては、ラジカル発生剤の存在下に溶融混練する方法である。また、変性の際、他樹脂を添加してもよい。相溶化剤の具体例としては、スチレン-無水マレイン酸共重合体(SMA)、スチレン-グリシジルメタクリレート共重合体、末端カルボン酸変性ポリスチレン、末端エポキシ変性ポリスチレン、末端オキサゾリン変性ポリスチレン、末端アミン変性ポリスチレン、スルホン化ポリスチレン、スチレン系アイオノマー、スチレン-メチルメタクリレート-グラフトポリマー、(スチレン-グリシジルメタクリレート)-メチルメタクリレート-グラフト共重合体、酸変性アクリル-スチレン-グラフトポリマー、(スチレン-グリシジルメタクリレート)-スチレン-グラフトポリマー、ポリブチレンテレフタレート-ポリスチレン-グラフトポリマー、無水マレイン酸変性PS、フマル酸変性PS、グリシジルメタクリレート変性PS、アミン変性PS等の変性スチレン系ポリマー、(スチレン-無水マレイン酸)-ポリフェニレンエーテル-グラフトポリマー、無水マレイン酸変性ポリフェニレンエーテル、グリシジルメタクリレート変性ポリフェニレンエーテル、アミン変性ポリフェニレンエーテル等の変性ポリフェニレンエーテル系ポリマ-等が挙げられる。 A preferred modification method is a method of melt-kneading in the presence of a radical generator. Also, other resins may be added during modification. Specific examples of compatibilizers include styrene-maleic anhydride copolymer (SMA), styrene-glycidyl methacrylate copolymer, terminal carboxylic acid-modified polystyrene, terminal epoxy-modified polystyrene, terminal oxazoline-modified polystyrene, terminal amine-modified polystyrene, Sulfonated polystyrene, styrene ionomer, styrene-methyl methacrylate-graft polymer, (styrene-glycidyl methacrylate)-methyl methacrylate-graft copolymer, acid-modified acrylic-styrene-graft polymer, (styrene-glycidyl methacrylate)-styrene-graft Polymers, polybutylene terephthalate-polystyrene-graft polymers, maleic anhydride-modified PS, fumaric acid-modified PS, glycidyl methacrylate-modified PS, amine-modified PS and other modified styrenic polymers, (styrene-maleic anhydride)-polyphenylene ether-graft polymers , maleic anhydride-modified polyphenylene ether, glycidyl methacrylate-modified polyphenylene ether, amine-modified polyphenylene ether, and other modified polyphenylene ether polymers.

 このうち特に、変性PS、変性ポリフェニレンエ-テルが好ましく用いられる。また、上記重合体は2種以上を併用して用いることも可能である。相溶化剤中の極性基含有率としては、好ましくは相溶化剤100質量%中の0.01~20質量%、さらに好ましくは0.05~10質量%の範囲である。0.01質量%未満では無機充填材との接着効果を発揮させるために相溶化剤を多量に添加する必要があり、組成物の力学物性、耐熱性、成形性を低下させるおそれがあるため好ましくない。また、20質量%を超えるとシンジオタクチックポリスチレンとの相溶性が低下するおそれがあるため好ましくない。 Of these, modified PS and modified polyphenylene ether are particularly preferred. Two or more of the above polymers can be used in combination. The polar group content in the compatibilizer is preferably in the range of 0.01 to 20% by mass, more preferably 0.05 to 10% by mass based on 100% by mass of the compatibilizer. If it is less than 0.01% by mass, it is necessary to add a large amount of a compatibilizing agent in order to exhibit an adhesive effect with the inorganic filler, and this is preferable because there is a possibility that the mechanical properties, heat resistance, and moldability of the composition may be deteriorated. do not have. On the other hand, if it exceeds 20% by mass, the compatibility with syndiotactic polystyrene may decrease, which is not preferable.

 相溶化剤の配合量としては、シンジオタクチックポリスチレン樹脂と熱可塑性樹脂及び/又はゴム状弾性体100質量部に対して、0.1~10質量部、好ましくは0.5~8質量部、さらに好ましくは1~5質量部である。0.1質量部未満では無機充填材との接着効果が小さく、樹脂と無機充填材との接着不足を生じ、10質量部を超えて配合しても接着性の向上は望めず経済的に不利になる。 The content of the compatibilizer is 0.1 to 10 parts by mass, preferably 0.5 to 8 parts by mass, based on 100 parts by mass of the syndiotactic polystyrene resin, the thermoplastic resin and/or the rubber-like elastic body. More preferably, it is 1 to 5 parts by mass. If it is less than 0.1 part by mass, the effect of adhesion to the inorganic filler is small, resulting in insufficient adhesion between the resin and the inorganic filler. become.

[無機充填材]
 無機充填材としては、粒状、粉状充填材が好ましく、例えば、タルク、カーボンブラック、グラファイト、二酸化チタン、シリカ、マイカ、炭酸カルシウム、硫酸カルシウム、炭酸バリウム、炭酸マグネシウム、硫酸マグネシウム、硫酸バリウム、オキシサルフェート、酸化スズ、アルミナ、カオリン、炭化ケイ素、金属粉末、ガラスパウダー、ガラスフレーク、ガラスビーズ等が挙げられる。
[Inorganic filler]
As inorganic fillers, granular and powdery fillers are preferred, and examples include talc, carbon black, graphite, titanium dioxide, silica, mica, calcium carbonate, calcium sulfate, barium carbonate, magnesium carbonate, magnesium sulfate, barium sulfate, oxy Sulfate, tin oxide, alumina, kaolin, silicon carbide, metal powder, glass powder, glass flakes, glass beads and the like.

 また、これらの充填材としては表面処理したものを用いてもよい。表面処理に用いられるカップリング剤は、充填材と樹脂との接着性を良好にするために用いられるものであり、いわゆるシラン系カップリング剤、チタン系カップリング剤等、従来公知のものの中から任意のものを選択して用いることができる。なお、これらの無機充填材については一種のみを単独で、または、二種以上を組み合わせて用いることができる。 In addition, surface-treated ones may be used as these fillers. The coupling agent used for the surface treatment is used to improve the adhesion between the filler and the resin. Any one can be selected and used. In addition, about these inorganic fillers, only 1 type can be used individually or in combination of 2 or more types.

<<SPS樹脂フィルムの特性>>
 低CTE樹脂フィルムの両側に配されるそれぞれのSPS樹脂フィルムの膜厚は、特に限定されず、目的に応じて適宜選択することができるが、5μm~60μmであることが好ましく、10μm~60μmであることがより好ましく、20μm~55μmであることがさらに好ましい。
<<Characteristics of SPS resin film>>
The film thickness of each SPS resin film arranged on both sides of the low-CTE resin film is not particularly limited, and can be appropriately selected according to the purpose. more preferably 20 μm to 55 μm.

 低CTE樹脂フィルムの両側に配されるそれぞれのSPS樹脂フィルム(1層のSPS樹脂フィルム)の厚みと上記低CTE樹脂フィルムの厚みの比(SPS樹脂フィルム:低CTE樹脂フィルム)は、1:10~10:1であることが好ましく、1:5~5:1であることがより好ましく、1:3~3:1であることがさらに好ましい。SPS樹脂フィルムが薄すぎると、伝送特性が悪化する場合があり、SPS樹脂フィルムが厚すぎるとカールを生じたり、寸法安定性が悪化することがある。
 また、SPS樹脂フィルムの厚みは、低CTE樹脂フィルムの厚みより同じか薄い方がより好ましい。したがって、SPS樹脂フィルム:低CTE樹脂フィルムは、1:2~1:1であることが特に好ましい。
The ratio of the thickness of each SPS resin film (single-layer SPS resin film) arranged on both sides of the low-CTE resin film to the thickness of the low-CTE resin film (SPS resin film: low-CTE resin film) is 1:10. ~10:1 is preferred, 1:5 to 5:1 is more preferred, and 1:3 to 3:1 is even more preferred. If the SPS resin film is too thin, transmission characteristics may deteriorate, and if the SPS resin film is too thick, curling may occur and dimensional stability may deteriorate.
Moreover, the thickness of the SPS resin film is more preferably the same as or thinner than the thickness of the low-CTE resin film. Therefore, the ratio of SPS resin film:low CTE resin film is particularly preferably 1:2 to 1:1.

 低CTE樹脂フィルムとSPS樹脂フィルムとの界面におけるSPS樹脂フィルムの表面粗さ(Rz)は、特に限定されず、目的に応じて適宜選択することができるが、例えば、1~10μmであることが好ましい。
 一方、SPS樹脂フィルムと金属膜との界面におけるSPS樹脂フィルムの表面粗さ(Rz)は、特に限定されず、目的に応じて適宜選択することができるが、例えば、1~10μmであることが好ましい。
The surface roughness (Rz) of the SPS resin film at the interface between the low CTE resin film and the SPS resin film is not particularly limited and can be appropriately selected according to the purpose. preferable.
On the other hand, the surface roughness (Rz) of the SPS resin film at the interface between the SPS resin film and the metal film is not particularly limited and can be appropriately selected depending on the purpose. preferable.

 SPS樹脂フィルムの融点は、250℃以上であることが好ましい。
 また、SPS樹脂フィルムの比誘電率は2.6以下であることが好ましい。また、SPS樹脂フィルムの誘電正接は0.0020未満であることが好ましく、0.0016以下であることがより好ましく、0.0012以下であることがさらに好ましい。
 また、SPS樹脂フィルムの吸水率は、0.2%以下、より好ましくは0.15%以下であることが好ましく、0.10%以下であることがさらに好ましい。
 これらの特性を満足するSPS樹脂フィルムを有する金属張積層板(例えば、銅張積層板(CCL))は、5G対応可能な良好な電気特性(誘電特性)を有する。
 SPS樹脂フィルムの比誘電率としては、低いほど望ましいが、半田耐熱性を有する樹脂である必要性から、例えば、2.0~2.6であることが好ましく、2.1~2.4であることがより好ましい。また、SPS樹脂フィルムの誘電正接としては、低いほど望ましいが、半田耐熱性を有する樹脂である必要性から、例えば、0.0005~0.0020未満であるあることが好ましく、0.0005~0.0016であることがより好ましく、0.0005~0.0012であることがさらに好ましく、0.0005~0.0007であることが特に好ましい。
The melting point of the SPS resin film is preferably 250° C. or higher.
Also, the SPS resin film preferably has a dielectric constant of 2.6 or less. Also, the dielectric loss tangent of the SPS resin film is preferably less than 0.0020, more preferably 0.0016 or less, even more preferably 0.0012 or less.
The water absorption rate of the SPS resin film is preferably 0.2% or less, more preferably 0.15% or less, and even more preferably 0.10% or less.
A metal-clad laminate (for example, a copper-clad laminate (CCL)) having an SPS resin film that satisfies these properties has good electrical properties (dielectric properties) compatible with 5G.
The relative dielectric constant of the SPS resin film is preferably as low as possible, but from the necessity of the resin having solder heat resistance, for example, it is preferably 2.0 to 2.6, and 2.1 to 2.4. It is more preferable to have In addition, the dielectric loss tangent of the SPS resin film is preferably as low as possible. 0.0016 is more preferred, 0.0005 to 0.0012 is even more preferred, and 0.0005 to 0.0007 is particularly preferred.

 基材が吸湿することにより誘電特性が大幅に悪化するため、SPS樹脂フィルムの吸水率としては、例えば、0~0.2%であることが好ましく、0.01~0.15%であることがより好ましく、0.03~0.06%であることがさらに好ましい。 Since the base material absorbs moisture, the dielectric properties are significantly deteriorated, so the water absorption rate of the SPS resin film is preferably, for example, 0 to 0.2%, and preferably 0.01 to 0.15%. is more preferable, and 0.03 to 0.06% is even more preferable.

[吸水率]
 吸水率は、JIS K7209A法に準拠し、23℃水浸漬×24時間の条件で測定することにより求めることができる。
 浸水前後の質量変化から吸水率を求める。
  吸水率=((24時間含水試験後の質量-試験前の質量)/試験前の質量)×100
[Water absorption rate]
The water absorption can be obtained by measuring under the conditions of immersion in water at 23° C. for 24 hours in accordance with the JIS K7209A method.
Calculate the water absorption from the change in mass before and after immersion in water.
Water absorption = ((mass after 24-hour water content test-mass before test)/mass before test) x 100

 さらにまた、SPS樹脂フィルムの縦方向(MD方向)における引張破断の伸びは、400%以下であることが好ましい。 Furthermore, the elongation at tensile break in the machine direction (MD direction) of the SPS resin film is preferably 400% or less.

 SPS樹脂フィルムの縦方向(MD方向)(あるいはフィルムの押出方向ともいう)における引張破断の伸びは、上述したように400%以下であるが、例えば、2~350%であることが好ましい。伸びが大きすぎると低CTEフィルムや金属膜との貼り合せ時に皺が発生するなどの不具合を生じることがある。 The tensile elongation at break in the longitudinal direction (MD direction) of the SPS resin film (also called the extrusion direction of the film) is 400% or less as described above, but preferably 2 to 350%, for example. If the elongation is too large, problems such as wrinkles may occur during lamination with a low-CTE film or metal film.

[引張破断の伸び(%)]
 SPS樹脂フィルムの引張破断時の伸びは、JIS K7127に準拠し、引張速度50mm/分、温度23℃の条件でフィルムの縦方向(つまり、フィルムの押出方向)における伸びを測定することで求めることができる。
[Elongation at break (%)]
The elongation at break of the SPS resin film is obtained by measuring the elongation in the longitudinal direction of the film (that is, the extrusion direction of the film) at a tensile speed of 50 mm / min and a temperature of 23 ° C. in accordance with JIS K7127. can be done.

 SPS樹脂フィルムの相対結晶化度は、25~85%であることが好ましく、30~80%であることがより好ましく、35~70%がさらに好ましい。
 SPS樹脂フィルムの相対結晶化度が上記範囲内であれば、積層体として使用可能な剥離強度及び加熱寸法安定性の確保が期待できるからである。
The relative crystallinity of the SPS resin film is preferably 25-85%, more preferably 30-80%, even more preferably 35-70%.
This is because, if the relative crystallinity of the SPS resin film is within the above range, it can be expected to ensure the peel strength and heat dimensional stability that can be used as a laminate.

[相対結晶化度(%)]
 SPS樹脂フィルムの結晶化度は、相対結晶化度により表すことができる。SPS樹脂フィルムの相対結晶化度は、例えば、作製した金属張積層板からSPS樹脂フィルム部分のみを剥がし、このSPS樹脂フィルムに対して、示差走査熱量計を用いて10℃/分の昇温速度で測定した熱分析結果に基づき、以下の式により算出して求めることができる。
  相対結晶化度(%)={(|ΔHm|-|ΔHc|)/|ΔHm|}×100
  ここで、△Hc:再結晶化ピークの熱量(J/g)を、△Hm:融解ピークの熱量(J/g)を表す。
[Relative crystallinity (%)]
The crystallinity of the SPS resin film can be represented by relative crystallinity. The relative crystallinity of the SPS resin film can be measured, for example, by peeling off only the SPS resin film portion from the prepared metal-clad laminate, and using a differential scanning calorimeter on the SPS resin film at a heating rate of 10 ° C./min. It can be obtained by calculating from the following formula based on the thermal analysis results measured in .
Relative crystallinity (%) = {(|ΔHm|-|ΔHc|)/|ΔHm|}×100
Here, ΔHc: heat quantity (J/g) at recrystallization peak, ΔHm: heat quantity (J/g) at melting peak.

 図1で示されるように、SPS樹脂フィルムは、低CTE樹脂フィルム12の両面に配されるが、SPS樹脂フィルム13とSPS樹脂フィルム14とは、上述した要件を満足していれば、同じ組成の樹脂フィルムであっても、異なる組成の樹脂フィルムであってもよい。 As shown in FIG. 1, the SPS resin films are arranged on both sides of the low CTE resin film 12, and the SPS resin films 13 and 14 have the same composition as long as they satisfy the above requirements. It may be a resin film of the same composition or a resin film of a different composition.

 SPS樹脂フィルムの表面は、密着性向上等の理由により、コロナ処理、プラズマ処理、及び紫外線処理から選択されるいずれかの表面処理が施されていることが好ましい。
 また、SPS樹脂フィルムの表面は、密着性向上等の理由により、カップリング剤による表面処理が施されていてもよい。
The surface of the SPS resin film is preferably subjected to any surface treatment selected from corona treatment, plasma treatment, and ultraviolet treatment for reasons such as improved adhesion.
In addition, the surface of the SPS resin film may be surface-treated with a coupling agent for reasons such as improved adhesion.

<樹脂フィルムの製造方法>
 樹脂フィルムは、例えば、溶融押出成形法によって樹脂をフィルム状に成形することにより得ることができる。
 溶融押出成形法とは、溶融押出成形機を使用して樹脂材料を溶融混練し、溶融押出成形機のTダイスから樹脂材料を連続的に押し出す成形方法である。
 例えば、溶融押出成形機で溶融混練された樹脂材料は、溶融押出成形機の先端部のTダイスにより帯形の樹脂フィルムに連続して押出成形され、この連続した樹脂フィルムは次に配置されているロール間に配され、冷却された後、巻取機に巻き取られる。こうして、樹脂フィルムが製造される。
 なお、押出成形機は、特に制限はなく、単軸押出成形機、あるいは二軸押出成形機等、いずれの成形機も用いることができる。
<Method for producing resin film>
A resin film can be obtained, for example, by molding a resin into a film by a melt extrusion molding method.
The melt extrusion molding method is a molding method in which a resin material is melt-kneaded using a melt extruder, and the resin material is continuously extruded from a T-die of the melt extruder.
For example, a resin material melt-kneaded by a melt extruder is continuously extruded into a belt-shaped resin film by a T-die at the tip of the melt extruder, and this continuous resin film is placed next. It is placed between rolls, cooled, and then wound on a winder. Thus, a resin film is produced.
The extruder is not particularly limited, and any molding machine such as a single-screw extruder or a twin-screw extruder can be used.

(金属張積層板)
 本発明の金属張積層板は、上記本発明の積層体の両面又は片面に、金属膜が積層されてなる。
(Metal clad laminate)
The metal-clad laminate of the present invention is obtained by laminating a metal film on one or both sides of the laminate of the present invention.

 SPS樹脂フィルム、低CTE樹脂フィルム、SPS樹脂フィルム、金属膜がこの順で積層されてなる。
 また、本発明の金属張積層板は、金属膜が基材フィルムの両側に積層されていてもよい。この場合の金属張積層板は、金属膜、SPS樹脂フィルム、低CTE樹脂フィルム、SPS樹脂フィルム、金属膜がこの順で積層されてなる。
An SPS resin film, a low CTE resin film, an SPS resin film, and a metal film are laminated in this order.
In the metal-clad laminate of the present invention, metal films may be laminated on both sides of the base film. The metal-clad laminate in this case is formed by laminating a metal film, an SPS resin film, a low-CTE resin film, an SPS resin film, and a metal film in this order.

 図2は、本発明の金属張積層板の構成の一例を示す断面図である。図2では、積層体の両面に、金属膜が積層された例を示している。
 金属張積層板21は、金属膜25、SPS樹脂フィルム23と、低CTE樹脂フィルム22と、SPS樹脂フィルム24と、金属膜26とを有し、これらの順で積層されてなる。
FIG. 2 is a cross-sectional view showing an example of the configuration of the metal-clad laminate of the present invention. FIG. 2 shows an example in which metal films are laminated on both sides of the laminate.
The metal-clad laminate 21 has a metal film 25, an SPS resin film 23, a low CTE resin film 22, an SPS resin film 24, and a metal film 26, which are laminated in this order.

 金属膜を構成する金属としては、特に制限はなく、目的に応じて適宜選択することができるが、例えばニッケル、銅、銀、錫、金、パラジウム、アルミニウム、クロム、チタンおよび亜鉛からなる群から選択される1種またはこれらのいずれか1種以上を含む合金等が挙げられる。中でも、シールド性と経済性の観点から、銅、および銅を含む合金が好ましい。
 本発明の金属張積層板の好ましい態様として、積層体に金属箔の膜が張り合わされた金属張積層板が挙げられる。中でも、金属箔が銅箔である、積層体に銅箔の膜(銅箔膜)が張り合わされた銅張積層板がより好ましい。
The metal constituting the metal film is not particularly limited and can be appropriately selected depending on the intended purpose. An alloy or the like containing one or more selected types may be mentioned. Among them, copper and alloys containing copper are preferable from the viewpoint of shielding properties and economy.
A preferred embodiment of the metal-clad laminate of the present invention is a metal-clad laminate in which a metal foil film is attached to a laminate. Among them, a copper-clad laminate obtained by bonding a copper foil film (copper foil film) to a laminate, in which the metal foil is copper foil, is more preferable.

<金属膜>
 金属膜の好ましい態様として、金属箔の膜が挙げられる。
 金属箔の種類としては、特に限定されず、例えば、電解金属箔、圧延金属箔等を用いることができる。
 金属箔の中でも、銅箔がより好ましい。
<Metal film>
A preferred embodiment of the metal film is a metal foil film.
The type of metal foil is not particularly limited, and for example, an electrolytic metal foil, a rolled metal foil, or the like can be used.
Among metal foils, copper foil is more preferable.

 金属箔の膜の膜厚は、十分な電気信号の伝送特性を確保し、かつ回路パターンの良好なファインピッチを可能とするという観点から、0.05μm~20μmであることが好ましく、0.1~15μmであることがより好ましい。
 金属箔の膜とSPS樹脂フィルムとの界面における、金属箔の膜の表面粗さ(Rz)は、表皮効果による伝送特性の観点から0.5μm以下であることが好ましく、0.3μm以下であることがより好ましい。
The film thickness of the metal foil is preferably 0.05 μm to 20 μm from the viewpoint of ensuring sufficient electrical signal transmission characteristics and enabling a fine pitch of the circuit pattern, and 0.1 μm. More preferably ~15 μm.
The surface roughness (Rz) of the metal foil film at the interface between the metal foil film and the SPS resin film is preferably 0.5 μm or less from the viewpoint of transmission characteristics due to the skin effect, and is 0.3 μm or less. is more preferable.

<金属張積層板の膜厚>
 金属張積層板の膜厚は、特に制限はなく、目的に応じて適宜選択できるが、例えば、10~300μmが好ましい。金属張積層板の膜厚が上記範囲の下限値以上であれば、ハンドリング性に優れ、強度を確保できる。また、上記範囲の上限値以下であれば、軽薄短小化、フレキシブル性を付与できる。
<Film thickness of metal-clad laminate>
The film thickness of the metal-clad laminate is not particularly limited and can be appropriately selected according to the purpose, but is preferably 10 to 300 μm, for example. When the film thickness of the metal-clad laminate is at least the lower limit value of the above range, the handleability is excellent and the strength can be ensured. Moreover, when the thickness is equal to or less than the upper limit of the above range, lightness, thinness, shortness and flexibility can be imparted.

(積層体の製造方法)
 積層体の製造方法は、SPS樹脂フィルムと、低CTE樹脂フィルムと、SPS樹脂フィルムとを、この順に配置し、これらを熱プレス機あるいは加熱ロール間や加熱ベルト間に挟み、加熱・加圧して熱圧着し、各樹脂フィルムを貼り合わせる工程を含む。
 上記熱圧着は、SPS樹脂フィルムの融点の温度に対し、-10℃~30℃、より好ましくは-10℃~20℃の温度範囲で行うことが好ましい。
 また、熱圧着における圧力は、例えば、熱プレス機や加熱ベルトの場合、0.2~10MPaであることが好ましく、1~5MPaであることがより好ましく、熱圧着の時間は、1~30分であることが好ましい。加熱ロールの場合は、線圧4~60kN/m、線速0.5~5.0m/分であることが望ましい。
(Laminate manufacturing method)
The laminate is produced by arranging an SPS resin film, a low CTE resin film, and an SPS resin film in this order, sandwiching them with a heat press or between heating rolls or between heating belts, followed by heating and pressing. It includes a step of bonding each resin film by thermocompression bonding.
The thermocompression bonding is preferably carried out in a temperature range of −10° C. to 30° C., more preferably −10° C. to 20° C. relative to the melting point of the SPS resin film.
In addition, the pressure in the thermocompression bonding is preferably 0.2 to 10 MPa, more preferably 1 to 5 MPa, for example, in the case of a hot press or a heating belt, and the thermocompression bonding time is 1 to 30 minutes. is preferably In the case of a heating roll, it is desirable that the line pressure is 4-60 kN/m and the line speed is 0.5-5.0 m/min.

(金属張積層板の製造方法)
 金属張積層板の製造方法は、上記積層体の両面又は片面に金属膜を配置し、熱圧着し、積層体と金属膜とを貼り合わせる工程を含む。
 また、金属張積層板の製造方法は、金属膜と、SPS樹脂フィルムと、低CTE樹脂フィルムと、SPS樹脂フィルムとを、この順に配置し、これらを熱プレス機あるいは加熱ロール間や加熱ベルト間に挟み、加熱・加圧して熱圧着し、金属膜と各樹脂フィルムとを貼り合わせるか、金属膜と、SPS樹脂フィルムと、低CTE樹脂フィルムと、SPS樹脂フィルムと、金属膜とを、この順に配置し、熱圧着し、金属膜と各樹脂フィルムとを貼り合わせる工程を含む。
 上記熱圧着は、SPS樹脂フィルムの融点の温度に対し、-10℃~30℃、より好ましくは-10℃~20℃の温度範囲で行うことが好ましい。
(Method for producing metal-clad laminate)
A method for producing a metal-clad laminate includes the steps of disposing metal films on both or one side of the laminate, thermally compressing the laminate, and laminating the laminate and the metal film.
In addition, in the method for producing a metal-clad laminate, a metal film, an SPS resin film, a low CTE resin film, and an SPS resin film are arranged in this order, and these are placed in a hot press or between heating rolls or between heating belts. Then, the metal film and each resin film are bonded together by heat and pressure and thermocompression bonding, or the metal film, the SPS resin film, the low CTE resin film, the SPS resin film, and the metal film are bonded together. It includes a step of arranging them in order, thermally compressing them, and bonding the metal film and each resin film.
The thermocompression bonding is preferably carried out in a temperature range of −10° C. to 30° C., more preferably −10° C. to 20° C. relative to the melting point of the SPS resin film.

 金属張積層板が、図2で示すような積層体の両面に金属膜が設けられている金属張積層板である場合には、積層体の一方の面に対して、上述した方法により、金属膜を積層し、その後、積層体の他方の面に対して、同様方法で、金属膜を積層することにより、金属張積層板を製造してもよいし、あるいは、積層体に対して両側の金属膜を一緒に積層し、一度に両側の金属膜を配した金属張積層板を製造してもよい。 When the metal-clad laminate is a metal-clad laminate having metal films on both sides of the laminate as shown in FIG. A metal-clad laminate may be produced by laminating a film and then laminating a metal film on the other side of the laminate in the same manner, or alternatively, The metal films may be laminated together to produce a metal clad laminate with the metal films on both sides at once.

 金属膜を形成する前に、金属膜と接する側のSPS樹脂フィルムの表面を、コロナ処理、プラズマ処理、又は紫外線処理等で表面処理してもよい。 Before forming the metal film, the surface of the SPS resin film in contact with the metal film may be surface-treated by corona treatment, plasma treatment, ultraviolet treatment, or the like.

 本発明の積層体(特に、両面金属張積層板)は、良好な電気特性(誘電特性)を有しつつ、基材フィルム(積層体)と金属膜との接着性(密着性)に優れ、寸法安定性及びカール抑制に優れているため、フレキシブルプリント回路基板、リジッドプリント回路基板の製造に好適に使用できる。
 例えば、エッチング、電解めっき法(セミアディティブ法(SAP法)、モディファイドセミアディティブ法(MSAP法))によって、本発明の金属張積層板の金属基板を所定の形状を有する伝送回路(導体回路)に加工すれば、プリント回路基板を製造できる。
 プリント回路基板の製造においては、伝送回路を形成した後に、伝送回路上に層間絶縁膜を形成し、層間絶縁膜上にさらに伝送回路を形成してもよい。また、伝送回路上にソルダーレジストやカバーレイフィルムを積層してもよい。
The laminate (particularly, the double-sided metal-clad laminate) of the present invention has good electrical properties (dielectric properties) and excellent adhesiveness (adhesion) between the base film (laminate) and the metal film. Since it is excellent in dimensional stability and curl suppression, it can be suitably used for manufacturing flexible printed circuit boards and rigid printed circuit boards.
For example, by etching or electroplating (semi-additive method (SAP method), modified semi-additive method (MSAP method)), the metal substrate of the metal-clad laminate of the present invention is formed into a transmission circuit (conductor circuit) having a predetermined shape. If processed, printed circuit boards can be produced.
In manufacturing the printed circuit board, after forming the transmission circuit, an interlayer insulating film may be formed on the transmission circuit, and a further transmission circuit may be formed on the interlayer insulating film. Moreover, you may laminate|stack a solder resist and a cover-lay film on a transmission circuit.

 以下に実施例を挙げて本発明を更に詳述するが、本発明の範囲はこれらの実施例に限定されるものではない。なお、下記において、部及び%は、特に断らない限り、質量基準である。 Although the present invention will be described in more detail with examples below, the scope of the present invention is not limited to these examples. In the following, parts and % are based on mass unless otherwise specified.

(吸水率(%))
 吸水率は、JIS K7209A法に準拠し、23℃水浸漬×24時間の条件で測定した。浸水前後の質量変化から吸水率を求めた。
(Water absorption (%))
The water absorption was measured under the conditions of immersion in water at 23°C for 24 hours in accordance with JIS K7209A method. The water absorption was obtained from the change in mass before and after immersion in water.

(誘電特性)
 誘電特性(比誘電率、誘電正接)は、電子計測器(製品名コンパクトUSBベクトルネットワークアナライザMS46122B:Anritsu社製)を用い、開放型共振器法の一種であるファブリペロー法により、周波数28GHz付近の23℃×50RH%の誘電特性を測定した。開放型共振器(製品名ファブリペロー共振器Model No.DPS03:キーコム社製)を用いた。
(dielectric properties)
Dielectric properties (relative permittivity, dielectric loss tangent) were measured using an electronic measuring instrument (product name: compact USB vector network analyzer MS46122B: manufactured by Anritsu) using the Fabry-Perot method, which is a kind of open resonator method, at a frequency of around 28 GHz. Dielectric properties were measured at 23° C.×50 RH %. An open-type resonator (product name: Fabry-Perot resonator Model No. DPS03: manufactured by Keycom Co., Ltd.) was used.

(線熱膨張係数(CTE)(ppm/℃))
 線熱膨張係数(CTE)は、熱機械分析装置(製品名:SII//SS7100 日立ハイテクサイエンス株式会社製)を用いた引張モードにより、荷重50mN、昇温速度5℃/minの条件で10℃から200℃の範囲で測定し、20℃から140℃までの範囲の傾きから線熱膨張係数(ppm/℃)を求めた。樹脂フィルムの幅方向(TD)を測定した。
(Coefficient of linear thermal expansion (CTE) (ppm/°C))
The coefficient of linear thermal expansion (CTE) is 10° C. under the conditions of a load of 50 mN and a heating rate of 5° C./min in a tensile mode using a thermomechanical analyzer (product name: SII//SS7100, manufactured by Hitachi High-Tech Science Co., Ltd.). to 200°C, and the coefficient of linear thermal expansion (ppm/°C) was obtained from the slope in the range from 20°C to 140°C. The width direction (TD) of the resin film was measured.

(融点(℃))
 融点は、JIS K 7121に準拠して測定した。具体的には、溶融押出成形した樹脂フィルムから測定用試料を約5mg秤量し、示差走査熱量計(エスアイアイ・テクノロージーズ社製:高感度型示差走査熱量計X-DSC 7000)を使用して昇温速度10℃/min、測定温度範囲20℃から380℃まで加熱して測定した。
(Melting point (°C))
The melting point was measured according to JIS K7121. Specifically, about 5 mg of a measurement sample was weighed from a melt-extruded resin film, and a differential scanning calorimeter (manufactured by SII Technologies, Inc.: high-sensitivity differential scanning calorimeter X-DSC 7000) was used. The temperature was raised at a rate of 10°C/min, and the measurement temperature range was from 20°C to 380°C.

 下記実施例及び比較例で使用した、樹脂フィルム及び銅箔膜は以下のとおりである。また、樹脂フィルムの特性を下記表1に示す。なお、SPS(2)フィルムとSPS(3)フィルムに使用しているSPS樹脂は、SPS(1)フィルムの成形に用いたSPS樹脂である。 The resin films and copper foil films used in the following examples and comparative examples are as follows. Also, the properties of the resin film are shown in Table 1 below. The SPS resin used for the SPS(2) film and the SPS(3) film is the SPS resin used for molding the SPS(1) film.

(樹脂フィルム)
 SPSフィルム:信越ポリマー社製SPS(1)フィルム
 SPSフィルム:信越ポリマー社製SPS(2)フィルム
  (SPS樹脂:合成マイカ=95:5質量比率)
 SPSフィルム:信越ポリマー社製SPS(3)フィルム
  (SPS樹脂:合成マイカ=80:20質量比率)
 PIフィルム:東レデュポン社製PIカプトン(登録商標)Hシリーズ
 PIフィルム:東レデュポン社製PIカプトン(登録商標)LKシリーズ
 PIフィルム:東レデュポン社製PIカプトン(登録商標)ENシリーズ
 LCPフィルム:信越ポリマー社製高融点LCP(1)フィルム
 延伸PEEKフィルム:クラボウ社製延伸PEEKフィルム
 無延伸PEEK(ポリエーテルエーテルケトン)フィルム:信越ポリマー社製無延伸PEEKフィルム
 PPS(ポリフェニレンサルファイド)フィルム:信越ポリマー社製PPSフィルム
 TPI(熱可塑性ポリイミド)フィルム:信越ポリマー社製TPIフィルム
 LCPフィルム:信越ポリマー社製低融点LCP(2)フィルム
(銅箔膜)
 銅箔:福田金属箔粉工業社製CF-T9DA-SV-12(Rz:0.21μm、CTE:18ppm/℃)
(resin film)
SPS film: SPS (1) film manufactured by Shin-Etsu Polymer Co., Ltd. SPS film: SPS (2) film manufactured by Shin-Etsu Polymer Co., Ltd. (SPS resin: synthetic mica = 95:5 mass ratio)
SPS film: SPS (3) film manufactured by Shin-Etsu Polymer Co., Ltd. (SPS resin: synthetic mica = 80:20 mass ratio)
PI film: PI Kapton (registered trademark) H series manufactured by DuPont Toray PI film: PI Kapton (registered trademark) LK series manufactured by DuPont Toray PI film: PI Kapton (registered trademark) EN series manufactured by DuPont Toray LCP film: Shin-Etsu polymer High melting point LCP (1) film manufactured by Co., Ltd. Stretched PEEK film: Stretched PEEK film manufactured by Kurabo Industries Unstretched PEEK (polyetheretherketone) film: Unstretched PEEK film manufactured by Shin-Etsu Polymer Co., Ltd. PPS (polyphenylene sulfide) film: PPS manufactured by Shin-Etsu Polymer Co., Ltd. Film TPI (thermoplastic polyimide) film: TPI film manufactured by Shin-Etsu Polymer Co., Ltd. LCP film: Low melting point LCP (2) film (copper foil film) manufactured by Shin-Etsu Polymer Co., Ltd.
Copper foil: CF-T9DA-SV-12 manufactured by Fukuda Metal Foil and Powder Co., Ltd. (Rz: 0.21 μm, CTE: 18 ppm/° C.)

Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000001
 

(実施例1)
 厚みが50μmの表1に示すポリイミドフィルム(PI)(東レデュポン社製 PIカプトン(登録商標)LKシリーズのフィルムを用意した。
 該ポリイミドフィルムの表及び裏面にコロナ処理を行った。
 該ポリイミドフィルムの両面に、厚み25μmの表1に示すSPSフィルム(信越ポリマー社製 シンジオタクチック構造を有するスチレン系重合体からなる樹脂フィルム)を配置した。
 更に最表面の両面に厚み12μmの銅箔膜(福田金属箔粉工業社製 CF-T9DA)を配置して、熱プレス機を用い、1mm厚のステンレス板(SUS板)で挟んで、面圧3MPa、熱プレス機の熱板温度を285℃に設定し、5分間熱圧着した。
 熱圧着後、熱プレス機の熱板を4℃/minの速度で270℃まで冷却してから(係る冷却方法を冷却1とする)、圧力を開放して、得られた実施例1の銅張積層板(CCL)を取り出した。
 このようにして得られた実施例1の銅張積層板の構成を下記表2に示す。
 得られた実施例1の銅張積層板からSPS樹脂フィルムのみ剥がし、下記手順に従って、SPS樹脂フィルムの相対結晶化度を求めた。係る値も下記表2に示す。
(Example 1)
A polyimide film (PI) (PI Kapton (registered trademark) LK series manufactured by DuPont-Toray Co., Ltd.) shown in Table 1 having a thickness of 50 μm was prepared.
The front and back surfaces of the polyimide film were subjected to corona treatment.
On both sides of the polyimide film, 25 μm-thick SPS films shown in Table 1 (manufactured by Shin-Etsu Polymer Co., Ltd., a resin film made of a styrene-based polymer having a syndiotactic structure) were placed.
Furthermore, a copper foil film with a thickness of 12 μm (CF-T9DA manufactured by Fukuda Metal Foil & Powder Co., Ltd.) is placed on both sides of the outermost surface, sandwiched between stainless steel plates (SUS plates) with a thickness of 1 mm using a heat press, and pressure is applied. The pressure was set to 3 MPa and the hot plate temperature of the hot press machine was set to 285° C., and thermocompression bonding was performed for 5 minutes.
After thermocompression, the hot plate of the hot press was cooled to 270°C at a rate of 4°C/min (this cooling method is referred to as cooling 1), and then the pressure was released to obtain the copper of Example 1. The tension laminate (CCL) was removed.
The structure of the copper-clad laminate of Example 1 thus obtained is shown in Table 2 below.
Only the SPS resin film was peeled off from the obtained copper-clad laminate of Example 1, and the relative crystallinity of the SPS resin film was determined according to the following procedure. Such values are also shown in Table 2 below.

(相対結晶化度)
 SPS樹脂フィルムの相対結晶化度については、作製した銅張積層板からSPS樹脂フィルムのみを剥がし、測定試料約8mgを秤量し、示差走査熱量計(エスアイアイ・ナノテクノロジーズ社製(製品名:EXSTAR7000シリーズ X-DSC7000))を使用して昇温速度10℃/分、測定温度範囲20℃から300℃まで測定した。このときに得られる結晶融解ピークの熱量(J/g)、再結晶化ピークの熱量(J/g)から以下の式を用いて算出して、SPS樹脂フィルムの相対結晶化度を求めた。
  相対結晶化度(%)={(|ΔHm|-|ΔHc|)/|ΔHm|}×100
  (ここで、△Hc:再結晶化ピークの熱量(J/g)を、△Hm:融解ピークの熱量(J/g)を表す。)
(Relative crystallinity)
Regarding the relative crystallinity of the SPS resin film, only the SPS resin film was peeled off from the prepared copper-clad laminate, about 8 mg of the measurement sample was weighed, and a differential scanning calorimeter (manufactured by SII Nano Technologies Co., Ltd. (product name: EXSTAR7000 Series X-DSC7000)) was used to measure the temperature from 20°C to 300°C at a heating rate of 10°C/min. The relative crystallinity of the SPS resin film was calculated from the heat quantity (J/g) at the crystal melting peak and the heat quantity (J/g) at the recrystallization peak obtained at this time using the following formula.
Relative crystallinity (%) = {(|ΔHm|-|ΔHc|)/|ΔHm|}×100
(Here, ΔHc: recrystallization peak heat quantity (J/g), ΔHm: melting peak heat quantity (J/g).)

 実施例1の銅張積層板に対して、下記評価方法により、カール、250℃寸法、伝送特性、剥離強度の各評価を行った。結果を下記表4に示す。 The copper-clad laminate of Example 1 was evaluated for curl, 250°C dimension, transmission characteristics, and peel strength by the following evaluation methods. The results are shown in Table 4 below.

(カール試験)
 得られた銅張積層板(CCL)から150×150mmのサイズで試験体を切り出し、試験体の片面側の銅箔のみを塩化鉄水溶液で除去し、試験体を平らなガラス板の上に置き、試験体の4隅4点の浮き上がり量をそれぞれ物差しで測定し、その平均値を求めた。
(Curl test)
A specimen of 150 x 150 mm in size was cut out from the obtained copper-clad laminate (CCL), only the copper foil on one side of the specimen was removed with an aqueous ferric chloride solution, and the specimen was placed on a flat glass plate. , and the amount of lifting at four points at the four corners of the specimen was measured with a ruler, and the average value was obtained.

[カール試験の評価基準]
  〇  4点平均が3cm以下
  △  4点平均が3cmより大きく5cm以下
  ×  4点平均が5cmより大きい
[Evaluation Criteria for Curl Test]
○ 4-point average is 3 cm or less △ 4-point average is greater than 3 cm and 5 cm or less × 4-point average is greater than 5 cm

(250℃寸法試験)
 250℃寸法収縮率試験については、JIS C 6481:1996に準拠して測定した。
 先ず、銅張積層板(CCL)を300×300mmの大きさにカットし、この積層板の端4点に穴を開け、穴の中心間の距離を測定した後、積層された銅箔を塩化鉄水溶液で除去し、250℃のオーブンに30分入れ、取り出したのちに寸法を測定した。
 寸法の測定に際しては、2次元測長機(製品名:VMH600 ミノグループ社製)を用いた。
(250°C dimension test)
The 250° C. dimensional shrinkage rate test was measured in accordance with JIS C 6481:1996.
First, a copper clad laminate (CCL) was cut into a size of 300 x 300 mm, holes were made at four points at the ends of the laminate, and the distance between the centers of the holes was measured. It was removed with an aqueous iron solution, placed in an oven at 250° C. for 30 minutes, taken out, and then measured.
A two-dimensional length measuring machine (product name: VMH600, manufactured by Mino Group) was used for measuring the dimensions.

[250℃寸法試験の評価基準]
  〇  収縮率が0.2%以下(収縮率が良好)
  △  収縮率が0.2%より大きく0.4%以下
  ×  収縮率が0.4%より大きい(収縮率が不良)
[Evaluation criteria for 250°C dimension test]
〇 Shrinkage rate is 0.2% or less (good shrinkage rate)
Δ Shrinkage rate greater than 0.2% and 0.4% or less × Shrinkage rate greater than 0.4% (poor shrinkage rate)

(伝送特性試験)
 伝送特性試験は、銅張積層板(CCL)中の銅箔をエッチングして長さ10cm、インピーダンス50Ωのマイクロストリップラインを作製し、温度25℃・湿度50%の条件で30GHzでの伝送特性を測定した。測定機器としては、ネットワークアナライザE8363B(キーサイトテクノロジー社製)を用いた。
(Transmission characteristic test)
In the transmission characteristics test, a microstrip line with a length of 10 cm and an impedance of 50Ω was prepared by etching the copper foil in the copper clad laminate (CCL), and the transmission characteristics at 30 GHz were measured under the conditions of a temperature of 25°C and a humidity of 50%. It was measured. As a measuring instrument, a network analyzer E8363B (manufactured by Keysight Technologies) was used.

[伝送特性試験の評価基準]
  ◎  4dB以下
  〇  4dBより大きく5dB以下
  △  5dBより大きく10dB以下
  ×  10dBより大きい
[Evaluation Criteria for Transmission Characteristics Test]
◎ 4 dB or less 〇 Greater than 4 dB and 5 dB or less △ Greater than 5 dB and 10 dB or less × Greater than 10 dB

(剥離強度試験)
 剥離強度試験は、銅張積層板(CCL)をカットして幅25mmの試験体とし、JIS Z 0237:2009を参考に、剥離速度0.3mm/min、剥離角180°にて、銅張積層板(CCL)を支持体に固定し、銅箔を引張治具に固定し、銅張積層板(CCL)から銅箔を引張った際の剥離強度を測定した。
(Peel strength test)
In the peel strength test, a copper-clad laminate (CCL) was cut into a test piece with a width of 25 mm. The plate (CCL) was fixed to a support, the copper foil was fixed to a tension jig, and the peel strength was measured when the copper foil was pulled from the copper clad laminate (CCL).

[剥離強度試験の評価基準]
  〇  7N/cm以上
  △  3N/cm以上7N/cm未満
  ×  3N/cm以下
[Evaluation Criteria for Peel Strength Test]
○ 7 N/cm or more △ 3 N/cm or more and less than 7 N/cm × 3 N/cm or less

(実施例2~実施例18)
 実施例1において、使用する樹脂フィルムの種類、熱圧着温度、冷却方法の条件を表2に示すように変更した以外は、実施例1と同様にして、実施例2~実施例18の銅張積層板を作製した。
 表2(下記表3も同様)において、冷却方法2(冷却2)、及び冷却方法3(冷却3)は、それぞれ以下の方法により熱圧着後の銅張積層板を冷却し、熱プレス機から取り出すことをいう。
  冷却2:熱圧着後、熱プレス機の熱板を4℃/minの速度で230℃まで冷却してから、圧力を開放して、銅張積層板を取り出す。
  冷却3:熱圧着後、熱プレス機の熱板を冷却せずに、圧力を開放して、銅張積層板を取り出す。
(Examples 2 to 18)
Copper clads of Examples 2 to 18 were prepared in the same manner as in Example 1, except that the type of resin film used, the thermocompression bonding temperature, and the cooling method conditions were changed as shown in Table 2. A laminate was produced.
In Table 2 (the same applies to Table 3 below), cooling method 2 (cooling 2) and cooling method 3 (cooling 3) are performed by cooling the copper clad laminate after thermocompression bonding by the following methods, respectively, and removing it from the heat press. It means to take out.
Cooling 2: After thermocompression, the hot plate of the hot press is cooled to 230°C at a rate of 4°C/min, the pressure is released, and the copper-clad laminate is taken out.
Cooling 3: After thermocompression bonding, the pressure is released without cooling the hot plate of the hot press, and the copper-clad laminate is taken out.

 実施例2~実施例18で作製した銅張積層板に対して、実施例1と同様の方法で、SPS樹脂フィルムの相対結晶化度を求めた。また、実施例1と同様の方法で、カール、250℃寸法、伝送特性、剥離強度の各評価を行った。
 実施例2~実施例18の銅張積層板におけるSPS樹脂フィルムの相対結晶化度の結果を表2に示す。
 実施例2~実施例18の銅張積層板に対するカール、250℃寸法、伝送特性、剥離強度の評価結果を表4に示す。
The relative crystallinity of the SPS resin film was determined in the same manner as in Example 1 for the copper clad laminates produced in Examples 2 to 18. Also, in the same manner as in Example 1, the curl, 250° C. dimension, transmission characteristics, and peel strength were evaluated.
Table 2 shows the relative crystallinity results of the SPS resin films in the copper clad laminates of Examples 2 to 18.
Table 4 shows evaluation results of curl, 250° C. dimension, transmission characteristics, and peel strength for the copper clad laminates of Examples 2 to 18.

(比較例1~5)
 実施例1において、使用する樹脂フィルムの種類、熱圧着温度、冷却方法の条件を表3に示すように変更した以外は、実施例1と同様にして、比較例1~比較例5の銅張積層板を作製した。
(Comparative Examples 1 to 5)
Copper clads of Comparative Examples 1 to 5 were prepared in the same manner as in Example 1 except that the type of resin film used, the thermocompression bonding temperature, and the cooling method conditions were changed as shown in Table 3. A laminate was produced.

 比較例1~比較例5で作製した銅張積層板に対して、実施例1と同様の方法で、SPS樹脂フィルムの相対結晶化度を求めた。また、実施例1と同様の方法で、カール、250℃寸法、伝送特性、剥離強度の各評価を行った。
 比較例1~比較例5の銅張積層板におけるSPS樹脂フィルムの相対結晶化度の結果を表3に示す。
 比較例1~比較例5の銅張積層板に対するカール、250℃寸法、伝送特性、剥離強度の評価結果を表4に示す。
The relative crystallinity of the SPS resin film was determined in the same manner as in Example 1 for the copper clad laminates produced in Comparative Examples 1 to 5. Also, in the same manner as in Example 1, the curl, 250° C. dimension, transmission characteristics, and peel strength were evaluated.
Table 3 shows the results of the relative crystallinity of the SPS resin films in the copper clad laminates of Comparative Examples 1 to 5.
Table 4 shows evaluation results of curl, 250° C. dimension, transmission characteristics, and peel strength for the copper-clad laminates of Comparative Examples 1 to 5.

Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000002
 

Figure JPOXMLDOC01-appb-T000003
 
Figure JPOXMLDOC01-appb-T000003
 

Figure JPOXMLDOC01-appb-T000004
 
Figure JPOXMLDOC01-appb-T000004
 

 実施例より、本発明の金属張積層板は、良好な電気特性(誘電特性)を有しつつ、基材フィルム(積層体)と金属膜との接着性(密着性)に優れ、寸法安定性に優れ、カールを抑制した金属張積層板となっていることが確認できた。 From the examples, the metal-clad laminate of the present invention has good electrical properties (dielectric properties), excellent adhesiveness (adhesion) between the base film (laminate) and the metal film, and dimensional stability. It was confirmed that the metal-clad laminate was excellent in curling and suppressed in curling.

 本発明の金属張積層板は、スマートフォン、携帯電話、光モジュール、デジタルカメラ、ゲーム機、ノートパソコン、医療器具等の電子機器用のFPC関連製品の製造に好適に用いられ得る。 The metal-clad laminate of the present invention can be suitably used for manufacturing FPC-related products for electronic devices such as smart phones, mobile phones, optical modules, digital cameras, game machines, notebook computers, and medical instruments.

 11  積層体
 12  低CTE樹脂フィルム
 13  SPS樹脂フィルム
 14  SPS樹脂フィルム
 21  金属張積層板
 22  低CTE樹脂フィルム
 23  SPS樹脂フィルム
 24  SPS樹脂フィルムム
 25  金属膜
 26  金属膜

 
REFERENCE SIGNS LIST 11 laminate 12 low CTE resin film 13 SPS resin film 14 SPS resin film 21 metal clad laminate 22 low CTE resin film 23 SPS resin film 24 SPS resin film 25 metal film 26 metal film

Claims (17)

 線熱膨張係数(CTE)が50ppm/℃以下であり、300℃以下に融点を持たない低CTE樹脂フィルムと、
 前記低CTE樹脂フィルムの両面に、シンジオタクチック構造を有するスチレン系重合体(SPS)からなる樹脂フィルム(SPS樹脂フィルム)と、を積層してなる積層体。
a low CTE resin film having a coefficient of linear thermal expansion (CTE) of 50 ppm/° C. or less and having no melting point of 300° C. or less;
A laminate obtained by laminating a resin film (SPS resin film) made of a styrene polymer (SPS) having a syndiotactic structure on both sides of the low CTE resin film.
 前記低CTE樹脂フィルムは、ポリイミド(PI)、液晶ポリマー(LCP)、及び延伸ポリエーテルエーテルケトン(延伸PEEK)のいずれかから選ばれる樹脂からなるフィルムである、請求項1に記載の積層体。 The laminate according to claim 1, wherein the low-CTE resin film is a film made of a resin selected from polyimide (PI), liquid crystal polymer (LCP), and stretched polyetheretherketone (stretched PEEK).  前記SPS樹脂フィルムの融点は、250℃以上である、請求項1に記載の積層体。 The laminate according to claim 1, wherein the SPS resin film has a melting point of 250°C or higher.  前記SPS樹脂フィルムの比誘電率は2.6以下である、請求項1に記載の積層体。 The laminate according to claim 1, wherein the SPS resin film has a dielectric constant of 2.6 or less.  前記SPS樹脂フィルムの誘電正接は0.0020未満である、請求項1に記載の積層体。 The laminate according to claim 1, wherein the SPS resin film has a dielectric loss tangent of less than 0.0020.  前記SPS樹脂フィルムの吸水率は0.2%以下である、請求項1に記載の積層体。 The laminate according to claim 1, wherein the SPS resin film has a water absorption rate of 0.2% or less.  前記低CTE樹脂フィルムの吸水率は2.5%以下である、請求項1に記載の積層体。 The laminate according to claim 1, wherein the low CTE resin film has a water absorption rate of 2.5% or less.  前記SPS樹脂フィルムの厚みと前記低CTE樹脂フィルムの厚みの比(前記SPS樹脂フィルム:前記低CTE樹脂フィルム)が、1:10~10:1である、請求項1に記載の積層体。 The laminate according to claim 1, wherein the ratio of the thickness of said SPS resin film to the thickness of said low CTE resin film (said SPS resin film: said low CTE resin film) is 1:10 to 10:1.  前記SPS樹脂フィルムの相対結晶化度は25%~85%である、請求項1に記載の積層体。 The laminate according to claim 1, wherein the SPS resin film has a relative crystallinity of 25% to 85%.  前記低CTE樹脂フィルム及び/又は前記SPS樹脂フィルムの表面が、コロナ処理、プラズマ処理、及び紫外線処理から選択されるいずれかの表面処理が施されている、請求項1に記載の積層体。 The laminate according to claim 1, wherein the surface of the low-CTE resin film and/or the SPS resin film is subjected to any surface treatment selected from corona treatment, plasma treatment, and ultraviolet treatment.  前記低CTE樹脂フィルム及び/又は前記SPS樹脂フィルムの表面が、カップリング剤による表面処理が施されている、請求項1に記載の積層体。 The laminate according to claim 1, wherein the surfaces of the low-CTE resin film and/or the SPS resin film are surface-treated with a coupling agent.  請求項1~11のいずれかに記載の積層体の両面又は片面に、金属膜が積層されてなる金属張積層板。 A metal-clad laminate obtained by laminating a metal film on one or both sides of the laminate according to any one of claims 1 to 11.  請求項1~11のいずれかに記載の積層体の製造方法であって、前記SPS樹脂フィルムと、前記低CTE樹脂フィルムと、前記SPS樹脂フィルムとを、この順に配置し、熱圧着して、前記積層体を得る、積層体の製造方法。 The method for producing a laminate according to any one of claims 1 to 11, wherein the SPS resin film, the low CTE resin film, and the SPS resin film are arranged in this order and thermocompression bonded, A method for manufacturing a laminate to obtain the laminate.  前記熱圧着が、前記SPS樹脂フィルムの融点の温度に対し、-10℃~30℃の温度範囲で行う、請求項13に記載の積層体の製造方法。 The method for producing a laminate according to claim 13, wherein the thermocompression bonding is performed in a temperature range of -10°C to 30°C with respect to the melting point of the SPS resin film.  請求項13により製造された積層体の両面又は片面に金属膜を配置し、熱圧着して、前記金属張積層板を得る、金属張積層板の製造方法。 A method for producing a metal-clad laminate, comprising placing metal films on both or one side of the laminate produced according to claim 13 and thermally compressing to obtain the metal-clad laminate.  金属膜と、前記SPS樹脂フィルムと、前記低CTE樹脂フィルムと、前記SPS樹脂フィルムとを、この順に配置し、熱圧着するか、
 金属膜と、前記SPS樹脂フィルムと、前記低CTE樹脂フィルムと、前記SPS樹脂フィルムと、金属膜とを、この順に配置し、熱圧着するかにより、請求項12に記載の金属張積層板を得る、金属張積層板の製造方法。
The metal film, the SPS resin film, the low CTE resin film, and the SPS resin film are arranged in this order and thermally compressed, or
The metal-clad laminate according to claim 12 is obtained by arranging the metal film, the SPS resin film, the low-CTE resin film, the SPS resin film, and the metal film in this order and thermally compressing them. A method for producing a metal-clad laminate obtained.
 前記熱圧着が、前記SPS樹脂フィルムの融点の温度に対し、-10℃~30℃の温度範囲で行う、請求項16に記載の金属張積層板の製造方法。

 
17. The method for producing a metal-clad laminate according to claim 16, wherein the thermocompression bonding is performed at a temperature range of -10°C to 30°C with respect to the melting point of the SPS resin film.

PCT/JP2022/036101 2022-02-16 2022-09-28 Laminate and metal-clad laminate board having said laminate WO2023157369A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2024500943A JPWO2023157369A1 (en) 2022-02-16 2022-09-28

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022021966 2022-02-16
JP2022-021966 2022-02-16

Publications (1)

Publication Number Publication Date
WO2023157369A1 true WO2023157369A1 (en) 2023-08-24

Family

ID=87577880

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/036101 WO2023157369A1 (en) 2022-02-16 2022-09-28 Laminate and metal-clad laminate board having said laminate

Country Status (2)

Country Link
JP (1) JPWO2023157369A1 (en)
WO (1) WO2023157369A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0664090A (en) * 1992-08-17 1994-03-08 Hitachi Chem Co Ltd Copper-plated laminated plate and manufacture thereof
JP2002076581A (en) * 2000-08-28 2002-03-15 Sony Corp Wiring board and its producing method
JP2011051203A (en) * 2009-09-01 2011-03-17 Toyobo Co Ltd Multilayer polyimide film and printed wiring board
JP2021195539A (en) * 2020-06-12 2021-12-27 三洋化成工業株式会社 Thermosetting resin composition
JP2022169444A (en) * 2021-04-27 2022-11-09 国立大学法人 東京大学 Joined body, substrate, method for manufacturing joined body, and method for manufacturing substrate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0664090A (en) * 1992-08-17 1994-03-08 Hitachi Chem Co Ltd Copper-plated laminated plate and manufacture thereof
JP2002076581A (en) * 2000-08-28 2002-03-15 Sony Corp Wiring board and its producing method
JP2011051203A (en) * 2009-09-01 2011-03-17 Toyobo Co Ltd Multilayer polyimide film and printed wiring board
JP2021195539A (en) * 2020-06-12 2021-12-27 三洋化成工業株式会社 Thermosetting resin composition
JP2022169444A (en) * 2021-04-27 2022-11-09 国立大学法人 東京大学 Joined body, substrate, method for manufacturing joined body, and method for manufacturing substrate

Also Published As

Publication number Publication date
JPWO2023157369A1 (en) 2023-08-24

Similar Documents

Publication Publication Date Title
US7820274B2 (en) Prepreg and conductive layer-laminated substrate for printed wiring board
CN101081921B (en) Resin composition for printed circuit board film and use thereof
CN107211544B (en) Multilayer transmission circuit board
US20240182614A1 (en) Resin composition, prepreg, resin-coated film, resin-coated metal foil, metal-clad laminate, and wiring board
WO2006059750A1 (en) Curable resin composition
WO2010143542A1 (en) Biaxially oriented polyarylene sulfide resin film and process for production of same
JP4167909B2 (en) Resin composition
CN107001661B (en) Alignment film
WO2015178365A1 (en) Release film
JP2001310428A (en) Laminated film and its application
CN115348921A (en) Metal Clad Laminates
JP4216010B2 (en) Adhesive resin composition and laminate
JP2015002334A (en) Laminate for electronic circuit board
WO2023157369A1 (en) Laminate and metal-clad laminate board having said laminate
WO2001043515A1 (en) Multilayered printed circuit board
JP2024123867A (en) Resin films, laminates, metal-clad laminates
JP2024123801A (en) Resin films, laminates, metal-clad laminates
JP2000260229A (en) Nonwoven fabric for electronic component and laminate for the same
JP2000216511A (en) Multilayer printed wiring board
JP2001310422A (en) Release film
WO2022054862A1 (en) Resin composition, prepreg, film provided with resin, metal foil provided with resin, metal-clad laminate, and wiring board
CN111918925A (en) Polyarylene sulfide resin composition, and biaxially stretched film and laminate using same
JP2023050376A (en) Resin film, conductive laminate, and circuit board
TW202440337A (en) Low linear expansion double row polystyrene laminate
WO2024106433A1 (en) Multilayer structure including insulating adhesive layer, and cured article of same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22927263

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2024500943

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22927263

Country of ref document: EP

Kind code of ref document: A1