[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2010243381A - Glass plate evaluation method based on electrification characteristic, glass plate production method using the same, and device for evaluation - Google Patents

Glass plate evaluation method based on electrification characteristic, glass plate production method using the same, and device for evaluation Download PDF

Info

Publication number
JP2010243381A
JP2010243381A JP2009093638A JP2009093638A JP2010243381A JP 2010243381 A JP2010243381 A JP 2010243381A JP 2009093638 A JP2009093638 A JP 2009093638A JP 2009093638 A JP2009093638 A JP 2009093638A JP 2010243381 A JP2010243381 A JP 2010243381A
Authority
JP
Japan
Prior art keywords
glass plate
surface potential
absolute value
potential
peeling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009093638A
Other languages
Japanese (ja)
Inventor
Kana Wakabayashi
佳奈 若林
Teruhisa Yamashita
照久 山下
Masanori Mizutani
正則 水谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Avanstrate Inc
Original Assignee
Avanstrate Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Avanstrate Inc filed Critical Avanstrate Inc
Priority to JP2009093638A priority Critical patent/JP2010243381A/en
Priority to TW99107243A priority patent/TW201037304A/en
Priority to SG201001789-5A priority patent/SG166048A1/en
Priority to KR1020100024155A priority patent/KR20100112074A/en
Publication of JP2010243381A publication Critical patent/JP2010243381A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Surface Treatment Of Glass (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electrochemistry (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve evaluation accuracy of electrification characteristics for glass plate. <P>SOLUTION: In the glass plate evaluation method, a peeling cycle containing a step of putting a glass plate on a table and a step of picking up it therefrom is repeated, at least until increase in absolute value of surface potential accompanied by increase in peeling cycle times is maintained; and the electrification characteristics of the glass plate are evaluated to be low in a case that (i) the peeling cycle is further repeated, until the surface potential of the glass plate reaches a saturation electrification potential and the absolute value of the saturation electrification potential is less than a reference value A, or (ii) the value of the increment of the absolute value of the surface potential during the period of maintaining increase of the absolute value of the surface potential divided by the peeling cycle times during the period is less than a reference value B. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、帯電性に基づくガラス板の評価方法、それを用いたガラス板の製造方法、その評価に用いる装置に関する。   The present invention relates to a method for evaluating a glass plate based on chargeability, a method for producing a glass plate using the same, and an apparatus used for the evaluation.

液晶ディスプレイやプラズマディスプレイといったフラットパネルディスプレイ(FPD)の基板として、ガラス板が使用されている。FPDの製造工程には、搬送装置や加工装置のテーブルにガラス板を載置したりテーブルから持ち上げたりする工程があり、これによるテーブルとガラス板との接触、剥離に伴って、絶縁体であるガラス板には静電気が蓄積されていく。ガラス板の帯電量が過大になると、基板に形成される電子回路等に障害(静電破壊)が発生しやすくなる。このため、テーブルとの接触、剥離によって静電気が蓄積されにくい、帯電性の低いガラス板が求められている。帯電性が低いガラス板を開発するために、あるいは製造したガラス板が帯電性についての所定の規格に合格しているかを確認するために、ガラス板の帯電性を正確に評価する必要がある。   A glass plate is used as a substrate of a flat panel display (FPD) such as a liquid crystal display or a plasma display. In the manufacturing process of FPD, there is a process of placing a glass plate on a table of a conveying device or a processing device or lifting it from the table, and this is an insulator along with contact and peeling between the table and the glass plate. Static electricity accumulates on the glass plate. If the amount of charge on the glass plate is excessive, an obstacle (electrostatic breakdown) is likely to occur in an electronic circuit or the like formed on the substrate. For this reason, there is a demand for a glass sheet with low chargeability in which static electricity is unlikely to accumulate due to contact with the table and peeling. In order to develop a glass plate with low chargeability, or to confirm whether the manufactured glass plate passes a predetermined standard for chargeability, it is necessary to accurately evaluate the chargeability of the glass plate.

特開2005−255478号公報には、テーブルとの接触および剥離に起因する帯電が生じにくいガラス板に関する発明が開示されており、その段落[0027]〜[0037]において、テーブルとガラス板との接触、剥離を5回繰り返し、剥離後の最大帯電量を5回分積算し、その結果に基づきガラス板の帯電性を評価したと記載されている。   Japanese Patent Application Laid-Open No. 2005-255478 discloses an invention relating to a glass plate that is less likely to be charged due to contact with and peeling from the table. In paragraphs [0027] to [0037], the table and the glass plate are disclosed. It is described that contact and peeling were repeated 5 times, and the maximum charge amount after peeling was accumulated 5 times, and the charging property of the glass plate was evaluated based on the result.

特開2005−255478号公報JP 2005-255478 A

本発明者は、特開2005−255478号公報に記載されているような従来型の評価方法では、ガラス板の帯電性を適切に評価できない場合があることに気付いた。こうした不具合は、テーブルとの接触および剥離の操作を実施する以前からガラス板に存在し得る表面電位(初期電位)に起因する可能性がある。ガラス板を除電処理するための器具としてイオナイザ等が知られているが、こうした器具による除電処理を念入りに施しても、ガラス板の初期電位を完全に除去することは容易ではない。   The present inventor has noticed that the conventional evaluation method as described in JP-A-2005-255478 may not be able to properly evaluate the chargeability of the glass plate. Such a malfunction may be caused by a surface potential (initial potential) that may exist on the glass plate before performing the contact and peeling operation with the table. An ionizer or the like is known as an instrument for performing static elimination treatment on a glass plate. However, even if the neutralization treatment with such an instrument is performed carefully, it is not easy to completely remove the initial potential of the glass plate.

本発明は、載置台にガラス板を載置する載置ステップと、前記ガラス板を前記載置台から離間させる離間ステップと、を含む剥離サイクルを繰り返して実施し、前記剥離サイクルを繰り返しながら測定される前記ガラス板の表面電位に基づき、ガラス板を評価する、ガラス板の評価方法であって、前記剥離サイクルを、少なくとも、前記剥離サイクルの回数の増加に伴う前記表面電位の絶対値の増加が持続するまで、繰り返して実施し、i)前記剥離サイクルを、前記ガラス板の前記表面電位が飽和帯電電位に達するまで、さらに繰り返して実施し、当該飽和帯電電位の絶対値が基準値Aよりも小さいガラス板を、帯電性の低いガラス板として評価する、またはii)前記表面電位の絶対値の増加が持続する期間にわたる前記表面電位の絶対値の増加量を、当該期間内に実施される前記剥離サイクルの回数で除算することによって得られる値が、基準値Bよりも小さいガラス板を、帯電性の低いガラス板として評価する、ガラス板の評価方法を提供する。   The present invention is carried out by repeating a peeling cycle including a placing step for placing a glass plate on a placing table and a separating step for separating the glass plate from the mounting table, and the measurement is performed while repeating the peeling cycle. A glass plate evaluation method for evaluating a glass plate on the basis of a surface potential of the glass plate, wherein the peeling cycle includes at least an increase in absolute value of the surface potential accompanying an increase in the number of peeling cycles. I) The peeling cycle is further repeated until the surface potential of the glass plate reaches a saturated charging potential, and the absolute value of the saturated charging potential is larger than the reference value A. A small glass plate is evaluated as a glass plate with low chargeability, or ii) the absolute value of the surface potential over a period in which the increase in the absolute value of the surface potential lasts The glass plate having a value obtained by dividing the increase amount by the number of peeling cycles performed within the period is smaller than the reference value B is evaluated as a glass plate having low chargeability. Provide an evaluation method.

本明細書において、「表面電位の絶対値の増加が持続する」状態とは、ガラス板の表面電位の絶対値が、所定回数の剥離サイクルにわたって連続して増加する状態、より具体的には、第n−1回目の剥離サイクルにおける表面電位の絶対値よりも第n回目の剥離サイクルにおける表面電位の絶対値が大きくなる関係(ただし、nは整数)が、少なくとも50回、好ましくは100回以上の剥離サイクルにわたって持続する状態を意味する。また、本明細書において、ガラス板の飽和帯電電位とは、剥離サイクルの回数を増加しても、ガラス板の表面電位が実質的に一定になるときの当該表面電位を意味し、より具体的には、少なくとも50回の剥離サイクルにおける表面電位の平均値に対する、当該少なくとも50回の剥離サイクルにおける表面電位の揺らぎが−50V以上50V以下の範囲にあるときの当該平均値を意味する。   In the present specification, the state in which “the increase in the absolute value of the surface potential is sustained” is a state in which the absolute value of the surface potential of the glass plate continuously increases over a predetermined number of peeling cycles, more specifically, The relationship that the absolute value of the surface potential in the n-th peeling cycle is larger than the absolute value of the surface potential in the (n-1) -th peeling cycle (where n is an integer) is at least 50 times, preferably 100 times or more. It means a state that persists over the peeling cycle. Further, in this specification, the saturated charging potential of the glass plate means the surface potential when the surface potential of the glass plate becomes substantially constant even when the number of peeling cycles is increased, and is more specific. Means the average value when the fluctuation of the surface potential in the at least 50 peeling cycles is in the range of −50V to 50V with respect to the average value of the surface potential in at least 50 peeling cycles.

また、本発明は、別の側面から、溶融したガラス原料から複数のガラス板を成形する工程と、上記の評価方法を用いることによって前記複数のガラス板の帯電性を評価する工程とを備えた、帯電性の低いガラス板の製造方法を提供する。   Moreover, this invention was equipped with the process of shape | molding several glass plates from the molten glass raw material from another side, and the process of evaluating the electrical charging property of these glass plates by using said evaluation method. A method for producing a glass sheet with low chargeability is provided.

また、本発明は、さらに別の側面から、ガラス板の帯電性を評価するための評価装置であって、ガラス板を載置するための載置台と、前記載置台に対し前記ガラス板を載置および離間させる昇降部と、前記ガラス板の表面電位を測定する測定部と、前記昇降部による前記ガラス板の載置および離間ならびに前記測定部による前記表面電位の測定を制御する制御部と、を備え、前記制御部が、前記測定部に前記表面電位を測定させながら、少なくとも、前記載置台に対して前記ガラス板を載置および離間する操作を含む剥離サイクルが、前記剥離サイクルの回数の増加に伴う前記表面電位の絶対値の増加が持続するまで、繰り返されるように、前記昇降部を制御し、ガラス板の帯電性を評価するための基準データとの比較に使用すべきデータを、前記表面電位に基づき算出する演算部、をさらに備え、i)前記制御部が、前記測定部に前記表面電位を測定させながら、前記表面電位が飽和帯電電位に達するまで前記剥離サイクルがさらに繰り返されるように、前記昇降部を制御し、前記演算部が、前記データとして、前記飽和帯電電位の絶対値を算出する、またはii)前記演算部が、前記データとして、前記表面電位の絶対値の増加が持続する期間にわたる前記表面電位の絶対値の増加量を、当該期間内に実施される前記剥離サイクルの回数で除算することによって得られる値を算出する、評価装置を提供する。   Further, the present invention is an evaluation device for evaluating the chargeability of a glass plate from yet another aspect, wherein the glass plate is mounted on the mounting table for mounting the glass plate and the mounting table described above. An elevating unit for placing and separating, a measuring unit for measuring the surface potential of the glass plate, a control unit for controlling the placing and separating of the glass plate by the elevating unit and the measurement of the surface potential by the measuring unit, A separation cycle including at least an operation of placing and separating the glass plate with respect to the mounting table while the measurement unit causes the measurement unit to measure the surface potential. Data to be used for comparison with reference data for controlling the elevating unit to be repeated until the increase in absolute value of the surface potential accompanying the increase continues and controlling the charging property of the glass plate. A calculation unit that calculates based on the surface potential; i) while the control unit causes the measurement unit to measure the surface potential, the peeling cycle is further repeated until the surface potential reaches a saturated charging potential The control unit controls the lift unit, and the calculation unit calculates the absolute value of the saturated charging potential as the data, or ii) the calculation unit increases the absolute value of the surface potential as the data There is provided an evaluation apparatus that calculates a value obtained by dividing an increase amount of the absolute value of the surface potential over a period in which the period is maintained by the number of peeling cycles performed in the period.

本発明では、載置台に対してガラス板を載置するステップと離間するステップとを含む剥離サイクルを、少なくとも、剥離サイクルの回数の増加に伴うガラス板の表面電位の絶対値の増加が持続するまで、繰り返して実施することとした。剥離サイクルを上記程度にまで繰り返すことで、帯電性の評価に適用可能であり初期電位に依存しない物理量を測定できるため、ガラス板の帯電性を従来よりも正確に評価できる。   In the present invention, at least an increase in the absolute value of the surface potential of the glass plate with an increase in the number of peeling cycles is maintained in the peeling cycle including the step of placing the glass plate on the mounting table and the step of separating the glass plate. Until then, it was decided to repeat. By repeating the peeling cycle to the above extent, it is applicable to the evaluation of charging properties, and a physical quantity independent of the initial potential can be measured, so that the charging properties of the glass plate can be evaluated more accurately than before.

本発明によるガラス板の評価装置の構成を説明するための概念図である。It is a conceptual diagram for demonstrating the structure of the evaluation apparatus of the glass plate by this invention. 図1の装置における載置台付近の構造を示す断面図である。It is sectional drawing which shows the structure of the mounting base vicinity in the apparatus of FIG. 図1の装置におけるガラス板の昇降動作を説明するための図である。It is a figure for demonstrating the raising / lowering operation | movement of the glass plate in the apparatus of FIG. サンプルAにおける剥離サイクル数と表面電位との関係を示すグラフである。It is a graph which shows the relationship between the peeling cycle number in Sample A, and surface potential. サンプルBにおける剥離サイクル数と表面電位との関係を示すグラフである。It is a graph which shows the relationship between the peeling cycle number in Sample B, and surface potential.

図1は、本発明による評価装置の構成を説明するための概念図であり、図2はこの評価装置100における載置台10付近の構造を示す断面図であり、図3は評価装置100におけるガラス板200の昇降動作を説明するための図である。評価装置100は、図1に示すように、ガラス板200を載せるための載置台10、昇降部11、測定部12、制御部13、演算部14および表示部15を備えている。   FIG. 1 is a conceptual diagram for explaining a configuration of an evaluation apparatus according to the present invention, FIG. 2 is a cross-sectional view showing a structure near a mounting table 10 in the evaluation apparatus 100, and FIG. It is a figure for demonstrating the raising / lowering operation | movement of the board 200. FIG. As shown in FIG. 1, the evaluation apparatus 100 includes a mounting table 10 on which a glass plate 200 is placed, an elevating unit 11, a measuring unit 12, a control unit 13, a calculation unit 14, and a display unit 15.

昇降部11は、図2に示すように、上下動可能な昇降軸16と、昇降軸16の上端に取り付けられた昇降プレート17と、ガラス板200に向けて(図2において上方向に)突出するように昇降プレート17の上面に配置された複数本のリフターピン18とを有している。ガラス板200は、載置台10に載置された状態から、昇降部11によって、載置台10から上方へと持ち上げられ、その後、下降して載置台10に再び載置される。昇降軸16の上下動は、制御部13によって制御される。載置台10の盤部分19には貫通孔20が形成されており、昇降プレート17が載置台10の盤部分19に接近するように昇降軸16を移動させると、リフターピン18の上端が貫通孔20内を移動して盤部分19から突出する。   As shown in FIG. 2, the elevating unit 11 protrudes toward the glass plate 200 (upward in FIG. 2), the elevating shaft 16 that can move up and down, the elevating plate 17 attached to the upper end of the elevating shaft 16. As shown, the lift plate 17 has a plurality of lifter pins 18 arranged on the upper surface of the lift plate 17. The glass plate 200 is lifted upward from the mounting table 10 by the elevating unit 11 from the state of being mounted on the mounting table 10, and then lowered and mounted again on the mounting table 10. The vertical movement of the lifting shaft 16 is controlled by the control unit 13. A through hole 20 is formed in the board portion 19 of the mounting table 10, and when the elevating shaft 16 is moved so that the elevating plate 17 approaches the board portion 19 of the mounting table 10, the upper end of the lifter pin 18 becomes the through hole. It moves through 20 and protrudes from the board part 19.

ガラス板200を載置台10から離間する離間ステップが実施されると、盤部分19からのガラス板200の剥離に付随して、ガラス板200に静電気が発生する。ガラス板200を載置台10に載置する載置ステップと、離間ステップと、からなる剥離サイクルを繰り返し実施することによって、ガラス板200に静電気が蓄積される。   When the separation step of separating the glass plate 200 from the mounting table 10 is performed, static electricity is generated in the glass plate 200 along with the separation of the glass plate 200 from the board portion 19. Static electricity is accumulated in the glass plate 200 by repeatedly performing a peeling cycle including a placement step for placing the glass plate 200 on the placement table 10 and a separation step.

載置台10の盤部分19はアルミニウムに代表される金属によって形成されており、盤部分19のガラス板200に接触する表面には、アルマイト加工に代表される絶縁加工が施されている。リフターピン18は、アルミニウムに代表される金属によって形成されており、ガラス板200に接触すべき上端部分が、樹脂に代表される絶縁材料によって覆われている。載置台10の盤部分19には吸引孔(図示せず)が形成されており、盤部分19は、当該吸引孔を介して載置台10にガラス板200を吸引固定するための吸引プレートとしても機能する。   The board part 19 of the mounting table 10 is made of a metal typified by aluminum, and the surface of the board part 19 that contacts the glass plate 200 is subjected to an insulation process typified by anodizing. The lifter pin 18 is formed of a metal typified by aluminum, and an upper end portion to be brought into contact with the glass plate 200 is covered with an insulating material typified by resin. A suction hole (not shown) is formed in the board portion 19 of the mounting table 10, and the board portion 19 can be used as a suction plate for sucking and fixing the glass plate 200 to the mounting table 10 through the suction hole. Function.

測定部12は、図1に示すように、ガラス板200の表面電位を測定するための測定プローブ12’を有している。測定プローブ12’は、図2に示すように、ガラス板200の表面21から所定距離(距離d)だけ離れた位置に配置されている。測定部12は、昇降部11の昇降プレート17にアーム30を介して固定されている。これにより、図3に示すように、昇降プレート17の昇降に付随して測定プローブ12’が載置台10の盤部分19に対して昇降するため、剥離サイクルが実施される間も、ガラス板200の表面21と測定プローブ12’との間の距離dが一定に保たれる。測定プローブ12’を介して測定されるガラス板200の表面電位の測定値は距離dに依存して変動し得るが、本発明の評価装置100では、上記のとおり距離dが一定に保たれるため、こうした変動に起因する測定不良の発生を回避できる。   As shown in FIG. 1, the measurement unit 12 includes a measurement probe 12 ′ for measuring the surface potential of the glass plate 200. As shown in FIG. 2, the measurement probe 12 ′ is disposed at a position away from the surface 21 of the glass plate 200 by a predetermined distance (distance d). The measurement unit 12 is fixed to the lift plate 17 of the lift unit 11 via an arm 30. As a result, as shown in FIG. 3, the measurement probe 12 ′ moves up and down with respect to the board portion 19 of the mounting table 10 as the lifting plate 17 moves up and down. The distance d between the surface 21 and the measurement probe 12 'is kept constant. The measured value of the surface potential of the glass plate 200 measured through the measurement probe 12 ′ can vary depending on the distance d. However, in the evaluation apparatus 100 of the present invention, the distance d is kept constant as described above. Therefore, it is possible to avoid the occurrence of measurement failures due to such fluctuations.

制御部13は、ガラス板200の表面電位を測定部12に測定させながら、ガラス板200の剥離サイクルが、少なくとも、剥離サイクルの回数の増加に伴う表面電位の絶対値の増加が持続するまで、繰り返されるように、昇降部11の動作を制御する。制御部13は、載置台10からガラス板200が離間された後に、より具体的には、ガラス板200が載置台10から離間された後であって次の剥離サイクルによって載置台10に載置されるまでに、ガラス板200の表面電位が測定されるように測定部12の動作を制御する。測定部12による表面電位の測定(測定ステップ)は、剥離サイクル毎に少なくとも1回実施されるように制御することが好ましいが、所定の回数の剥離サイクル毎に実施されるように制御してもよい。制御部13は、ガラス板200の表面電位が飽和帯電電位に達するまで剥離サイクルが繰り返されるように、昇降部11の動作を制御することもできる。   While the control unit 13 causes the measurement unit 12 to measure the surface potential of the glass plate 200, the peeling cycle of the glass plate 200 is at least until the increase in the absolute value of the surface potential accompanying the increase in the number of peeling cycles continues. The operation of the elevating unit 11 is controlled to be repeated. After the glass plate 200 is separated from the mounting table 10, more specifically, after the glass plate 200 is separated from the mounting table 10, the control unit 13 is mounted on the mounting table 10 by the next peeling cycle. By the time, the operation of the measurement unit 12 is controlled so that the surface potential of the glass plate 200 is measured. The surface potential measurement (measurement step) by the measurement unit 12 is preferably controlled to be performed at least once every peeling cycle, but may be controlled to be performed every predetermined number of peeling cycles. Good. The control unit 13 can also control the operation of the elevating unit 11 so that the peeling cycle is repeated until the surface potential of the glass plate 200 reaches the saturated charging potential.

測定部12によって測定されたガラス板200の表面電位は、制御部13を介して演算部14に入力される。演算部14は、剥離サイクルを繰り返し実施した後のガラス板の表面電位に基づき、ガラス板の帯電性を評価するための基準データとの比較に使用すべき、i)ガラス板200の飽和帯電電位の絶対値、およびii)表面電位の絶対値の増加が持続する期間にわたる表面電位の絶対値の増加量を、当該期間内に実施される剥離サイクルの回数で除算することによって得られる値(表面電位の絶対値の変化率)、の少なくとも一方を算出する。飽和帯電電位の絶対値および表面電位の絶対値の変化率は、初期電位に依存しない物理量である。なお、表面電位の絶対値の変化率は、50回以上離れて実施された2つの剥離サイクルにおける表面電位の絶対値に基づき、算出されることになる。この程度にまで離れた2つの剥離サイクルにおける表面電位の絶対値を基準にすることで、表面電位の測定値に混入し得るノイズの影響をほとんど無視できる。   The surface potential of the glass plate 200 measured by the measurement unit 12 is input to the calculation unit 14 via the control unit 13. The calculation unit 14 should be used for comparison with reference data for evaluating the charging property of the glass plate based on the surface potential of the glass plate after repeatedly performing the peeling cycle. I) Saturated charging potential of the glass plate 200 And ii) a value obtained by dividing the amount of increase in the absolute value of the surface potential over a period in which the increase in the absolute value of the surface potential lasts is divided by the number of stripping cycles carried out in that period (surface At least one of the change rate of the absolute value of the potential). The change rate of the absolute value of the saturation charging potential and the absolute value of the surface potential is a physical quantity that does not depend on the initial potential. Note that the rate of change of the absolute value of the surface potential is calculated based on the absolute value of the surface potential in two peeling cycles performed 50 times or more apart. By using the absolute value of the surface potential in two peeling cycles separated as much as this as a reference, the influence of noise that can be mixed into the measured value of the surface potential can be almost ignored.

演算部14によって算出された飽和帯電電位の絶対値および表面電位の絶対値の変化率は、制御部13を介して表示部15に入力される。評価装置100の使用者は、表示部15に表示された飽和帯電電位の絶対値および表面電位の絶対値の変化率を、対応する基準データの値と比較することによって、ガラス板200の帯電性を評価できる。より具体的には、飽和帯電電位の絶対値および表面電位の絶対値の変化率が、対応する基準データの値よりも小さいときに帯電性が低いと評価する。飽和帯電電位の絶対値に対応する基準データである基準値Aは、ガラス板の用途に応じて設定すればよく、例えば、FPDの基板としてガラス板を適用する場合、2500Vに設定することができる。表面電位の絶対値の変化率に対応する基準データである基準値Bは、ガラス板の用途および剥離サイクルの実施条件に応じて設定すればよく、例えば、FPDの基板としてガラス板を適用し、後述する実施例に示すように評価装置100を使用して剥離サイクルを実施する場合、8Vに設定することができる。   The absolute value of the saturation charging potential and the change rate of the absolute value of the surface potential calculated by the calculation unit 14 are input to the display unit 15 via the control unit 13. The user of the evaluation apparatus 100 compares the change rate of the absolute value of the saturated charging potential and the absolute value of the surface potential displayed on the display unit 15 with the corresponding reference data values, thereby charging the glass plate 200. Can be evaluated. More specifically, when the change rate of the absolute value of the saturation charging potential and the absolute value of the surface potential is smaller than the value of the corresponding reference data, it is evaluated that the charging property is low. The reference value A, which is reference data corresponding to the absolute value of the saturated charging potential, may be set according to the use of the glass plate. For example, when a glass plate is used as an FPD substrate, it can be set to 2500V. . The reference value B, which is reference data corresponding to the rate of change of the absolute value of the surface potential, may be set according to the use of the glass plate and the implementation conditions of the peeling cycle. For example, a glass plate is applied as the substrate of the FPD, As shown in the Example mentioned later, when performing peeling cycle using the evaluation apparatus 100, it can set to 8V.

本発明による評価装置は、飽和帯電電位の絶対値および表面電位の絶対値の変化率を、対応する基準データと比較することによって、ガラス板200の帯電性を評価する評価部をさらに備え、演算部14から制御部13を介して飽和帯電電位の絶対値および表面電位の絶対値の変化率が評価部に入力され、帯電性の評価についての信号が制御部13を介して表示部15に入力され、評価結果が表示部15の画面に表示される態様とすることもできる。評価装置が評価部を備える場合、帯電性の評価に使用する基準データとして、基準値Aおよび基準値Bの少なくとも一方を使用者が選択できる状態にあることが望ましい。   The evaluation apparatus according to the present invention further includes an evaluation unit that evaluates the chargeability of the glass plate 200 by comparing the change rate of the absolute value of the saturated charging potential and the absolute value of the surface potential with the corresponding reference data. The absolute value of the saturation charging potential and the rate of change of the absolute value of the surface potential are input to the evaluation unit from the unit 14 via the control unit 13, and a signal regarding the evaluation of chargeability is input to the display unit 15 via the control unit 13. The evaluation result may be displayed on the screen of the display unit 15. When the evaluation apparatus includes an evaluation unit, it is desirable that the user can select at least one of the reference value A and the reference value B as the reference data used for the evaluation of the chargeability.

本発明によるガラス板の評価方法につき、評価装置100を用いて実施する場合を例にして説明する。まず、評価対象のガラス板を載置台10に載置し、吸引孔を介して盤部分19に吸引固定する。ガラス板200は、載置台10に載置した直後に公知のイオナイザを用いて除電処理することが好ましい。なお、除電処理を実施する場合、最初にガラス板200を載置台10に載置したときにのみ実施する。   The method for evaluating a glass plate according to the present invention will be described by taking as an example the case of using the evaluation apparatus 100. First, the glass plate to be evaluated is mounted on the mounting table 10 and is sucked and fixed to the board portion 19 through the suction holes. The glass plate 200 is preferably subjected to a charge removal process using a known ionizer immediately after being placed on the placing table 10. In addition, when performing a static elimination process, it implements only when the glass plate 200 is mounted in the mounting base 10 initially.

次に、吸引固定を停止した状態で、昇降部11を駆動させ、リフターピン18の上端で支持させながらガラス板200を載置台10から上方へと持ち上げる。その後、昇降部11を下降させてガラス板200を載置台10に再び載置し、吸引孔を介してガラス板200を載置台10に吸引固定する。載置台10に対するガラス板200の載置ステップと離間ステップとからなる剥離サイクルを、測定ステップを実施しながら、少なくとも剥離サイクルの回数の増加に伴う表面電位の絶対値の増加が持続していくまで、場合によっては、ガラス板200の表面電位が飽和帯電電位に達するまで、繰り返す。そして、各測定ステップで得たガラス板200の表面電位に基づき、飽和帯電電位の絶対値および表面電位の絶対値の変化率を測定部14に算出させる。   Next, in a state where the suction fixation is stopped, the elevating unit 11 is driven, and the glass plate 200 is lifted upward from the mounting table 10 while being supported by the upper end of the lifter pin 18. Then, the raising / lowering part 11 is lowered | hung, the glass plate 200 is again mounted in the mounting base 10, and the glass plate 200 is attracted and fixed to the mounting base 10 through a suction hole. Until the increase in the absolute value of the surface potential continues at least with the increase in the number of peeling cycles while performing the measurement step, the peeling cycle consisting of the placing step and the separating step of the glass plate 200 with respect to the placing table 10 In some cases, the process is repeated until the surface potential of the glass plate 200 reaches the saturated charging potential. Then, based on the surface potential of the glass plate 200 obtained in each measurement step, the measurement unit 14 calculates the absolute value of the saturation charging potential and the change rate of the absolute value of the surface potential.

ガラス板200が初期電位を有した状態にあると、剥離サイクルの初期においてガラス板200から測定される表面電位の絶対値が安定して増加せず、この結果、剥離サイクルの初期の表面電位を指標にすると、ガラス板の帯電性を適切に評価できないことがある。しかし、剥離サイクルを上記程度にまで繰り返すことによって、初期電位に依存しない物理量である、飽和帯電電位の絶対値および表面電位の絶対値の変化率を特定できる。ガラス板200から得られる飽和帯電電位の絶対値は、ガラス板200の組成および表面粗さ(Ra)によって定まる、ガラス板200に固有の値であり、初期電位によっては変動しない。そして、ガラス板200から得られる表面電位の絶対値の変化率は、ガラス板200と評価装置100との組合せ、より具体的には、ガラス板200の組成および表面粗さと、載置台10の盤部分19の表面粗さ(Ra)および構成材料ならびに剥離サイクルにおける剥離速度等との組合せによって定まる値であり、やはり初期電位によっては変動しない。このため、飽和帯電電位の絶対値および表面電位の絶対値の変化率を指標にすることで、初期電位の有無にかかわらず、ガラス板200の帯電性を適切に評価できる。ガラス板200の帯電性は、飽和帯電電位の絶対値および表面電位の絶対値の変化率を、対応する基準データと比較することによって評価する。   When the glass plate 200 has the initial potential, the absolute value of the surface potential measured from the glass plate 200 at the initial stage of the peeling cycle does not stably increase. As a result, the initial surface potential of the peeling cycle is increased. If used as an index, the chargeability of the glass plate may not be properly evaluated. However, by repeating the peeling cycle to the above extent, it is possible to specify the change rate of the absolute value of the saturated charging potential and the absolute value of the surface potential, which are physical quantities that do not depend on the initial potential. The absolute value of the saturated charging potential obtained from the glass plate 200 is a value inherent to the glass plate 200 determined by the composition and surface roughness (Ra) of the glass plate 200 and does not vary depending on the initial potential. The change rate of the absolute value of the surface potential obtained from the glass plate 200 is a combination of the glass plate 200 and the evaluation device 100, more specifically, the composition and surface roughness of the glass plate 200, and the board of the mounting table 10. The value is determined by the combination of the surface roughness (Ra) of the portion 19 and the constituent material, the peeling rate in the peeling cycle, and the like, and does not vary depending on the initial potential. For this reason, by using the change rate of the absolute value of the saturated charging potential and the absolute value of the surface potential as indices, the chargeability of the glass plate 200 can be appropriately evaluated regardless of the presence or absence of the initial potential. The charging property of the glass plate 200 is evaluated by comparing the rate of change of the absolute value of the saturated charging potential and the absolute value of the surface potential with the corresponding reference data.

なお、ガラス板の製造工程においては、種々の工程で表面電位が発生し得る。例えば、熔解したガラス原料を板状に成形した後にローラーコンベア等で運搬する工程における、ガラス板とローラーとの接触、剥離によるローラーとガラス板表面との摩擦によって、表面電位が発生し得る。また例えば、ガラス板を洗浄し乾燥する工程における、気流とガラス板表面との摩擦によって、表面電位が発生し得る。   In the glass plate manufacturing process, surface potential can be generated in various processes. For example, the surface potential can be generated by contact between the glass plate and the roller and friction between the roller and the glass plate surface due to peeling in the process of forming the molten glass raw material into a plate shape and then transporting it with a roller conveyor or the like. Further, for example, surface potential can be generated by friction between the airflow and the glass plate surface in the step of washing and drying the glass plate.

評価対象のガラス板は、溶融したガラス原料を成形することによって独自に準備してもよいし、市販品を入手することによって準備してもよい。   The glass plate to be evaluated may be prepared independently by molding a molten glass material, or may be prepared by obtaining a commercial product.

なお、以上では、本発明による評価装置を用いてガラス板を評価する態様について説明したが、本発明による評価方法は、例えば、演算部14を備えない装置を使用し、演算部14による飽和帯電電位の絶対値および表面電位の絶対値の変化率の算出に代えて、測定した表面電位を数値データとして装置外に出力させ、当該数値データに基づき飽和帯電電位の絶対値および表面電位の絶対値の変化率を、装置の使用者が算出する態様としても構わない。   In addition, although the aspect which evaluates a glass plate using the evaluation apparatus by this invention was demonstrated above, the evaluation method by this invention uses the apparatus which is not equipped with the calculating part 14, for example, and is saturated by the calculating part 14. Instead of calculating the absolute value of the potential and the change rate of the absolute value of the surface potential, the measured surface potential is output as numerical data outside the device, and based on the numerical data, the absolute value of the saturated charging potential and the absolute value of the surface potential The rate of change may be calculated by the user of the apparatus.

本発明によれば、溶融したガラス原料から複数のガラス板を成形する工程と、上記の評価方法によって当該複数のガラス板の帯電性を評価する工程とを備えて、ガラス板を製造することもできる。これにより、成形したガラス板が帯電性についての所定の規格に合格しているかを確認したり、成形した複数のガラス板から当該規格に合格しているものを選別したりすることができるため、帯電性の低いガラス板をより確実に提供できる。   According to the present invention, it is also possible to produce a glass plate, comprising a step of forming a plurality of glass plates from a molten glass raw material and a step of evaluating the chargeability of the plurality of glass plates by the evaluation method. it can. As a result, it is possible to confirm whether the molded glass plate has passed a predetermined standard for chargeability, or to select those that have passed the standard from a plurality of molded glass plates, A glass sheet with low chargeability can be provided more reliably.

以下、実施例により、本発明をさらに詳細に説明する。   Hereinafter, the present invention will be described in more detail with reference to examples.

質量%で表示して、SiO2:60.9、B23:11.6、Al23:16.9、MgO:1.7、CaO:5.1、SrO:2.6、BaO:0.7、K2O:0.25、Fe23:0.15、SnO2:0.13、の組成を有し、表面粗さ(Ra)が0.2nmと0.5nmである2種類のガラス板(680mm×880mm、厚さ0.7mm)を用意した。以降の説明では、これらガラス板のうち、表面粗さが0.2nmである方をサンプルA、表面粗さが0.5nmである方をサンプルBと呼ぶ。なお、サンプルBは、サンプルAに比べて帯電性が低いことが確認されている。 Expressed in mass%, SiO 2 : 60.9, B 2 O 3 : 11.6, Al 2 O 3 : 16.9, MgO: 1.7, CaO: 5.1, SrO: 2.6, BaO: 0.7, K 2 O: 0.25, Fe 2 O 3 : 0.15, SnO 2 : 0.13, and the surface roughness (Ra) is 0.2 nm and 0.5 nm. Two types of glass plates (680 mm × 880 mm, thickness 0.7 mm) were prepared. In the following description, among these glass plates, the surface having a surface roughness of 0.2 nm is referred to as sample A, and the surface having a surface roughness of 0.5 nm is referred to as sample B. Note that it has been confirmed that Sample B has lower chargeability than Sample A.

サンプルAは、耐火煉瓦製の熔解槽と白金製の調整槽とを備えた連続熔解装置を用いて原料バッチを、1580℃で熔解し、1650℃で清澄させ、1500℃で撹拌した状態でダウンドロー法によって薄板状に成形した後、所定のサイズに切り出し、表面を洗浄することによって得た。サンプルBは、フッ酸を含有するガラスエッチング液にガラス板を120秒以下の範囲で浸積することによって表面を粗面化する工程を実施した後に、ガラス板の表面を洗浄したこと以外は、サンプルAと同様にして得た。ガラス板の表面粗さおよび後述する載置台の盤部分の表面粗さ(Ra)は、原子間力顕微鏡を用いて測定した。   Sample A was melted at 1580 ° C using a continuous melting device equipped with a refractory brick melting tank and a platinum adjustment tank, clarified at 1650 ° C, and stirred down at 1500 ° C. After forming into a thin plate by the draw method, it was cut into a predetermined size and obtained by washing the surface. Sample B was subjected to the step of roughening the surface by immersing the glass plate in a glass etching solution containing hydrofluoric acid in a range of 120 seconds or less, and then cleaning the surface of the glass plate, Obtained in the same manner as Sample A. The surface roughness of the glass plate and the surface roughness (Ra) of the board portion of the mounting table described later were measured using an atomic force microscope.

クラス1000の清浄度を有するクリーンルーム内に本発明による評価装置100を設置し、サンプルAおよびサンプルBの帯電性を上記のようにして検査した。載置台10の盤部分19の表面粗さ(Ra)は、1.6mmであった。クリーンルーム内の雰囲気は、温度を20℃に相対湿度を50%に制御した。測定プローブとしてはTREAK社製542−1を使用した。測定プローブとガラス板との距離dは25mmに設定した。ガラス板を載置台から持ち上げる距離を50mmに設定した。除電処理は、公知のイオナイザ(株式会社キーエンス製SJ−H060)を使用し、除電処理をそれ以上続けてもガラス板の表面電位の絶対値が減少しなくなるまで実施した。剥離サイクルは、載置台から50mm持ち上げられた位置にあるガラス板を、リフターピンを下降させて載置台に載置するまでの時間を3秒間、ガラス板を載置台に吸引固定する時間を3秒間、吸引を停止してガラス板をアライメントする時間を2秒間、リフターピンを上昇させてガラス板を載置台から50mm離れた位置まで持ち上げる時間を7秒間、上昇後にガラス板をアライメントする時間を2秒間に設定して実施した。なお、ガラス板のアライメントとは、リフターピンの上昇および下降操作に起因するガラス板の位置ズレを調整する操作である。ガラス板の表面電位は2.95秒毎に測定し、ガラス板が載置台から離間された後であって次の剥離サイクルによって載置台に載置されるまでの間に取得されたデータのうち0Vからの相違が最大のものを、各剥離サイクルにおける表面電位として抽出した。   The evaluation apparatus 100 according to the present invention was installed in a clean room having class 1000 cleanliness, and the chargeability of the sample A and the sample B was inspected as described above. The surface roughness (Ra) of the board portion 19 of the mounting table 10 was 1.6 mm. The atmosphere in the clean room was controlled at a temperature of 20 ° C. and a relative humidity of 50%. As a measurement probe, 542-1 made by TREAK was used. The distance d between the measurement probe and the glass plate was set to 25 mm. The distance for lifting the glass plate from the mounting table was set to 50 mm. The neutralization process was performed using a known ionizer (SJ-H060, manufactured by Keyence Corporation) until the absolute value of the surface potential of the glass plate was not reduced even after the neutralization process was continued. In the peeling cycle, the glass plate at a position lifted by 50 mm from the mounting table is 3 seconds for the lifter pin to be lowered and mounted on the mounting table, and the glass plate is sucked and fixed to the mounting table for 3 seconds. The time for stopping the suction and aligning the glass plate for 2 seconds, the time for raising the lifter pin to lift the glass plate to the position 50 mm away from the mounting table for 7 seconds, and the time for aligning the glass plate after rising for 2 seconds It was carried out with setting. The alignment of the glass plate is an operation for adjusting the positional deviation of the glass plate due to the lifting and lowering operations of the lifter pin. The surface potential of the glass plate is measured every 2.95 seconds, and the data obtained after the glass plate is separated from the mounting table and until it is mounted on the mounting table by the next peeling cycle. The thing with the largest difference from 0V was extracted as the surface potential in each peeling cycle.

図4、図5は、サンプルAとサンプルBにおける、剥離サイクルの繰り返しに付随する表面電位の変動を示すグラフである。図4、図5に示すように、いずれのサンプルにおいても、剥離サイクルの繰り返しの初期段階(例えば、剥離サイクルを5〜10回繰り返した程度)では、初期電位に起因して、表面電位の絶対値が安定して増加しなかった。しかし、いずれのサンプルにおいても、剥離サイクルをさらに繰り返していくと、繰り返し回数が25回を超えた頃から表面電位の絶対値がほぼ直線的に増加した。   4 and 5 are graphs showing fluctuations in the surface potential accompanying the repetition of the peeling cycle in Sample A and Sample B. FIG. As shown in FIGS. 4 and 5, in any sample, in the initial stage of the peeling cycle repetition (for example, the degree of repeating the peeling cycle 5 to 10 times), the absolute surface potential is caused by the initial potential. The value did not increase stably. However, in any sample, when the peeling cycle was further repeated, the absolute value of the surface potential increased almost linearly from the time when the number of repetitions exceeded 25.

サンプルAの飽和帯電電位の絶対値は7134Vであり、サンプルBの飽和帯電電位の絶対値は2322Vであった。サンプルAおよびサンプルBの飽和帯電電位の絶対値は、ガラス板の表面電位の絶対値の増加が持続しなくなった直後の所定期間にわたって実施された剥離サイクルにおける表面電位の絶対値の平均値として、より具体的には、サンプルAについては第377回目から第428回目までの剥離サイクル、また、サンプルBについては第351回目から第403回目までの剥離サイクル、における表面電位の絶対値の平均値として算出した。当該期間の剥離サイクルにおける表面電位の揺らぎは−50V以上50V以下の範囲にあった。第119回目と第237回目の剥離サイクルにおける表面電位は、サンプルAでは−2540Vと−5005Vであり、サンプルBでは−855Vと−1565Vであった。これらデータに基づき表面電位の絶対値の変化率を算出したところ、サンプルAでは20.9Vであり、サンプルBでは6.0Vであった。   The absolute value of the saturation charging potential of Sample A was 7134V, and the absolute value of the saturation charging potential of Sample B was 2322V. The absolute value of the saturated charging potential of sample A and sample B is the average value of the absolute value of the surface potential in the peeling cycle carried out over a predetermined period immediately after the increase in the absolute value of the surface potential of the glass plate no longer continues. More specifically, as the average value of the absolute values of the surface potential in the peeling cycle from the 377th to the 428th time for the sample A, and for the peeling cycle from the 351st time to the 403th time for the sample B, Calculated. The fluctuation of the surface potential in the peeling cycle during the period was in the range of −50V to 50V. The surface potentials in the 119th and 237th peeling cycles were −2540V and −5005V for sample A, and −855V and −1565V for sample B, respectively. The rate of change of the absolute value of the surface potential was calculated based on these data. As a result, it was 20.9 V for sample A and 6.0 V for sample B.

このように、帯電しにくいガラス板であるサンプルBは、表面電位の絶対値の変化率が8V未満の範囲にあり、飽和帯電電位の絶対値が2500V未満の範囲にあった。   Thus, Sample B, which is a glass plate that is difficult to be charged, had a change rate of the absolute value of the surface potential in a range of less than 8V, and an absolute value of the saturation charge potential in a range of less than 2500V.

10 載置台
11 昇降部
12 測定部
12’ 測定プローブ
13 制御部
14 演算部
15 表示部
16 昇降軸
17 昇降プレート
18 リフターピン
19 載置台の盤部分
20 貫通孔
21 ガラス板における載置台と反対側の表面
30 アーム
100 ガラス板の評価装置
200 ガラス板
DESCRIPTION OF SYMBOLS 10 Mounting stand 11 Lifting part 12 Measuring part 12 'Measuring probe 13 Control part 14 Calculation part 15 Display part 16 Lifting shaft 17 Lifting plate 18 Lifter pin 19 Board part 20 of mounting base 21 Through hole 21 On the opposite side to a mounting base in a glass plate Surface 30 Arm 100 Glass plate evaluation device 200 Glass plate

Claims (3)

載置台にガラス板を載置する載置ステップと、前記ガラス板を前記載置台から離間させる離間ステップと、を含む剥離サイクルを繰り返して実施し、前記剥離サイクルを繰り返しながら測定される前記ガラス板の表面電位に基づき、ガラス板を評価する、ガラス板の評価方法であって、
前記剥離サイクルを、少なくとも、前記剥離サイクルの回数の増加に伴う前記表面電位の絶対値の増加が持続するまで、繰り返して実施し、
i)前記剥離サイクルを、前記ガラス板の前記表面電位が飽和帯電電位に達するまで、さらに繰り返して実施し、当該飽和帯電電位の絶対値が基準値Aよりも小さいガラス板を、帯電性の低いガラス板として評価する、または
ii)前記表面電位の絶対値の増加が持続する期間にわたる前記表面電位の絶対値の増加量を、当該期間内に実施される前記剥離サイクルの回数で除算することによって得られる値が、基準値Bよりも小さいガラス板を、帯電性の低いガラス板として評価する、
ガラス板の評価方法。
The glass plate measured by repeating a peeling cycle including a placing step of placing a glass plate on the placing table and a separating step of separating the glass plate from the mounting table, and repeating the peeling cycle. A glass plate evaluation method based on the surface potential of the glass plate,
The stripping cycle is repeated at least until the increase in the absolute value of the surface potential with the increase in the number of stripping cycles continues,
i) The peeling cycle is further repeated until the surface potential of the glass plate reaches a saturation charging potential, and a glass plate having an absolute value of the saturation charging potential smaller than the reference value A is low in chargeability. Evaluate as a glass plate, or ii) by dividing the amount of increase in absolute value of the surface potential over a period where the increase in absolute value of the surface potential lasts by the number of stripping cycles performed within that period A glass plate whose value is smaller than the reference value B is evaluated as a glass plate with low chargeability.
Evaluation method of glass plate.
溶融したガラス原料から複数のガラス板を成形する工程と、請求項1に記載の評価方法によって前記複数のガラス板の帯電性を評価する工程とを備えた、ガラス板の製造方法。   The manufacturing method of a glass plate provided with the process of shape | molding a several glass plate from the fuse | melted glass raw material, and the process of evaluating the electrical charging property of these glass plates by the evaluation method of Claim 1. ガラス板の帯電性を評価するための評価装置であって、
ガラス板を載置するための載置台と、前記載置台に対し前記ガラス板を載置および離間させる昇降部と、前記ガラス板の表面電位を測定する測定部と、前記昇降部による前記ガラス板の載置および離間ならびに前記測定部による前記表面電位の測定を制御する制御部と、を備え、
前記制御部が、前記測定部に前記表面電位を測定させながら、少なくとも、前記載置台に対して前記ガラス板を載置および離間する操作を含む剥離サイクルが、前記剥離サイクルの回数の増加に伴う前記表面電位の絶対値の増加が持続するまで、繰り返されるように、前記昇降部を制御し、
ガラス板の帯電性を評価するための基準データとの比較に使用すべきデータを、前記表面電位に基づき算出する演算部、をさらに備え、
i)前記制御部が、前記測定部に前記表面電位を測定させながら、前記表面電位が飽和帯電電位に達するまで前記剥離サイクルがさらに繰り返されるように、前記昇降部を制御し、前記演算部が、前記データとして、前記飽和帯電電位の絶対値を算出する、または
ii)前記演算部が、前記データとして、前記表面電位の絶対値の増加が持続する期間にわたる前記表面電位の絶対値の増加量を、当該期間内に実施される前記剥離サイクルの回数で除算することによって得られる値を算出する、
評価装置。
An evaluation device for evaluating the chargeability of a glass plate,
A mounting table for mounting a glass plate, a lifting unit for mounting and separating the glass plate with respect to the mounting table, a measuring unit for measuring a surface potential of the glass plate, and the glass plate by the lifting unit A control unit for controlling the mounting and separation of the surface and the measurement of the surface potential by the measurement unit,
While the control unit causes the measurement unit to measure the surface potential, at least a peeling cycle including an operation of placing and separating the glass plate with respect to the mounting table is accompanied by an increase in the number of peeling cycles. Controlling the elevating part to be repeated until the increase in absolute value of the surface potential continues,
A calculation unit that calculates data to be used for comparison with reference data for evaluating the charging property of the glass plate based on the surface potential, and
i) The control unit controls the elevating unit so that the peeling cycle is further repeated until the surface potential reaches a saturated charging potential while causing the measurement unit to measure the surface potential, Ii) calculating the absolute value of the saturated potential as the data, or ii) increasing the absolute value of the surface potential over a period in which the increase in the absolute value of the surface potential continues as the data. A value obtained by dividing by the number of stripping cycles performed within the period,
Evaluation device.
JP2009093638A 2009-04-08 2009-04-08 Glass plate evaluation method based on electrification characteristic, glass plate production method using the same, and device for evaluation Pending JP2010243381A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2009093638A JP2010243381A (en) 2009-04-08 2009-04-08 Glass plate evaluation method based on electrification characteristic, glass plate production method using the same, and device for evaluation
TW99107243A TW201037304A (en) 2009-04-08 2010-03-12 Method of evaluating glass plate based on its electrostatic properties, method of producing glass plate using the same, and device used for the evaluation
SG201001789-5A SG166048A1 (en) 2009-04-08 2010-03-15 Method of evaluating glass plate based on its electrostatic properties, method of producing glass plate using the same, and device used for the evaluation
KR1020100024155A KR20100112074A (en) 2009-04-08 2010-03-18 Method of evaluating glass plate based on its electrostatic properties, method of producing glass plate using the same, and device used for the evaluation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009093638A JP2010243381A (en) 2009-04-08 2009-04-08 Glass plate evaluation method based on electrification characteristic, glass plate production method using the same, and device for evaluation

Publications (1)

Publication Number Publication Date
JP2010243381A true JP2010243381A (en) 2010-10-28

Family

ID=43096543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009093638A Pending JP2010243381A (en) 2009-04-08 2009-04-08 Glass plate evaluation method based on electrification characteristic, glass plate production method using the same, and device for evaluation

Country Status (4)

Country Link
JP (1) JP2010243381A (en)
KR (1) KR20100112074A (en)
SG (1) SG166048A1 (en)
TW (1) TW201037304A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012057254A1 (en) 2010-10-29 2012-05-03 三鷹光器株式会社 Monitorable spectrometric measurement device
JP2013237604A (en) * 2012-04-17 2013-11-28 Avanstrate Inc Method for manufacturing glass substrate for display, glass substrate, and panel for display
JP2014069999A (en) * 2012-09-28 2014-04-21 Avanstrate Inc Glass substrate, and method for manufacturing glass substrate
JP2014069998A (en) * 2012-09-28 2014-04-21 Avanstrate Inc Glass substrate, and method for manufacturing glass substrate
JP2015222190A (en) * 2014-05-22 2015-12-10 国立研究開発法人産業技術総合研究所 Immersion history estimation method of glass piece
CN108455869A (en) * 2017-02-21 2018-08-28 旭硝子株式会社 The manufacturing method of glass substrate for display and glass substrate for display

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017100933A (en) * 2015-11-20 2017-06-08 旭硝子株式会社 Glass substrate and glass plate packaging body
CN111521665B (en) * 2020-04-09 2021-12-21 电子科技大学 Method for regulating and controlling charge quantity and charge property of liquid drops

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH082944A (en) * 1994-06-15 1996-01-09 Mitsubishi Electric Corp Apparatus for producing liquid crystal display element
JPH09138217A (en) * 1995-11-13 1997-05-27 Ricoh Co Ltd Measuring apparatus for electrification amount
JPH11230942A (en) * 1998-02-17 1999-08-27 Mitsubishi Electric Corp Method for searching static electricity suppressing material in electronic device
JP2002072922A (en) * 2000-06-13 2002-03-12 Asahi Glass Co Ltd Glass substrate for display and method of selecting the same
JP2005255478A (en) * 2004-03-12 2005-09-22 Nippon Electric Glass Co Ltd Glass substrate
JP2005257674A (en) * 2001-04-05 2005-09-22 Denki Kagaku Kogyo Kk Peeling charge measurement device
JP2006275517A (en) * 2005-03-25 2006-10-12 Sharp Corp Inspection device of surface deposit, manufacturing method of electronic device, inspection method of surface deposit, control program and readable recording medium

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH082944A (en) * 1994-06-15 1996-01-09 Mitsubishi Electric Corp Apparatus for producing liquid crystal display element
JPH09138217A (en) * 1995-11-13 1997-05-27 Ricoh Co Ltd Measuring apparatus for electrification amount
JPH11230942A (en) * 1998-02-17 1999-08-27 Mitsubishi Electric Corp Method for searching static electricity suppressing material in electronic device
JP2002072922A (en) * 2000-06-13 2002-03-12 Asahi Glass Co Ltd Glass substrate for display and method of selecting the same
JP2005257674A (en) * 2001-04-05 2005-09-22 Denki Kagaku Kogyo Kk Peeling charge measurement device
JP2005255478A (en) * 2004-03-12 2005-09-22 Nippon Electric Glass Co Ltd Glass substrate
JP2006275517A (en) * 2005-03-25 2006-10-12 Sharp Corp Inspection device of surface deposit, manufacturing method of electronic device, inspection method of surface deposit, control program and readable recording medium

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012057254A1 (en) 2010-10-29 2012-05-03 三鷹光器株式会社 Monitorable spectrometric measurement device
JP2013237604A (en) * 2012-04-17 2013-11-28 Avanstrate Inc Method for manufacturing glass substrate for display, glass substrate, and panel for display
JP2014069999A (en) * 2012-09-28 2014-04-21 Avanstrate Inc Glass substrate, and method for manufacturing glass substrate
JP2014069998A (en) * 2012-09-28 2014-04-21 Avanstrate Inc Glass substrate, and method for manufacturing glass substrate
JP2015222190A (en) * 2014-05-22 2015-12-10 国立研究開発法人産業技術総合研究所 Immersion history estimation method of glass piece
CN108455869A (en) * 2017-02-21 2018-08-28 旭硝子株式会社 The manufacturing method of glass substrate for display and glass substrate for display
CN108455869B (en) * 2017-02-21 2022-02-18 Agc株式会社 Glass substrate for display, and method for producing glass substrate for display

Also Published As

Publication number Publication date
KR20100112074A (en) 2010-10-18
SG166048A1 (en) 2010-11-29
TW201037304A (en) 2010-10-16

Similar Documents

Publication Publication Date Title
JP2010243381A (en) Glass plate evaluation method based on electrification characteristic, glass plate production method using the same, and device for evaluation
JP5679513B2 (en) Glass substrate and manufacturing method thereof
JP5780487B2 (en) Manufacturing method of glass substrate
JP6888664B2 (en) Alkaline-free glass
JP5961719B2 (en) Manufacturing method of glass substrate for display and glass substrate
JP4582498B2 (en) Glass substrate
JP7256473B2 (en) Glass substrate and manufacturing method thereof
JP2014201446A (en) Glass substrate for display, method for manufacturing the same, and method for manufacturing a panel for display
JPWO2016010020A1 (en) Glass substrate molding method
CN105551925A (en) Dry etching device
JP5774562B2 (en) Manufacturing method of glass substrate
JP5572195B2 (en) Glass substrate and glass substrate manufacturing method
TWI679174B (en) Heat treatment method of glass substrate and manufacturing method of glass substrate
JP2009167098A (en) Glass substrate
WO2016068069A1 (en) Glass base plate heat processing method and glass base plate production method
CN103373818A (en) Method for making glass substrate for display, glass substrate and display panel
TW202023990A (en) Metal halide treatment for glass substrate electrostatic charge reduction
JP2015020923A (en) Glass plate and method for manufacturing glass plate
TW201733934A (en) Heat treatment method for glass substrate carrying out heat treatment for reducing the hot shrinkage rate of the glass substrate 1

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101217

A131 Notification of reasons for refusal

Effective date: 20101228

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110426