JP4930753B2 - Piezoelectric ceramic and piezoelectric parts - Google Patents
Piezoelectric ceramic and piezoelectric parts Download PDFInfo
- Publication number
- JP4930753B2 JP4930753B2 JP2006002208A JP2006002208A JP4930753B2 JP 4930753 B2 JP4930753 B2 JP 4930753B2 JP 2006002208 A JP2006002208 A JP 2006002208A JP 2006002208 A JP2006002208 A JP 2006002208A JP 4930753 B2 JP4930753 B2 JP 4930753B2
- Authority
- JP
- Japan
- Prior art keywords
- parts
- piezoelectric ceramic
- volume
- piezoelectric
- main component
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000000919 ceramic Substances 0.000 title claims description 101
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 92
- 238000005204 segregation Methods 0.000 claims description 47
- 238000000926 separation method Methods 0.000 claims description 19
- 150000001875 compounds Chemical class 0.000 claims description 12
- 229910052758 niobium Inorganic materials 0.000 claims description 12
- 229910052726 zirconium Inorganic materials 0.000 claims description 8
- 229910052748 manganese Inorganic materials 0.000 claims description 7
- 229910052719 titanium Inorganic materials 0.000 claims description 7
- 229910052759 nickel Inorganic materials 0.000 claims description 6
- 230000008878 coupling Effects 0.000 description 45
- 238000010168 coupling process Methods 0.000 description 45
- 238000005859 coupling reaction Methods 0.000 description 45
- 230000008859 change Effects 0.000 description 39
- 230000010355 oscillation Effects 0.000 description 27
- 238000005452 bending Methods 0.000 description 23
- 230000007423 decrease Effects 0.000 description 19
- 239000002245 particle Substances 0.000 description 18
- 238000000034 method Methods 0.000 description 17
- 229910004298 SiO 2 Inorganic materials 0.000 description 14
- 239000000203 mixture Substances 0.000 description 13
- 239000002994 raw material Substances 0.000 description 13
- 239000013078 crystal Substances 0.000 description 11
- 239000010936 titanium Substances 0.000 description 10
- 239000000843 powder Substances 0.000 description 8
- 229910052451 lead zirconate titanate Inorganic materials 0.000 description 7
- 229910002077 partially stabilized zirconia Inorganic materials 0.000 description 7
- 229910010293 ceramic material Inorganic materials 0.000 description 6
- 238000010304 firing Methods 0.000 description 6
- 238000000227 grinding Methods 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 229910010413 TiO 2 Inorganic materials 0.000 description 5
- 229910052782 aluminium Inorganic materials 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 239000000758 substrate Substances 0.000 description 5
- 230000002776 aggregation Effects 0.000 description 4
- 238000004220 aggregation Methods 0.000 description 4
- 230000006866 deterioration Effects 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 238000010298 pulverizing process Methods 0.000 description 4
- 230000035939 shock Effects 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- -1 PbO Chemical class 0.000 description 3
- 230000032683 aging Effects 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 238000001354 calcination Methods 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000002270 dispersing agent Substances 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 230000010287 polarization Effects 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 230000001376 precipitating effect Effects 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 238000000177 wavelength dispersive X-ray spectroscopy Methods 0.000 description 2
- 238000001238 wet grinding Methods 0.000 description 2
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- RKTYLMNFRDHKIL-UHFFFAOYSA-N copper;5,10,15,20-tetraphenylporphyrin-22,24-diide Chemical compound [Cu+2].C1=CC(C(=C2C=CC([N-]2)=C(C=2C=CC=CC=2)C=2C=CC(N=2)=C(C=2C=CC=CC=2)C2=CC=C3[N-]2)C=2C=CC=CC=2)=NC1=C3C1=CC=CC=C1 RKTYLMNFRDHKIL-UHFFFAOYSA-N 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 150000002611 lead compounds Chemical class 0.000 description 1
- HFGPZNIAWCZYJU-UHFFFAOYSA-N lead zirconate titanate Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ti+4].[Zr+4].[Pb+2] HFGPZNIAWCZYJU-UHFFFAOYSA-N 0.000 description 1
- VASIZKWUTCETSD-UHFFFAOYSA-N manganese(II) oxide Inorganic materials [Mn]=O VASIZKWUTCETSD-UHFFFAOYSA-N 0.000 description 1
- 238000013001 point bending Methods 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 229910052573 porcelain Inorganic materials 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 150000003609 titanium compounds Chemical class 0.000 description 1
- 150000003623 transition metal compounds Chemical class 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 150000003755 zirconium compounds Chemical class 0.000 description 1
Images
Landscapes
- Compositions Of Oxide Ceramics (AREA)
Description
本発明は圧電磁器、及び圧電部品に関し、より詳しくはPbを含有した圧電セラミックを主成分とする圧電磁器、及び狭帯域のフィルタ用に使用される圧電セラミック発振子等の圧電部品に関する。 The present invention relates to a piezoelectric ceramic and a piezoelectric component, and more particularly to a piezoelectric ceramic mainly composed of a piezoelectric ceramic containing Pb, and a piezoelectric component such as a piezoelectric ceramic oscillator used for a narrow band filter.
圧電セラミック発振子では、温度変化やリフロー処理などの熱衝撃等、外部環境の変化に対して発振周波数の変動を小さくし、高精度化することが求められている。 Piezoelectric ceramic oscillators are required to be highly accurate by reducing fluctuations in oscillation frequency against changes in the external environment, such as thermal shocks such as temperature changes and reflow treatment.
そして、例えば、特許文献1には、Pbα{(Mn1/3Nb2/3)xZryTiz}O3(ただし、1.00≦α≦1.05、0.07≦x≦0.28、0.42≦y≦0.62、0.18≦z≦0.45、x+y+z=1)で表される主成分100重量部にMn3O4を0.3〜0.8重量部添加した圧電磁器組成物が提案されている。 Then, for example, Patent Document 1, Pb α {(Mn 1/3 Nb 2/3) x Zr y Ti z} O 3 ( however, 1.00 ≦ α ≦ 1.05,0.07 ≦ x ≦ 0.28, 0.42 ≦ y ≦ 0.62, 0.18 ≦ z ≦ 0.45, x + y + z = 1) 100 parts by weight of the main component represents 0.3 to 0.8 Mn 3 O 4 Piezoelectric ceramic compositions with parts by weight added have been proposed.
特許文献1は、上記組成を具備することにより、厚みすべりモード共振を利用したフィルタ、発振子に適した、耐熱性に優れ、熱衝撃負荷後の共振周波数変化が極めて小さく、温度サイクルによる共振周波数変化が小さい圧電磁器組成物を得ることができる。 Patent Document 1 is excellent in heat resistance, suitable for filters and oscillators using thickness-slip mode resonance, and has a very small resonance frequency change after a thermal shock load. A piezoelectric ceramic composition having a small change can be obtained.
また、特許文献2には、少なくともPb、Sr、Zr、Ti、Mn、Nb、Si及びAlを含み、一般式:(Pba Srb )(ZrcTid Mne Nbf )O3(0.93≦a≦1.01、0.01≦b≦0.04、0.37≦c≦0.47、0.48≦d≦0.58、0.0105≦e≦0.06、0.02≦f≦0.06、及び1.05≦2e/f≦2の各条件を満たす組成を有する主成分を含むと共に、副成分として、前記主成分に対して0.003重量%以上0.1重量%以下のSiO2 および0.003重量%以上0.1重量%以下のAl2 O3 を含む圧電磁器材料が提案されている。 Further, Patent Document 2, includes at least Pb, Sr, Zr, Ti, Mn, Nb, Si and Al, the general formula: (Pb a Sr b) ( Zr c Ti d Mn e Nb f) O 3 (0 .93 ≦ a ≦ 1.01, 0.01 ≦ b ≦ 0.04, 0.37 ≦ c ≦ 0.47, 0.48 ≦ d ≦ 0.58, 0.0105 ≦ e ≦ 0.06, 0 0.02 ≦ f ≦ 0.06 and 1.05 ≦ 2e / f ≦ 2 are included, and as a subcomponent, 0.003% by weight or more with respect to the main component is included. Piezoelectric ceramic materials containing less than 1% by weight of SiO 2 and 0.003% by weight to 0.1% by weight of Al 2 O 3 have been proposed.
特許文献2は、上記組成を具備することにより、電気機械結合係数kが小さく、共振抵抗Zrが小さく、かつ共振周波数の温度依存性の小さい圧電磁器材料を得ることができる。 Patent Document 2 can provide a piezoelectric ceramic material having a small electromechanical coupling coefficient k, a small resonance resistance Zr, and a small temperature dependence of the resonance frequency by having the above composition.
さらに、特許文献3には、Pb(Mg1/3Nb2/3)ATiBZrCO3(A+B+C=1モル)とMnO2から成る基本組成にAl2O3を含有させ、仮焼後本焼成前の粉砕された平均粒子径を1μm以下とする圧電磁器材料の製造方法が提案されている。 Furthermore, Patent Document 3 includes Al 2 O 3 in a basic composition composed of Pb (Mg 1/3 Nb 2/3 ) A Ti B Zr C O 3 (A + B + C = 1 mol) and MnO 2 and calcining it. There has been proposed a method for manufacturing a piezoelectric ceramic material in which the pulverized average particle diameter before post-firing is 1 μm or less.
特許文献3は、上記基本組成にAl2O3を含有させることにより、Al2O3が基本組成の結晶粒界に析出して結晶の粒成長が抑制され、これにより結晶粒度が揃い、機械的強度の向上を図ることができると共に、電気的特性のバラツキを抑制することが可能となる。 Patent Document 3 discloses that Al 2 O 3 is precipitated in crystal grain boundaries of the basic composition by containing Al 2 O 3 in the basic composition, thereby suppressing crystal grain growth. It is possible to improve the mechanical strength and suppress variations in electrical characteristics.
しかしながら、特許文献1は、温度変化や熱衝撃に対しては発振周波数の変動を或る程度抑制できるものの、共振子としての帯域が広いため、基板実装後に回路からの影響を受けやすく、発振周波数の変動を十分に抑制することができないという問題点があった。 However, although Patent Document 1 can suppress fluctuations in the oscillation frequency to some extent with respect to temperature changes and thermal shocks, it has a wide band as a resonator and is therefore easily affected by the circuit after mounting on the substrate. There was a problem that the fluctuation of the above could not be sufficiently suppressed.
また、特許文献2には、圧電磁器材料(圧電セラミック)中にSiO2やAl2O3を所定量含有させることにより電気機械結合係数kを小さくできることについての示唆があり、これにより共振器の帯域を狭くして基板実装後の回路の影響を受け難くすることを可能としている。 Patent Document 2 also suggests that the electromechanical coupling coefficient k can be reduced by containing a predetermined amount of SiO 2 or Al 2 O 3 in the piezoelectric ceramic material (piezoelectric ceramic). By narrowing the band, it is possible to make it less susceptible to the influence of the circuit after mounting on the board.
しかしながら、特許文献2では、電気機械結合係数kの低下が不十分であった。 However, in Patent Document 2, the decrease in the electromechanical coupling coefficient k is insufficient.
一般に、チタン酸ジルコン酸鉛(以下、「PZT」という。)を主成分とするPZT系圧電磁器材料は正方晶の比率が高いため、電気機械結合係数kが小さくなると、共振点―反共振点間における位相角の最大値(以下、「最大位相」という。)θmaxが低下して発振特性が悪化し、さらには共振周波数の温度変化率も悪化すると考えられている。また、共振抵抗Zrも高いという問題があった。 In general, a PZT piezoelectric ceramic material mainly composed of lead zirconate titanate (hereinafter referred to as “PZT”) has a high ratio of tetragonal crystals. Therefore, when the electromechanical coupling coefficient k decreases, the resonance point-antiresonance point It is considered that the maximum value of the phase angle between them (hereinafter referred to as “maximum phase”) θmax decreases, the oscillation characteristics deteriorate, and the temperature change rate of the resonance frequency also deteriorates. There is also a problem that the resonance resistance Zr is high.
すなわち、特許文献2は、電気機械結合係数kを小さくすることを意図しているものの十分に小さくすることができず、しかも共振抵抗Zrが高いことから、最大位相θmaxが低下して発振特性の悪化を招くおそれがあると考えられる。 That is, although Patent Document 2 intends to reduce the electromechanical coupling coefficient k, it cannot be sufficiently reduced, and since the resonance resistance Zr is high, the maximum phase θmax is lowered and the oscillation characteristic is reduced. There is a possibility of deteriorating.
しかも、特許文献2では、共振周波数の温度変化率fr−Tcが大きく、このため高精度で信頼性の優れた圧電セラミック発振子を得ることができないという問題もあった。 In addition, Patent Document 2 has a problem that the temperature change rate fr-Tc of the resonance frequency is large, so that a piezoelectric ceramic oscillator having high accuracy and excellent reliability cannot be obtained.
また、特許文献3は、基本組成にAl2O3を含有させることにより、電気的特性のバラツキを抑制することができ、また、Al2O3の含有量を増量することによって電気機械結合係数kが小さくなっているが、Al2O3の含有量が2.5重量%を超えると抗折強度が低下して機械的強度の劣化を招くとされている。また、発振特性の指標となる最大位相θmax及び共振周波数の温度変化率fr−Tcについては何ら触れられておらず、したがって特許文献3の圧電磁器材料を使用しても高精度で信頼性の優れた圧電セラミック発振子を得ることは困難であると考えられる。 Further, Patent Document 3 can suppress variation in electrical characteristics by including Al 2 O 3 in the basic composition, and increase the content of Al 2 O 3 to increase the electromechanical coupling coefficient. Although k is small, when the content of Al 2 O 3 exceeds 2.5% by weight, the bending strength is lowered and the mechanical strength is deteriorated. Further, nothing is mentioned about the maximum phase θmax and the temperature change rate fr-Tc of the resonance frequency which are indices of oscillation characteristics. Therefore, even if the piezoelectric ceramic material of Patent Document 3 is used, it is highly accurate and excellent in reliability. It is considered difficult to obtain a piezoelectric ceramic resonator.
本発明はこのような事情に鑑みなされたものであって、基板実装後の回路からの影響を受けにくく、外部環境の変化に対しても発振周波数の変動を抑制することができ、かつ良好な発振特性を有し、しかも共振周波数の温度特性や耐熱性が良好で共振抵抗も小さく機械的強度にも優れた圧電磁器、及び該圧電磁器を使用して製造することにより高精度で信頼性の優れた圧電セラミック発振子等の圧電部品を提供することを目的とする。 The present invention has been made in view of such circumstances, is less susceptible to the influence of a circuit after being mounted on a substrate, can suppress fluctuations in oscillation frequency even when the external environment changes, and is excellent. A piezoelectric ceramic that has oscillation characteristics, good resonance frequency temperature characteristics and heat resistance, low resonance resistance, and excellent mechanical strength, and is manufactured using the piezoelectric ceramic. An object is to provide a piezoelectric component such as an excellent piezoelectric ceramic oscillator.
上述したように圧電セラミック発振子では、外部環境の変化や基板実装後の回路からの影響に対し発振周波数の変動を抑制するのが望まれており、そのためには電気機械結合係数を小さくする必要がある。また、良好な発振特性を得るためには最大位相θmaxの大きいことが要求される。 As described above, in the piezoelectric ceramic oscillator, it is desired to suppress fluctuations in the oscillation frequency against changes in the external environment and influences from the circuit after mounting on the board. To that end, it is necessary to reduce the electromechanical coupling coefficient. There is. In order to obtain good oscillation characteristics, the maximum phase θmax is required to be large.
しかしながら、〔発明が解決しようとする課題〕の項でも述べた理由から、PZT系圧電セラミックでは、一般に電気機械結合係数が小さくなると最大位相θmaxも低下すると考えられており、また、特許文献3にも記載されているように、Al2O3を添加した場合であっても、単に増量しただけでは抗折強度τが低下し、機械的強度の劣化を招く。 However, for the reason described in the section of [Problems to be Solved by the Invention], in PZT piezoelectric ceramics, it is generally considered that the maximum phase θmax decreases as the electromechanical coupling coefficient decreases. As is also described, even when Al 2 O 3 is added, the bending strength τ is lowered by simply increasing the amount, leading to deterioration of mechanical strength.
しかるに、本発明者らが鋭意研究を行ったところ、PZT系圧電セラミックを主成分とする場合であっても、大量のAl2O3を前記主成分に添加することによってAl2O3粒子の凝集体を生成し、該凝集体を主成分粒子の結晶粒内、結晶粒界又は三重点に析出させてAl偏析部を形成し、かつ該Al偏析部を圧電磁器中に分散させることにより、最大位相θmaxの低下を招くことなく、電気機械結合係数kを小さくすることができるという知見を得た。 However, as a result of intensive research conducted by the present inventors, even when a PZT-based piezoelectric ceramic is a main component, a large amount of Al 2 O 3 is added to the main component to form Al 2 O 3 particles. By forming an aggregate, precipitating the aggregate in the crystal grains of the main component particles, a crystal grain boundary or a triple point to form an Al segregation part, and dispersing the Al segregation part in a piezoelectric ceramic, It was found that the electromechanical coupling coefficient k can be reduced without causing a decrease in the maximum phase θmax.
また、圧電磁器をこのような形態とすることにより、共振周波数の温度変化率を小さくすることができ、しかも耐熱性にも優れ、共振抵抗Zrも小さくすることができ、さらに抗折強度τも大きく周波数定数も高い圧電磁器を得ることができるという知見も得た。 Further, by adopting such a form of the piezoelectric ceramic, the temperature change rate of the resonance frequency can be reduced, the heat resistance is excellent, the resonance resistance Zr can be reduced, and the bending strength τ is also increased. The knowledge that a piezoelectric ceramic having a large and high frequency constant can be obtained was also obtained.
具体的には、Pb系圧電セラミックからなる主成分100容量部に対し、AlをAl2O3換算で10〜40容量部となるように配合し、十分に長時間湿式で粉砕処理等を行い、その後焼成処理を行うことにより、Al凝集体の存在比率(以下、「Al存在比」という。)が25μm□の領域内で50%以上を占める複数のAl偏析部を形成することができ、しかもAl偏析部同士の平均離間距離が、中心間距離で100μm以上となるように、Al偏析部を圧電磁器中に分散させることができる。そして、このようにすることにより最大位相θmaxの低下を招くことなく、電気機械結合係数kを小さくすることができ、共振抵抗Zrも小さく、共振周波数の温度変化率も小さく、耐熱性にも優れ、しかも機械的強度の優れた圧電磁器を得ることができるという知見を得た。 Specifically, for 100 parts by volume of the main component made of Pb-based piezoelectric ceramic, Al is blended so as to be 10 to 40 parts by volume in terms of Al 2 O 3 , and sufficiently pulverized and wetted for a long time. Then, by performing a baking treatment, a plurality of Al segregation parts occupying 50% or more in a region where the abundance ratio of Al aggregates (hereinafter referred to as “Al abundance ratio”) is 25 μm □ can be formed. Moreover, the Al segregation parts can be dispersed in the piezoelectric ceramic so that the average separation distance between the Al segregation parts is 100 μm or more in the center-to-center distance. In this way, the electromechanical coupling coefficient k can be reduced without reducing the maximum phase θmax, the resonance resistance Zr is also small, the temperature change rate of the resonance frequency is small, and the heat resistance is also excellent. And the knowledge that a piezoelectric ceramic excellent in mechanical strength can be obtained was obtained.
また、大量のAlAlso, a large amount of Al 22 OO 33 を含有させた場合に焼結性の低下を招くおそれがある。そしてこのような焼結不足を招くのを回避する観点からは、主成分として、Pb(Zr,Ti)OWhen it contains, there exists a possibility of causing a sinterability fall. From the viewpoint of avoiding such a lack of sintering, the main component is Pb (Zr, Ti) O2. 33 系化合物と、Pb(Mn,Nb)OCompounds and Pb (Mn, Nb) O 33 系化合物及びPb(Ni,Nb)OCompounds and Pb (Ni, Nb) O 33 系化合物のうちの少なくともいずれか一方とを含む必要があることが分かった。It has been found that it is necessary to contain at least one of the system compounds.
本発明はこのような知見に基づきなされたものであって、本発明に係る圧電磁器は、主成分が、Zr及びTiを含有したPb(Zr,Ti)OThe present invention has been made based on such knowledge, and the piezoelectric ceramic according to the present invention is composed of Pb (Zr, Ti) O containing Zr and Ti as main components. 33 系化合物と、Pb(Mn,Nb)OCompounds and Pb (Mn, Nb) O 33 系化合物及びPb(Ni,Nb)OCompounds and Pb (Ni, Nb) O 33 系化合物のうちの少なくともいずれか一方とを含むと共に、 前記主成分100容量部に対しAlがAlAnd at least one of the series compounds, and Al is Al relative to 100 parts by volume of the main component. 22 OO 33 換算で10〜40容量部含有され、Al凝集体の存在比率であるAl存在比が、25μm□の領域内で50%以上の面積比率を有する複数のAl偏析部が形成され、かつ前記Al偏析部同士の平均離間距離が、中心間距離で100μm以上であることを特徴としている。A plurality of Al segregation parts are formed which have an area ratio of 50% or more in a region of 10 to 40 parts by volume in terms of Al and an Al abundance ratio of 25 μm □, and the Al segregation. The average separation distance between the parts is 100 μm or more in terms of the center-to-center distance.
また、このような圧電磁器の断面を観察したところ、Al偏析部は面積比で0.3〜1.0%の割合で圧電磁器中に分散していることが分かった。Moreover, when the cross section of such a piezoelectric ceramic was observed, it was found that the Al segregated portion was dispersed in the piezoelectric ceramic at an area ratio of 0.3 to 1.0%.
すなわち、本発明の圧電磁器は、前記Al偏析部の存在比率が、断面における面積比で0.3〜1.0%であるのが好ましい。That is, in the piezoelectric ceramic according to the present invention, it is preferable that the Al segregation portion is present in an area ratio of 0.3 to 1.0% in the cross section.
また、本発明に係る圧電部品は、圧電磁器の両主面に電極が形成された圧電部品において、前記圧電磁器が、上記記載の圧電磁器で形成されていることを特徴としている。 Moreover, the piezoelectric component according to the present invention is characterized in that in the piezoelectric component in which electrodes are formed on both main surfaces of the piezoelectric ceramic, the piezoelectric ceramic is formed of the piezoelectric ceramic described above.
本発明の圧電磁器によれば、主成分が、Zr及びTiを含有したPb(Zr,Ti)O 3 系化合物と、Pb(Mn,Nb)O 3 系化合物及びPb(Ni,Nb)O 3 系化合物のうちの少なくともいずれか一方とを含むと共に、前記主成分100容量部に対しAlがAl2O3換算で10〜40容量部含有され、Al凝集体の存在比率であるAl存在比が、25μm□の領域内で50%以上の面積比率を有する複数のAl偏析部が形成され、かつ前記Al偏析部同士の平均離間距離が、中心間距離で100μm以上であるので、電気機械結合係数kを小さくすることができ、したがって温度変化や熱衝撃のみならず、基板実装後の回路からの影響も受け難く、これら外部環境に起因した発振周波数の変動を抑制することができる。そして、大量のAl 2 O 3 を含有させても焼結不足を招くこともなく良好な機械的強度を有する圧電磁器を得ることができる。 According to the piezoelectric ceramic of the present invention, the main components are Pb (Zr, Ti) O 3 based compound containing Zr and Ti , Pb (Mn, Nb) O 3 based compound and Pb (Ni, Nb) O 3. And at least one of the system compounds, Al is contained in an amount of 10 to 40 parts by volume in terms of Al 2 O 3 with respect to 100 parts by volume of the main component, and the Al abundance ratio is an abundance ratio of Al aggregates. A plurality of Al segregation portions having an area ratio of 50% or more in a region of 25 μm □ are formed, and the average separation distance between the Al segregation portions is 100 μm or more at the center-to-center distance. k can be reduced, and therefore, it is difficult to be affected not only by temperature change and thermal shock but also by the circuit after mounting on the substrate, and fluctuations in oscillation frequency due to these external environments can be suppressed. Then, it is possible to obtain a piezoelectric ceramic having good mechanical strength without causing an insufficient sintering may contain a large amount of Al 2 O 3.
また、本発明のような構造を有することで、たとえ電気機械結合係数kが急激に小さくなっても、最大位相θmaxの低下を極力防ぐことができることを見出した。これにより、発振特性の悪化を招くこともなく、低電圧でも安定した発振が可能となる。さらに、共振周波数の温度変化率fr−Tcが小さいことから安定した共振周波数を確保することができ、耐熱性にも優れていることからリフロー処理で加熱されても素子が損傷するのを回避することができる。また、機械的強度の指標となる抗折強度τも大きいことから機械的強度にも優れ、素子の薄型化や高周波化が可能な圧電磁器を実現することができる。 Further, it has been found that the structure as in the present invention can prevent the maximum phase θmax from being lowered as much as possible even if the electromechanical coupling coefficient k rapidly decreases. Thus, stable oscillation can be achieved even at a low voltage without causing deterioration of oscillation characteristics. Furthermore, since the temperature change rate fr-Tc of the resonance frequency is small, a stable resonance frequency can be secured, and since the heat resistance is excellent, the element is prevented from being damaged even when heated by the reflow process. be able to. In addition, since the bending strength τ, which is an index of mechanical strength, is large, it is possible to realize a piezoelectric ceramic that is excellent in mechanical strength and capable of reducing the thickness and frequency of the element.
具体的には、電気機械結合係数k15が40%以下であっても、最大位相θmaxが余り低下せずに87.9°以上を確保することができ、共振周波数frの温度変化率が−30〜+30ppm/℃、耐熱性の指標となる反共振周波数faの変化率が−0.10〜+0.10%、機械的強度の指標となる抗折強度τが180MPa以上であって共振抵抗Zrが3.9Ω以下の圧電磁器を得ることができる。 Specifically, even if the electromechanical coupling coefficient k 15 is 40% or less, the maximum phase θmax can be secured at 87.9 ° or more without much decrease, and the temperature change rate of the resonance frequency fr is − 30 to +30 ppm / ° C., change rate of anti-resonance frequency fa as an index of heat resistance is −0.10 to + 0.10%, bending strength τ as an index of mechanical strength is 180 MPa or more, and resonance resistance Zr Can obtain a piezoelectric ceramic of 3.9Ω or less.
また、前記Al偏析部の存在比率を、圧電磁器焼結体の断面における面積比で0.3〜1.0%の割合でAl偏析部を分散せることにより、上述した作用効果を奏することができる。 In addition, the Al segregation part is dispersed at a ratio of 0.3 to 1.0% in terms of the area ratio in the cross section of the piezoelectric ceramic sintered body, so that the above-described effects can be obtained. it can.
また、本発明に係る圧電部品は、圧電磁器の両主面に電極が形成された圧電部品において、前記圧電磁器が、上記記載の圧電磁器で形成されているので、外部環境の変化や基板実装後の回路からの影響を受けることなく発振周波数の変動を抑制することができ、良好な発振特性を有し、しかも共振周波数の温度特性や耐熱性も良好であり、機械的強度にも優れた高精度かつ信頼性の優れた圧電発振子等の圧電部品を得ることができる。 Further, the piezoelectric component according to the present invention is a piezoelectric component in which electrodes are formed on both main surfaces of the piezoelectric ceramic. Since the piezoelectric ceramic is formed of the piezoelectric ceramic described above, changes in the external environment and board mounting The fluctuation of the oscillation frequency can be suppressed without being affected by the circuit later, the oscillation characteristics are good, the temperature characteristics and heat resistance of the resonance frequency are good, and the mechanical strength is also excellent. A piezoelectric component such as a piezoelectric oscillator having high accuracy and high reliability can be obtained.
次に、本発明の実施の形態を詳説する。 Next, an embodiment of the present invention will be described in detail.
図1は本発明に係る圧電磁器の一実施の形態を模式的に示した断面図である。 FIG. 1 is a sectional view schematically showing an embodiment of a piezoelectric ceramic according to the present invention.
本発明の圧電磁器は、主成分1がPZT等のPb系圧電セラミックからなり、前記主成分100容量部に対し、Al2O3が10〜40容量部含有されており、大部分のAl2O3は主成分1と固溶せず、Al2O3粒子同士が主成分1の結晶粒内、結晶粒界又は三重点に析出し、凝集体を生成してAl偏析部2を形成している。 The piezoelectric ceramic according to the present invention, the main component 1 is made of Pb-based piezoelectric ceramics such as PZT, with respect to the main component as 100 parts by volume, Al 2 O 3 are contained 10 to 40 parts by volume, most of the Al 2 O 3 does not form a solid solution with the main component 1, and Al 2 O 3 particles are precipitated in the crystal grains, grain boundaries, or triple points of the main component 1, forming aggregates to form the Al segregation part 2. ing.
ここで、本発明で定義するAl偏析部2とは、所定領域3(例えば、一辺がXの正方形領域)においてAl2O3粒子の凝集体の存在比率、すなわちAl存在比が面積比率で50%以上を占める領域をいう。具体的には、本実施の形態では、一辺Xが25μmである25μm□を所定領域3とし、斯かる所定領域3内でAl存在比が面積比率で50%以上の領域をAl偏析部2としている。 Here, the Al segregation part 2 defined in the present invention is an abundance ratio of aggregates of Al 2 O 3 particles in a predetermined region 3 (for example, a square region with one side X), that is, an Al abundance ratio is 50 in area ratio. An area that occupies more than%. Specifically, in the present embodiment, 25 μm □ whose one side X is 25 μm is defined as the predetermined region 3, and a region in which Al abundance ratio is 50% or more in the predetermined region 3 is defined as the Al segregation portion 2. Yes.
したがって、Al2O3粒子の凝集体が主成分1の結晶粒内、結晶粒界や三重点に析出していても、所定領域3内でのAl2O3粒子の凝集体が面積比率で50%未満の場合は、本発明で定義するAl偏析部2を形成しないこととなる。 Therefore, even if the aggregate of Al 2 O 3 particles is precipitated in the crystal grains of the main component 1, the crystal grain boundaries, or triple points, the aggregate of Al 2 O 3 particles in the predetermined region 3 is in an area ratio. When it is less than 50%, the Al segregation part 2 defined in the present invention is not formed.
そして、前記Al偏析部2は、その存在比率が、圧電磁器の断面における面積比で0.3〜1.0%となるように圧電磁器中に分散されており、Al偏析部2同士の平均離間距離Lは、Al偏析部2の最長辺を直径とした時の中心間距離(重心)で、100μm以上となるように形成されている。すなわち、Al偏析部2同士は互いに過度に近接しないように適度な平均離間距離Lを有して圧電磁器上に略均一に分散されている。 And the said Al segregation part 2 is disperse | distributed in a piezoelectric ceramic so that the abundance ratio may be 0.3 to 1.0% by the area ratio in the cross section of a piezoelectric ceramic, The average of Al segregation parts 2 mutually The separation distance L is a center-to-center distance (center of gravity) when the longest side of the Al segregation part 2 is the diameter, and is formed to be 100 μm or more. That is, the Al segregation portions 2 are distributed substantially uniformly on the piezoelectric ceramic with an appropriate average separation distance L so as not to be too close to each other.
尚、凝集体としてのAl偏析物2の平均離間距離Lの上限は約250μmが好ましい。 The upper limit of the average separation distance L of the Al segregated material 2 as an aggregate is preferably about 250 μm.
ここで、Alの含有量を上述のように限定したのは以下の理由による。 Here, the reason why the content of Al is limited as described above is as follows.
Alの含有量が主成分100容量部に対し10容量部未満の場合は、Alの含有量が少なく、上述した形態のAl偏析部2を形成することができず、このため電気機械結合係数kも小さくできず、また、抗折強度τの低下を招く。 When the content of Al is less than 10 parts by volume with respect to 100 parts by volume of the main component, the Al content is small and the Al segregation part 2 having the above-described form cannot be formed. Cannot be reduced, and the bending strength τ is reduced.
一方、Alの含有量が主成分100容量部に対し40容量部を超えると、Al偏析部2の圧電磁器に占める比率が多くなり過ぎて最大位相θmaxの低下を招く。 On the other hand, when the content of Al exceeds 40 parts by volume with respect to 100 parts by volume of the main component, the ratio of the Al segregation part 2 to the piezoelectric ceramic increases so much that the maximum phase θmax is lowered.
このような理由から本圧電磁器では、主成分100容量部に対し、Al2O3を10〜40容量部含有させている。そして好ましくは主成分100容量部に対しAl2O3を20〜40容量部とするのが望ましく、これにより電気機械結合係数kが35%以下であり、共振周波数の温度変化率fr−Tcが20ppm/℃以下と小さいながらも、最大位相θmaxがほとんど低下しない圧電磁器を得ることができる。 For this reason, the present piezoelectric ceramic contains 10 to 40 parts by volume of Al 2 O 3 with respect to 100 parts by volume of the main component. Preferably, Al 2 O 3 is 20 to 40 parts by volume with respect to 100 parts by volume of the main component, so that the electromechanical coupling coefficient k is 35% or less, and the temperature change rate fr-Tc of the resonance frequency is A piezoelectric ceramic can be obtained in which the maximum phase θmax hardly decreases although it is as small as 20 ppm / ° C. or less.
このように本実施の形態では、Pb系圧電セラミックからなる主成分100容量部に対し、Al2O3を10〜40容量部含有させ、Al存在比が25μm□の領域内で50%以上の面積比率を有する複数のAl偏析部を形成し、かつ、Al偏析部2同士の平均離間距離Lは100μm以上となるように分散させることにより、最大位相θmaxの低下を招くことなく電気機械結合係数kを小さくすることができ、したがって基板実装後にも回路からの影響を受けることがなく発振周波数の変動を抑制することができ、また良好な発振特性を有することとなって圧電部品の高精度化を実現することが可能となる。 As described above, in this embodiment, 10 to 40 parts by volume of Al 2 O 3 is contained in 100 parts by volume of the main component made of Pb-based piezoelectric ceramic, and the Al abundance ratio is 50% or more in the region of 25 μm □. By forming a plurality of Al segregation portions having an area ratio and dispersing the average separation distance L between the Al segregation portions 2 so as to be 100 μm or more, the electromechanical coupling coefficient does not cause a decrease in the maximum phase θmax. k can be reduced, and therefore fluctuations in the oscillation frequency can be suppressed without being affected by the circuit even after mounting on the board, and it has good oscillation characteristics, resulting in higher accuracy of the piezoelectric component. Can be realized.
また、上述のように電気機械結合係数kを小さくすることができるにも拘わらず、最大位相θmaxの低下を抑制することができるのは、大量のAl2O3粒子の凝集体であるAl偏析部2が近接しないように均一に分散させることによって誘電損失tanδを小さくすることができるためと考えられる。 In addition, although the electromechanical coupling coefficient k can be reduced as described above, the decrease in the maximum phase θmax can be suppressed by the segregation of Al that is an aggregate of a large amount of Al 2 O 3 particles. It is considered that the dielectric loss tan δ can be reduced by uniformly dispersing the portions 2 so as not to be close to each other.
すなわち、誘電損失tanδが小さいとQmax値(=1/tanδ)が大きくなるが、Qmax値が大きくなると発振性が安定し、低電圧で安定した駆動が可能となる。 That is, when the dielectric loss tan δ is small, the Qmax value (= 1 / tan δ) is large. However, when the Qmax value is large, the oscillation property is stabilized and stable driving can be performed at a low voltage.
したがって、Al偏析部2同士が過度に近接しないように均一に分散させることによって、誘電損失tanδを小さくすることができ、これにより最大位相θmaxが低下するのを回避できるものと思われる。 Accordingly, it is considered that the dielectric loss tan δ can be reduced by uniformly dispersing the Al segregating portions 2 so as not to be too close to each other, and thereby the maximum phase θmax can be prevented from being lowered.
さらに、本発明では、上述したように均一分散されたAl偏析部2を形成することにより、良好な共振周波数の温度変化率fr−Tcを得ることができ、しかも耐熱性の劣化をも防ぐことができる。これは、Al2O3粒子の凝集体が、主成分である圧電セラミックと殆ど固溶せずに大部分が結晶粒内、結晶粒界、或いは三重点に析出するため、主成分粒子の結晶構造に影響を与えないためと考えられる。 Furthermore, in the present invention, by forming the Al segregation part 2 that is uniformly dispersed as described above, it is possible to obtain a favorable temperature change rate fr-Tc of the resonance frequency, and also prevent deterioration of heat resistance. Can do. This is because the agglomerates of Al 2 O 3 particles are hardly dissolved in the main component of the piezoelectric ceramic and are mostly precipitated in the crystal grains, at the crystal grain boundaries, or at the triple points. This is probably because it does not affect the structure.
また、本発明では、上述したように主成分100容量部に対し10〜40容量部という大量のAl2O3を含有させながらもAl偏析部2を圧電磁器中に分散させた構成とすることにより、クラック等も生じず、大きな抗折強度τを有し、しかも周波数定数も高く、機械的強度が良好で薄型化を図ることができ、素子の高周波化が可能な圧電磁器を得ることができる。 In the present invention, be configured by dispersing Al segregation area 2 also while containing a large amount of Al 2 O 3 of 10 to 40 parts by volume with respect to the main component of 100 parts by volume, as described above in the piezoelectric porcelain Therefore, it is possible to obtain a piezoelectric ceramic that does not cause cracks, has a large bending strength τ, has a high frequency constant, has a good mechanical strength, can be thinned, and can increase the frequency of the element. it can.
尚、大量のAl2O3を圧電磁器に含有させると焼結性の低下を招くおそれがあることから、主成分となる圧電セラミック中には、Mn、Ni、Cr、Nb、W等を含有させるのも好ましく、例えば、第3成分として、Pb(Mn,Nb)O3やPb(Ni,Nb)O3をPZT(PbZrO3−PbTiO3)に固溶させるのも好ましい。 In addition, if a large amount of Al 2 O 3 is contained in the piezoelectric ceramic, the sinterability may be lowered. Therefore, the piezoelectric ceramic as the main component contains Mn, Ni, Cr, Nb, W, or the like. For example, Pb (Mn, Nb) O 3 or Pb (Ni, Nb) O 3 is preferably dissolved as a third component in PZT (PbZrO 3 —PbTiO 3 ).
図2は上記圧電磁器を使用して製造された圧電部品としての圧電セラミック発振子の一実施の形態を示す断面図である。 FIG. 2 is a cross-sectional view showing an embodiment of a piezoelectric ceramic oscillator as a piezoelectric component manufactured using the piezoelectric ceramic.
該圧電セラミック発振子は、上記圧電磁器と、該圧電磁器の一方の端部が表面露出する形態で前記圧電磁器の両主面に形成された対向電極5a、5bとからなり、矢印A方向に分極処理がなされ、厚みすべりモードで駆動するように構成されている。 The piezoelectric ceramic oscillator includes the piezoelectric ceramic, and opposing electrodes 5a and 5b formed on both main surfaces of the piezoelectric ceramic in such a manner that one end of the piezoelectric ceramic is exposed on the surface, and in the direction of arrow A Polarization processing is performed, and it is configured to be driven in a thickness-slip mode.
次に、上記圧電セラミック発振子の製造方法を説明する。 Next, a method for manufacturing the piezoelectric ceramic oscillator will be described.
まず、圧電セラミック素原料としてPbO等の鉛化合物、ZrO2等のジルコニウム化合物、TiO2等のチタン化合物、及び必要に応じてMnO、Nb2O5、NiO、SiO2等の遷移金属系化合物を用意する。 First, a lead compound such as PbO, a zirconium compound such as ZrO 2 , a titanium compound such as TiO 2 , and a transition metal compound such as MnO, Nb 2 O 5, NiO, and SiO 2 as necessary as a piezoelectric ceramic raw material. prepare.
そして、主成分となる圧電セラミックが、所定組成となるように前記圧電セラミック素原料を秤量する。 Then, the piezoelectric ceramic raw material is weighed so that the piezoelectric ceramic as the main component has a predetermined composition.
次いで、非圧電セラミック素原料であるAl2O3を用意し、前記圧電セラミック100容量部に対しAl2O3が10〜40容量部となるようにAl2O3を秤量する。 Next, Al 2 O 3 which is a non-piezoelectric ceramic raw material is prepared, and Al 2 O 3 is weighed so that Al 2 O 3 is 10 to 40 parts by volume with respect to 100 parts by volume of the piezoelectric ceramic.
次に、これら秤量物を、例えば、直径1〜3mmのPSZボール(Partially Stabilized Zirconia;部分安定化ジルコニア)等の小径の粉砕媒体及び純水と共にボールミルに投入して十分に長時間(例えば24〜72時間)湿式で混合粉砕し、この混合物に(例えば800〜950℃)の仮焼処理を施して仮焼粉末を作製する。 Next, these weighed materials are put into a ball mill together with a small-diameter grinding medium such as PSZ balls (Partially Stabilized Zirconia) having a diameter of 1 to 3 mm and pure water, for example, for a sufficiently long time (for example, 24 to 72 hours) mixed and pulverized in a wet manner, and this mixture is subjected to a calcining treatment (for example, 800 to 950 ° C.) to prepare a calcined powder.
次いで、この仮焼粉末に分散剤や粉砕媒体及び純水と共にボールミルに投入し、長時間(例えば、6〜20時間)湿式で十分に混合、粉砕し、セラミック原料を作製する。 Next, the calcined powder is put into a ball mill together with a dispersant, a pulverizing medium and pure water, and sufficiently mixed and pulverized for a long time (for example, 6 to 20 hours) to prepare a ceramic raw material.
このように本発明ではPb系圧電セラミックである主成分100容量部に対してAl2O3を10〜40容量部添加し、小径の粉砕媒体と共に長時間粉砕することにより、上述したような中心間距離で100μm以上の平均離間距離Lを有するAl偏析部2を形成することが可能となる。 As described above, in the present invention, 10 to 40 parts by volume of Al 2 O 3 is added to 100 parts by volume of the main component, which is a Pb-based piezoelectric ceramic, and the mixture is pulverized for a long time with a small-diameter pulverization medium. It is possible to form the Al segregation part 2 having an average separation distance L of 100 μm or more in the distance.
そしてこの後、このセラミック原料を乾燥させた後、造粒処理を施して粉末状とし、その後プレス加工を施して所定寸法のセラミック成形体を作製し、その後、焼成温度1100〜1200℃で所定時間焼成処理を行い、これにより所望の圧電磁器が作製される。 Then, after drying this ceramic raw material, it is granulated to form a powder, and then pressed to produce a ceramic molded body of a predetermined size, and then fired at 1100 to 1200 ° C. for a predetermined time. A firing process is performed, and thereby a desired piezoelectric ceramic is produced.
尚、前記焼成処理は、焼成して得られる焼結体の密度が収束する温度を1100〜1200℃の間で適切に選定し、これを最適焼成温度として焼成するのが好ましい。 In the firing process, it is preferable to appropriately select a temperature at which the density of the sintered body obtained by firing converges between 1100 to 1200 ° C. and to fire this as the optimum firing temperature.
次に、この圧電磁器の主面及び側面を研磨した後、スパッタリング法等を使用して両主面に対向電極を形成し、その後所定温度に調整されたシリコンオイル中で所定の電界を所定時間負荷して分極し、次いで所定温度(例えば、150〜280℃)で熱エージング処理を施し、これにより圧電発振子が製造される。 Next, after polishing the main surface and side surfaces of this piezoelectric ceramic, a counter electrode is formed on both main surfaces using a sputtering method or the like, and then a predetermined electric field is applied in silicon oil adjusted to a predetermined temperature for a predetermined time. The electrode is loaded and polarized, and then subjected to a heat aging treatment at a predetermined temperature (for example, 150 to 280 ° C.), whereby a piezoelectric oscillator is manufactured.
このように本実施の形態では、圧電セラミック100容量部に対しAl2O3を10〜40容量部添加し、小径の粉砕媒体と共に十分に長時間湿式で混合・粉砕した後、焼成処理を行うことにより、平均離間距離Lが100μm以上のAl偏析部2を形成しているので、上述したように発振周波数の変動が小さく、発振特性に優れ、共振周波数の温度変化率も小さく、耐熱性が良好で機械的強度の優れた圧電発振子を容易に得ることができる。 As described above, in this embodiment, 10 to 40 parts by volume of Al 2 O 3 is added to 100 parts by volume of the piezoelectric ceramic, mixed and pulverized sufficiently with a small-diameter pulverizing medium for a long time, and then fired. Thus, since the Al segregation part 2 having an average separation distance L of 100 μm or more is formed, the oscillation frequency variation is small as described above, the oscillation characteristics are excellent, the temperature change rate of the resonance frequency is small, and the heat resistance is low. A piezoelectric resonator having good mechanical strength is easily obtained.
尚、本発明は上記実施の形態に限定されるものではない。上記実施の形態では、Al2O3を圧電セラミック素原料と共に、湿式で混合粉砕した後、仮焼処理を行っているが、仮焼後にAl2O3を主成分である圧電セラミックに添加し、混合粉砕処理してもよい。 The present invention is not limited to the above embodiment. In the above embodiment, Al 2 O 3 is pulverized by wet mixing and pulverization together with the piezoelectric ceramic raw material, and after calcination, Al 2 O 3 is added to the piezoelectric ceramic as a main component. , Mixed and pulverized.
次に、本発明の実施例及び比較例を具体的に説明する。 Next, examples and comparative examples of the present invention will be specifically described.
まず、セラミック素原料としてPbO、MnO、Nb2O5、ZrO2、TiO2、SiO2、及びAl2O3を用意した。 First, PbO, MnO, Nb 2 O 5 , ZrO 2 , TiO 2 , SiO 2 , and Al 2 O 3 were prepared as ceramic raw materials.
そして、主成分となる圧電セラミックの基本組成が、Pb0.99{(Mn1/3Nb2/3)0.07Zr0.42Ti0.51}O3となるようにPbO、MnO、Nb2O5、ZrO2、及びTiO2を秤量し、さらに、前記基本組成100重量部に対しMnOが0.1重量部、及びSiO2が0.045重量部含有するようにMnO及びSiO2を秤量した。次いで、圧電セラミック(主成分)100容量部に対し0〜42容量部となるようにAl2O3を秤量した。 PbO, MnO, Nb 2 O 5 , ZrO 2 , PbO, MnO, Nb 2 O 5 , ZrO 2 , Pb 0.99 {(Mn 1/3 Nb 2/3 ) 0.07 Zr 0.42 Ti 0.51 } O 3 And TiO 2 were weighed, and MnO and SiO 2 were weighed so that 0.1 part by weight of MnO and 0.045 part by weight of SiO 2 were contained with respect to 100 parts by weight of the basic composition. Next, Al 2 O 3 was weighed so that it would be 0 to 42 parts by volume with respect to 100 parts by volume of the piezoelectric ceramic (main component).
次に、これら秤量物を粉砕媒体としての直径3mmのPSZボール及び純水と共にボールミルに投入して48時間湿式で混合粉砕し、この混合物を温度850℃で4時間仮焼し、仮焼粉末を得た。 Next, these weighed materials are put into a ball mill together with PSZ balls having a diameter of 3 mm as a grinding medium and pure water and mixed and pulverized for 48 hours by wet mixing. Obtained.
次いで、この仮焼粉末に分散剤としてのポリビニルアルコール、PSZボール及び純水と共にボールミルに投入し、15時間湿式で混合、粉砕し、セラミック原料を得た。 Next, the calcined powder was put into a ball mill together with polyvinyl alcohol, PSZ balls and pure water as a dispersant, and mixed and pulverized for 15 hours to obtain a ceramic raw material.
次に、このセラミック原料を乾燥させ後、造粒処理を施して粉末状とし、その後プレス加工を施して所定寸法のセラミック成形体を作製し、その後、温度1100〜1200℃の間での最適焼成温度で3時間焼成処理を行い、縦20mm、横30mm、厚み7mmからなる試料番号1〜8の圧電磁器を得た。 Next, after drying this ceramic raw material, it is granulated to form a powder, and then pressed to produce a ceramic molded body of a predetermined size, and then optimally fired at a temperature between 1100 and 1200 ° C. A firing process was performed at temperature for 3 hours to obtain piezoelectric ceramics having sample numbers 1 to 8 each having a length of 20 mm, a width of 30 mm, and a thickness of 7 mm.
また、原料粉末の粉砕媒体として直径5mmのPSZボールを用い、24時間湿式混合粉砕を行った以外は試料5と同一の製造方法で試料番号9の圧電磁器を作製した。 A piezoelectric ceramic of sample number 9 was produced by the same manufacturing method as sample 5 except that PSZ balls having a diameter of 5 mm were used as a grinding medium for raw material powder and wet mixed grinding was performed for 24 hours.
次に、試料番号1〜9の各々について、日本電子社製:JXA8800Rを使用し、WDX(Wavelength Dispersive X-ray Spectroscopy;波長分散型X線分光法)により、以下の分析条件で各試料を分析し、25μm□の領域内でのAl2O3粒子の凝集体の存在比(Al存在比)を算出した。 Next, for each of sample numbers 1 to 9, using JXA8800R manufactured by JEOL Ltd., each sample was analyzed under the following analysis conditions by WDX (Wavelength Dispersive X-ray Spectroscopy). Then, the abundance ratio (Al abundance ratio) of the aggregates of Al 2 O 3 particles in the region of 25 μm □ was calculated.
〔分析条件〕
加速電圧:15kV
照射電流:100nA
ピクセル数(画素数):256×256
ピクセルサイズ(1画素の大きさ):0.1μm
1つの画素での取り込み時間:50ms
深さ方向の分析領域:約1〜2μm
また、上記のようにして規定したAl存在比が50%を越えたものをAl偏析物と定義し、SEM(Scanning Electron Microscope;走査型電子顕微鏡)を使用し、20kVの加速電圧を試料に印加した状態で写真撮影を行い、画像解析し、圧電磁器中のAl偏析物の存在比(Al偏析物存在比)を求めた。
〔Analysis conditions〕
Acceleration voltage: 15 kV
Irradiation current: 100 nA
Number of pixels (number of pixels): 256 × 256
Pixel size (size of one pixel): 0.1 μm
Capture time for one pixel: 50 ms
Analysis area in the depth direction: about 1 to 2 μm
In addition, the Al abundance ratio specified as described above exceeds 50% is defined as Al segregated material, and an accelerating voltage of 20 kV is applied to the sample using a SEM (Scanning Electron Microscope). In this state, a photograph was taken, the image was analyzed, and the abundance ratio of Al segregated matter in the piezoelectric ceramic (Al segregated matter abundance ratio) was determined.
同様にSEMを使用して20kVの加速電圧を試料に印加した状態で写真撮影を行い、画像解析し、Al偏析部の中心間距離(重心)を測定し、Al偏析部同士の離間距離の平均値、すなわち平均離間距離を求めた。 Similarly, using a SEM, take a photograph with an acceleration voltage of 20 kV applied to the sample, analyze the image, measure the center-to-center distance (center of gravity) of the Al segregation parts, and average the separation distance between the Al segregation parts. The value, ie the average separation distance, was determined.
表1は試料番号1〜9のAl2O3含有量、25μm□の領域内でのAl存在比、Al偏析部存在比、及び前記平均離間距離を示している。 Table 1 shows the Al 2 O 3 content of Sample Nos. 1 to 9, the Al abundance ratio in the region of 25 μm □, the Al segregation portion abundance ratio, and the average separation distance.
試料番号1は、圧電磁器中にAl2O3が全く含まれていない試料であり、特性については後述する。 Sample No. 1 is a sample in which no Al 2 O 3 is contained in the piezoelectric ceramic, and the characteristics will be described later.
試料番号2は、Al2O3含有量が主成分100容量部に対し2容量部と少なく、Al2O3粒子同士の凝集は少なく、Al存在比が1.9%と低く、本発明で定義するAl偏析部を形成することができなかった。 Sample No. 2 has an Al 2 O 3 content of 2 parts by volume with respect to 100 parts by volume of the main component, little aggregation of Al 2 O 3 particles, and an Al abundance ratio as low as 1.9%. The Al segregation part to be defined could not be formed.
試料番号3も、Al2O3含有量が主成分100容量部に対し6容量部と少なく、Al2O3粒子同士の凝集は少なく、Al存在比も8.3%と低く、Al偏析部を形成することができなかった。 Sample No. 3 also has an Al 2 O 3 content of 6 parts by volume with respect to 100 parts by volume of the main component, little aggregation of Al 2 O 3 particles, and an Al abundance ratio as low as 8.3%. Could not be formed.
試料番号8は、Al2O3含有量が主成分100容量部に対し42容量部と多すぎるため、Al偏析物存在比が1.21%となって1.0%を超えており、Al偏析部同士の平均離間距離が81μmと小さく、100μm未満になることが分かった。 Sample No. 8 has an Al 2 O 3 content of 42 parts by volume with respect to 100 parts by volume of the main component, so the Al segregated substance abundance ratio is 1.21% and exceeds 1.0%. It was found that the average separation distance between the segregated portions was as small as 81 μm and less than 100 μm.
試料番号9は、Al2O3含有量が主成分100容量部に対し20容量部ではあるが、原料粉末の粉砕媒体として直径が5mmの大きなPSZボールを使用しており、しかも湿式粉砕時間も24時間と短いため、Al存在比が9.3%と低く、本発明でいうAl偏析部を形成することがなかった。 Sample No. 9 has an Al 2 O 3 content of 20 parts by volume with respect to 100 parts by volume of the main component, but a large PSZ ball having a diameter of 5 mm is used as a grinding medium for the raw material powder, and the wet grinding time is also long. Since it was as short as 24 hours, the Al abundance ratio was as low as 9.3%, and the Al segregation part referred to in the present invention was not formed.
これに対し試料番号4〜7は、Al2O3含有量が主成分100容量部に対し10〜40容量部であり、Al存在比は50%以上、Al偏析部存在比は0.32〜0.91%、Al偏析部同士の平均離間距離は106〜208μmとなって100μm以上となることが確認された。 In contrast, Sample Nos. 4 to 7 have an Al 2 O 3 content of 10 to 40 parts by volume with respect to 100 parts by volume of the main component, an Al abundance ratio of 50% or more, and an Al segregation part abundance ratio of 0.32 to 2. It was confirmed that the average separation distance between Al segregation parts was 0.91%, and was 106 to 208 μm, which was 100 μm or more.
図3は、Al2O3の含有量(容量部)とAl存在比との関係をプロットした図である。 FIG. 3 is a graph plotting the relationship between the content of Al 2 O 3 (capacity part) and the Al abundance ratio.
この図3から明らかなように同じ製造条件であればAl2O3の含有量が主成分である圧電セラミック100容量部に対し10容量部以上になると、Al存在比が50%以上になることが分かる。 As is apparent from FIG. 3, under the same manufacturing conditions, when the content of Al 2 O 3 is 10 capacity parts or more with respect to 100 capacity parts of the piezoelectric ceramic as the main component, the Al abundance ratio is 50% or more. I understand.
図4は試料番号3のSEM写真であり、図4(a)は倍率1000倍で撮影した図であり、図4(b)は要部を倍率10000倍に拡大して撮影した図である。 FIG. 4 is an SEM photograph of Sample No. 3, FIG. 4 (a) is a photograph taken at a magnification of 1000 times, and FIG. 4 (b) is a photograph taken at a magnification of 10,000 times at a main part.
試料番号3は、Al含有量が主成分100容量部に対し6容量部と少ないため、図4(b)に示すようにAl2O3は凝集せずに粒子の状態で結晶粒界に析出し、しかも図4(a)に示すように粒子の状態で点在している。 In sample No. 3, since the Al content is as small as 6 parts by volume with respect to 100 parts by volume of the main component, as shown in FIG. 4 (b), Al 2 O 3 does not agglomerate and precipitates at the grain boundaries in the form of particles. Moreover, as shown in FIG. 4A, the particles are scattered in a state of particles.
一方、図5は試料番号6のSEM写真であり、図5(a)は倍率1000倍で撮影した図であり、図5(b)は要部を倍率10000倍に拡大して撮影した図である。 On the other hand, FIG. 5 is an SEM photograph of Sample No. 6, FIG. 5 (a) is a view taken at a magnification of 1000 times, and FIG. 5 (b) is a view taken at a magnification of 10,000 times for the main part. is there.
試料番号6は、Al含有量が主成分100容量部に対し30容量部と多いため、図5(b)に示すように、多量の微粉状のAl2O3粒子が互いに凝集してAl偏析部を形成し、該Al偏析部が結晶粒界に析出し、しかも、Al偏析部の状態で均一に分散していることが分かる。 In Sample No. 6, since the Al content is as large as 30 parts by volume with respect to 100 parts by volume of the main component, as shown in FIG. 5 (b), a large amount of finely powdered Al 2 O 3 particles aggregate to each other to cause Al segregation. It can be seen that the Al segregation part is precipitated at the grain boundary and is uniformly dispersed in the state of the Al segregation part.
次に、上記試料番号1〜9の圧電磁器の各側面を研磨した後、スパッタリング法を使用して両主面に対向電極を形成し、その後シリコンオイル中で電界:3.0kV/mm、処理温度:100℃、処理時間:30分の条件で分極処理を施し、次いで温度270℃に調整されたオーブンに60分間収容し、熱エージング処理を施した。 Next, after polishing each side surface of the piezoelectric ceramics of sample numbers 1 to 9, a counter electrode is formed on both main surfaces using a sputtering method, and then an electric field: 3.0 kV / mm in silicon oil, treatment Polarization treatment was performed under the conditions of temperature: 100 ° C., treatment time: 30 minutes, and then housed in an oven adjusted to a temperature of 270 ° C. for 60 minutes, followed by heat aging treatment.
次いで、この熱エージング処理された圧電磁器を切断し、縦7mm、横2mm、厚み0.2mmからなる試料番号1〜9の厚みすべり振動モードの圧電素子を作製した。 Next, the piezoelectric ceramic subjected to the heat aging treatment was cut to produce a thickness-shear vibration mode piezoelectric element of sample numbers 1 to 9 having a length of 7 mm, a width of 2 mm, and a thickness of 0.2 mm.
次に、各試料番号1〜9の圧電素子について、インピーダンスアナライザ(アジレント・テクノロジー社製HP4194A)を使用し、電気機械結合係数k15、最大位相θmax、比誘電率εr、周波数定数、共振周波数の温度変化率fr−Tc及び共振抵抗Zrを測定した。 Next, for each of the piezoelectric elements of sample numbers 1 to 9, an impedance analyzer (HP4194A manufactured by Agilent Technologies) is used, and the electromechanical coupling coefficient k 15 , the maximum phase θmax, the relative dielectric constant εr, the frequency constant, and the resonance frequency The temperature change rate fr-Tc and the resonance resistance Zr were measured.
電気機械結合係数k15は、0.5Vの電圧を試料に印加したときの共振周波数fr及び反共振周波数faを測定し、数式(1)に基づいて算出した。尚、電気機械結合係数k15は、40%以下のものを「良」とした。 Electromechanical coupling coefficient k 15 is, the voltage of 0.5V was measured resonant frequency fr and anti-resonant frequency fa of the time of applying to the sample was calculated based on Equation (1). In addition, the electromechanical coupling coefficient k 15 is 40% or less as “good”.
ここで、Δfは共振周波数frと反共振周波数faとの差である。 Here, Δf is the difference between the resonance frequency fr and the antiresonance frequency fa.
また、最大位相θmaxは、0.5Vの電圧を試料に印加したときのインピーダンス特性を測定し、その測定結果から共振点と反共振点との間の位相角が最大となる角度を算出した。尚、最大位相θmaxは、87.9°以上のものを「良」とした。 For the maximum phase θmax, the impedance characteristic when a voltage of 0.5 V was applied to the sample was measured, and the angle at which the phase angle between the resonance point and the antiresonance point was maximum was calculated from the measurement result. A maximum phase θmax of “87.9 °” or more was determined as “good”.
また 比誘電率εrは、静電容量を測定し、該静電容量と試料寸法とから求めた。 Further, the relative dielectric constant εr was obtained from the capacitance and the sample size by measuring the capacitance.
また、周波数定数は反共振周波数faと圧電素子の厚みtを乗算して求めた。 The frequency constant was determined by multiplying the antiresonance frequency fa and the thickness t of the piezoelectric element.
さらに、共振周波数の温度変化率fr−Tcは、0.5Vの電圧を試料に印加して−40℃〜+125℃における共振周波数を測定し、数式(2)に基づいて求めた。尚、共振周波数の温度変化率fr−Tcは、−30〜+30ppm/℃の範囲内のものを「良」とし、共振周波数の温度特性を評価した。 Further, the temperature change rate fr-Tc of the resonance frequency was obtained based on the mathematical formula (2) by applying a voltage of 0.5 V to the sample, measuring the resonance frequency at −40 ° C. to + 125 ° C. The temperature change rate fr-Tc of the resonance frequency was evaluated as “good” when the temperature was within the range of −30 to +30 ppm / ° C.
fr−Tc=[(frmax−frmin)×{125−(−40)}/fr20)]
×106 …(2)
ここで、frmaxは−40〜+125℃における共振周波数frの最大値、frminは−40〜+125℃における共振周波数frの最小値、fr20は温度20℃における共振周波数である。
fr−Tc = [(frmax−frmin) × {125 − (− 40)} / fr 20 )]
× 10 6 (2)
Here, frmax is the maximum value of the resonance frequency fr at −40 to + 125 ° C., frmin is the minimum value of the resonance frequency fr at −40 to + 125 ° C., and fr 20 is the resonance frequency at a temperature of 20 ° C.
また、各試料を温度260℃に調整されたリフロー炉に1回通過させて1時間放置し、リフロー通過前の反共振周波数fa1とリフロー炉通過後1時間経過したときの反共振周波数fa2とを測定し、数式(3)に基づいて反共振周波数の変化率Δfaを算出し、耐熱性を評価した。尚、耐熱性評価は反共振周波数の変化率Δfaが−0.10〜+0.10%の範囲内のものを「良」とした。 In addition, each sample is passed once through a reflow furnace adjusted to a temperature of 260 ° C. and left for 1 hour. The anti-resonance frequency fa 1 before passing through the reflow furnace and the anti-resonance frequency fa 2 when passing through the reflow furnace after 1 hour have passed. And the change rate Δfa of the antiresonance frequency was calculated based on the formula (3), and the heat resistance was evaluated. In the heat resistance evaluation, “good” was evaluated when the anti-resonance frequency change rate Δfa was in the range of −0.10 to + 0.10%.
Δfa=(fa2−fa1)/fa1×100 …(3)
また、3点曲げ試験を行って抗折強度τを測定し、機械的強度を評価した。
Δfa = (fa 2 −fa 1 ) / fa 1 × 100 (3)
Further, the bending strength τ was measured by performing a three-point bending test, and the mechanical strength was evaluated.
すなわち、各試料の両端を支持し、その中央に荷重を負荷し、各試料が破壊した時の荷重を測定して抗折強度τを算出し、機械的強度を評価した。尚、機械的強度は、抗折強度τが180MPa以上のものを「良」とした。 That is, both ends of each sample were supported, a load was applied to the center thereof, the bending strength τ was calculated by measuring the load when each sample was broken, and the mechanical strength was evaluated. As the mechanical strength, those having a bending strength τ of 180 MPa or more were evaluated as “good”.
また、共振抵抗Zrは、0.5Vの電圧を印加してインピーダンスアナライザを用いて測定した。 The resonance resistance Zr was measured using an impedance analyzer with a voltage of 0.5 V applied.
表2は各測定結果を示している。 Table 2 shows the measurement results.
試料番号1は、Al2O3が全く含まれていないため(表1参照)、電気機械結合係数k15が44.3%となって40%を超えており、したがって外部環境の変化や基板実装後の回路からの影響に対し、発振周波数の変動を十分に抑制することができないことが分かった。 Sample No. 1 does not contain Al 2 O 3 at all (see Table 1), so the electromechanical coupling coefficient k 15 is 44.3%, which exceeds 40%. It was found that fluctuations in the oscillation frequency could not be sufficiently suppressed against the influence from the circuit after mounting.
試料番号2は、Al2O3を含有しているものの、その含有量は主成分100容量部に対し2容量部と少なく、Al存在比が1.9%であり、Al偏析物が測定できないことから(表1参照)、電気機械結合係数k15が43.2%となって40%を超えており、したがって試料番号1と同様、外部環境の変化や基板実装後の回路からの影響に対し、発振周波数の変動を十分に抑制することができないことが分かった。 Sample No. 2 contains Al 2 O 3 , but its content is as small as 2 parts by volume with respect to 100 parts by volume of the main component, the Al abundance ratio is 1.9%, and Al segregated matter cannot be measured. Therefore (see Table 1), the electromechanical coupling coefficient k 15 is 43.2%, which exceeds 40%. Therefore, as with sample number 1, it is affected by changes in the external environment and effects from the circuit after mounting on the board. On the other hand, it was found that fluctuations in the oscillation frequency could not be sufficiently suppressed.
試料番号3も、Al2O3を含有しているものの、その含有量は主成分100容量部に対し6容量部と少なく、Al存在比が8.3%であり、Al偏析物が測定できないことから(表1参照)、電気機械結合係数k15が41.3%となって40%を超えており、したがって試料番号1と同様、外部環境の変化や基板実装後の回路からの影響に対し、発振周波数の変動を十分に抑制することができないことが分かった。 Sample No. 3 also contains Al 2 O 3 , but its content is as small as 6 parts by volume with respect to 100 parts by volume of the main component, the Al abundance ratio is 8.3%, and Al segregated matter cannot be measured. since (see Table 1), the electromechanical coupling coefficient k 15 is above 40% becomes 41.3%, thus the same manner as sample No. 1, the influence from the circuit after the change and the substrate mounting the external environment On the other hand, it was found that fluctuations in the oscillation frequency could not be sufficiently suppressed.
試料番号8は、Al2O3の含有量が主成分100容量部に対し42容量部と過剰であるため(表1参照)、共振抵抗Zrが4.5Ωと高く、また最大位相θmaxが87.5°と低く、発振特性の悪化を招くおそれがある。 In Sample No. 8, the content of Al 2 O 3 is as large as 42 parts by volume with respect to 100 parts by volume of the main component (see Table 1), so that the resonance resistance Zr is as high as 4.5Ω and the maximum phase θmax is 87. As low as .5 °, the oscillation characteristics may be deteriorated.
試料番号9は、Al存在比が9.3%であり、50%未満のため、電気機械結合係数k15は低くなるものの、最大位相θmaxが45.0°と極端に低くなり、共振周波数の温度変化率fr−Tc、抗折強度τ、及び共振抵抗Zrも悪化することが分かった。 Sample No. 9 is Al abundance ratio 9.3% for less than 50%, although made electromechanical coupling coefficient k 15 is low, the maximum phase θmax is 45.0 ° and the extremely low, the resonant frequency It was found that the temperature change rate fr-Tc, the bending strength τ, and the resonance resistance Zr were also deteriorated.
これに対し試料番号4〜7は、Al2O3の含有量が主成分100容量部に対し10〜40容量部と本発明範囲内であり(表1参照)、したがって電気機械結合係数k15は40.0%以下と小さくできるにも拘わらず、最大位相θmaxは87.9°以上を確保することができ、周波数定数も高く、共振周波数の温度変化率fr−Tcも−30〜+30ppm/℃の範囲内にあり、反共振周波数の変化率も−0.10〜+0.10%以内となって耐熱性も良好であり、さらに抗折強度τも180MPa以上となって機械的強度にも優れ、かつ共振抵抗Zrも4.0Ω以下の圧電素子を得ることができることが分かった。 On the other hand, Sample Nos. 4 to 7 have an Al 2 O 3 content of 10 to 40 parts by volume with respect to 100 parts by volume of the main component (see Table 1), and therefore the electromechanical coupling coefficient k 15. Can be as small as 40.0% or less, the maximum phase θmax is 87.9 ° or more, the frequency constant is high, and the temperature change rate fr-Tc of the resonance frequency is also −30 to +30 ppm / Within the range of ° C., the rate of change of the anti-resonance frequency is also within −0.10 to + 0.10%, the heat resistance is good, and the bending strength τ is 180 MPa or more, so that the mechanical strength is also improved. It was found that a piezoelectric element having excellent resonance resistance Zr of 4.0Ω or less can be obtained.
また、試料番号5〜7から明らかなように、Al2O3の含有量を主成分100容量部に対し20〜40容量部とすることにより、電気機械結合係数k15は35%以下と小さいにも拘わらず、最大位相θmaxを87.9°以上と大きくすることができる他、しかも温度変化率fr−Tcが±20ppm/℃の範囲内と小さくすることができ、抗折強度τも190MPa以上となって良好な機械的強度の得られることが分かった。 Further, as apparent from the sample numbers 5 to 7, the electromechanical coupling coefficient k 15 is as small as 35% or less by setting the content of Al 2 O 3 to 20 to 40 parts by volume with respect to 100 parts by volume of the main component. Nevertheless, the maximum phase θmax can be increased to 87.9 ° or more, and the temperature change rate fr-Tc can be decreased within a range of ± 20 ppm / ° C, and the bending strength τ is also 190 MPa. Thus, it was found that good mechanical strength can be obtained.
図6はAl2O3含有量と電気機械結合係数k15((a))、最大位相θmax((b))、及び抗折強度τ((c))との関係をそれぞれプロットした図である。 FIG. 6 is a graph plotting the relationship between the Al 2 O 3 content, the electromechanical coupling coefficient k 15 ((a)), the maximum phase θmax ((b)), and the bending strength τ ((c)). is there.
すなわち、Al2O3の含有量を主成分100容量部に対し10容量部〜40重量部とし、本発明のAl存在比及びAl偏析物の構造を有することにより、図6(a)に示すように電気機械結合係数k15を40%以下にすることができ、図6(c)に示すように抗折強度τを190MPa以上にすることができ、また、図6(b)に示すように最大位相θmaxを87.9°以上とすることができる。 That is, the content of Al 2 O 3 is 10 to 40 parts by weight with respect to 100 parts by volume of the main component, and the Al abundance ratio and the structure of the Al segregated material of the present invention are shown in FIG. Thus, the electromechanical coupling coefficient k 15 can be made 40% or less, the bending strength τ can be made 190 MPa or more as shown in FIG. 6 (c), and as shown in FIG. 6 (b). In addition, the maximum phase θmax can be 87.9 ° or more.
以上より、電気機械結合係数k15が低下すると最大位相θmaxも低下すると推測されていたが、本発明のようにAl2O3を多く添加し、本発明の構造を有することによって、最大位相θmaxが余り低下しないことが分かった。 From the above, it has been estimated that when the electromechanical coupling coefficient k 15 decreases, the maximum phase θmax also decreases. However, by adding a large amount of Al 2 O 3 as in the present invention and having the structure of the present invention, the maximum phase θmax is reduced. Was found not to decrease much.
セラミック素原料としてPbO、NiO、Nb2O5、ZrO2、TiO2、MnO、及びAl2O3を用意した。 PbO, NiO, Nb 2 O 5 , ZrO 2 , TiO 2 , MnO, and Al 2 O 3 were prepared as ceramic raw materials.
そして、主成分となる圧電セラミックの基本組成が、Pb0.99{(Ni1/3Nb2/3)0.07Zr0.42Ti0.51}O3となるようにPbO、NiO、Nb2O5、ZrO2、及びTiO2を秤量し、さらに、前記基本組成100重量部に対しMnOが0.6重量部含有するようにMnOを秤量した。次いで、圧電セラミック(主成分)100容量部に対し0〜42容量部となるようにAl2O3を秤量した。 PbO, NiO, Nb 2 O 5 , ZrO 2 , PbO, NiO, Nb 2 O 5 , ZrO 2 , and Pb 0.99 {(Ni 1/3 Nb 2/3 ) 0.07 Zr 0.42 Ti 0.51 } O 3 And TiO 2 were weighed, and MnO was weighed so that MnO contained 0.6 parts by weight with respect to 100 parts by weight of the basic composition. Next, Al 2 O 3 was weighed so that it would be 0 to 42 parts by volume with respect to 100 parts by volume of the piezoelectric ceramic (main component).
この後は〔実施例1〕の試料番号1〜9のそれぞれの製造方法と同様の方法・手順を使用し、試料番号11〜19の圧電磁器を作製した。 Thereafter, the same methods and procedures as the respective manufacturing methods of Sample Nos. 1 to 9 in [Example 1] were used, and piezoelectric ceramics Nos. 11 to 19 were produced.
次に、試料番号11〜19の各々について、〔実施例1〕と同様の方法・手順でAl存在比、Al偏析物存在比、平均離間距離を各々測定した。 Next, for each of sample numbers 11 to 19, the Al abundance ratio, the Al segregated substance abundance ratio, and the average separation distance were measured by the same method and procedure as in [Example 1].
表3は試料番号11〜19のAl2O3含有量、Al存在比、Al偏析物存在比、及び平均離間距離を示している。 Table 3 shows the Al 2 O 3 content, Al abundance ratio, Al segregated substance abundance ratio, and average separation distance of sample numbers 11 to 19.
試料番号11は、圧電磁器中にAl2O3が全く含まれていない試料であり、特性については後述する。 Sample No. 11 is a sample in which Al 2 O 3 is not contained in the piezoelectric ceramic, and the characteristics will be described later.
試料番号12は、Al2O3含有量が主成分100容量部に対し2容量部と少なく、Al2O3粒子同士の凝集は少なく、Al存在比が1.4%と低く、本発明で定義するAl偏析部を形成することができなかった。 Sample No. 12 has an Al 2 O 3 content of 2 parts by volume with respect to 100 parts by volume of the main component, little aggregation of Al 2 O 3 particles, and an Al abundance ratio as low as 1.4%. The Al segregation part to be defined could not be formed.
試料番号13も、Al2O3含有量が主成分100容量部に対し6容量部と少なく、Al2O3粒子同士の凝集は少なく、Al存在比も9.0%と低く、Al偏析部を形成することができなかった。 Sample No. 13 also has an Al 2 O 3 content of 6 parts by volume with respect to 100 parts by volume of the main component, little aggregation of Al 2 O 3 particles, and an Al abundance ratio as low as 9.0%. Could not be formed.
試料番号18は、Al2O3含有量が主成分100容量部に対し42容量部と多く、Al偏析物存在比が1.19%と1.0%を超えており、Al偏析部同士の離間距離が83μmと小さく、100μm未満になることが分かった。 Sample No. 18 has an Al 2 O 3 content as high as 42 parts by volume with respect to 100 parts by volume of the main component, and the Al segregated substance abundance ratio exceeds 1.19% and 1.0%. It was found that the separation distance was as small as 83 μm and less than 100 μm.
試料番号19は、Al2O3含有量が主成分100容量部に対し20容量部ではあるが、原料粉末の粉砕媒体として直径が5mmの大きなPSZボールを使用しており、しかも湿式粉砕時間も24時間と短いため、Al存在比が9.5%と低く、本発明でいうAl偏析部を形成することがなかった。 Sample No. 19 has an Al 2 O 3 content of 20 parts by volume with respect to 100 parts by volume of the main component, but uses a large PSZ ball having a diameter of 5 mm as a grinding medium for the raw material powder, and also has a wet grinding time. Since it was as short as 24 hours, the Al abundance ratio was as low as 9.5%, and the Al segregation part referred to in the present invention was not formed.
これに対し試料番号14〜17は、Al2O3含有量が主成分100容量部に対し10〜40容量部でありAl存在比は50%以上、Al偏析部の存在比率は0.31〜0.95%、Al偏析部同士の離間距離が104〜230μmとなって100μm以上となることが確認された。 In contrast, Sample Nos. 14 to 17 have an Al 2 O 3 content of 10 to 40 parts by volume with respect to 100 parts by volume of the main component, an Al abundance ratio of 50% or more, and an abundance ratio of Al segregation parts of 0.31 to 1. It was confirmed that the separation distance between Al segregation parts was 0.95%, which was 104 to 230 μm and 100 μm or more.
次に、上記各試料について、〔実施例1〕と同様の方法・手順で試料番号11〜19の圧電素子を作製した。 Next, with respect to each of the above samples, piezoelectric elements of sample numbers 11 to 19 were produced by the same method and procedure as in [Example 1].
次に、各試料番号11〜19の圧電素子について、〔実施例1〕と同様の方法・手順で電気機械結合係数k15、最大位相θmax、比誘電率εr、周波数定数、共振周波数の温度変化率fr−Tc、反共振周波数の変化率、抗折強度τ及び共振抵抗Zrを測定した。 Next, with respect to the piezoelectric elements of Sample Nos. 11 to 19, the electromechanical coupling coefficient k 15 , the maximum phase θmax, the relative permittivity εr, the frequency constant, and the temperature change of the resonance frequency are performed in the same manner and procedure as in Example 1. The rate fr-Tc, the anti-resonance frequency change rate, the bending strength τ, and the resonance resistance Zr were measured.
表4はその測定結果を示している。 Table 4 shows the measurement results.
試料番号11は、Al2O3が全く含まれていないため、電気機械結合係数k15が44.4%となって40%を超えており、したがって外部環境の変化や基板実装後の回路からの影響に対し、発振周波数の変動を十分に抑制することができないことが分かった。 Since sample number 11 does not contain Al 2 O 3 at all, the electromechanical coupling coefficient k 15 is 44.4%, which exceeds 40%. Therefore, from the change in the external environment and the circuit after mounting on the board It was found that the fluctuation of the oscillation frequency could not be sufficiently suppressed against the influence of
試料番号12は、Al2O3を含有しているものの、その含有量は主成分100容量部に対し2容量部と少なく、Al存在比が1.4%であり、Al偏析物が測定できないことから(表3参照)、電気機械結合係数k15が43.2%となって40%を超えており、したがって試料番号11と同様、外部環境の変化や基板実装後の回路からの影響に対し、発振周波数の変動を十分に抑制することができないことが分かった。 Sample No. 12 contains Al 2 O 3 , but its content is as small as 2 parts by volume with respect to 100 parts by volume of the main component, the Al abundance ratio is 1.4%, and Al segregated matter cannot be measured. (see Table 3) since the electromechanical coupling factor k 15 is above 40% becomes 43.2%, thus the same manner as sample No. 11, the influence from the circuit after the change and the substrate mounting the external environment On the other hand, it was found that fluctuations in the oscillation frequency could not be sufficiently suppressed.
試料番号13も、Al2O3を含有しているものの、その含有量は主成分100容量部に対し6容量部と少なく、Al存在比が9.0%であり、Al偏析物が測定できないことから(表3参照)、電気機械結合係数k15が41.3%となって40%を超えており、したがって試料番号11と同様、外部環境の変化や基板実装後の回路からの影響に対し、発振周波数の変動を十分に抑制することができないことが分かった。 Sample No. 13 also contains Al 2 O 3 , but its content is as small as 6 parts by volume with respect to 100 parts by volume of the main component, Al abundance is 9.0%, and Al segregated matter cannot be measured. Therefore (see Table 3), the electromechanical coupling coefficient k 15 is 41.3%, which exceeds 40%. Therefore, like the sample No. 11, it is affected by the change of the external environment and the influence from the circuit after mounting on the board. On the other hand, it was found that fluctuations in the oscillation frequency could not be sufficiently suppressed.
試料番号18は、Al2O3の含有量が主成分100容量部に対し42容量部と過剰であるため(表3参照)、共振抵抗Zrが4.4Ω、最大位相θmaxが87.6°と低下し、発振特性の悪化を招くおそれがある。 In Sample No. 18, the content of Al 2 O 3 is an excess of 42 parts by volume with respect to 100 parts by volume of the main component (see Table 3), so that the resonance resistance Zr is 4.4Ω and the maximum phase θmax is 87.6 °. There is a risk that the oscillation characteristics will deteriorate.
試料番号19は、Al存在比が9.5%であり、電気機械結合係数k15が低くなるものの、最大位相θmaxが39.6°と極端に低くなり、共振周波数の温度変化率fr−Tc、抗折強度τ、及び共振抵抗Zrも悪化することが分かった。 Sample No. 19 has an Al abundance ratio of 9.5%, and the electromechanical coupling coefficient k 15 is low, but the maximum phase θmax is extremely low, 39.6 °, and the temperature change rate fr-Tc of the resonance frequency. It was also found that the bending strength τ and the resonance resistance Zr were also deteriorated.
これに対し試料番号14〜17は、Al2O3の含有量が主成分100容量部に対し10〜40容量部と本発明範囲内であり(表3参照)、したがって電気機械結合係数k15は40.0%以下と小さくできるにも拘わらず、最大位相θmaxは88.0°以上を確保することができ、周波数定数も高く、共振周波数の温度変化率fr−Tcも−30〜+30ppm/℃の範囲内にあり、反共振周波数の変化率も−0.10〜+0.10%以内となって耐熱性も良好であり、さらに抗折強度τも180MPa以上となって機械的強度の優れた圧電素子を得ることができる。 In contrast, Sample Nos. 14 to 17 have an Al 2 O 3 content of 10 to 40 parts by volume with respect to 100 parts by volume of the main component (see Table 3), and therefore the electromechanical coupling coefficient k 15. Can be as small as 40.0% or less, the maximum phase θmax can be ensured to be 88.0 ° or more, the frequency constant is high, and the temperature change rate fr-Tc of the resonance frequency is also −30 to +30 ppm / Within the range of ℃, the rate of change of anti-resonance frequency is within -0.10 to + 0.10%, heat resistance is good, and bending strength τ is 180 MPa or more, and mechanical strength is excellent A piezoelectric element can be obtained.
また、試料番号15〜17から明らかなように、Al2O3の含有量を主成分100容量部に対し20〜40容量部とすることにより、電気機械結合係数k15が35%以下と小さいにも拘わらず、最大位相θmaxは88.0°以上を確保することができる他、温度変化率fr−Tcも±20ppm/℃の範囲内と小さくすることができ、抗折強度τも良好な結果が得られた。 Further, as apparent from the sample numbers 15 to 17, the electromechanical coupling coefficient k 15 is as small as 35% or less by setting the content of Al 2 O 3 to 20 to 40 parts by volume with respect to 100 parts by volume of the main component. Nevertheless, the maximum phase θmax can be ensured to be 88.0 ° or more, the temperature change rate fr-Tc can be reduced within the range of ± 20 ppm / ° C, and the bending strength τ is also good. Results were obtained.
図7はAl2O3含有量と電気機械結合係数k15((a))、最大位相θmax((b))、及び抗折強度τ((c))との関係をそれぞれプロットした図である。 FIG. 7 is a graph plotting the relationship between the Al 2 O 3 content and the electromechanical coupling coefficient k 15 ((a)), the maximum phase θmax ((b)), and the bending strength τ ((c)). is there.
すなわち、Al2O3の含有量を主成分100容量部に対し10容量部以上とし、本発明のAl存在比、Al偏析物の構造を有することにより、図7(a)に示すように電気機械結合係数k15を40%以下にすることができ、図7(c)に示すように抗折強度τを180MPa以上にすることができる。また、図7(b)に示すように最大位相θmaxを88.0°以上にすることができる。 That is, by making the content of Al 2 O 3 10 parts by volume or more with respect to 100 parts by volume of the main component, and having the Al abundance ratio of the present invention and the structure of the Al segregated material, as shown in FIG. The mechanical coupling coefficient k 15 can be made 40% or less, and the bending strength τ can be made 180 MPa or more as shown in FIG. Further, as shown in FIG. 7B, the maximum phase θmax can be set to 88.0 ° or more.
以上より、電気機械結合係数k15が低下すると最大位相θmaxも低下すると推測されていたが、本発明のようにAl2O3を多く添加し、本発明の構造を有することによって、最大位相θmaxが余り低下しないことが分かった。 From the above, it has been estimated that when the electromechanical coupling coefficient k 15 decreases, the maximum phase θmax also decreases. However, by adding a large amount of Al 2 O 3 as in the present invention and having the structure of the present invention, the maximum phase θmax is reduced. Was found not to decrease much.
〔実施例1〕でAl2O3に代えて、Al2O3と同様、結晶粒界に析出するSiO2を使用し、本発明実施例1と比較した。 In place of Al 2 O 3 in [Example 1], SiO 2 precipitated at the grain boundaries was used in the same manner as Al 2 O 3 and compared with Example 1 of the present invention.
すなわち、〔実施例1〕と同一組成からなる主成分100容量部に対しSiO2が0〜8容量部となるようにSiO2を秤量し、それ以外は〔実施例1〕と同様の方法・手順で圧電磁器を作製した。 That is, SiO 2 is weighed so that SiO 2 is 0 to 8 parts by volume with respect to 100 parts by volume of the main component having the same composition as [Example 1]. Otherwise, the same method as in [Example 1] A piezoelectric ceramic was produced according to the procedure.
尚、SiO2の含有量が主成分100容量部に対し4容量部を超えると正常な焼結体を作製することができず、このためSiO2の含有量が主成分100容量部に対し0、2、4容量部の3種類の試料について、〔実施例1〕と同様の方法・手順で圧電素子を作製し、電気機械結合係数k15、最大位相θmax、及び共振周波数の温度変化率fr−Tcを測定した。 When the content of SiO 2 exceeds 4 parts by volume with respect to 100 parts by volume of the main component, a normal sintered body cannot be produced. For this reason, the content of SiO 2 is 0 for 100 parts by volume of the main component. Piezoelectric elements were prepared for the three types of samples of 2, 2 and 4 capacity parts by the same method and procedure as in Example 1, and the electromechanical coupling coefficient k 15 , the maximum phase θmax, and the temperature change rate fr of the resonance frequency. -Tc was measured.
図8はAl2O3又はSiO2の含有量と電気機械結合係数k15((a))、最大位相θmax((b))、及び共振周波数の温度変化率fr−Tc((c))との関係を実施例1との比較においてそれぞれプロットした図である。 FIG. 8 shows the content of Al 2 O 3 or SiO 2 and the electromechanical coupling coefficient k 15 ((a)), the maximum phase θmax ((b)), and the temperature change rate fr-Tc ((c)) of the resonance frequency. FIG. 3 is a diagram in which the relationship with the above is plotted in comparison with Example 1.
圧電セラミック(主成分)にSiO2を添加した場合、図8(a)に示すように電気機械結合係数k15は急激かつ大幅に低下するが、図8(b)及び図8(c)に示すように、最大位相θmax、及び共振周波数の温度変化率fr−Tcも急激かつ大幅に低下し、実用性に欠けることが分かった。 When SiO 2 is added to the piezoelectric ceramic (main component), as shown in FIG. 8A, the electromechanical coupling coefficient k 15 decreases sharply and greatly, but in FIG. 8B and FIG. 8C. As shown, the maximum phase θmax and the temperature change rate fr-Tc of the resonance frequency also suddenly and drastically decreased, indicating that the practicality is lacking.
これに対し実施例1では、Al2O3含有量を主成分100容量部に対し10容量部以上とすることにより、電気機械結合係数k15を40%以下に大幅に低下させることができ、一方、Al2O3含有量を主成分100容量部に対し40容量部以下とすることにより、最大位相θmaxを余り低下させないで87.9°以上を確保することができ、さらにAl2O3含有量を主成分100容量部に対し10〜40容量部とすることにより、共振周波数の温度変化率fr−Tcも−30〜+30℃の範囲内とすることができる。 On the other hand, in Example 1, by making the Al 2 O 3 content 10 parts by volume or more with respect to 100 parts by volume of the main component, the electromechanical coupling coefficient k 15 can be greatly reduced to 40% or less, On the other hand, by setting the Al 2 O 3 content to 40 parts by volume or less with respect to 100 parts by volume of the main component, 87.9 ° or more can be secured without significantly decreasing the maximum phase θmax, and further Al 2 O 3 By setting the content to 10 to 40 parts by volume with respect to 100 parts by volume of the main component, the temperature change rate fr-Tc of the resonance frequency can also be set within the range of -30 to + 30 ° C.
すなわち、単に、結晶粒界に析出する物質を圧電セラミック(主成分)に大量に添加しても、最大位相θmaxの低下や共振周波数の温度変化率fr−Tcの悪化を招くことなく電気機械結合係数k15を小さくすることはできず、本発明のように、圧電セラミック(主成分)100容量部に対しAlをAl2O3換算で10〜40容量部含有させ、分散したAl偏析部を主成分の結晶粒界に析出させることにより上述した所期の作用効果が得られ、本発明の目的を達成できることが確認された。 That is, simply by adding a large amount of a substance that precipitates at the grain boundaries to the piezoelectric ceramic (main component), the electromechanical coupling does not cause a decrease in the maximum phase θmax and a deterioration in the temperature change rate fr-Tc of the resonance frequency. can not be reduced coefficients k 15, as in the present invention, the Al to the piezoelectric ceramic (main component) 100 parts by volume is contained 10 to 40 parts by volume in terms of Al 2 O 3 dispersed therein Al segregation It was confirmed that the intended effects described above can be obtained by precipitating the crystal grain boundaries of the main component, and the object of the present invention can be achieved.
1 圧電セラミック(主成分)
2 Al偏析部
3 所定領域
4 圧電セラミック素体
5a、5b対向電極(電極)
1 Piezoelectric ceramic (main component)
2 Al segregation part 3 Predetermined area 4 Piezoelectric ceramic body 5a, 5b Counter electrode (electrode)
Claims (3)
前記主成分100容量部に対しAlがAl2O3換算で10〜40容量部含有され、
Al凝集体の存在比率であるAl存在比が、25μm□の領域内で50%以上の面積比率を有する複数のAl偏析部が形成され、かつ前記Al偏析部同士の平均離間距離が、中心間距離で100μm以上であることを特徴とする圧電磁器。 The main component is at least one of a Pb (Zr, Ti) O 3 based compound containing Zr and Ti , a Pb (Mn, Nb) O 3 based compound and a Pb (Ni, Nb) O 3 based compound And including
Al is contained in an amount of 10 to 40 parts by volume in terms of Al 2 O 3 with respect to 100 parts by volume of the main component,
A plurality of Al segregation portions having an area ratio of 50% or more in a region where the Al abundance ratio of Al aggregates is 25 μm □ are formed, and the average separation distance between the Al segregation portions is between the centers. A piezoelectric ceramic having a distance of 100 μm or more.
前記圧電磁器が、請求項1又は請求項2記載の圧電磁器で形成されていることを特徴とする圧電部品。 A piezoelectric component, wherein the piezoelectric ceramic is formed of the piezoelectric ceramic according to claim 1 or 2.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006002208A JP4930753B2 (en) | 2006-01-10 | 2006-01-10 | Piezoelectric ceramic and piezoelectric parts |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006002208A JP4930753B2 (en) | 2006-01-10 | 2006-01-10 | Piezoelectric ceramic and piezoelectric parts |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007182353A JP2007182353A (en) | 2007-07-19 |
JP4930753B2 true JP4930753B2 (en) | 2012-05-16 |
Family
ID=38338748
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006002208A Expired - Fee Related JP4930753B2 (en) | 2006-01-10 | 2006-01-10 | Piezoelectric ceramic and piezoelectric parts |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4930753B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090065731A1 (en) * | 2007-09-06 | 2009-03-12 | Tdk Corporation | Method for producing piezoelectric ceramic |
JPWO2022215524A1 (en) * | 2021-04-06 | 2022-10-13 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5429718A (en) * | 1977-08-10 | 1979-03-05 | Taiki Sangyo Kk | Transplanter for sloped field |
JPH05314816A (en) * | 1992-05-14 | 1993-11-26 | Matsushita Electric Ind Co Ltd | Dielectric ceramic composition, and ceramic capacitor and thick film capacitor using same |
JP3108724B2 (en) * | 1999-01-22 | 2000-11-13 | ファインセラミックス技術研究組合 | High durability piezoelectric composite ceramics and its manufacturing method |
WO2005092817A1 (en) * | 2004-03-26 | 2005-10-06 | Tdk Corporation | Piezoelectric ceramic composition |
JP2006213539A (en) * | 2005-02-02 | 2006-08-17 | Tdk Corp | Piezoelectric ceramic composition |
JP2007001841A (en) * | 2005-06-27 | 2007-01-11 | Tdk Corp | Piezoelectric ceramic composition |
-
2006
- 2006-01-10 JP JP2006002208A patent/JP4930753B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2007182353A (en) | 2007-07-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4881315B2 (en) | Piezoelectric ceramic composition and piezoelectric ceramic | |
US7944126B2 (en) | Piezoelectric ceramic, vibrator and ultrasonic motor | |
JP4929522B2 (en) | Piezoelectric ceramic composition | |
KR101235434B1 (en) | Piezoelectric ceramic composition and piezoelectric element made by using the same | |
KR20140040258A (en) | Piezoelectric material | |
EP1085585A2 (en) | Composition of piezoelectric porcelain | |
JP4930753B2 (en) | Piezoelectric ceramic and piezoelectric parts | |
JP4493226B2 (en) | Piezoelectric ceramic and piezoelectric element | |
JP2000128632A (en) | Piezoelectric ceramics | |
KR100685327B1 (en) | Piezoelectric ceramic composition and piezoelectric device | |
JP2005119945A (en) | Piezoelectric ceramic composition | |
JP3032761B1 (en) | Piezoelectric ceramics | |
JP2004323325A (en) | Piezoelectric ceramic and piezoelectric ceramic element using the same | |
JP3481832B2 (en) | Piezoelectric ceramic | |
JP5319208B2 (en) | Piezoelectric ceramic and piezoelectric element using the same | |
JP4355115B2 (en) | Piezoelectric ceramic and piezoelectric element | |
JP3588542B2 (en) | Piezoelectric ceramic composition | |
JP2000327418A (en) | Piezoelectric porcelain composition | |
JPH09221359A (en) | Piezoelectric ceramic composition | |
JPH11209176A (en) | Piezoelectric porcelain composition and its production | |
JPH11322420A (en) | Piezoelectric porcelain composition and its production | |
JP4467168B2 (en) | Piezoelectric ceramic and piezoelectric element | |
JPH11322419A (en) | Piezoelectric porcelain composition and its production | |
JP3097216B2 (en) | Piezoelectric porcelain composition | |
JPH10167821A (en) | Piezoelectric ceramic composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20081016 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110415 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110425 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110620 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120119 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120201 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4930753 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150224 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |