JP5780487B2 - Manufacturing method of glass substrate - Google Patents
Manufacturing method of glass substrate Download PDFInfo
- Publication number
- JP5780487B2 JP5780487B2 JP2009131809A JP2009131809A JP5780487B2 JP 5780487 B2 JP5780487 B2 JP 5780487B2 JP 2009131809 A JP2009131809 A JP 2009131809A JP 2009131809 A JP2009131809 A JP 2009131809A JP 5780487 B2 JP5780487 B2 JP 5780487B2
- Authority
- JP
- Japan
- Prior art keywords
- glass substrate
- producing
- glass
- chemical treatment
- plate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Liquid Crystal (AREA)
- Surface Treatment Of Glass (AREA)
- Glass Compositions (AREA)
Description
本発明は、接触剥離しても、静電気の帯電を引き起こし難いガラス基板の製造方法、或いはガラス基板同士の接触やプレート(定盤、ステージ)等の部材と接触しても、はり付き難いガラス基板の製造方法に関する。 The present invention is a glass substrate manufacturing method that does not easily cause electrostatic charging even when contact peeling is performed, or a glass substrate that is difficult to stick even if contact is made between members of a glass substrate or a plate (surface plate, stage). It relates to the manufacturing method.
ガラス基板は、液晶ディスプレイ(LCD)等のフラットパネルディスプレイの基板として広く使用されている。また、フラットパネルディスプレイ、特にLCDや有機ELディスプレイ(OLED)には、実質的にアルカリ金属酸化物を含有しない無アルカリガラス基板が用いられる。 Glass substrates are widely used as substrates for flat panel displays such as liquid crystal displays (LCDs). In addition, an alkali-free glass substrate that does not substantially contain an alkali metal oxide is used for flat panel displays, particularly LCDs and organic EL displays (OLEDs).
上記したような用途において、無アルカリガラス基板は以下の特性が要求される。
(1)耐薬品性に優れていること、具体的にはフォトリソ−エッチング工程で使用される種々の酸、アルカリ等の薬液に対する耐性に優れていること、
(2)ガラス基板が熱収縮しないように歪点が高いこと、具体的には歪点が600℃以上であること。
In the above applications, the alkali-free glass substrate is required to have the following characteristics.
(1) Excellent chemical resistance, specifically, excellent resistance to chemicals such as various acids and alkalis used in the photolithography-etching step,
(2) The strain point is high so that the glass substrate is not thermally contracted, specifically, the strain point is 600 ° C. or higher.
フラットパネルディスプレイの製膜、アニール等の工程で、ガラス基板は数百℃に加熱される。現在の多結晶シリコンTFT−LCDは、その工程温度が約400〜600℃である。この場合、ガラス基板は、高歪点、具体的には600℃以上の歪点が要求される。 The glass substrate is heated to several hundred degrees Celsius in processes such as film formation of flat panel display and annealing. The current polycrystalline silicon TFT-LCD has a process temperature of about 400 to 600 ° C. In this case, the glass substrate is required to have a high strain point, specifically, a strain point of 600 ° C. or higher.
大面積で板厚が小さい無アルカリガラス基板を効率良く製造するために、以下の特性も必要になる。
(3)ガラス中に泡、ぶつ、脈理等の溶融欠陥が発生し難いように、溶融性に優れていること、
(4)溶融、或いは成形中に発生する異物がガラス基板中に混入しないように、耐失透性に優れていること。
In order to efficiently produce a non-alkali glass substrate having a large area and a small plate thickness, the following characteristics are also required.
(3) Excellent meltability so that melting defects such as bubbles, bumps, striae, etc. are less likely to occur in the glass.
(4) Excellent devitrification resistance so that foreign matter generated during melting or molding does not enter the glass substrate.
ところで、無アルカリガラス基板は、静電気の帯電が問題になることが多い。もともと絶縁体であるガラスは非常に帯電しやすいが、実質的にアルカリ金属酸化物を含有しない無アルカリガラスはその中でも特に帯電しやすく、一旦帯電した静電気が逃げずに維持される傾向がある。LCDやOLED等の製造工程において、ガラス基板の帯電は様々な工程で引き起こされる。特に、製膜工程等における金属や絶縁体のプレートとの接触剥離で起こるいわゆる剥離帯電が大きな問題となっている。ガラス基板とプレートの接触、剥離による帯電は常圧の大気中の工程はもちろんのこと、ガラス基板の表面に薄膜のエッチングを行う工程、製膜工程等の真空工程でも発生し問題となる。これらの工程中で帯電したガラス基板に導電性の物質が近づくと放電が起こる。帯電している静電気の電圧は数10kVにも達するため、放電によってガラス基板の表面上の素子や電極線、或いは場合によってはガラスそのものの破壊(絶縁破壊または静電破壊)が起こり、表示不良の原因となる。LCDの中でもTFT−LCDに代表されるアクティブマトリクスタイプのLCDは、ガラス基板の表面に薄膜トランジスタ等の微細な半導体素子や電子回路が形成されるが、この素子や回路は静電破壊に非常に弱いため特に問題となる。また、帯電したガラス基板は、環境中に存在するダストを引き寄せるため、ガラス基板の表面汚染の原因にもなる。 By the way, in the alkali-free glass substrate, electrostatic charging often becomes a problem. Glass that is originally an insulator is very easily charged. However, alkali-free glass that does not substantially contain an alkali metal oxide is particularly easy to be charged, and there is a tendency that once charged static electricity is maintained without escaping. In the manufacturing process of LCDs and OLEDs, the glass substrate is charged in various processes. In particular, so-called peeling charging that occurs due to contact peeling between a metal or an insulator plate in a film forming process or the like is a serious problem. Charging due to contact and peeling between the glass substrate and the plate occurs in a vacuum process such as a step of etching a thin film on the surface of the glass substrate or a film forming step as well as a step in atmospheric pressure. When a conductive substance approaches the charged glass substrate during these steps, discharge occurs. Since the charged electrostatic voltage reaches several tens of kV, the discharge causes the destruction of elements and electrode wires on the surface of the glass substrate, or in some cases the glass itself (insulation breakdown or electrostatic breakdown), resulting in poor display. Cause. Among LCDs, active matrix type LCDs represented by TFT-LCDs have fine semiconductor elements such as thin film transistors and electronic circuits formed on the surface of glass substrates, but these elements and circuits are very vulnerable to electrostatic breakdown. This is particularly problematic. In addition, the charged glass substrate attracts dust present in the environment, which causes surface contamination of the glass substrate.
更に、副次的な問題として、表面が平滑なガラス基板は金属やセラミックスのプレートにはり付きやすく、これを引き剥がす際に、ガラス基板が破損する等の問題が発生することがある。ガラス基板やプレートの帯電もこのはり付きに影響を与える。 Further, as a secondary problem, a glass substrate with a smooth surface tends to stick to a metal or ceramic plate, and when the plate is peeled off, a problem such as breakage of the glass substrate may occur. The charging of the glass substrate and the plate also affects the sticking.
ガラス基板の帯電防止策として、イオナイザを用いて電荷を中和する、或いは環境中の湿度を上げ、貯まった電荷を空中に放電させる方法等がよく用いられている。しかし、これらの帯電防止策は、コストアップの要因になる他、工程中に帯電を引き起こす場所が多岐に亘るため、効果的な対策を講じることが難しいという問題が残る。さらに、これらの帯電防止策は、プラズマエッチング工程や製膜工程等の真空工程では適用することができない。よって、LCD、OLED等のフラットパネルディスプレイ用途には、真空工程でも帯電し難いガラス基板が強く求められている(特許文献1、2参照)。 As an antistatic measure for the glass substrate, a method of neutralizing the charge using an ionizer or increasing the humidity in the environment and discharging the stored charge into the air is often used. However, these antistatic measures not only cause an increase in cost, but also have a problem that it is difficult to take effective measures because there are various places that cause charging during the process. Furthermore, these antistatic measures cannot be applied in a vacuum process such as a plasma etching process or a film forming process. Therefore, for flat panel display applications such as LCD and OLED, a glass substrate that is difficult to be charged even in a vacuum process is strongly demanded (see Patent Documents 1 and 2).
一方、各種プレートと接触しない側のガラス基板の表面は、高い表面精度が望まれる。この表面は、一般的にガラス基板の優先保証面、または単に「おもて面」と呼ばれる。例えば、薄膜トランジスタタイプのLCDの製造工程において、各種の配線膜や画素を駆動するデバイスが薄膜でガラス基板の優先保証面に形成される。仮にガラス基板の優先保証面にキズや汚れがあったり、優先保証面の凹凸が大きいと、配線膜の断線やTFTの形成不良等が発生し、表示不良の原因となる。このため、TV用の広視野角技術として着目されているIPS方式や超高精細のLCDは、ガラス基板の優先保証面のキズや汚れに対する要求基準が非常に厳しい。また、次世代のディスプレイとして注目されているOLEDでは、低温p−Si(LTPS)を用いた高精細な駆動回路がガラス基板の優先保証面上に形成されるため、ガラス基板の優先保証面の平滑性は非常に重要になってきている。 On the other hand, high surface accuracy is desired for the surface of the glass substrate on the side not in contact with the various plates. This surface is generally referred to as the priority guarantee surface of the glass substrate, or simply the “front surface”. For example, in a manufacturing process of a thin film transistor type LCD, devices for driving various wiring films and pixels are formed as thin films on a priority guarantee surface of a glass substrate. If the priority guarantee surface of the glass substrate is scratched or soiled, or if the unevenness of the priority guarantee surface is large, the wiring film is disconnected or the TFT is poorly formed, causing a display defect. For this reason, in the IPS system and the ultra-high-definition LCD, which are attracting attention as a wide viewing angle technology for TV, requirements for scratches and dirt on the priority guarantee surface of the glass substrate are very strict. In addition, in OLEDs that are attracting attention as next-generation displays, a high-definition driving circuit using low-temperature p-Si (LTPS) is formed on the priority guarantee surface of the glass substrate. Smoothness has become very important.
そこで、本発明の技術的課題は、各種ディスプレイの製造工程において、帯電を引き起こし難いとともに、プレートにはり付き難く、しかも配線膜の断線やTFTの形成不良等が発生し難いガラス基板の製造方法を提供することである。 Accordingly, the technical problem of the present invention is to provide a method for producing a glass substrate that is difficult to cause charging in the manufacturing process of various displays, and that is difficult to stick to a plate, and that does not easily cause a disconnection of a wiring film or formation failure of a TFT. Is to provide.
本発明者等は、鋭意検討の結果、端面を除いたガラス基板の両表面の平均表面粗さRaを所定範囲に規制するとともに、ガラス基板の一方の表面を所定の薬液で化学処理することにより、上記技術的課題を解決できることを見出し、本発明として、提案するものである。すなわち、本発明のガラス基板の製造方法は、第一の表面と第二の表面を有するガラス基板の製造方法において、第一の表面の平均表面粗さRaを0.2nm以下とし、化学処理前のガラス基板の第二の表面を火造り面とし、第二の表面の平均表面粗さRaが0.3〜1.5nmになるように、HFを0.1〜5質量%含有する薬液を含浸させたローラー又はパッドを用いて、第二の表面を化学処理することを特徴とする。なお、「第一の表面」は、端面を除いたガラス基板の一方の面(通常、優先保証面)を指し、「第二の表面」は、端面を除いたガラス基板の他方の面を指す。 As a result of intensive studies, the inventors have regulated the average surface roughness Ra of both surfaces of the glass substrate excluding the end face to a predetermined range, and chemically treating one surface of the glass substrate with a predetermined chemical solution. The present inventors have found that the above technical problem can be solved and propose as the present invention. That is, the method for producing a glass substrate of the present invention is a method for producing a glass substrate having a first surface and a second surface, wherein the average surface roughness Ra of the first surface is 0.2 nm or less, and before chemical treatment. of the second surface of the glass substrate and fire-polished surface, so that the average surface roughness Ra of the second surface is 0.3~1.5Nm, a chemical solution containing HF 0.1 to 5 wt% The second surface is chemically treated using an impregnated roller or pad . The “first surface” refers to one surface (usually the priority guarantee surface) of the glass substrate excluding the end surface, and the “second surface” refers to the other surface of the glass substrate excluding the end surface. .
ガラス基板の帯電、特に剥離帯電やプレートとのはり付きを減少させる方法として、微視的にガラス基板とプレートの接触面積を減少させる方法が最も効果的である。ガラス基板とプレートが強い力で接触すると、両者の界面で電子のやり取りが起こる。次いで両者が引き剥がされると、帯電が生じる。そこで、ガラス基板の第二の表面の平均表面粗さRaを適正範囲に規制することにより、ガラス基板とプレートの接触面積を減少させることができ、その結果、帯電量を低減することができる。また、帯電しやすく、且つ表面平滑性が非常に高いガラス基板は、プレートに吸着する際、プレートに非常にはり付きやすい特徴を有している。そこで、ガラス基板の第二の表面の平均表面粗さRaを適正範囲に規制することにより、ガラス基板とプレートの接触面積を減少させることができ、その結果、ガラス基板のはり付きを防止することができる。 As a method for reducing charging of the glass substrate, particularly peeling charging and sticking between the plate, a method of microscopically reducing the contact area between the glass substrate and the plate is the most effective. When the glass substrate and the plate come into contact with each other with a strong force, electrons are exchanged at the interface between the two. Then, when both are peeled off, charging occurs. Therefore, by regulating the average surface roughness Ra of the second surface of the glass substrate within an appropriate range, the contact area between the glass substrate and the plate can be reduced, and as a result, the charge amount can be reduced. Further, a glass substrate that is easily charged and has a very high surface smoothness has a feature that it is very likely to stick to the plate when adsorbed on the plate. Therefore, by regulating the average surface roughness Ra of the second surface of the glass substrate to an appropriate range, the contact area between the glass substrate and the plate can be reduced, and as a result, the glass substrate can be prevented from sticking. Can do.
ガラス基板の第二の表面の平均表面粗さRaが大きい程、接触剥離による帯電、プレートとのはり付きを防止しやすくなる。しかし、ガラス基板の第二の表面の平均表面粗さRaが大き過ぎると、ガラス基板の面強度が損なわれるおそれがある他、各種ディスプレイの製造工程内の薬液処理工程で更にガラス基板の表面が侵食され、その結果、各種ディスプレイの表示に不具合が発生するおそれがある。また、ガラス基板の第二の表面の平均表面粗さRaが大き過ぎると、化学処理のプロセスコストが高騰する上、ガラス基板の汚染等の副次的な不具合が生じやすくなる。そこで、ガラス基板の第二の平均表面粗さRaを0.3〜1.5nmを規制すれば、剥離帯電やガラス基板のはり付き等を効果的に防止しながら、プロセスコストを不当に高騰させずに、ガラス基板の強度等の低下を抑制することができる。ここで、「平均表面粗さRa」は、ガラス基板の第二の表面の内、70%以上が所定の平均表面粗さRaを有していればよく、特にガラス基板の面内の複数個所の平均値であることが望ましい。つまり、ガラス基板の表面の特定箇所(例えば、ガラス基板の周辺部やコーナー部等)が1.5nmより大きかったり、逆に0.3nmより小さくても、ガラス基板の第二(または第一)の表面の内、70%以上、好ましくは80%以上が所定の平均表面粗さRaであれば、本発明の主旨に沿い、本発明の効果を得ることができる。 The larger the average surface roughness Ra of the second surface of the glass substrate, the easier it is to prevent charging due to contact peeling and sticking to the plate. However, if the average surface roughness Ra of the second surface of the glass substrate is too large, the surface strength of the glass substrate may be impaired, and the surface of the glass substrate may be further increased in the chemical treatment process in the manufacturing process of various displays. As a result, erosion may occur and defects may occur in the display of various displays. On the other hand, if the average surface roughness Ra of the second surface of the glass substrate is too large, the process cost of the chemical treatment increases, and secondary defects such as contamination of the glass substrate tend to occur. Therefore, if the second average surface roughness Ra of the glass substrate is regulated to 0.3 to 1.5 nm, the process cost is unreasonably increased while effectively preventing peeling charging and sticking of the glass substrate. Without lowering the strength or the like of the glass substrate. Here, the “average surface roughness Ra” is sufficient if 70% or more of the second surface of the glass substrate has a predetermined average surface roughness Ra, and in particular, a plurality of locations within the surface of the glass substrate. The average value is desirable. In other words, even if a specific location on the surface of the glass substrate (for example, a peripheral portion or corner portion of the glass substrate) is larger than 1.5 nm, or conversely smaller than 0.3 nm, the second (or first) of the glass substrate. If the average surface roughness Ra is 70% or more, preferably 80% or more of the surface, the effect of the present invention can be obtained in accordance with the gist of the present invention.
本発明のガラス基板の製造方法は、HFを0.1〜5質量%含有する薬液により、ガラス基板の第二の表面を化学処理することを特徴とする。このようにすれば、ガラス基板の第二の表面の平均表面粗さRaを0.3〜1.5nmにしやすくなる。HFの濃度は0.1〜3質量%であり、好ましくは0.1〜1.5質量%である。処理温度は50℃以下、5℃〜40℃、特に10℃〜30℃である。処理時間は0.5秒〜3分、1秒〜2分、特に5秒〜1分である。なお、処理温度が5℃より低く、また処理時間が0.5秒より短いと、ガラス基板の第二の表面の平均表面粗さRaが大きくなり難い。一方、処理温度が40℃より高いと、フッ化水素の蒸気の揮発が問題になり、また処理時間が3分より長いと、ガラス基板のプロセスコストが高騰する。また、化学処理により発生する反応生成物を防ぐために、上記薬液にH2SO4、HNO3、HCl等の鉱酸を20質量%まで添加することができる。 Process for producing a glass substrate of the present invention, by a chemical solution containing H F 0.1 to 5 wt%, characterized by chemically treating the second surface of the glass substrate. If it does in this way, it will become easy to make average surface roughness Ra of the 2nd surface of a glass substrate 0.3-1.5 nm . The concentration of H F is from 0.1 to 3 wt%, preferably from 0.1 to 1.5 wt%. The processing temperature is 50 ° C. or lower, 5 ° C. to 40 ° C., particularly 10 ° C. to 30 ° C. The treatment time is 0.5 seconds to 3 minutes, 1 second to 2 minutes, particularly 5 seconds to 1 minute. If the processing temperature is lower than 5 ° C. and the processing time is shorter than 0.5 seconds, the average surface roughness Ra of the second surface of the glass substrate is difficult to increase. On the other hand, when the processing temperature is higher than 40 ° C., the vaporization of hydrogen fluoride vapor becomes a problem, and when the processing time is longer than 3 minutes, the process cost of the glass substrate increases. Further, in order to prevent reaction products generated by chemical treatment, mineral acids such as H 2 SO 4 , HNO 3 , and HCl can be added to the chemical solution up to 20% by mass.
薬液を用いた化学処理により、ガラス基板の表面を粗くする場合にガラス基板の優先保証面が侵食されることが問題になり得る。この問題を防ぐためには、装置の構成等を工夫して、ガラス基板の一方の表面(第二の表面)だけを化学処理する必要がある。本発明では、薬液を含浸可能な素材のローラーやパッドに薬液を含ませ、ガラス基板の表面に薬液を塗布する方法を用いる。 When the surface of the glass substrate is roughened by chemical treatment using a chemical solution, it may be a problem that the preferential guarantee surface of the glass substrate is eroded. In order to prevent this problem, it is necessary to devise the configuration of the apparatus and the like to chemically treat only one surface (second surface) of the glass substrate. In the present invention, a method is used in which a chemical solution is contained in a roller or pad made of a material that can be impregnated with the chemical solution, and the chemical solution is applied to the surface of the glass substrate .
本発明のガラス基板は、第一の表面の平均表面粗さRaを0.2nm以下に規制している。このようにすれば、ガラス基板の表面に、各種の配線膜や画素を駆動するデバイスを高精度に形成することができ、その結果、薄膜配線膜の断線やTFTの形成不良等を的確に防止することができる。 The glass substrate of the present invention regulates the average surface roughness Ra of the first surface to 0.2 nm or less. In this way, devices for driving various wiring films and pixels can be formed on the surface of the glass substrate with high precision, and as a result, disconnection of the thin film wiring film, TFT formation failure, etc. can be prevented accurately. can do.
本発明のガラス基板の製造方法は、化学処理の処理時間が0.5秒〜3分であることが好ましい。このようにすれば、ガラス基板の第二の表面の平均表面粗さRaを0.3〜1.5nmにしやすくなる。ここで、「処理時間」は、実際にガラス基板の表面が薬液に接触している時間(薬液に濡れた状態で搬送工程を運ばれるような状態も含む)を意味する。なお、非常に大面積のガラス基板を連続的に化学処理し、洗浄する工程では、ガラス基板1枚あたりの処理時間がこの範囲を超えることもあり得る。 Process for producing a glass substrate of the present invention, it is preferred processing time of chemical treatment is 3 minutes 0.5 seconds. If it does in this way, it will become easy to make average surface roughness Ra of the 2nd surface of a glass substrate 0.3-1.5 nm. Here, the “treatment time” means a time during which the surface of the glass substrate is actually in contact with the chemical (including a state where the transport process is carried in a state wet with the chemical). In addition, in the process of chemically treating and cleaning a very large glass substrate continuously, the processing time per glass substrate may exceed this range.
本発明のガラス基板の製造方法は、HFを0.1〜5質量%含有する薬液を用い、薬液の温度を50℃以下に保持した上で化学処理することが好ましい。 In the method for producing a glass substrate of the present invention, it is preferable to use a chemical solution containing 0.1 to 5% by mass of HF and perform chemical treatment while keeping the temperature of the chemical solution at 50 ° C. or lower.
本発明のガラス基板の製造方法は、第一の表面を化学処理しないことが好ましい。このようにすれば、ガラス基板の第一の表面の平均表面粗さRaが大きくならず、ガラス基板の表面に、各種の配線膜や画素を駆動するデバイスを高精度に形成しやすくなる。 It is preferable that the manufacturing method of the glass substrate of this invention does not chemically process the 1st surface. In this way, the average surface roughness Ra of the first surface of the glass substrate does not increase, and it becomes easy to form devices for driving various wiring films and pixels on the surface of the glass substrate with high accuracy.
本発明のガラス基板の製造方法は、化学処理前の第二の表面の平均表面粗さRaを0.2nm以下にすることが好ましい。このようにすれば、ガラス基板の第二の表面を均一に化学処理することができる。 In the method for producing a glass substrate of the present invention, the average surface roughness Ra of the second surface before chemical treatment is preferably 0.2 nm or less. In this way, the second surface of the glass substrate can be chemically treated uniformly.
本発明のガラス基板の製造方法は、ガラス基板をダウンドロー法で成形し、ガラス基板の第一の表面を火造り面にすることが好ましい。 Process for producing a glass substrate of the present invention, by forming a glass substrate with a down draw method, it is preferable that the first front surface of the glass substrate to the fire-polished surface.
本発明のガラス基板の製造方法は、ガラス基板の基板サイズが0.2m2以上であることが好ましい。 Process for producing a glass substrate of the present invention is preferably a substrate size of the glass substrate is 0.2 m 2 or more.
本発明のガラス基板の製造方法は、ガラス基板の板厚が0.6mm以下であることが好ましい。 Process for producing a glass substrate of the present invention, it is preferable thickness of the glass substrate is 0.6mm or less.
本発明のガラス基板の製造方法は、ガラス基板が、ガラス組成として、下記酸化物換算の質量%で、SiO2 50〜70%、Al2O3 10〜20%、B2O3 0〜15%、MgO+CaO+SrO+BaO 1〜30%、MgO 0〜10%、CaO 0〜20%、SrO 0〜20%、BaO 0〜20%含有し、且つ実質的にアルカリ金属酸化物を含有しないことが好ましい。ここで、「実質的にアルカリ金属酸化物を含有しない」とは、ガラス組成中のアルカリ金属酸化物の含有量が1000ppm以下の場合を指す。 Process for producing a glass substrate of the present invention, the glass substrate is a glass composition including, by mass% terms of oxide, SiO 2 50~70%, Al 2 O 3 10~20%, B 2 O 3 0~15 %, MgO + CaO + SrO + BaO 1~30%, 0~10% MgO, CaO 0~20%, SrO 0~20%, containing BaO 0 to 20%, and preferably does not substantially contain an alkali metal oxide. Here, “substantially no alkali metal oxide” refers to a case where the content of the alkali metal oxide in the glass composition is 1000 ppm or less.
本発明のガラス基板の製造方法は、第一の表面が電極線や各種デバイスが形成される面であり、且つ第二の表面が電極線や各種デバイスが形成されない面であることが好ましい。このようにすれば、工程中での帯電、或いはプレートとのはり付きを防止しつつ、ガラス基板の表面に各種の配線膜や画素を駆動するデバイスを高精度に形成することができる。 The method of manufacturing a glass substrate of the present invention is a surface the first surface electrode lines and various devices are formed, it is preferable and a second surface which is a surface electrode lines and various devices are not formed. In this way, it is possible to accurately form devices for driving various wiring films and pixels on the surface of the glass substrate while preventing charging during the process or sticking to the plate.
本発明のガラス基板の製造方法は、端面を除いたガラス基板の両表面の平均表面粗さRaを所定範囲に規制しているため、工程中での帯電、或いはプレートとのはり付きを防止しつつ、ガラス基板の表面に各種の配線膜や画素を駆動するデバイスを高精度に形成することができる。また、本発明のガラス基板の製造方法は、所定の薬液を用いるため、ガラス基板の第二の表面の平均表面粗さRaを短時間に適正化しやすい。したがって、この方法で作製されたガラス基板は、剥離帯電量が低く、LCDやOLED等の製造工程で生じる静電気の帯電を抑制することができるため、ガラス基板上の素子や配線の破壊を防ぐことができ、その結果、LCDやOLED等の製造効率を高めることができる。また、この方法で作製されたガラス基板は、LCDやOLED等の製造工程でガラス基板がプレートにはり付き難く、ガラス基板が破損する不具合を回避することができる。 In the method for producing a glass substrate of the present invention, since the average surface roughness Ra of both surfaces of the glass substrate excluding the end face is regulated within a predetermined range, charging during the process or sticking to the plate is prevented. On the other hand, devices for driving various wiring films and pixels can be formed with high accuracy on the surface of the glass substrate. Moreover, since the manufacturing method of the glass substrate of this invention uses a predetermined | prescribed chemical | medical solution, it is easy to optimize average surface roughness Ra of the 2nd surface of a glass substrate in a short time. Therefore, the glass substrate manufactured by this method has a low peel charge amount, and can suppress static charge generated in the manufacturing process of LCDs, OLEDs, etc., thus preventing destruction of elements and wiring on the glass substrate. As a result, the manufacturing efficiency of LCDs and OLEDs can be increased. Moreover, the glass substrate produced by this method is difficult to stick to the plate in the manufacturing process of LCDs, OLEDs, etc., and can avoid the problem that the glass substrate is damaged.
本発明のガラス基板の製造方法において、ガラス基板の第二の表面の平均表面粗さRaは0.3〜1.5nm、好ましくは0.4〜1.2nm、より好ましくは0.5〜1.0nmである。ガラス基板の第二の表面の平均表面粗さRaが大きい程、帯電量が小さくなる傾向にあるが、平均表面粗さRaが大き過ぎると、ガラス基板の表面に大きな欠陥が発生しやすくなり、ガラス基板の強度が低下しやすくなる。また、平均表面粗さRaが大きい程、化学処理にコストや時間がかかり、ガラス基板の製造コストが高騰してしまう。よって、ガラス基板の第二の表面の平均表面粗さRaを適正範囲に規制し、ガラス基板の強度低下を防止した上で、生産性を低下させることなく、ガラス基板の帯電やはり付きを防止する必要がある。 In the method for producing a glass substrate of the present invention, the average surface roughness Ra of the second surface of the glass substrate is 0.3 to 1.5 nm, preferably 0.4 to 1.2 nm, more preferably 0.5 to 1. 0.0 nm. The larger the average surface roughness Ra of the second surface of the glass substrate, the smaller the charge amount, but if the average surface roughness Ra is too large, a large defect is likely to occur on the surface of the glass substrate, The strength of the glass substrate tends to decrease. Moreover, the larger the average surface roughness Ra, the higher the cost and time for chemical treatment, and the higher the manufacturing cost of the glass substrate. Therefore, the average surface roughness Ra of the second surface of the glass substrate is regulated within an appropriate range, and the strength of the glass substrate is prevented from lowering, and the glass substrate is prevented from being charged without lowering the productivity. There is a need.
本発明のガラス基板の製造方法は、化学処理の精度、特に均一性を高めるために、ガラス基板の初期の表面状態が非常に重要となる。このような観点から、本発明のガラス基板の製造方法において、化学処理前のガラス基板の第二の表面の平均表面粗さRaは2nm以下が好ましい。 In the method for producing a glass substrate of the present invention, the initial surface state of the glass substrate is very important in order to improve the accuracy of chemical treatment, particularly uniformity. From such a viewpoint, in the method for producing a glass substrate of the present invention, the average surface roughness Ra of the second surface of the glass substrate before chemical treatment is preferably 2 nm or less.
本発明のガラス基板の製造方法において、ガラス基板の成形方法は、ダウンドロー法、特にオーバーフローダウンドロー法が好ましい。このようにすれば、大面積で表面精度が良好なガラス基板を効率良く成形することができる。また、本発明のガラス基板は、化学処理前のガラス基板の第一の表面および第二の表面がアズフォーム面(火造り面)であることが好ましい。このようにすれば、化学処理の精度、特に均一性が高まるとともに、ガラス基板の製造工程を簡略化することができるため、特に研磨工程を省略できるため、ガラス基板の製造コストを低廉化することができる。現在、ダウンドロー法の内、上記観点から最も好適な方法はオーバーフローダウンドロー法である。その他の成形方法、例えばフロート法では、ガラス基板の表面が溶融スズによって汚染されるとともに、うねりと呼ばれる微小な表面の凹凸がTFT−LCDの表示性能を低下させるため、優先保証面を研磨しなければ製品にならない。一方、オーバーフローダウンドロー法は、上記不具合が生じ難いため、研磨工程を省略することができ、その結果、ガラス基板の製造コストを低廉化することができる。 In the method for producing a glass substrate of the present invention, the glass substrate is preferably formed by a down draw method, particularly an overflow down draw method. In this way, a glass substrate having a large area and good surface accuracy can be efficiently formed. In the glass substrate of the present invention, the first surface and the second surface of the glass substrate before chemical treatment are preferably as-formed surfaces (fire-making surfaces). In this way, the accuracy of the chemical treatment, in particular the uniformity, is increased, and the glass substrate manufacturing process can be simplified, and in particular, the polishing process can be omitted, thereby reducing the manufacturing cost of the glass substrate. Can do. Currently, among the downdraw methods, the most suitable method from the above viewpoint is the overflow downdraw method. In other molding methods, such as the float process, the surface of the glass substrate is contaminated by molten tin, and the minute surface irregularities called undulations degrade the display performance of the TFT-LCD, so the priority guarantee surface must be polished. It will not be a product. On the other hand, since the overflow downdraw method is less likely to cause the above-described problem, the polishing step can be omitted, and as a result, the manufacturing cost of the glass substrate can be reduced.
本発明のガラス基板の製造方法において、ガラス基板の基板サイズは0.2m2以上、0.5m2以上、0.6m2以上、特に1.0m2以上が好ましい。大面積のガラス基板は、静電気を貯めやすく、帯電を引き起こしやすい上、吸着によりプレートにはり付いた場合に、その後のリフトアップ等の工程でガラス基板が破損しやすい。本発明のガラス基板の製造方法は、大面積のガラス基板に適用可能であり、その場合、得られる効果が大きい。 In the method for producing a glass substrate of the present invention, the substrate size of the glass substrate is preferably 0.2 m 2 or more, 0.5 m 2 or more, 0.6 m 2 or more, particularly 1.0 m 2 or more. A glass substrate having a large area easily stores static electricity, easily causes charging, and, when adhering to a plate by adsorption, the glass substrate is easily damaged in a subsequent lift-up process or the like. The method for producing a glass substrate of the present invention can be applied to a glass substrate having a large area, and in that case, the obtained effect is great.
本発明のガラス基板の製造方法において、ガラス基板の板厚は0.6mm以下、特に0.5mm以下が好ましい。板厚が小さいガラス基板は、吸着によりガラス基板がプレートにはり付いた場合に、その後のリフトアップ等の工程でガラス基板が破損しやすい。本発明のガラス基板の製造方法は、板厚が小さいガラス基板に適用可能であり、その場合、得られる効果が大きい。 In the method for producing a glass substrate of the present invention, the thickness of the glass substrate is preferably 0.6 mm or less, particularly preferably 0.5 mm or less. A glass substrate having a small plate thickness is likely to be damaged in a subsequent lift-up process when the glass substrate adheres to the plate by adsorption. The method for producing a glass substrate of the present invention can be applied to a glass substrate having a small plate thickness, and in that case, the obtained effect is great.
本発明のガラス基板の製造方法において、ガラス基板が、ガラス組成として、下記酸化物換算の質量%で、SiO2 50〜70%、Al2O3 10〜20%、B2O3 0〜15%、MgO+CaO+SrO+BaO 1〜25%、MgO 0〜10%、CaO 0〜20%、SrO 0〜20%、BaO 0〜20%含有し、実質的にアルカリ金属酸化物を含有しないことが好ましい。ガラス組成中の各成分の含有量を上記のように限定した理由を以下に示す。 The method of manufacturing a glass substrate of the present invention, the glass substrate is a glass composition including, by mass% terms of oxide, SiO 2 50~70%, Al 2 O 3 10~20%, B 2 O 3 0~15 %, MgO + CaO + SrO + BaO 1 to 25%, MgO 0 to 10%, CaO 0 to 20%, SrO 0 to 20%, BaO 0 to 20%, and substantially no alkali metal oxide. The reason for limiting the content of each component in the glass composition as described above will be described below.
SiO2の含有量は50〜70%、好ましくは55〜65%である。SiO2の含有量が少ないと、耐熱性、耐酸性等が低下する。一方、SiO2の含有量が多いと、高温粘度が高くなり、溶融性が低下することに加えて、ガラス中に失透結晶(クリストバライト)等の欠陥が生じやすくなる。 The content of SiO 2 is 50 to 70%, preferably 55 to 65%. When the content of SiO 2 is small, heat resistance, acid resistance and the like is reduced. On the other hand, when the content of SiO 2 is large, the high-temperature viscosity is increased and the meltability is lowered. In addition, defects such as devitrified crystals (cristobalite) are likely to occur in the glass.
Al2O3の含有量は10〜25%、好ましくは12〜23%、より好ましくは13〜20%である。Al2O3の含有量が10%より少ないと、耐熱性を高めることが困難になる。また、Al2O3にはヤング率、比ヤング率を高める働きがあるが、Al2O3の含有量が10%より少ないと、ヤング率、比ヤング率が低下しやすくなる。なお、比ヤング率が低下すると、ガラス基板の撓み量が大きくなり、特に大面積のガラス基板の撓み量が顕著に大きくなる。一方、Al2O3の含有量が25%より多いと、フッ酸系の薬液に対する化学的耐久性が低下し、その結果、本発明に係る化学処理後に、ガラス基板の表面に粗さのばらつきが発生しやすくなる。 The content of Al 2 O 3 is 10 to 25%, preferably 12 to 23%, more preferably 13 to 20%. When the content of Al 2 O 3 is less than 10%, it is difficult to improve heat resistance. Further, Al 2 O 3 has a function of increasing the Young's modulus and the specific Young's modulus, but if the Al 2 O 3 content is less than 10%, the Young's modulus and the specific Young's modulus are likely to decrease. Note that when the specific Young's modulus decreases, the amount of bending of the glass substrate increases, and in particular, the amount of bending of a large-area glass substrate increases significantly. On the other hand, if the content of Al 2 O 3 is more than 25%, the chemical durability against hydrofluoric acid chemicals decreases, and as a result, after the chemical treatment according to the present invention, the roughness of the glass substrate surface varies. Is likely to occur.
B2O3は、融剤として働き、高温粘性を下げ、溶融性を高める成分であり、その含有量は0〜15%、好ましくは1〜13%である。B2O3の含有量が少ないと、融剤としての働きが不十分になり、また高温粘性が高くなり、ガラス基板の泡品位が低下しやすくなる。一方、B2O3の含有量が多いと、本発明に係る化学処理により、ガラス基板の表面の平均表面粗さRaがあまり大きくならず、また耐熱性、ヤング率が低下しやすくなる。 B 2 O 3 is a component that acts as a flux, lowers the high temperature viscosity, and increases the meltability, and its content is 0 to 15%, preferably 1 to 13%. When the content of B 2 O 3 is small, the function as a flux becomes insufficient, the high-temperature viscosity becomes high, and the bubble quality of the glass substrate tends to be lowered. On the other hand, when the content of B 2 O 3 is large, the average surface roughness Ra of the surface of the glass substrate is not so large due to the chemical treatment according to the present invention, and the heat resistance and Young's modulus are easily lowered.
MgO+CaO+SrO+BaOは、液相温度を下げ、ガラス中に結晶異物を生じさせ難くする成分であり、また溶融性や成形性を高める成分であり、その含有量は1〜25%、好ましくは5〜20%、より好ましくは10〜20%である。MgO+CaO+SrO+BaOの含有量が少ないと、融剤としての働きを十分に発揮できず、溶融性が低下する。一方、MgO+CaO+SrO+BaOの含有量が多過ぎると、密度が上昇し、比ヤング率が低下する。 MgO + CaO + SrO + BaO is a component that lowers the liquidus temperature and makes it difficult to produce crystalline foreign matter in the glass, and is a component that improves meltability and moldability, and its content is 1 to 25%, Preferably it is 5 to 20%, more preferably 10 to 20%. When there is little content of MgO + CaO + SrO + BaO, the function as a flux cannot fully be exhibited and meltability falls. On the other hand, when the content of MgO + CaO + SrO + BaO is too large, the density increases and the specific Young's modulus decreases.
MgOは、歪点を低下させずに、高温粘性を下げ、溶融性を高める成分であり、またアルカリ土類金属酸化物の中では最も密度を下げる効果がある成分であり、その含有量は0〜10%、好ましくは0〜8%、より好ましくは0〜6%、更に好ましくは0〜5%、最も好ましくは0〜3%である。しかし、MgOの含有量が多いと、液相温度が上昇し、耐失透性が低下しやすくなる。 MgO is a component that lowers the viscosity at high temperature and improves the meltability without lowering the strain point, and is the component that has the effect of reducing the density most among the alkaline earth metal oxides, and its content is 0 -10%, preferably 0-8%, more preferably 0-6%, still more preferably 0-5%, most preferably 0-3%. However, when there is much content of MgO, liquidus temperature will rise and devitrification resistance will fall easily.
CaOは、歪点を低下させずに、高温粘性を下げ、溶融性を顕著に高める成分であるとともに、本発明に係るガラス組成系において、失透を抑制する効果が高く、且つアルカリ土類金属酸化物の中で、その含有量を相対的に増加させると、低密度化を図りやすくなる。CaOの含有量が多いと、熱膨張係数や密度が上昇し過ぎたり、ガラス組成のバランスが損なわれて、逆に耐失透性が低下しやすくなる。よって、CaOの含有量は0〜20%、好ましくは0〜15%、より好ましくは1〜10%である。 CaO is a component that lowers the viscosity at high temperature and significantly increases the meltability without reducing the strain point, and has a high effect of suppressing devitrification in the glass composition system according to the present invention, and is an alkaline earth metal. If the content of the oxide is relatively increased, the density can be easily reduced. When there is much content of CaO, a thermal expansion coefficient and a density will rise too much, the balance of a glass composition will be impaired, and devitrification resistance will fall easily conversely. Therefore, the content of CaO is 0 to 20%, preferably 0 to 15%, more preferably 1 to 10%.
SrO、BaOは、歪点を低下させずに、高温粘性を下げ、溶融性を高める成分であるが、SrO、BaOの含有量が多いと、密度や熱膨張係数が高くなりやすい。SrO含有量は0〜20%、好ましくは0〜15%、より好ましくは0〜10%である。また、BaOの含有量は0〜20%、好ましくは0〜15%である。 SrO and BaO are components that lower the high-temperature viscosity and increase the meltability without lowering the strain point. However, when the content of SrO and BaO is large, the density and the thermal expansion coefficient tend to increase. The SrO content is 0 to 20%, preferably 0 to 15%, more preferably 0 to 10%. Further, the content of BaO is 0 to 20%, preferably 0 to 15%.
上記成分以外にも、他の成分を合量で10%、好ましくは5%までガラス組成中に添加することができる。 In addition to the above components, other components can be added to the glass composition in a total amount of 10%, preferably up to 5%.
ZrO2は、ヤング率を高める成分であり、その含有量は0〜5%、0〜3%、0〜0.5%、特に0〜0.2%が好ましい。ZrO2の含有量が多いと、液相温度が上昇し、ジルコンの失透結晶が析出しやすくなる。 ZrO 2 is a component that increases the Young's modulus, and its content is preferably 0 to 5%, 0 to 3%, 0 to 0.5%, particularly preferably 0 to 0.2%. When the content of ZrO 2 is large, the liquidus temperature rises and zircon devitrification crystals are likely to precipitate.
TiO2は、高温粘性を下げて、溶融性を高める成分であるとともに、ソラリゼーションを抑制する成分であるが、ガラス組成中に多く含有させると、ガラスが着色し、透過率が低下する。よって、TiO2の含有量は0〜5%、0〜3%、0〜1%、特に0〜0.02%が好ましい。 TiO 2 is a component that lowers the high-temperature viscosity and increases the meltability, and is a component that suppresses solarization. However, when it is contained in the glass composition in a large amount, the glass is colored and the transmittance is lowered. Therefore, the content of TiO 2 is preferably 0 to 5%, 0 to 3%, 0 to 1%, particularly preferably 0 to 0.02%.
P2O5は、耐失透性を高める成分であるが、ガラス組成中に多く含有させると、ガラス中に分相、乳白が生じることに加えて、耐水性が著しく低下する。よって、P2O5の含有量は0〜5%、0〜1%、特に0〜0.5%が好ましい。 P 2 O 5 is a component that enhances devitrification resistance. However, when a large amount of P 2 O 5 is contained in the glass composition, the water resistance is significantly lowered in addition to the occurrence of phase separation and milk white in the glass. Therefore, the content of P 2 O 5 is preferably 0 to 5%, 0 to 1%, particularly preferably 0 to 0.5%.
Y2O3、Nb2O5およびLa2O3は、歪点、ヤング率等を高める働きがある。しかし、これらの成分の含有量が5%より多いと、密度が上昇しやすくなる。 Y 2 O 3 , Nb 2 O 5 and La 2 O 3 have a function of increasing the strain point, Young's modulus, and the like. However, if the content of these components is more than 5%, the density tends to increase.
清澄剤として、SnO2、F、Cl、SO3、C、或いはAlやSi等の金属粉末を2%程度まで添加することができる。また、清澄剤として、CeO2等も2%程度まで添加することができる。 As a fining agent, SnO 2 , F, Cl, SO 3 , C, or metal powder such as Al or Si can be added up to about 2%. Further, as a fining agent, CeO 2 or the like may also be added up to about 2%.
F、Cl等のハロゲンは、無アルカリガラスの溶融を促進する効果があり、これらの成分を添加すれば、溶融温度を低温化できるとともに、清澄剤の作用が促進されて、結果として、ガラスの溶融コストを低廉化しつつ、ガラス製造窯の長寿命化を図ることができる。 Halogens such as F and Cl have the effect of accelerating the melting of the alkali-free glass. If these components are added, the melting temperature can be lowered and the action of the fining agent is promoted. The lifetime of the glass production kiln can be extended while reducing the melting cost.
[試料の調製]
無アルカリガラス基板として、好適なガラス組成およびその特性を表1に示す。表中の各試料を次のようにして作製した。まず表中のガラス組成となるように、ガラス原料を調合し、白金ポットを用いて1600℃−24時間溶融した。次に、得られた溶融ガラスをカーボン板の上に流し出し、平板形状に成形した。得られたガラスについて、表中の特性を評価した。
[Preparation of sample]
Table 1 shows preferred glass compositions and their characteristics as alkali-free glass substrates. Each sample in the table was prepared as follows. First, glass raw materials were prepared so as to have the glass composition in the table, and were melted using a platinum pot at 1600 ° C. for 24 hours. Next, the obtained molten glass was poured onto a carbon plate and formed into a flat plate shape. About the obtained glass, the characteristic in a table | surface was evaluated.
密度は、周知のアルキメデス法によって測定した値である。 The density is a value measured by a well-known Archimedes method.
熱膨張係数は、ディラトメーターで測定した値であり、30〜380℃の温度範囲における平均値である。 The thermal expansion coefficient is a value measured with a dilatometer, and is an average value in a temperature range of 30 to 380 ° C.
歪点は、ASTM C336の方法に基づいて測定した値である。 The strain point is a value measured based on the method of ASTM C336.
軟化点は、ASTM C338の方法に基づいて測定した値である。 The softening point is a value measured based on the method of ASTM C338.
高温粘度102.5dPa・sに相当する温度は、白金球引き上げ法で測定した値である。 The temperature corresponding to the high temperature viscosity of 10 2.5 dPa · s is a value measured by a platinum ball pulling method.
ヤング率は、共振法で測定した値である。 The Young's modulus is a value measured by a resonance method.
液相温度は、ガラスを粉砕し、標準篩30メッシュ(篩目開き500μm)を通過し、50メッシュ(篩目開き300μm)に残るガラス粉末を白金ボートに入れ、温度勾配炉中に24時間保持して、結晶の析出する温度を測定した値である。 The liquid phase temperature is obtained by crushing glass, passing through a standard sieve 30 mesh (a sieve opening of 500 μm), putting the glass powder remaining at 50 mesh (a sieve opening of 300 μm) in a platinum boat, and keeping it in a temperature gradient furnace for 24 hours. Then, the temperature at which the crystal is deposited is measured.
液相粘度は、液相温度TLにおけるガラスの粘度を白金球引き上げ法で測定した値である。 The liquid phase viscosity is a value obtained by measuring the viscosity of glass at the liquid phase temperature TL by a platinum ball pulling method.
次に、表1の試料No.3について、実生産の製造設備で溶融し、オーバーフローダウンドロー法で厚さ0.5mmの平板形状に成形し、得られたガラスを400−500mmサイズに切断、洗浄して、LCD用ガラス基板として適切な品位のガラス基板を得た。このガラス基板に種々の化学処理を行い、剥離帯電評価およびはり付き性評価に用いた。 Next, sample Nos. 3 was melted in a production facility of actual production, formed into a 0.5 mm thick flat plate shape by the overflow down draw method, and the obtained glass was cut into 400-500 mm size, washed, and used as a glass substrate for LCD An appropriate quality glass substrate was obtained. This glass substrate was subjected to various chemical treatments and used for peel charge evaluation and stickiness evaluation.
剥離帯電評価およびはり付き性評価の結果を表2に示す。なお、化学処理前のガラス基板(試料No.3−1〜3−7)の表面は両面(第一の表面および第二の表面)とも火造り面であり、平均表面粗さRaは0.15nmであった。 Table 2 shows the results of peel charge evaluation and stickiness evaluation. In addition, the surface of the glass substrate (sample Nos. 3-1 to 3-7) before the chemical treatment is a fire-making surface on both sides (first surface and second surface), and the average surface roughness Ra is 0.00. It was 15 nm.
次に、試料No.3−2〜3−6について、ガラス基板を表中に記載の薬液により化学処理した。化学処理の条件は表中に記載の通りである。つまり、試料No.3−2〜3−4について、ガラス基板を1質量%のHF水溶液(フッ酸)中に浸漬することにより化学処理した。浸漬条件は25℃、15秒(試料No.3−2)、30秒(試料No.3−3)および60秒(試料No.3−4)とした。化学処理後、ガラス基板を純水で洗浄、乾燥して、以下の評価に用いた。また、試料No.3−5、3−6について、ガラス基板を1質量%のHFおよび10質量%のH2SO4を含有する水溶液中に浸漬することにより化学処理した。浸漬条件は25℃、15秒(試料No.3−5)、30秒(試料No.3−6)とした。化学処理後、ガラス基板を純水で洗浄、乾燥して、以下の評価に用いた。さらに、試料No.3−7ついて、ガラス基板を40質量%のNH4F水溶液(フッ化アンモニウム水溶液)中に浸漬することにより化学処理した。浸漬条件は40℃、3分である。化学処理後、ガラス基板を純水で洗浄、乾燥して、以下の評価に用いた。 Next, sample No. About 3-2 to 3-6, the glass substrate was chemically processed with the chemical | medical solution as described in a table | surface. Conditions for chemical treatment are as described in the table. That is, sample no. 3-2 to 3-4 were chemically treated by immersing the glass substrate in a 1% by mass HF aqueous solution (hydrofluoric acid). The immersion conditions were 25 ° C., 15 seconds (Sample No. 3-2), 30 seconds (Sample No. 3-3), and 60 seconds (Sample No. 3-4). After the chemical treatment, the glass substrate was washed with pure water and dried, and used for the following evaluation. Sample No. For 3-5 and 3-6, it was chemically treated by immersing the glass substrate in an aqueous solution containing 1 wt% of HF and 10 wt% H 2 SO 4. The immersion conditions were 25 ° C., 15 seconds (Sample No. 3-5), and 30 seconds (Sample No. 3-6). After the chemical treatment, the glass substrate was washed with pure water and dried, and used for the following evaluation. Furthermore, sample no. Next, the glass substrate was chemically treated by immersing the glass substrate in a 40 mass% NH 4 F aqueous solution (ammonium fluoride aqueous solution). Immersion conditions are 40 ° C. and 3 minutes. After the chemical treatment, the glass substrate was washed with pure water and dried, and used for the following evaluation.
[平均表面粗さRaの測定]
AFM(Veeco社製D3000、カンチレバー:Si)を用いて、10μm角の範囲を測定し、面内の平均表面粗さRaを算出した。具体的には、ガラス基板内の中央部と周辺部(基板端部から50mm内側)の9ヶ所について、表面粗さRaを測定し、その平均値を算出した。
[Measurement of average surface roughness Ra]
A range of 10 μm square was measured using AFM (D3000, manufactured by Veeco, cantilever: Si), and the average surface roughness Ra in the plane was calculated. Specifically, the surface roughness Ra was measured at nine locations in the central portion and the peripheral portion (inside the end of the substrate 50 mm) in the glass substrate, and the average value was calculated.
[剥離帯電評価]
剥離帯電評価には、図1に示すような装置を用いた。この装置は以下の構成を有している。
[Peeling charge evaluation]
For the peeling electrification evaluation, an apparatus as shown in FIG. 1 was used. This apparatus has the following configuration.
ガラス基板Gの支持台1は、ガラス基板4隅を支持するテフロン(登録商標)製のパッド2を備えている。また、支持台1には、昇降自在な金属アルミニウム製のプレート3が設けられており、プレート3を上下させることによって、ガラス基板Gとプレート3を接触、剥離させ、ガラス基板Gを帯電させることができる。なお、プレート3はアースされている。また、プレート3には孔(図示せず)が形成されており、この孔がダイアフラム型の真空ポンプ(図示せず)に接続されている。真空ポンプを駆動させると、プレート3の孔から空気が吸引されて、これによってガラス基板Gをプレート3に真空吸着させることができる。また、ガラス基板Gの上方10mmの位置には表面電位計4が設置され、これによってガラス基板G中央部に発生する帯電量を連続測定することができる。また、ガラス基板Gの上方にはイオナイザ付きエアーガン5が設置されており、これによってガラス基板Gの帯電を除電することができる。なお、この装置のプレートのサイズは350−450mmである。 The support 1 for the glass substrate G includes a pad 2 made of Teflon (registered trademark) that supports the corners of the glass substrate 4. Further, the support base 1 is provided with a plate 3 made of metal aluminum that can be raised and lowered. By moving the plate 3 up and down, the glass substrate G and the plate 3 are brought into contact with and separated from each other, and the glass substrate G is charged. Can do. The plate 3 is grounded. Further, a hole (not shown) is formed in the plate 3, and this hole is connected to a diaphragm type vacuum pump (not shown). When the vacuum pump is driven, air is sucked from the holes of the plate 3, whereby the glass substrate G can be vacuum-adsorbed to the plate 3. Further, a surface potential meter 4 is installed at a position 10 mm above the glass substrate G, whereby the amount of charge generated at the center of the glass substrate G can be continuously measured. Further, an air gun 5 with an ionizer is installed above the glass substrate G, whereby the charge on the glass substrate G can be neutralized. The plate size of this device is 350-450 mm.
この装置を用いて剥離帯電量を測定する方法を説明する。なお、実験は20℃±1℃、湿度40%±1%の環境で行う。この帯電量は雰囲気、特に大気中の湿度の影響を受けて大きく変化するので、特に湿度の管理に留意する必要がある。
(1)ガラス基板の化学処理面(第二の表面)を下側にして支持台1に載置する。
(2)イオナイザ付きエアーガン5により、ガラス基板を10V以下に除電する。
(3)プレートを上昇させてガラス基板に接触させるとともに真空吸着させて、プレートとガラス基板を30秒間密着させる。
(4)プレートを下降させることでガラス基板を剥離し、ガラス基板中央部に発生する帯電量を表面電位計で連続的に測定する。
(5)(3)と(4)を繰り返し、計5回の剥離帯電評価を連続して行う。
(6)各測定における最大帯電量を求め、これらを積算して剥離帯電量とする。
A method of measuring the peel charge amount using this apparatus will be described. The experiment is performed in an environment of 20 ° C. ± 1 ° C. and humidity 40% ± 1%. Since this amount of charge changes greatly under the influence of humidity in the atmosphere, particularly in the atmosphere, it is necessary to pay particular attention to the management of humidity.
(1) Place the glass substrate on the support table 1 with the chemically treated surface (second surface) facing down.
(2) The glass substrate is neutralized to 10 V or less by the air gun 5 with an ionizer.
(3) The plate is raised and brought into contact with the glass substrate and vacuum-adsorbed to bring the plate and the glass substrate into close contact for 30 seconds.
(4) The glass substrate is peeled by lowering the plate, and the charge amount generated at the center of the glass substrate is continuously measured with a surface potentiometer.
(5) Repeat (3) and (4), and continuously perform peeling electrification evaluation 5 times in total.
(6) The maximum charge amount in each measurement is obtained, and these are integrated to obtain the peel charge amount.
[はり付き性評価]
未化学処理のガラス基板(試料No.3−1と同等品)と化学処理後のガラス基板(試料No.3−2〜3−7)について、未化学処理面と化学処理面が向かい合うようにして重ね合わせた後、平坦なプレートの上に載置して10kgの加重を均等にかけ、30分間放置した。また、比較のために、試料No.3−1についても同様の方法で評価を行った。次に、両ガラス基板を引き剥がし、すぐに剥がれたものを「○」、剥がれ難かったものを「△」、ガラス基板の破損なしに剥がすことができなかったものを「×」とした。
[Evaluation of stickiness]
For an unchemically treated glass substrate (equivalent to sample No. 3-1) and a chemically treated glass substrate (sample Nos. 3-2 to 3-7), the unchemically treated surface and the chemically treated surface face each other. After being superposed, they were placed on a flat plate and evenly applied with a weight of 10 kg and left for 30 minutes. For comparison, Sample No. Evaluation for 3-1 was performed in the same manner. Next, both glass substrates were peeled off, and “◯” indicates that the glass substrate was peeled off immediately, “Δ” indicates that it was difficult to peel off, and “X” indicates that the glass substrate could not be peeled without breakage.
[評価結果]
表2から明らかなように、試料No.3−2〜3−7は、ガラス基板の平均表面粗さRaが0.4〜1.0nmであるため、剥離帯電量が低く、はり付き性評価でガラス基板が破損しなかった。一方、試料No.3−1は、剥離帯電量が高く、はり付き性評価でガラス基板が破損した。なお、今回は、表1のNo.3の試料を用いて、各種評価を行ったが、その他の試料(No.1、2、4〜8)でも同様の評価結果が得られると考えられる。
[Evaluation results]
As apparent from Table 2, the sample No. In 3-2 to 3-7, since the average surface roughness Ra of the glass substrate was 0.4 to 1.0 nm, the peel charge amount was low, and the glass substrate was not damaged in the evaluation of stickiness. On the other hand, sample No. No. 3-1, the peel charge amount was high, and the glass substrate was damaged in the evaluation of stickiness. In addition, this time, No. Although various evaluations were performed using the sample No. 3, it is considered that the same evaluation results can be obtained with other samples (Nos. 1, 2, 4 to 8).
Claims (11)
第一の表面の平均表面粗さRaを0.2nm以下とし、
化学処理前のガラス基板の第二の表面を火造り面とし、
第二の表面の平均表面粗さRaが0.3〜1.5nmになるように、
HFを0.1〜5質量%含有する薬液を含浸させたローラー又はパッドを用いて、第二の表面を化学処理することを特徴とするガラス基板の製造方法。 In the method for producing a glass substrate having a first surface and a second surface,
The average surface roughness Ra of the first surface is 0.2 nm or less,
The second surface of the glass substrate before chemical treatment is a fire-making surface,
The average surface roughness Ra of the second surface is 0.3 to 1.5 nm.
A method for producing a glass substrate, wherein the second surface is chemically treated using a roller or pad impregnated with a chemical solution containing 0.1 to 5% by mass of HF.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009131809A JP5780487B2 (en) | 2009-06-01 | 2009-06-01 | Manufacturing method of glass substrate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009131809A JP5780487B2 (en) | 2009-06-01 | 2009-06-01 | Manufacturing method of glass substrate |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010275167A JP2010275167A (en) | 2010-12-09 |
JP5780487B2 true JP5780487B2 (en) | 2015-09-16 |
Family
ID=43422488
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009131809A Expired - Fee Related JP5780487B2 (en) | 2009-06-01 | 2009-06-01 | Manufacturing method of glass substrate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5780487B2 (en) |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012061952A1 (en) * | 2010-11-09 | 2012-05-18 | 彩虹集团公司 | Alkali-free glass for flat panel display and melting process thereof |
JP5687088B2 (en) * | 2011-02-21 | 2015-03-18 | AvanStrate株式会社 | Manufacturing method of glass substrate |
JP5831838B2 (en) * | 2011-03-08 | 2015-12-09 | 日本電気硝子株式会社 | Alkali-free glass |
US8785336B2 (en) | 2011-03-14 | 2014-07-22 | Nippon Electric Glass Co., Ltd. | Alkali-free glass |
TW201245080A (en) * | 2011-03-17 | 2012-11-16 | Asahi Glass Co Ltd | Glass for chemical strengthening |
KR101528396B1 (en) * | 2011-07-01 | 2015-06-11 | 아반스트레이트 가부시키가이샤 | Glass substrate for flat pannel display |
JP5172045B2 (en) * | 2011-07-01 | 2013-03-27 | AvanStrate株式会社 | Glass substrate for flat panel display and manufacturing method thereof |
JP2013170088A (en) * | 2012-02-20 | 2013-09-02 | Asahi Glass Co Ltd | Substrate with antifouling film |
JP2015511015A (en) * | 2012-03-16 | 2015-04-13 | ライフ テクノロジーズ コーポレーション | System and method for containing biological samples |
US9126858B2 (en) | 2012-04-27 | 2015-09-08 | Avanstrate Inc. | Method for making glass substrate for display, glass substrate and display panel |
JP5572195B2 (en) * | 2012-09-28 | 2014-08-13 | AvanStrate株式会社 | Glass substrate and glass substrate manufacturing method |
JP5572196B2 (en) * | 2012-09-28 | 2014-08-13 | AvanStrate株式会社 | Glass substrate and glass substrate manufacturing method |
CN105164079A (en) * | 2013-04-30 | 2015-12-16 | 康宁股份有限公司 | Surface treatments for low electrostatic discharge fusion drawn glass |
JP6263534B2 (en) * | 2013-07-24 | 2018-01-17 | AvanStrate株式会社 | Glass substrate manufacturing method, glass substrate, and display panel |
KR102228820B1 (en) | 2013-12-11 | 2021-03-18 | 에이지씨 가부시키가이샤 | Glass sheet, apparatus for producing glass sheet and method for producing glass sheet |
KR102419729B1 (en) * | 2015-03-10 | 2022-07-12 | 니폰 덴키 가라스 가부시키가이샤 | Semiconductor supporting glass substrate and laminated substrate using same |
JP2017071516A (en) * | 2015-10-05 | 2017-04-13 | AvanStrate株式会社 | Manufacturing method of glass substrate |
JP2018039701A (en) * | 2016-09-08 | 2018-03-15 | 日本電気硝子株式会社 | Glass substrate for micro channel device |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04124046A (en) * | 1990-09-17 | 1992-04-24 | Nissan Motor Co Ltd | Method for water repellent treatment of glass |
JP2005179132A (en) * | 2003-12-22 | 2005-07-07 | Nishiyama Stainless Chem Kk | Glass etchant liquid, glass etching method, glass substrate for flat panel display and flat panel display |
JP4582498B2 (en) * | 2004-03-12 | 2010-11-17 | 日本電気硝子株式会社 | Glass substrate |
JP4548140B2 (en) * | 2005-02-15 | 2010-09-22 | コニカミノルタオプト株式会社 | Glass substrate for magnetic recording media |
JP5066895B2 (en) * | 2006-11-14 | 2012-11-07 | 旭硝子株式会社 | Glass substrate for display and manufacturing method thereof |
-
2009
- 2009-06-01 JP JP2009131809A patent/JP5780487B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2010275167A (en) | 2010-12-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5780487B2 (en) | Manufacturing method of glass substrate | |
JP5679513B2 (en) | Glass substrate and manufacturing method thereof | |
JP6365826B2 (en) | Glass | |
JP6037117B2 (en) | Glass and glass substrate | |
JP2013151407A (en) | Alkali-free glass | |
JP4582498B2 (en) | Glass substrate | |
JP7256473B2 (en) | Glass substrate and manufacturing method thereof | |
JP4378769B2 (en) | Glass substrate | |
US20230154938A1 (en) | Carrier substrate, laminate, and method for manufacturing electronic device | |
JP2000044278A (en) | Glass substrate for display | |
JP2002029776A (en) | Nonalkali glass excellent in crack resistance | |
JP2008013434A (en) | Nonalkali glass excellent in crack resistance | |
JP6770984B2 (en) | Glass and glass substrate | |
JP6323730B2 (en) | Glass and glass substrate | |
JP6955522B2 (en) | Glass and glass substrate | |
JP6709519B2 (en) | Glass and glass substrate | |
JP6354943B2 (en) | Glass | |
JP2009167098A (en) | Glass substrate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120508 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130823 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130902 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130909 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140526 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140606 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150105 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150120 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150622 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5780487 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150705 |
|
LAPS | Cancellation because of no payment of annual fees |