[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2009234904A - Piezoceramic composition, piezoelectric element using the same and non-resonance knock sensor - Google Patents

Piezoceramic composition, piezoelectric element using the same and non-resonance knock sensor Download PDF

Info

Publication number
JP2009234904A
JP2009234904A JP2008317858A JP2008317858A JP2009234904A JP 2009234904 A JP2009234904 A JP 2009234904A JP 2008317858 A JP2008317858 A JP 2008317858A JP 2008317858 A JP2008317858 A JP 2008317858A JP 2009234904 A JP2009234904 A JP 2009234904A
Authority
JP
Japan
Prior art keywords
piezoelectric
piezoelectric element
sensor
ceramic composition
weight member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008317858A
Other languages
Japanese (ja)
Other versions
JP5222120B2 (en
Inventor
Masato Yamazaki
正人 山▲崎▼
Hideaki Hiramitsu
秀明 平光
Manabu Horiguchi
学 堀口
Yukihiro Hamaguchi
幸弘 浜口
Katsuya Yamagiwa
勝也 山際
Takeshi Mitsuoka
健 光岡
Kazue Obayashi
和重 大林
Ryotaro Tawara
良太郎 俵
Tomohiro Hirata
智大 平田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2008317858A priority Critical patent/JP5222120B2/en
Priority to EP09003122.0A priority patent/EP2099082B1/en
Priority to US12/397,956 priority patent/US8040024B2/en
Priority to CN2009101183969A priority patent/CN101525233B/en
Publication of JP2009234904A publication Critical patent/JP2009234904A/en
Application granted granted Critical
Publication of JP5222120B2 publication Critical patent/JP5222120B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a piezoceramic composition with excellent piezoelectric and temperature characteristics, to provide a piezoelectric element using the piezoceramic composition and to provide a non-resonance knock sensor. <P>SOLUTION: The piezoceramic composition has a composition represented by Pb<SB>m</SB>äZr<SB>1-x-y-z</SB>Ti<SB>x</SB>Sn<SB>y</SB>(Sb<SB>1-n</SB>Nb<SB>n</SB>)<SB>z</SB>}O<SB>3</SB>, wherein 1.000≤m≤1.075, 0.470≤x<0.490, 0.020≤y≤0.040, 0<n<1.000 and 0<z≤0.025, and the crystallite size is 30 to 39 nm. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、例えば、圧電効果を利用した圧力センサ、加速度センサ、ノックセンサ、ヨーレートセンサ、ジャイロセンサ、ショックセンサ等の圧電センサ等に使用可能な圧電磁器組成物、それを用いた圧電素子、及び非共振型ノッキングセンサに関する。   The present invention includes, for example, a piezoelectric ceramic composition that can be used for a piezoelectric sensor such as a pressure sensor, an acceleration sensor, a knock sensor, a yaw rate sensor, a gyro sensor, and a shock sensor using a piezoelectric effect, a piezoelectric element using the same, and The present invention relates to a non-resonant knock sensor.

圧電磁器組成物の圧電効果を利用して機械エネルギーを電気エネルギーへ変換する圧電センサは、エレクトロニクスやメカトロニクスの分野で広く応用されている。上記圧電センサは、一般に、圧電セラミックスからなる焼結体(バルク)に少なくとも1対の電極を設けた圧電素子を有しており、この圧電素子を接着部材またはバネなどの圧接部材を介して保持部品で保持し、上記圧電素子からリード端子で電気信号を取り出す構造になっている。又、圧電素子は接着、モールド又はバネ等により圧接されるため、組付け状態において機械的な拘束力(プリセット負荷)が与えられている。
そして、圧電素子が検知すべき応力を受けると電荷又は電圧を発生し、この電荷又は電圧がセンサと接続する回路、又はセンサと一体化された回路に送られることにより、応力を電圧信号に変換することができる。
Piezoelectric sensors that convert mechanical energy into electrical energy using the piezoelectric effect of piezoelectric ceramic compositions are widely applied in the fields of electronics and mechatronics. The piezoelectric sensor generally has a piezoelectric element in which at least one pair of electrodes is provided on a sintered body (bulk) made of piezoelectric ceramic, and the piezoelectric element is held via a pressure contact member such as an adhesive member or a spring. The structure is such that it is held by a component and an electric signal is taken out from the piezoelectric element by a lead terminal. Further, since the piezoelectric element is pressed by adhesion, a mold, a spring or the like, a mechanical restraining force (preset load) is applied in the assembled state.
When the piezoelectric element receives stress to be detected, it generates a charge or voltage, and the charge or voltage is sent to a circuit connected to the sensor or a circuit integrated with the sensor, thereby converting the stress into a voltage signal. can do.

圧電センサは、使用環境の温度が変化すると、圧電セラミックスの圧電特性等が変化するため、圧電センサの感度(出力電圧)が変動する。又、使用環境の温度変化や、駆動による温度上昇により圧電センサの温度が変化すると、圧電セラミックスと、これに接する電極や保持部材等との間の熱膨張差に起因して熱応力が発生し、圧電センサにノイズを発生させ、感度のばらつきが生ずるという問題があった。また、圧電センサの温度が変化すると、焦電効果により圧電センサに電圧が発生し、圧電センサにノイズを発生させ、感度のばらつきが生ずるという問題があった。さらに、圧電素子にかかる加重により、圧電特性が低下し、圧電センサの出力の低下を招くという問題もあった。   In the piezoelectric sensor, when the temperature of the usage environment changes, the piezoelectric characteristics and the like of the piezoelectric ceramic change, so the sensitivity (output voltage) of the piezoelectric sensor changes. Also, if the temperature of the piezoelectric sensor changes due to temperature changes in the operating environment or temperature rise due to driving, thermal stress is generated due to the difference in thermal expansion between the piezoelectric ceramics and the electrodes and holding members that are in contact with them. There has been a problem that noise is generated in the piezoelectric sensor, resulting in variations in sensitivity. Further, when the temperature of the piezoelectric sensor changes, a voltage is generated in the piezoelectric sensor due to the pyroelectric effect, noise is generated in the piezoelectric sensor, and there is a problem that sensitivity variation occurs. Further, there is a problem that the piezoelectric characteristics are lowered due to the weight applied to the piezoelectric element, and the output of the piezoelectric sensor is lowered.

このようなことから圧電センサの使用温度範囲は、通常、−40℃〜170℃程度とされているが、圧電センサは自動車部品等の過酷な用途に用いられるため、より広い温度範囲で温度特性のバラツキがない圧電素子が望まれている。
そこで、PZT(チタン酸ジルコン酸鉛)にSnを添加して熱的安定性を向上させ、さらにNb及びSbを添加してソフト化(結晶ひずみを大きくして圧電特性を向上させること)と低温焼結を可能とした圧電磁器組成物が開示されている(特許文献1〜3)。
For this reason, the operating temperature range of the piezoelectric sensor is usually about -40 ° C to 170 ° C. However, since the piezoelectric sensor is used for severe applications such as automobile parts, the temperature characteristics in a wider temperature range. There is a demand for a piezoelectric element that does not vary.
Therefore, Sn is added to PZT (lead zirconate titanate) to improve the thermal stability, and Nb and Sb are added to soften it (to increase the crystal distortion and improve the piezoelectric characteristics) and to lower the temperature. Piezoelectric ceramic compositions that enable sintering are disclosed (Patent Documents 1 to 3).

特許第2789374号公報Japanese Patent No. 2789374 特許第2964265号公報Japanese Patent No. 2964265 特許第2957002号公報Japanese Patent No. 2957002

しかしながら、従来の技術の場合、圧電特性や温度特性の改善の点で不充分である。例えば、圧電特性(感度)の指標である圧電定数d33が340以上であるものが要求されているが、このような高い圧電定数を有する組成物は報告されていない。又、自動車エンジン部付近に使用される圧力センサでは最高温度が170℃程度に達する場合もあり、耐熱性の指標であるキュリー温度が340℃以上であることが望ましいがこのような高いキュリー温度が得られる組成物は報告されていない。
すなわち、本発明は、圧電特性及び温度特性に優れた圧電磁器組成物、それを用いた圧電素子、及び非共振型ノッキングセンサの提供を目的とする。
However, the prior art is insufficient in terms of improving the piezoelectric characteristics and temperature characteristics. For example, a piezoelectric constant d33 that is an indicator of piezoelectric characteristics (sensitivity) is required to be 340 or more, but no composition having such a high piezoelectric constant has been reported. Further, the maximum temperature of the pressure sensor used in the vicinity of the automobile engine part may reach about 170 ° C., and it is desirable that the Curie temperature which is an index of heat resistance is 340 ° C. or higher, but such a high Curie temperature is high. The resulting composition has not been reported.
That is, an object of the present invention is to provide a piezoelectric ceramic composition excellent in piezoelectric characteristics and temperature characteristics, a piezoelectric element using the same, and a non-resonant knock sensor.

本発明者らはPb-Zr-Ti-Sn-Sb-Nb系酸化物の組成、及びその結晶状態等を制御することにより、耐熱性が高く、高い圧電特性を有する圧電磁器組成物を見出した。
すなわち、本発明の圧電磁器組成物は、Pbm { Zr1-x-y-zTixSny(Sb1-nNbnz } O3(式中、1.000≦m≦1.075、0.470≦x<0.490、0.020≦y≦0.040、0<n<1.000、0<z≦0.025を満たす)で表され、結晶子径が30〜39nmである。
The present inventors have found a piezoelectric ceramic composition having high heat resistance and high piezoelectric characteristics by controlling the composition of the Pb-Zr-Ti-Sn-Sb-Nb-based oxide and its crystal state. .
That is, the piezoelectric ceramic composition of the present invention comprises Pb m {Zr 1-xyz Ti x Sn y (Sb 1-n Nb n ) z } O 3 (wherein 1.000 ≦ m ≦ 1.075, 0.470 ≦ x <0.490, 0.020 ≦ y ≦ 0.040, 0 <n <1.000, 0 <z ≦ 0.025), and the crystallite diameter is 30 to 39 nm.

又、本発明の圧電磁器組成物は、Pbm { Zr1-x-y-zTixSny(Sb1-nNbnz } O3(式中、1.000≦m≦1.075、0.470≦x<0.490、0.020≦y≦0.040、0<n<1.000、0<z≦0.025を満たす)で表され、圧電定数d33が340pC/N以上である。 In addition, the piezoelectric ceramic composition of the present invention has Pb m {Zr 1-xyz Ti x Sn y (Sb 1-n Nb n ) z } O 3 (wherein 1.000 ≦ m ≦ 1.075, 0.470 ≦ x <0.490, 0.020 ≦ y ≦ 0.040, 0 <n <1.000, 0 <z ≦ 0.025 is satisfied), and the piezoelectric constant d33 is 340 pC / N or more.

又、本発明の圧電素子は、前記圧電磁器組成物を用いたものである。
本発明の非共振型ノッキングセンサは、前記圧電磁器組成物および素子電極からなる圧電素子と、前記圧電素子を支持する支持本体部を有する支持部材と、前記圧電素子上に配置され、該圧電素子を前記支持本体部に向けて押圧する錘部材とを備え、前記素子電極の少なくとも一部は、前記錘部材と前記圧電素子とを当該圧電素子の厚み方向に沿って投影したときに、前記錘部材の前記圧電素子側を向く底面に向かい合っており、前記錘部材の前記底面の面積に対し、前記素子電極の当該底面に向かい合う表面の面積の割合が45%以上である。
The piezoelectric element of the present invention uses the piezoelectric ceramic composition.
The non-resonant type knocking sensor of the present invention is disposed on the piezoelectric element, the piezoelectric element comprising the piezoelectric ceramic composition and the element electrode, a support member having a support main body for supporting the piezoelectric element, and the piezoelectric element. A weight member that presses the weight toward the support main body, and at least part of the element electrode is formed by projecting the weight member and the piezoelectric element along the thickness direction of the piezoelectric element. The member faces the bottom surface facing the piezoelectric element side, and the ratio of the surface area of the element electrode facing the bottom surface to the bottom surface area of the weight member is 45% or more.

この発明によれば、圧電特性及び温度特性に優れた圧電磁器組成物、それを用いた圧電素子、及び非共振型ノッキングセンサが得られる。   According to the present invention, a piezoelectric ceramic composition excellent in piezoelectric characteristics and temperature characteristics, a piezoelectric element using the same, and a non-resonant knock sensor can be obtained.

以下、本発明の実施形態について説明する。
本発明の圧電磁器組成物は、PbTiO3-PbZrO3系(PZT(チタン酸ジルコン酸鉛))を基本組成としている。PbTiO3は正方晶系に属する強誘電体であり、結晶構造内のTiをZrで置換固溶すると、Zr固溶量が約53mol%で菱面体晶相へ変化する。このように組成により結晶系が変わる相境界をモルフォトロピック相境界(Morphotoropic Phase Boundary, MPB)と呼び、この近傍で圧電性が極大を示すことが知られている。一方、モルフォトロピック相境界の近傍では結晶の安定性が低下し、静電容量Cpの温度に対する変動が大きくなる。
そこで、本発明の圧電磁器組成物は、モルフォトロピック相境界領域から組成をずらし、さらに、Sn, Sb, Nbを含有(添加)した置換効果により、圧電性と静電容量Cpの温度に対する安定性を両立すべく、Pbm { Zr1-x-y-zTixSny(Sb1-nNbnz } O3(式中、1.000≦m≦1.075、0.470≦x<0.490、0.020≦y≦0.040、0<n<1.000、0<z≦0.025を満たす)で表される組成とする。
Hereinafter, embodiments of the present invention will be described.
The piezoelectric ceramic composition of the present invention is based on a PbTiO 3 -PbZrO 3 system (PZT (lead zirconate titanate)). PbTiO 3 is a ferroelectric substance belonging to the tetragonal system, and when Ti in the crystal structure is substituted with Zr, the amount of Zr solid solution is about 53 mol% and changes to a rhombohedral phase. Such a phase boundary in which the crystal system changes depending on the composition is called a morphotropic phase boundary (MPB), and it is known that the piezoelectricity shows a maximum in this vicinity. On the other hand, in the vicinity of the morphotropic phase boundary, the stability of the crystal decreases, and the variation of the capacitance Cp with respect to temperature increases.
Therefore, the piezoelectric ceramic composition of the present invention shifts the composition from the morphotropic phase boundary region, and further has a substitution effect including (added) Sn, Sb, and Nb, so that the piezoelectricity and the capacitance Cp are stable with respect to temperature. Pb m {Zr 1-xyz Ti x Sn y (Sb 1-n Nb n ) z } O 3 (where 1.000 ≦ m ≦ 1.075, 0.470 ≦ x <0.490, 0.020 ≦ y ≦ 0.040, 0 <n <1.000, 0 <z ≦ 0.025).

圧電磁器組成物の組成を上記範囲とすることにより、圧電定数d33を340 pC/N以上とすることができる。圧電定数d33[pC/N]は、圧電現象の正効果(圧力→電気)で応力を加え発生する電荷量で表される。圧電定数d33が大きいほど、負荷により発生する電荷量が大きく(センサ出力が大きく)なる。   By setting the composition of the piezoelectric ceramic composition within the above range, the piezoelectric constant d33 can be set to 340 pC / N or more. The piezoelectric constant d33 [pC / N] is represented by the amount of charge generated by applying stress due to the positive effect of piezoelectricity (pressure → electricity). The larger the piezoelectric constant d33, the larger the amount of charge generated by the load (the sensor output becomes larger).

m<1の場合、PZTの組成からずれ、圧電定数d33が小さくなる。m>1.075の場合、図1に示すように圧電磁器組成物内部にPbOが生成し、圧電定数d33が小さくなる。
x<0.470の場合、Ti含有量が少ないためにΔCp>2500ppm/Kとなるおそれがある。0.490≦xの場合、圧電定数d33が小さくなりがちで、熱に対するd33劣化率が大きくなる。
y<0.020の場合、Sn含有量が少ないためにキュリー温度Tcが低下することがある。
n=0の場合、Nbを含まないために結晶の安定性が低下する。n=1.000の場合、Sbを含まないために結晶の安定性が低下する。
z=0の場合、NbとSbの両方を含まないために、焼結温度が高くなり、後述する結晶子径を所定範囲に規定することができない。又、熱に対するd33劣化率も低下する。0.025≦zの場合、NbとSbの含有量が多くなり過ぎ、ΔCp>2500ppm/Kとなったり、キュリー温度Tcが低下したりすることがある。
When m <1, it deviates from the composition of PZT and the piezoelectric constant d33 becomes small. When m> 1.075, as shown in FIG. 1, PbO is generated inside the piezoelectric ceramic composition, and the piezoelectric constant d33 becomes small.
In the case of x <0.470, there is a possibility that ΔCp> 2500 ppm / K due to low Ti content. When 0.490 ≦ x, the piezoelectric constant d33 tends to decrease, and the d33 deterioration rate with respect to heat increases.
In the case of y <0.020, the Curie temperature Tc may decrease due to the small Sn content.
When n = 0, the stability of the crystal is lowered because Nb is not included. In the case of n = 1.000, the stability of the crystal is lowered because Sb is not included.
When z = 0, since both Nb and Sb are not included, the sintering temperature becomes high, and the crystallite diameter described later cannot be defined within a predetermined range. Moreover, the d33 deterioration rate with respect to heat also falls. In the case of 0.025 ≦ z, the contents of Nb and Sb are excessively increased, and ΔCp> 2500 ppm / K, or the Curie temperature Tc may be lowered.

本発明の圧電磁器組成物は、結晶子径が30〜39nmである。
結晶子径とは、単結晶とみなせる最大の領域をいい、結晶の完全性の指標となる。通常の物質は複数の結晶子から構成されている。
結晶子径が30nm未満であると結晶が同じ向きに揃うドメイン(領域)が小さくなり、圧電特性が向上しにくくなる。理論的には、焼成温度を高くすることで結晶子径が大きくすることができ、圧電特性は向上するが、実際には組成物中の揮発元素(Pb、Sn、Sb)が蒸発して組成が崩れ、かえって圧電特性が低下する。そのため、結晶子径が39nmを超えると圧電特性が低下する。
一方、組成物の結晶粒径は、必ずしも上記したドメインの大きさを反映するものではなく、組成物の結晶粒径を規定しても圧電特性を向上させることは難しい。但し、結晶粒径が大き過ぎると、粒間の隙間が大きくなり、負荷により発生する電荷量(センサ出力)が低下する傾向にある。
このようなことから、本発明においては、結晶粒径で制御するのでなく、実験的に結晶子径を30〜39nmと定めた。
The piezoelectric ceramic composition of the present invention has a crystallite diameter of 30 to 39 nm.
The crystallite diameter is the maximum region that can be regarded as a single crystal and is an index of crystal perfection. A normal substance is composed of a plurality of crystallites.
When the crystallite diameter is less than 30 nm, domains (regions) in which crystals are aligned in the same direction are reduced, and it is difficult to improve piezoelectric characteristics. Theoretically, by increasing the firing temperature, the crystallite diameter can be increased and the piezoelectric characteristics are improved, but in reality the volatile elements (Pb, Sn, Sb) in the composition are evaporated and the composition is increased. Collapses, and on the contrary, the piezoelectric characteristics deteriorate. For this reason, when the crystallite diameter exceeds 39 nm, the piezoelectric characteristics deteriorate.
On the other hand, the crystal grain size of the composition does not necessarily reflect the size of the domain, and it is difficult to improve the piezoelectric characteristics even if the crystal grain size of the composition is defined. However, if the crystal grain size is too large, the gap between grains tends to increase, and the amount of charge (sensor output) generated by the load tends to decrease.
For this reason, in the present invention, the crystallite size was experimentally determined to be 30 to 39 nm, not controlled by the crystal grain size.

結晶子径は、焼成温度、仮焼条件、原料の粉砕径等を変えることによって制御することができる。
結晶子径の測定は、試料のXRD(X線回折)を行い、入射X線の拡がりを表す半値幅(又は積分幅を)Scherrerの式に代入して求めることができる。Scherrerの式によれば、D=Kλ/(βcosθ)で表される(D:結晶子径、K:Scherrer定数、λ:X線波長、β:反射X線の半値半幅、θ:回折角)。
The crystallite diameter can be controlled by changing the firing temperature, calcination conditions, the pulverized diameter of the raw material, and the like.
The crystallite diameter can be measured by performing XRD (X-ray diffraction) on the sample and substituting the half-value width (or integral width) representing the spread of incident X-rays into Scherrer's equation. According to Scherrer's equation, D = Kλ / (βcosθ) (D: crystallite diameter, K: Scherrer constant, λ: X-ray wavelength, β: half-width of reflected X-ray, θ: diffraction angle) .

本発明の圧電磁器組成物において、キュリー温度(Tc)が340℃以上であることが好ましい。Tcが高いほど、耐熱性に優れ、自動車エンジン部等の高温環境用途に適する。
また、本発明の圧電磁器組成物は、20℃〜150℃での静電容量変化率(ΔCp)が2500ppm/K以下であることが好ましい。ΔCpが小さいほど静電容量の温度変化が少なく、センサ感度のばらつきが低減される。
さらに、本発明の圧電磁器組成物は、250℃で10時間の耐熱試験後の圧電定数d33の劣化率が-10%以内であることが好ましい。d33劣化率が小さいほど、耐熱性に優れる。d33劣化率は、{(耐熱試験後の圧電定数d33)-(初期の圧電定数d33)}/(初期の圧電定数d33)で表される。
In the piezoelectric ceramic composition of the present invention, the Curie temperature (Tc) is preferably 340 ° C. or higher. The higher the Tc, the better the heat resistance, and it is suitable for high temperature environment applications such as automobile engine parts.
The piezoelectric ceramic composition of the present invention preferably has a capacitance change rate (ΔCp) at 20 ° C. to 150 ° C. of 2500 ppm / K or less. As ΔCp is smaller, the temperature change of the capacitance is smaller and variation in sensor sensitivity is reduced.
Furthermore, in the piezoelectric ceramic composition of the present invention, it is preferable that the deterioration rate of the piezoelectric constant d33 after a heat resistance test at 250 ° C. for 10 hours is within −10%. The smaller the d33 deterioration rate, the better the heat resistance. The d33 deterioration rate is represented by {(piezoelectric constant d33 after heat test) − (initial piezoelectric constant d33)} / (initial piezoelectric constant d33).

本発明の圧電磁器組成物は、安定性、耐熱性および耐久性に優れ、例えば、感圧センサ、レゾネーター、圧電振動子、アクチュエータ、燃焼圧センサ、ノッキングセンサ、超音波モータ、圧電ジャイロセンサ、指紋認証用デバイス等の圧電素子に好適に用いることができる。
なお、本発明の圧電素子は、圧電磁器組成物に少なくとも正負の極性を有する1対の電極を設けたものである。
The piezoelectric ceramic composition of the present invention is excellent in stability, heat resistance and durability. For example, a pressure sensor, a resonator, a piezoelectric vibrator, an actuator, a combustion pressure sensor, a knocking sensor, an ultrasonic motor, a piezoelectric gyro sensor, and a fingerprint. It can be suitably used for a piezoelectric element such as an authentication device.
The piezoelectric element of the present invention is a piezoelectric ceramic composition provided with a pair of electrodes having at least positive and negative polarities.

本発明の圧電磁器組成物は、例えば以下のようにして製造することができる。まず、酸化物、炭酸塩又は炭酸水素塩等からなる原料粉末を上記組成式になるように配合し、エタノール、水等の分散媒に添加した後、ボールミル等により湿式混合、粉砕を行い泥漿とする。得られた泥漿を、乾燥させ原料混合粉末とする。
次に、例えば大気雰囲気中、600℃〜1100℃、10分〜300分の間で原料混合粉末を仮焼し、仮焼物粉末とする。さらに、仮焼物粉末に対し、例えばポリビニルアルコール、ポリビニルブチラール等の有機バインダ、水溶性バインダ、及びアルコール類、エーテル類、水等の分散媒を加え、ボールミル等により湿式粉砕を行い泥漿とする。得られた泥漿を乾燥させて造粒粉末とする。
さらに、この造粒粉末を所定の形状に成形して、成形体とする。成形体の形状は特に制限されず、必要に応じてリング状、円板状等の形状を適宜選択することができる。また、成形は例えば30MPa程度で一軸成形した後、150MPa程度で冷間等方静水圧プレス(CIP)処理することが好ましい。このようにして得られた成形体は、例えば900℃〜1250℃、1時間〜10時間の範囲で焼成して焼結体とする。
The piezoelectric ceramic composition of the present invention can be produced, for example, as follows. First, a raw material powder made of oxide, carbonate or hydrogencarbonate is blended so as to have the above composition formula, added to a dispersion medium such as ethanol, water, etc., and then wet-mixed and pulverized by a ball mill or the like. To do. The obtained slurry is dried to obtain a raw material mixed powder.
Next, for example, the raw material mixed powder is calcined at 600 ° C. to 1100 ° C. for 10 minutes to 300 minutes in an air atmosphere to obtain a calcined powder. Further, for example, an organic binder such as polyvinyl alcohol and polyvinyl butyral, a water-soluble binder, and a dispersion medium such as alcohols, ethers, and water are added to the calcined powder, and wet milling is performed by a ball mill or the like to obtain a slurry. The obtained slurry is dried to obtain a granulated powder.
Further, the granulated powder is molded into a predetermined shape to obtain a molded body. The shape of the molded body is not particularly limited, and a ring shape, a disk shape, or the like can be appropriately selected as necessary. In addition, for example, it is preferable to perform uniaxial molding at about 30 MPa and then cold isostatic press (CIP) treatment at about 150 MPa. The molded body thus obtained is fired, for example, in the range of 900 ° C. to 1250 ° C. for 1 hour to 10 hours to obtain a sintered body.

次に、得られた焼結体の対向する2面に素子電極を形成する。焼結体が例えば円板状であれば、その両面を平面研磨し、電極形成面とすればよい。又、素子電極は、素子電極形成面に導電性ペーストをスクリーン印刷等により塗布し、適宜焼き付けて形成することができる。
導電性ペーストとしては、例えば導電成分、ガラスフリットおよび有機媒体からなるものが挙げられる。導電成分としては、例えば銀、金、パラジウム又は白金等の貴金属からなる貴金属粉末、これらの貴金属の合金からなる合金粉末、または、これらの貴金属粉末の2種以上からなる混合粉末等を用いることができる。また、このような貴金属以外にも、銅、ニッケル等の金属からなる粉末、合金粉末、混合粉末等も用いることができる。ガラスフリットとしては、例えばSiO、Al、ZnOおよびTiOを含むものが使用できる。また、有機媒体としては、アルコール類、エーテル類等のこの種のペーストに用いられるものを使用することができる。
Next, element electrodes are formed on two opposing surfaces of the obtained sintered body. If the sintered body is, for example, a disk shape, both surfaces of the sintered body may be polished to form electrode forming surfaces. The element electrode can be formed by applying a conductive paste to the element electrode formation surface by screen printing or the like and baking it appropriately.
Examples of the conductive paste include those made of a conductive component, glass frit, and an organic medium. As the conductive component, for example, a noble metal powder composed of a noble metal such as silver, gold, palladium or platinum, an alloy powder composed of an alloy of these noble metals, or a mixed powder composed of two or more of these noble metal powders may be used. it can. In addition to such noble metals, powders made of metals such as copper and nickel, alloy powders, mixed powders, and the like can also be used. As the glass frit, for example, one containing SiO 2 , Al 2 O 3 , ZnO and TiO 2 can be used. Moreover, what is used for this kind of pastes, such as alcohol and ethers, can be used as an organic medium.

このようにして素子電極が形成された焼結体に、例えば室温〜200℃程度のシリコーンオイル等の絶縁オイル中で、3kV/mm〜20kV/mm程度の直流電圧を10分間〜100分間程度印加して分極処理を行い圧電磁器組成物とする。分極処理は、シリコーンオイル中でなく、過熱した素子に空中で高電圧を印加する方法でも良い。このようにして素子電極が形成された圧電磁器組成物は、素子電極が形成されたままの状態で用いてもよいし、表面に形成された素子電極を除去して用いてもよい。
このようにして分極処理され、所定の形状になった圧電磁器組成物は、圧電素子として利用できる。
A DC voltage of about 3 kV / mm to 20 kV / mm is applied for about 10 to 100 minutes in an insulating oil such as a silicone oil of about room temperature to about 200 ° C., for example, to the sintered body on which the element electrode is formed. Then, a polarization treatment is performed to obtain a piezoelectric ceramic composition. The polarization treatment may be performed by applying a high voltage in the air to the overheated element instead of in silicone oil. Thus, the piezoelectric ceramic composition in which the element electrode is formed may be used in a state in which the element electrode is formed, or may be used after removing the element electrode formed on the surface.
The piezoelectric ceramic composition which has been polarized in this way and has a predetermined shape can be used as a piezoelectric element.

上記した圧電素子を用いて非共振型ノッキングセンサを構成することができる。
図5は、本発明の実施形態に係る非共振型ノッキングセンサ10の断面図である。図5において、ノッキングセンサ10は、内燃機関のシリンダブロック等へ取付けるための取付孔12fを中心部に有する、いわゆるセンターホール式非共振型のノッキングセンサである。ノッキングセンサ10は、センサ本体20を樹脂成形体11によって被覆して構成され、全体として短寸の円筒状に形成され、円筒の外周からコネクタ部11bが径方向外側に突出している。
センサ本体20は、圧電素子15と、圧電素子15を支持する支持本体部12bを有する支持部材(主体金具)12と、圧電素子15上に配置され、圧電素子を支持本体部12bに向けて押圧する錘部材17とを備えている。
又、コネクタ部11bの内側には、下部電極14及び上部電極16からそれぞれ延びる第1端子14a、第2端子16aが突出し(図5では第1端子14aのみ図示)、図示しない外部コネクタと接続されるようになっている。
A non-resonant type knocking sensor can be configured using the piezoelectric element described above.
FIG. 5 is a cross-sectional view of the non-resonant knock sensor 10 according to the embodiment of the present invention. In FIG. 5, a knocking sensor 10 is a so-called center hole type non-resonant knocking sensor having a mounting hole 12f for mounting on a cylinder block or the like of an internal combustion engine at the center. The knocking sensor 10 is configured by covering a sensor main body 20 with a resin molded body 11, and is formed into a short cylindrical shape as a whole, and a connector portion 11b protrudes radially outward from the outer periphery of the cylinder.
The sensor body 20 is disposed on the piezoelectric element 15, the support member (metal shell) 12 having the support body portion 12 b that supports the piezoelectric element 15, and presses the piezoelectric element toward the support body portion 12 b. The weight member 17 is provided.
Further, a first terminal 14a and a second terminal 16a extending from the lower electrode 14 and the upper electrode 16 respectively project from the inner side of the connector portion 11b (only the first terminal 14a is shown in FIG. 5) and are connected to an external connector (not shown). It has become so.

そして、図6の分解斜視図に示すように、支持部材12は、筒状部12aと、筒状部12aの下端に鍔状に形成される支持本体部12bとを有し、さらに筒状部12aの上部外周面には雄ネジ部12xが形成されている。そして、筒状部12aの外周には、支持本体部12b側から順に、それぞれ円環状の第1絶縁板13、下部電極14、圧電素子15、上部電極16、第2絶縁板13t、錘部材17、及び皿バネ18が嵌め込まれ、第1絶縁板13が支持本体部12b上に載置されている。
さらに、内面に雌ネジ部19yが形成されているナット19を雄ネジ部12xに螺合することにより、第1絶縁板13から皿バネ18に至る積層体が支持本体部12bとナット19との間に挟まれて固定され、センサ本体20を構成している。又、これにより、錘部材17が圧電素子15を支持本体部12bに向けて押圧するようになっている。
As shown in the exploded perspective view of FIG. 6, the support member 12 has a cylindrical portion 12a and a support main body portion 12b formed in a bowl shape at the lower end of the cylindrical portion 12a. A male screw portion 12x is formed on the upper outer peripheral surface of 12a. And on the outer periphery of the cylindrical part 12a, the annular first insulating plate 13, the lower electrode 14, the piezoelectric element 15, the upper electrode 16, the second insulating plate 13t, and the weight member 17 are sequentially arranged from the support main body part 12b side. And the disc spring 18 is engage | inserted and the 1st insulating board 13 is mounted on the support main-body part 12b.
Further, by screwing a nut 19 having an internal thread portion 19 y formed on the inner surface thereof to the external thread portion 12 x, the laminated body extending from the first insulating plate 13 to the disc spring 18 is formed between the support main body portion 12 b and the nut 19. The sensor body 20 is configured by being sandwiched and fixed therebetween. Thereby, the weight member 17 presses the piezoelectric element 15 toward the support main body 12b.

なお、筒状部12aの外周面には円筒状の絶縁スリーブ13sが嵌められ、下部電極14、圧電素子15及び上部電極16が筒状部12aに電気的に接触するのを防止している。又、下部電極14及び上部電極16の径方向外側には、それぞれ電圧を取り出すための第1、第2端子14a、16aが片状に延びている。   A cylindrical insulating sleeve 13s is fitted on the outer peripheral surface of the cylindrical portion 12a to prevent the lower electrode 14, the piezoelectric element 15 and the upper electrode 16 from being in electrical contact with the cylindrical portion 12a. In addition, first and second terminals 14a and 16a for taking out voltages extend in the form of pieces on the radially outer sides of the lower electrode 14 and the upper electrode 16, respectively.

この非共振型ノッキングセンサ10においては、圧電素子15を構成する素子電極15aの少なくとも一部(本実施形態では全部)が、錘部材17と圧電素子15とを当該圧電素子15の厚み方向に沿って投影したときに、錘部材17の圧電素子15側を向く底面SAに向かい合っている。そして、錘部材17の底面SAの面積S1に対し、素子電極15aの表面SBの面積S2の割合が45%以上であることが特徴となっている。なお、表面SBは、底面SAに向かい合っている。
ここで、面積S1より面積S2を小さくすることができれば、圧電素子15を構成する素子電極15aの電極材の使用量、さらにはその素子電極15aと対をなす素子電極15bの電極材の使用量を少なくして、非共振型ノッキングセンサ10のコストダウンを図ることができる。又、面積S1に対する面積S2の割合を変える自由度が高くなるので、圧電素子15の静電容量が最適な値になるように調整することができる。しかしながら、面積S1より面積S2を小さくし過ぎると、ノッキングセンサの出力が小さくなり感度が低下するおそれがあるので、面積S1に対する面積S2の割合を45%以上に規定する。
In the non-resonant type knocking sensor 10, at least a part (all in this embodiment) of the element electrodes 15 a constituting the piezoelectric element 15 causes the weight member 17 and the piezoelectric element 15 to extend along the thickness direction of the piezoelectric element 15. Are projected to the bottom surface SA of the weight member 17 facing the piezoelectric element 15 side. The ratio of the area S2 of the surface SB of the element electrode 15a to the area S1 of the bottom surface SA of the weight member 17 is 45% or more. The surface SB faces the bottom surface SA.
Here, if the area S2 can be made smaller than the area S1, the usage amount of the electrode material of the element electrode 15a constituting the piezoelectric element 15, and further the usage amount of the electrode material of the element electrode 15b paired with the element electrode 15a. The cost of the non-resonant knock sensor 10 can be reduced. Further, since the degree of freedom of changing the ratio of the area S2 to the area S1 is increased, the capacitance of the piezoelectric element 15 can be adjusted to an optimum value. However, if the area S2 is made smaller than the area S1, the output of the knocking sensor is reduced and the sensitivity may be lowered. Therefore, the ratio of the area S2 to the area S1 is specified to be 45% or more.

図7は、圧電素子15と錘部材17の近傍を示す部分断面図である。なお、図7において、理解をし易くするため、圧電素子15と錘部材17以外の構成部分の図示を適宜省略している。
本実施形態においては、圧電素子15側を向く錘部材17の底面SAの端が面取りされ、面取り部17fを形成している。このため、錘部材17の底面SAのうち上記した面取り部17fを除く圧電素子15に面するフラットな面を底面SAとし、面積S1を算出する。
同様に、本実施形態においては、錘部材側の圧電素子15(詳細には、圧電磁器組成物としての焼結体)の上面(即ち、錘部材17の底面SAに向かい合う面)の端が面取りされ、面取り部15fを形成している。そして、この面取り部を除く圧電磁器組成物としての焼結体の上面に素子電極15aが形成されている。そして、素子電極15aのうちで錘部材17の底面SAに向かい合う表面SBの面積を、素子電極15aの上記の面積S2として算出する。
FIG. 7 is a partial cross-sectional view showing the vicinity of the piezoelectric element 15 and the weight member 17. In FIG. 7, the components other than the piezoelectric element 15 and the weight member 17 are appropriately omitted for easy understanding.
In the present embodiment, the end of the bottom surface SA of the weight member 17 facing the piezoelectric element 15 is chamfered to form a chamfered portion 17f. Therefore, the flat surface facing the piezoelectric element 15 excluding the chamfered portion 17f described above among the bottom surface SA of the weight member 17 is defined as the bottom surface SA, and the area S1 is calculated.
Similarly, in this embodiment, the end of the upper surface (that is, the surface facing the bottom surface SA of the weight member 17) of the piezoelectric element 15 on the weight member side (specifically, the sintered body as the piezoelectric ceramic composition) is chamfered. Thus, a chamfered portion 15f is formed. And the element electrode 15a is formed in the upper surface of the sintered compact as a piezoelectric ceramic composition except this chamfer part. Then, the area of the surface SB facing the bottom surface SA of the weight member 17 in the element electrode 15a is calculated as the area S2 of the element electrode 15a.

本発明は上記した実施形態に限定されず、本発明の思想と範囲に含まれる様々な変形及び均等物に及ぶことはいうまでもない。   It goes without saying that the present invention is not limited to the above-described embodiments, and extends to various modifications and equivalents included in the spirit and scope of the present invention.

以下、実施例を挙げて、本発明を具体的に説明するが、本発明は勿論これらの例に限定されるものではない。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated concretely, this invention is not limited to these examples of course.

それぞれ酸化鉛、酸化ジルコニウム、酸化チタン、酸化錫、酸化アンチモン、酸化ニオブの各原料粉末を準備し、焼結後の組成が表2の各発明例1〜9、比較例1〜15に示す割合となるように秤量し、混合粉末をエタノールに添加した後、ボールミルにより湿式混合、粉砕を行い、乾燥させて原料混合粉末を得た。
原料混合粉末を、大気雰囲気中、800℃、2〜3時間仮焼し、仮焼粉砕粒度約0.6〜1μmの仮焼物粉末とした。仮焼物粉末に有機バインダ、水溶性バインダおよびアルコール類を加え、ボールミルにより湿式粉砕を行い、乾燥させて造粒粉末とした。
さらに、この造粒粉末を19mm径、1.4mm厚の円盤状に加圧成形した。成形は、30MPa程度で一軸成形した後、150MPa程度で冷間等方静水圧プレス(CIP)処理した。得られた成形体を、大気雰囲気中、1100℃又は1300℃、2〜4時間焼成して焼結体とした。
焼結体の両面を平面研磨し、次いでこの面に銀ペーストをスクリーンし、焼き付けて電極を形成した。次いで、電極が形成された焼結体を、100〜150℃のシリコーンオイル中で、3〜5kV/mmの直流電圧を印加して分極処理を行い、圧電磁器組成物を得た。
Each raw material powder of lead oxide, zirconium oxide, titanium oxide, tin oxide, antimony oxide, niobium oxide is prepared, and the composition after sintering is a ratio shown in each of inventive examples 1-9 and comparative examples 1-15 in Table 2. Then, the mixed powder was added to ethanol, then wet mixed and pulverized by a ball mill, and dried to obtain a raw material mixed powder.
The raw material mixed powder was calcined at 800 ° C. for 2 to 3 hours in an air atmosphere to obtain a calcined powder having a calcined and pulverized particle size of about 0.6 to 1 μm. An organic binder, a water-soluble binder, and alcohols were added to the calcined powder, wet pulverized by a ball mill, and dried to obtain a granulated powder.
Further, this granulated powder was pressure-molded into a disk shape having a diameter of 19 mm and a thickness of 1.4 mm. The molding was uniaxially molded at about 30 MPa and then cold isostatically pressed (CIP) at about 150 MPa. The obtained molded body was fired in an air atmosphere at 1100 ° C. or 1300 ° C. for 2 to 4 hours to obtain a sintered body.
Both surfaces of the sintered body were flat-polished, and then a silver paste was screened on this surface and baked to form an electrode. Next, the sintered body on which the electrodes were formed was subjected to a polarization treatment by applying a direct current voltage of 3 to 5 kV / mm in a silicone oil at 100 to 150 ° C. to obtain a piezoelectric ceramic composition.

得られた圧電磁器組成物について、以下の項目を評価した。
(1)ΔCp(20℃〜150℃での静電容量(Cp)変化率)
インピーダンスアナライザ(型式HP4194A、ヒューレットパッカード社製)を用い、20℃での静電容量Cp(20)と150℃での静電容量Cp(150)をそれぞれ測定した(単位:pF)。次式
[[(Cp(150)-Cp(20))/Cp(20)]/[150-20]]*1000000により、ΔCpを求めた。ΔCpが 2500ppm/K以下であれば実用上問題がない。
(2)キュリー温度(Tc)
インピーダンスアナライザ(型式HP4194A、ヒューレットパッカード社製)と電気炉を用いてTcを測定した。
(3)圧電定数d33
圧電定数d33の測定はEMAS-6100に記載の共振反共振法に従い測定し、d33メーター(型式ZJ-4B、中国科学院製)も併用して測定した。
(4)d33劣化率
初期のd33を測定した後、各試料を大気雰囲気下、250℃で10時間の耐熱試験を施し、同様にd33を測定した。次式
{(耐熱試験後の圧電定数d33)-(初期の圧電定数d33)}/(初期の圧電定数d33)によりd33劣化率を求めた。
The following items were evaluated about the obtained piezoelectric ceramic composition.
(1) ΔCp (Capacitance (Cp) change rate from 20 ℃ to 150 ℃)
Using an impedance analyzer (model HP4194A, manufactured by Hewlett-Packard Company), the capacitance Cp (20) at 20 ° C. and the capacitance Cp (150) at 150 ° C. were measured (unit: pF). Next formula
Δ [Cp was calculated from [[(Cp (150) -Cp (20)) / Cp (20)] / [150-20]] * 1000000. If ΔCp is 2500 ppm / K or less, there is no practical problem.
(2) Curie temperature (Tc)
Tc was measured using an impedance analyzer (model HP4194A, manufactured by Hewlett Packard) and an electric furnace.
(3) Piezoelectric constant d33
The piezoelectric constant d33 was measured according to the resonance anti-resonance method described in EMAS-6100, and was also used in combination with a d33 meter (model ZJ-4B, manufactured by China Academy of Sciences).
(4) d33 deterioration rate After measuring the initial d33, each sample was subjected to a heat resistance test at 250 ° C. for 10 hours in an air atmosphere, and d33 was measured in the same manner. The d33 deterioration rate was determined by the following formula {(piezoelectric constant d33 after heat test) − (initial piezoelectric constant d33)} / (initial piezoelectric constant d33).

得られた結果を表1に示す。
The obtained results are shown in Table 1.

表1から明らかなように、Pbm { Zr1-x-y-zTixSny(Sb1-nNbnz } O3で表され、式中、1.000≦m≦1.075、0.470≦x<0.490、0.020≦y≦0.040、0<n<1.000、0<z≦0.025を満たす組成とした発明例1〜9の場合、ΔCpが 2500ppm/K以下、d33が340pC/N以上、Tcが340℃、d33劣化率が-10%以下となり、圧電特性及び温度特性に優れたものとなった。 As apparent from Table 1, Pb m {Zr 1-xyz Ti x Sn y (Sb 1-n Nb n ) z } O 3 , wherein 1.000 ≦ m ≦ 1.075, 0.470 ≦ x <0.490, In the case of Invention Examples 1 to 9 having compositions satisfying 0.020 ≦ y ≦ 0.040, 0 <n <1.000, 0 <z ≦ 0.025, ΔCp is 2500 ppm / K or less, d33 is 340 pC / N or more, Tc is 340 ° C., d33 The deterioration rate was -10% or less, and the piezoelectric characteristics and temperature characteristics were excellent.

一方、上記式において0.490≦xである比較例10の場合、d33が340pC/N未満で、d33劣化率が-10%を超え、圧電特性が大幅に劣った。
上記式においてz=0である比較例11の場合、d33劣化率が-10%を超え、圧電特性が大幅に劣ると共に、焼結温度が1300℃と高温となり、結晶粒が粗大となった。焼結温度が1300℃以上になると、以下の実施例2に示すように、d33が向上しなくなるので好ましくない。
上記式においてそれぞれn=0,1である比較例12,13の場合、ΔCpが 2500ppm/Kを超えた。これは、NbとSbのいずれか1種のみを含有するため、結晶の安定性が低下したためと考えられる。
上記式においてm>1.075である比較例14の場合、図1に示すように圧電磁器組成物内部にPbOが生成し(図1の白い筋状のもの)、圧電定数d33が340pC/N未満となって圧電特性が大幅に劣った。
上記式においてm<1である比較例15の場合も、圧電定数d33が340pC/N未満となって圧電特性が大幅に劣った。
On the other hand, in the case of Comparative Example 10 where 0.490 ≦ x in the above formula, d33 was less than 340 pC / N, the d33 deterioration rate exceeded −10%, and the piezoelectric characteristics were significantly inferior.
In the case of Comparative Example 11 in which z = 0 in the above formula, the d33 deterioration rate exceeded -10%, the piezoelectric characteristics were significantly inferior, the sintering temperature was as high as 1300 ° C., and the crystal grains became coarse. When the sintering temperature is 1300 ° C. or higher, d33 is not improved as shown in Example 2 below, which is not preferable.
In Comparative Examples 12 and 13 where n = 0 and 1 in the above formula, ΔCp exceeded 2500 ppm / K. This is presumably because the stability of the crystal was lowered because only one of Nb and Sb was contained.
In the case of Comparative Example 14 where m> 1.075 in the above formula, PbO is generated inside the piezoelectric ceramic composition as shown in FIG. 1 (white streaks in FIG. 1), and the piezoelectric constant d33 is less than 340 pC / N. As a result, the piezoelectric characteristics were greatly inferior.
In the case of Comparative Example 15 where m <1 in the above formula, the piezoelectric constant d33 was less than 340 pC / N, and the piezoelectric characteristics were significantly inferior.

実施例1の発明例1の組成について、焼結温度を変化させて圧電磁器組成物を製造した。得られた圧電磁器組成物のd33を実施例1と同様にして測定した。又、焼結後の試料の円盤面(電極を取り去った面)のXRD(X線回折)測定を行い、Scherrerの式により結晶子径を求めた。   For the composition of Invention Example 1 of Example 1, a piezoelectric ceramic composition was produced by changing the sintering temperature. D33 of the obtained piezoelectric ceramic composition was measured in the same manner as in Example 1. Further, XRD (X-ray diffraction) measurement of the disk surface (surface from which the electrode was removed) of the sintered sample was performed, and the crystallite diameter was determined by Scherrer's equation.

得られた結果を表2及び図2に示す。
The obtained results are shown in Table 2 and FIG.

表2及び図2から明らかなように、焼結温度が1050℃〜1250℃の間にある場合、d33が340pC/N以上となり、このときの結晶子径は30〜39nmであった。一方、焼結温度が1050℃である場合、及び1250℃を超えた場合、d33が340pC/N未満となり、このときの結晶子径は30nm未満、又は39nmを超えた。
このことより、結晶子径を30〜39nmに制御することが必要である。
As is apparent from Table 2 and FIG. 2, when the sintering temperature was between 1050 ° C. and 1250 ° C., d33 was 340 pC / N or more, and the crystallite size at this time was 30 to 39 nm. On the other hand, when the sintering temperature was 1050 ° C. and when it exceeded 1250 ° C., d33 was less than 340 pC / N, and the crystallite size at this time was less than 30 nm or more than 39 nm.
For this reason, it is necessary to control the crystallite diameter to 30 to 39 nm.

図3、図4は、焼結温度がそれぞれ1250℃、1300℃の場合の試料の結晶粒を示す走査顕微鏡写真を示す。
焼結温度が1300℃になると結晶粒が急激に成長し、粗大粒となることがわかる。
3 and 4 show scanning micrographs showing the crystal grains of the sample when the sintering temperatures are 1250 ° C. and 1300 ° C., respectively.
It can be seen that when the sintering temperature reaches 1300 ° C., the crystal grains grow rapidly and become coarse grains.

実施例1の発明例1の圧電磁器組成物を圧電素子15として用い、錘部材17の底面SAの面積S1、及び素子電極15aのうち底面SAに向かい合う表面SBの面積S2を種々に変え、図5〜図7に示す非共振型ノッキングセンサを製造した。
素子電極15aは、面取り後の圧電素子15の表面に、銀ペーストを印刷後、焼成して形成した。樹脂成形体11用の樹脂としてはポリアミドを用い、下部電極14及び上部電極16としては黄銅を用いた。又、第1絶縁板13、第2絶縁板13t、絶縁スリーブ13sとしてはPETを用いた。又、表3に示すように、試料番号5のノッキングセンサは、錘部材17として鉄材料を用いた。それ以外の試料番号のノッキングセンサは、錘部材17として黄銅を用いた。但し、すべての試料番号のノッキングセンサにおいて、錘部材17の質量を10.0gに統一した。なお、本実施例3においては、圧電素子15を構成する素子電極15aの全部が、錘部材17と圧電素子15とを当該圧電素子15の厚み方向に沿って投影したときに、錘部材17の圧電素子15側を向く底面SAに向かい合う条件のもと、上記面積S1,S2を種々変えたノッキングセンサを製造した。
Using the piezoelectric ceramic composition of Invention Example 1 of Example 1 as the piezoelectric element 15, the area S1 of the bottom surface SA of the weight member 17 and the area S2 of the surface SB of the element electrode 15a facing the bottom surface SA are variously changed. A non-resonant knock sensor shown in FIGS.
The element electrode 15a was formed by printing a silver paste on the surface of the chamfered piezoelectric element 15 and firing it. Polyamide was used as the resin for the resin molded body 11, and brass was used as the lower electrode 14 and the upper electrode 16. Further, PET was used as the first insulating plate 13, the second insulating plate 13t, and the insulating sleeve 13s. Further, as shown in Table 3, the knocking sensor of the sample number 5 uses an iron material as the weight member 17. The knocking sensors of other sample numbers used brass as the weight member 17. However, the mass of the weight member 17 was unified to 10.0 g in the knocking sensors of all the sample numbers. In Example 3, when all of the element electrodes 15a constituting the piezoelectric element 15 project the weight member 17 and the piezoelectric element 15 along the thickness direction of the piezoelectric element 15, the weight member 17 Under the condition of facing the bottom surface SA facing the piezoelectric element 15 side, knocking sensors in which the areas S1 and S2 were variously changed were manufactured.

得られたノッキングセンサについて、20℃での静電容量Cp(20)を、実施例1と同様にして測定した。又、第1、第2端子14a、16a間のセンサ出力を、加振器により3Gの衝撃を加えた条件のもとで測定した。
得られた結果を表3及び図8に示す。
For the obtained knocking sensor, the capacitance Cp (20) at 20 ° C. was measured in the same manner as in Example 1. Further, the sensor output between the first and second terminals 14a and 16a was measured under a condition where a 3G impact was applied by a vibrator.
The obtained results are shown in Table 3 and FIG.

表3及び図8から明らかなように、錘部材17の底面SAの面積S1に対し、圧電素子15の素子電極15aの底面SAに向かい合う表面SBの面積S2の割合が45%以上である試料番号3〜9の非共振型ノッキングセンサの場合、センサ出力が75mVを超え、実用上良好な感度を示した。   As is apparent from Table 3 and FIG. 8, the ratio of the area S2 of the surface SB facing the bottom surface SA of the element electrode 15a of the piezoelectric element 15 to the area S1 of the bottom surface SA of the weight member 17 is 45% or more. In the case of 3 to 9 non-resonant knocking sensors, the sensor output exceeded 75 mV, and practically good sensitivity was exhibited.

比較例14の圧電磁器組成物の表面の走査電子顕微鏡像を示す図である。It is a figure which shows the scanning electron microscope image of the surface of the piezoelectric ceramic composition of the comparative example 14. 圧電磁器組成物の結晶子径とd33の関係を示す図である。It is a figure which shows the relationship between the crystallite diameter of a piezoelectric ceramic composition, and d33. 焼結温度が1250℃の試料の走査顕微鏡写真を示す図である。It is a figure which shows the scanning micrograph of the sample whose sintering temperature is 1250 degreeC. 焼結温度が1300℃の試料の走査顕微鏡写真を示す図である。It is a figure which shows the scanning micrograph of the sample whose sintering temperature is 1300 degreeC. 本発明の実施形態に係る非共振型ノッキングセンサの軸方向に沿う断面図である。It is sectional drawing in alignment with the axial direction of the non-resonance type knocking sensor which concerns on embodiment of this invention. 本発明の実施形態に係る非共振型ノッキングセンサの分解斜視図である。1 is an exploded perspective view of a non-resonant knock sensor according to an embodiment of the present invention. 本発明の実施形態に係る非共振型ノッキングセンサの圧電素子と錘部材の近傍を示す部分断面図である。It is a fragmentary sectional view showing the neighborhood of a piezoelectric element and a weight member of a non-resonance type knocking sensor according to an embodiment of the present invention. 錘部材の底面積に対し圧電素子の素子電極の面積の割合を変えたときの、センサ出力を示す図である。It is a figure which shows a sensor output when changing the ratio of the area of the element electrode of a piezoelectric element with respect to the bottom area of a weight member.

符号の説明Explanation of symbols

15 圧電素子
15a 素子電極
10 非共振型ノッキングセンサ
12 支持部材
12a 支持本体部
17 錘部材
SA 錘部材の圧電素子側を向く底面
SB 素子電極の表面
S1 錘部材の底面の面積
S2 素子電極の表面の面積
DESCRIPTION OF SYMBOLS 15 Piezoelectric element 15a Element electrode 10 Non-resonance type knocking sensor 12 Support member 12a Support main-body part 17 Weight member SA Bottom surface which faces the piezoelectric element side of a weight member SB Surface of element electrode S1 Area of bottom surface of weight member S2 Surface of element electrode area

Claims (4)

Pbm { Zr1-x-y-zTixSny(Sb1-nNbnz } O3(式中、1.000≦m≦1.075、0.470≦x<0.490、0.020≦y≦0.040、0<n<1.000、0<z≦0.025を満たす)で表され、結晶子径が30〜39nmである圧電磁器組成物。 Pb m {Zr 1-xyz Ti x Sn y (Sb 1-n Nb n ) z } O 3 (where 1.000 ≦ m ≦ 1.075, 0.470 ≦ x <0.490, 0.020 ≦ y ≦ 0.040, 0 <n <1.000 0 <z ≦ 0.025), and the piezoelectric ceramic composition has a crystallite diameter of 30 to 39 nm. Pbm { Zr1-x-y-zTixSny(Sb1-nNbnz } O3(式中、1.000≦m≦1.075、0.470≦x<0.490、0.020≦y≦0.040、0<n<1.000、0<z≦0.025を満たす)で表され、圧電定数d33が340pC/N以上である圧電磁器組成物。 Pb m {Zr 1-xyz Ti x Sn y (Sb 1-n Nb n ) z } O 3 (where 1.000 ≦ m ≦ 1.075, 0.470 ≦ x <0.490, 0.020 ≦ y ≦ 0.040, 0 <n <1.000 And a piezoelectric constant d33 having a piezoelectric constant d33 of 340 pC / N or more. 請求項1又は2記載の圧電磁器組成物を用いた圧電素子。 A piezoelectric element using the piezoelectric ceramic composition according to claim 1. 請求項1又は2記載の圧電磁器組成物および素子電極からなる圧電素子と、
前記圧電素子を支持する支持本体部を有する支持部材と、
前記圧電素子上に配置され、該圧電素子を前記支持本体部に向けて押圧する錘部材とを備え、
前記素子電極の少なくとも一部は、前記錘部材と前記圧電素子とを当該圧電素子の厚み方向に沿って投影したときに、前記錘部材の前記圧電素子側を向く底面に向かい合っており、前記錘部材の前記底面の面積に対し、前記素子電極の当該底面に向かい合う表面の面積の割合が45%以上である非共振型ノッキングセンサ。
A piezoelectric element comprising the piezoelectric ceramic composition according to claim 1 or 2 and an element electrode;
A support member having a support main body for supporting the piezoelectric element;
A weight member disposed on the piezoelectric element and pressing the piezoelectric element toward the support main body,
At least a part of the element electrode faces the bottom surface of the weight member facing the piezoelectric element when the weight member and the piezoelectric element are projected along the thickness direction of the piezoelectric element. A non-resonant knock sensor in which a ratio of an area of a surface of the element electrode facing the bottom surface is 45% or more with respect to an area of the bottom surface of the member.
JP2008317858A 2008-03-05 2008-12-15 Piezoelectric ceramic composition, piezoelectric element using the same, and non-resonant knock sensor Active JP5222120B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2008317858A JP5222120B2 (en) 2008-03-05 2008-12-15 Piezoelectric ceramic composition, piezoelectric element using the same, and non-resonant knock sensor
EP09003122.0A EP2099082B1 (en) 2008-03-05 2009-03-04 Piezoceramic material, piezoelectric element and non-resonance knock sensor
US12/397,956 US8040024B2 (en) 2008-03-05 2009-03-04 Piezoceramic material, piezoelectric element and non-resonance knock sensor
CN2009101183969A CN101525233B (en) 2008-03-05 2009-03-05 Piezoceramic material, piezoelectric element and non-resonance knock sensor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008054433 2008-03-05
JP2008054433 2008-03-05
JP2008317858A JP5222120B2 (en) 2008-03-05 2008-12-15 Piezoelectric ceramic composition, piezoelectric element using the same, and non-resonant knock sensor

Publications (2)

Publication Number Publication Date
JP2009234904A true JP2009234904A (en) 2009-10-15
JP5222120B2 JP5222120B2 (en) 2013-06-26

Family

ID=41093330

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008317858A Active JP5222120B2 (en) 2008-03-05 2008-12-15 Piezoelectric ceramic composition, piezoelectric element using the same, and non-resonant knock sensor

Country Status (2)

Country Link
JP (1) JP5222120B2 (en)
CN (1) CN101525233B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102539066A (en) * 2010-12-10 2012-07-04 比亚迪股份有限公司 Preparation method for knock sensor
CN103204679A (en) * 2013-04-24 2013-07-17 淄博宇海电子陶瓷有限公司 Low-temperature sintering and low-aging rate PZT (lead zirconate titanate) piezoelectric ceramic material and preparation method thereof

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63304510A (en) * 1987-06-02 1988-12-12 Mitsui Petrochem Ind Ltd Temperature sensor
JPH0412056A (en) * 1990-04-28 1992-01-16 Kyocera Corp Piezoelectric porcelain composition
JPH0489354A (en) * 1990-07-31 1992-03-23 Kyocera Corp Piezoelectric porcelain composition
JPH04170364A (en) * 1990-10-31 1992-06-18 Kyocera Corp Piezoelectric porcelain composition
JPH09124366A (en) * 1995-10-30 1997-05-13 Hokkai Can Co Ltd Piezoelectric ceramic
JP2000119898A (en) * 1998-10-14 2000-04-25 Samsung Electro Mech Co Ltd Low temperature formation of piezoelectric/ electrostrictive film type element utilizing electrophoresis deposition method and piezoelectric/ electrostrictive film type element
JP2001004476A (en) * 1999-06-25 2001-01-12 Ngk Spark Plug Co Ltd Nonresonant knock sensor
JP2001181035A (en) * 1999-12-28 2001-07-03 Tdk Corp Piezoelectric ceramic composition
JP2003322580A (en) * 2002-04-26 2003-11-14 Ngk Spark Plug Co Ltd Knocking sensor
JP2004093197A (en) * 2002-08-29 2004-03-25 Ngk Spark Plug Co Ltd Non-resonant knocking sensor
JP2005337858A (en) * 2004-05-26 2005-12-08 Mitsubishi Electric Corp Knocking sensor of internal combustion engine and its manufacturing method
JP2010025630A (en) * 2008-07-16 2010-02-04 Ngk Spark Plug Co Ltd Non resonance type knocking sensor
JP2011085426A (en) * 2009-10-13 2011-04-28 Ngk Spark Plug Co Ltd Nonresonant knocking sensor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3874229B2 (en) * 1999-07-02 2007-01-31 Tdk株式会社 Piezoelectric ceramics and piezoelectric device using the same
CN100575303C (en) * 2007-02-08 2009-12-30 四川大学 The titanium scandium lead niobate bismuth lithium series piezoelectric ceramic of a kind of high-curie temperature, high tension performance

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63304510A (en) * 1987-06-02 1988-12-12 Mitsui Petrochem Ind Ltd Temperature sensor
JPH0412056A (en) * 1990-04-28 1992-01-16 Kyocera Corp Piezoelectric porcelain composition
JP2789374B2 (en) * 1990-04-28 1998-08-20 京セラ株式会社 Piezoelectric ceramic composition
JPH0489354A (en) * 1990-07-31 1992-03-23 Kyocera Corp Piezoelectric porcelain composition
JPH04170364A (en) * 1990-10-31 1992-06-18 Kyocera Corp Piezoelectric porcelain composition
JPH09124366A (en) * 1995-10-30 1997-05-13 Hokkai Can Co Ltd Piezoelectric ceramic
JP2000119898A (en) * 1998-10-14 2000-04-25 Samsung Electro Mech Co Ltd Low temperature formation of piezoelectric/ electrostrictive film type element utilizing electrophoresis deposition method and piezoelectric/ electrostrictive film type element
JP2001004476A (en) * 1999-06-25 2001-01-12 Ngk Spark Plug Co Ltd Nonresonant knock sensor
JP2001181035A (en) * 1999-12-28 2001-07-03 Tdk Corp Piezoelectric ceramic composition
JP2003322580A (en) * 2002-04-26 2003-11-14 Ngk Spark Plug Co Ltd Knocking sensor
JP2004093197A (en) * 2002-08-29 2004-03-25 Ngk Spark Plug Co Ltd Non-resonant knocking sensor
JP2005337858A (en) * 2004-05-26 2005-12-08 Mitsubishi Electric Corp Knocking sensor of internal combustion engine and its manufacturing method
JP2010025630A (en) * 2008-07-16 2010-02-04 Ngk Spark Plug Co Ltd Non resonance type knocking sensor
JP2011085426A (en) * 2009-10-13 2011-04-28 Ngk Spark Plug Co Ltd Nonresonant knocking sensor

Also Published As

Publication number Publication date
CN101525233A (en) 2009-09-09
JP5222120B2 (en) 2013-06-26
CN101525233B (en) 2013-08-14

Similar Documents

Publication Publication Date Title
EP2099082B1 (en) Piezoceramic material, piezoelectric element and non-resonance knock sensor
JP4510966B2 (en) Piezoelectric ceramics
KR101541022B1 (en) Piezoelectric material, piezoelectric element, liquid discharge head, ultrasonic motor, and dust removing device
US20070176516A1 (en) Piezoelectric sensor
US20090267016A1 (en) Piezoelectric ceramic composition and piezoelectric ceramic
JP2006108639A (en) Piezoelectric actuator
WO2010001542A1 (en) Piezoelectric ceramic composition and piezoelectric element made by using the same
JP4156461B2 (en) Piezoelectric ceramic composition, method for producing the same, and piezoelectric element
JP5537931B2 (en) Piezoelectric ceramic composition and piezoelectric element
JP4878133B2 (en) Piezoelectric actuator
JP4163068B2 (en) Piezoelectric ceramic composition and piezoelectric element
JP4995412B2 (en) Piezoelectric ceramic composition and piezoelectric element using the same
JP5222120B2 (en) Piezoelectric ceramic composition, piezoelectric element using the same, and non-resonant knock sensor
CN104230333B (en) A kind of high temperature piezoceramics and preparation method thereof
JP4804449B2 (en) Piezoelectric ceramic and piezoelectric element
JP2007284278A (en) Piezoelectric element material and production method therefor
JP5170905B2 (en) Non-resonant knock sensor
JP5062759B2 (en) Non-resonant knock sensor
JP2001048642A (en) Piezoelectric ceramics
JP4927378B2 (en) Piezoelectric ceramic composition and piezoelectric element
JP2008169113A (en) Piezoelectric ceramic composition and piezoelectric element
JPH0745883A (en) Piezoelectric ceramic composition
JP5011140B2 (en) Piezoelectric ceramic composition, method for producing the same, and piezoelectric element
JP4930753B2 (en) Piezoelectric ceramic and piezoelectric parts
JP2004077304A (en) Piezo-electric element and knocking sensor using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130308

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160315

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5222120

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250