[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2009290825A - 音響エコーキャンセラ - Google Patents

音響エコーキャンセラ Download PDF

Info

Publication number
JP2009290825A
JP2009290825A JP2008144132A JP2008144132A JP2009290825A JP 2009290825 A JP2009290825 A JP 2009290825A JP 2008144132 A JP2008144132 A JP 2008144132A JP 2008144132 A JP2008144132 A JP 2008144132A JP 2009290825 A JP2009290825 A JP 2009290825A
Authority
JP
Japan
Prior art keywords
echo
spectrum
signal
acoustic
sound signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008144132A
Other languages
English (en)
Inventor
Toshiaki Ishibashi
利晃 石橋
Makoto Tanaka
田中  良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Corp
Original Assignee
Yamaha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Corp filed Critical Yamaha Corp
Priority to JP2008144132A priority Critical patent/JP2009290825A/ja
Priority to EP09758316A priority patent/EP2293595A1/en
Priority to US12/995,650 priority patent/US20110110526A1/en
Priority to PCT/JP2009/060055 priority patent/WO2009148049A1/ja
Priority to CN2009801204728A priority patent/CN102047689A/zh
Publication of JP2009290825A publication Critical patent/JP2009290825A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M9/00Arrangements for interconnection not involving centralised switching
    • H04M9/08Two-way loud-speaking telephone systems with means for conditioning the signal, e.g. for suppressing echoes for one or both directions of traffic
    • H04M9/082Two-way loud-speaking telephone systems with means for conditioning the signal, e.g. for suppressing echoes for one or both directions of traffic using echo cancellers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • H04R3/02Circuits for transducers, loudspeakers or microphones for preventing acoustic reaction, i.e. acoustic oscillatory feedback

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Otolaryngology (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Circuit For Audible Band Transducer (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
  • Telephone Function (AREA)

Abstract

【課題】適応型フィルタを用いたエコーキャンセラのみでは除去しきれないエコーやノイズも効果的に除去できる音響エコーキャンセラを実現する。
【解決手段】適応型フィルタ20は、放音用音声信号FEtに基づいて擬似反響音信号FE’tを生成する。加算器60は収音音声信号低域成分NLEtから擬似反響音信号FE’tを差分することで低域成分第1補正音声信号NLE’tを生成する。エコースペクトル推定部301は、今回の擬似反響音信号のスペクトルS(FE’n)と前回の残響エコーの周波数スペクトル(FE”n)と音響環境に基づく更新係数βとから、今回の残響エコーの周波数スペクトルS(FE”n)を推定算出する。加算器70は、低域成分第1補正音声信号のスペクトルS(NLE’n)から残響エコーの周波数スペクトルS(FE”n)および定常ノイズの周波数スペクトルS(NLE”n)を差分する。
【選択図】 図1

Description

この発明は、設置環境等に基づく残響エコーや定常ノイズを含む音響エコーを、収音音声信号から除去する音響エコーキャンセラに関するものである。
従来、スピーカとマイクとが1つの筐体に設置される音声会議装置などでは、スピーカとマイクとが近接する等の理由により音響エコーが発生し易い。このため、このような音響エコーを除去するエコーキャンセル装置が各種考案されている。例えば、特許文献1では、適応型フィルタを有するエコーキャンセラと、周波数領域による演算でエコーを抑圧するエコー抑圧部とを備えたエコーキャンセル装置が開示されている。
特許第3420705号公報
しかしながら、特許文献1のエコーキャンセル装置では、適応型フィルタを用いたエコーキャンセラと、該エコーキャンセラが推定するそれぞれのタイミングでの擬似エコー信号の周波数スペクトルに基づいた周波数領域によるエコー抑圧処理を行うため、エコーキャンセラで元々対応しきれていない残響エコーや定常的なノイズに関しては効果的に除去することが難しかった。さらに、残響エコーの基本特性は、エコーキャンセル装置が搭載された会議装置の設置状況等により変化する。このため、その場に応じた適正なアルゴリズム(演算式等)を用いなければ、効果的にエコーを除去できない上に、さらに余分なエコーを発生してしまうこととなる。
したがって、本発明の目的は、適応型フィルタを用いたエコーキャンセラのみでは除去しきれないエコーやノイズも効果的に除去でき、さらに設置環境に応じて適正に残響エコー除去を行うことができる音響エコーキャンセラを実現することにある。
この発明は、収音音声信号に含まれる目的音声以外の音を除去する音響エコーキャンセラに関するものである。この音響エコーキャンセラは、適応型フィルタ、第1差分手段、外乱スペクトル推定手段、および第2差分手段を備える。適応型フィルタは、放音用音声信号に基づいて擬似反響音信号を生成する。第1差分手段は、収音音声信号から擬似反響音信号を差分して第1補正音声信号を生成する。外乱スペクトル推定手段は、第1補正音声信号に含まれる外乱スペクトルを、擬似反響音信号のスペクトルと設置環境に基づく音響環境パラメータとを用いて推定する。第2差分手段は、第1補正音声信号の周波数スペクトルに対して外乱スペクトルを差分して出力する。
この構成では、適応型フィルタにより擬似反響音信号が生成されるとともに、適応型フィルタでは対応しきれない外乱エコーの周波数スペクトルが推定される。そして、この発明の音響エコーキャンセラは、収音手段による収音音声信号に対して、まず擬似反響音信号を差分することで線形成分の第一段のエコーキャンセルを行い、さらに、第一段のエコーキャンセルが行われた後の信号の周波数スペクトルに対して、外乱エコーの周波数スペクトルを差分することで更なる第二段のエコー除去を行う。この際、外乱エコーの周波数スペクトルは、擬似反響音信号のスペクトルと設置環境に基づく音響環境パラメータとを用いて推定される。このように擬似反響音信号と音響環境パラメータとを組み合わせることで、音響環境に応じて変化し、且つ擬似反響音信号では除去しきれない残響エコー成分が適切に推定される。
また、この発明の音響エコーキャンセラは、さらに、音響環境パラメータ設定手段を備える。この音響環境パラメータ設定手段は、適応型フィルタを構成するフィルタ係数に基づいて音響環境パラメータを設定する。
この構成では、適応型フィルタの時間領域における係数がスピーカとマイクとの間のインパルス応答に相当するので、そのエンベロープ特性を検出することで、反響音の長さやレベルが得られ、音響環境パラメータが得られる。すなわち、操作者が手入力することなく、設置位置に応じた音響環境パラメータが自動で設定される。
また、この発明の音響エコーキャンセラは、さらに状態判定手段を備える。状態判定手段は、放音用音声信号と第1補正音声信号とに基づいて放収音の状態判定を行い、状態判定結果を音響環境パラメータ設定手段へ与える。そして、音響環境パラメータ設定手段は、状態判定結果として無音状態の判定を取得すると、音響環境パラメータの設定処理を行う。
この構成では、状態判定手段で、無音状態、放音のみ状態、収音のみ状態、放収音あり状態(Wトーク状態)の識別が行われる。そして、無音状態の場合に上述のインパルス応答による音響環境パラメータの設定が行われる。これにより、インパルス応答による残響エコーが正確に取得される。
また、この発明の音響エコーキャンセラは、帯域分割手段と減衰器とを備える。帯域分割手段は、収音音声信号を低域成分と高域成分とに分離し、収音音声信号低域成分を第1差分手段へ出力する。減衰器は、帯域分割手段から出力される収音音声信号高域成分を、状態判定の結果に応じて減衰する。
この構成では、収音音声信号の低域成分と高域成分とを分離し、低域成分のみで上述の処理を行うことで、エコーキャンセル処理およびエコー除去処理の演算負荷が低減され、高速化も可能となる。この際、人間の発声する音声信号の高域成分のレベルは、低域成分のレベルに比べて小さい。さらに、元々反響してマイクに回り込んで収音される高域成分のレベルは、低域成分のレベルに対して小さい。したがって、高域成分を単なる減衰器による減衰処理のみとしても、音質への影響が少ない。すなわち、上述のような効果的なエコーキャンセルおよびエコー除去が、所定の音質を保ちながら、さらに効率的に行われる。
また、この発明の音響エコーキャンセラの外乱スペクトル推定手段は、エコースペクトル推定手段とノイズスペクトル推定手段とを備える。エコースペクトル推定手段は、擬似反響音信号の周波数スペクトルと音響環境パラメータとに基づいて残響エコースペクトルを推定する。ノイズスペクトル推定手段は、第1補正音声信号の周波数スペクトルに基づいて定常ノイズスペクトルを推定する。
この構成では、外乱スペクトルを、反響音(残響音)に依存するエコースペクトルと、反響音以外の暗騒音等の定常的なノイズに依存するノイズスペクトルとに分離して推定する。これにより、外乱スペクトルが要因に応じてより適切に推定されるので、より効果的にエコー除去が行われる。
この発明によれば、適応型フィルタを用いたエコーキャンセラのみでは除去しきれない残響エコーを含む外乱エコーを正確に推定でき、当該外乱エコーを高精度に除去することができる。これにより、適応型フィルタによる第1の補正と、外乱エコー除去による第2の補正とを行い、自装置側の発話者の音声を、よりクリアに出力することができる。
本発明の第1の実施形態に係る音響エコーキャンセラについて図を参照して説明する。なお、以下の説明では、時間領域の信号は末端の記号をtで示し、周波数領域の信号は末端の記号をnで示す。
図1は本実施形態の音響エコーキャンセラの主要要素の概略構成を示すブロック図である。
図1に示すように、音響エコーキャンセラ1は、スピーカSP、マイクMIC、状態判定部10、制御部11、操作部12、表示部13、音響環境検出部14、適応型フィルタ20、外乱スペクトル推定部30、エコーサプレッサ40、帯域分割部50、本発明の第1差分手段に相当する加算器60、本発明の第2差分手段に相当する加算器70、および加算器80を備える。
状態判定部10は、放音用音声信号FEt、収音音声信号低域成分NLEt、低域成分第1補正音声信号NLE’tの信号レベルに基づいて、「放音、収音ともに有り状態(Wトーク状態)」、「放音用音声信号の放音のみ有り状態」、「放音が無く収音音声信号が有り状態」、「放音、収音ともに無し状態(無音状態)」のいずれかであることを検出して、検出状態を適応型フィルタ20、外乱スペクトル推定部30、エコーサプレッサ40および音響環境検出部14へ与える。図2は図1に示した状態判定部10の状態判定および学習処理の判断概念を示した図である。
具体的には、状態判定部10は、放音用音声信号FEt、収音音声信号低域成分NLEt、低域成分第1補正音声信号NLE’tの全てが予め設定した閾値以上のレベルであることを検出すると、放音、話者発話の双方が行われていると判断し、「Wトーク」状態と判定する。また、状態判定部10は、放音用音声信号FEtが前記閾値以上のレベルであり、低域成分第1補正音声信号NLE’tが前記閾値未満であれば、「放音用音声信号の放音のみが有る」状態と判定する。また、状態判定部10は、収音音声信号低域成分NLEtおよび低域成分第1補正音声信号NLE’tが前記閾値以上のレベルであり、放音用音声信号FEtが前記閾値未満であれば、「放音が無く収音音声信号が有る」状態と判定する。さらに、状態判定部10は、放音用音声信号FEt、収音音声信号低域成分NLEt、低域成分第1補正音声信号NLE’tの全てが前記閾値未満であることを検出すると、「無音」状態と判定する。
制御部11は、当該音響エコーキャンセラ1の電源制御、操作入力制御、表示制御等を含む全体制御を行う。また、制御部11は、操作部12または音響環境検出部14から音響環境パラメータ設定指示を受け付けると、指定された音響環境パラメータに対応した更新係数βを外乱スペクトル推定部30のエコースペクトル推定部301へ与える。図3は、更新係数βの設定パラメータの概念の一例を示す図である。例えば、図3に示すように、制御部11は、音響環境パラメータとして「反響極小」の情報を得るとエコースペクトル推定部301へβ=1を与える。また、制御部11は、音響環境パラメータとして「反響中」の情報を得るとエコースペクトル推定部301へβ=0.6を与える。さらに、制御部11は、音響環境パラメータとして「反響大」の情報を得るとエコースペクトル推定部301へβ=0.2を与える。なお、個々に示す更新係数βの設定値は一例であり、装置仕様や環境により適宜設定するとよく、さらに多段で更新係数βを設定してもよい。
操作部12は、発話者を含む使用者とのユーザインタフェースであり、各種の操作子(図示せず)を有する。操作部12は、使用者から音響環境設定の操作入力を受け付けると、制御部11へ操作入力された音響環境に対応する音響環境パラメータ設定指示を出力する。
表示部13は、液晶ディスプレイ等の表示素子を備え、制御部11からの表示制御に従い操作メニュー等を表示する。
使用者は、これら操作部12と表示部13とにより、音響環境パラメータを手入力で設定する。すなわち、使用者により操作部12から音響環境パラメータの設定変更指示を受けると、音響環境パラメータ設定用の画面、例えば、図3に示す「ルームサイズ」と、大きさを示す「大」、「中」、「小」が表示部13に表示される。使用者は、この表示画面に従って、当該音響エコーキャンセラ1を有する装置の設置される部屋の大きさ等を入力する。操作部12は、この操作入力結果に基づく音響環境パラメータ設定指示(例えば図3の「反響極小」、「反響中」、「反響大」)を制御部11へ与える。制御部11は、上述のように音響環境パラメータに応じた更新係数βをエコースペクトル推定部301へ与える。
音響環境検出部14は、状態判定部10から無音状態判定結果を取得すると、擬似反響音信号推定部202の各タップ係数に応じたインパルス応答をIFFT141で逆フーリエ変換してなるインパルス応答信号(図4のSRim)を取得し、エンベロープ特性(図4のCHen)を検出する。図4は、インパルス応答信号のエンベロープ特性を示した図であり、(A)が反響極小の場合のエンベロープ特性(CHen1)、(B)が反響中の場合のエンベロープ特性(CHen2)、(C)が反響大の場合のエンベロープ特性(CHen3)を示す。
音響環境検出部14は、エンベロープ波形CHenの振幅および減衰特性を検出することで残響エコー時間を取得し、当該残響エコー時間に基づいて音響環境パラメータ設定指示を制御部11へ与える。例えば、図4(A)の特性からなり図3に示すようにエコー時間が「略無し」であれば音響環境パラメータ「反響極小」を制御部11へ与える。図4(B)の特性からなり図3に示すようにエコー時間が「短」であれば音響環境パラメータ「反響中」を制御部11へ与える。図4(C)の特性からなり図3に示すようにエコー時間が「長」であれば音響環境パラメータ「反響大」を制御部11へ与える。このような処理を行うことで、音響環境パラメータを手入力することなく自動で設定することができる。さらに、この処理を、無音状態の検出毎に行うことで、例えば使用者数が変化したり、使用者の位置が変化することによる音響環境変化をも加味して音響環境パラメータを動的に変化させることができる。
スピーカSPは、外部から入力された放音用音声信号FEtに基づいて放音する。この放音用音声信号(遠端信号)FEtは、FFT911へも入力される。
FFT911は、高速フーリエ変換回路であり、時間領域の関数である放音用音声信号FEtを周波数領域の関数である放音用音声信号FEnへ変換して、適応型フィルタ20へ与える。
適応型フィルタ20は、擬似反響音信号生成部201と擬似反響音信号推定部202とを備える。擬似反響音信号生成部201は、例えば、所定のタップ数からなるFIRフィルタであり、擬似反響音信号推定部202から与えられた係数により設定される。擬似反響音信号生成部201は、放音用音声信号FEnに基づいて擬似反響音信号FE’nを生成する。生成された擬似反響音信号FE’nは、IFFT921および外乱スペクトル推定部30のエコースペクトル推定部301へ入力される。
擬似反響音信号推定部202は、LMS等の適応アルゴリズムを用いて、後述する低域成分第1補正信号NLE’nの周波数スペクトルS(NLE’n)から、擬似反響音信号FE’nを推定する。擬似反響音信号推定部202は、当該擬似反響音信号FE’nを擬似反響音信号生成部201に生成させるための係数(各タップの係数、すなわちフィルタ係数)を推定して、これら係数を擬似反響音信号生成部201へ与える。この際、擬似反響音信号推定部202は、状態判定部10から「放音用音声信号の放音のみ有り」状態の情報を取得した場合にのみ、上述の推定による学習を行う。なお、このような推定、擬似反響音信号FE’nの生成、学習は、音響エコーキャンセラ1の動作中に繰り返し行われる。
IFFT921は、逆高速フーリエ変換回路であり、周波数領域の関数である擬似反響音信号FE’nを時間領域の関数である擬似反響音信号FE’tに変換して、加算器60へ出力する。
マイクMICは、当該音響エコーキャンセラ1が設置された周囲から収音して、収音音声信号(近端信号)NEtを生成する。この収音音声信号NEtには、スピーカSPからの放音があれば、当該放音音声が設置環境に基づいて反響されてなる反響音の成分が含まれる。また、マイクMIC周囲の話者が発話すれば、収音音声信号NEtに話者音声の成分が含まれる。さらに、会議室等の設置環境によって当該環境に特有の定常的なノイズが存在すると、収音音声信号NEtには、この定常ノイズの成分も含まれる。
帯域分割部50は、マイクMICと加算器60との間に設置されている。帯域分割部50は、収音音声信号NEtを、低域成分NLEtと高域成分NHEtとに分離する。ここで、低域と高域とを区分する閾値周波数は、例えば8kHzに設定されており、人の音声の主たる成分となる8kHz以下の低域成分NLEtが、加算器60へ与えられ、8kHzよりも高い高域成分NHEtは、エコーサプレッサ40へ与えられる。なお、残響エコーや定常ノイズは、低い周波数帯域が主成分であるので、低域成分NLEtに殆ど含まれている。
加算器60は、収音音声信号低域成分NLEtから擬似反響音信号FE’tを差分することで、低域成分第1補正音声信号NLE’tを生成して出力する。これにより、第一段の補正として、擬似反響音信号による適応型のエコーキャンセル処理が実行される。
FFT912は、高速フーリエ変換回路であり、時間領域の関数である低域成分第1補正音声信号NLE’tを周波数領域の関数である低域成分第1補正音声信号NLE’nへ変換して出力する。低域成分第1補正音声信号NLE’nの周波数スペクトルS(NLE’n)は、上述の擬似反響音信号推定部202および外乱スペクトル推定部30のノイズスペクトル推定部302へ入力される。
外乱スペクトル推定部30は、エコースペクトル推定部301とノイズスペクトル推定部302とを備える。簡単には、エコースペクトル推定部301は、擬似反響音信号FE’nのみで除去しきれないエコー成分を推定する演算部であり、ノイズスペクトル推定部302は、定常ノイズを推定する演算部である。
エコースペクトル推定部301は、擬似反響音信号FE’nの周波数スペクトルS(FE’n)をサンプリングタイミング毎に順次取得するとともに、一時記憶する。エコースペクトル推定部301は、この取得および記憶した擬似反響音信号FE’nの周波数スペクトルS(FE’n)と、前回推定した残響エコースペクトルS(FE”n)と、制御部11から与えられた更新係数βとに基づいて、今回の残響エコースペクトルS(FE”n)を推定するとともに、この推定した残響エコースペクトルS(FE”n)を記憶する。
例えば、或るサンプリングタイミングNでの残響エコースペクトルをS(FE”n(N))とし、同サンプリングタイミングNでの擬似反響音信号の周波数スペクトルをS(FE’n(N))とし、直前のサンプリングタイミングN−1での残響エコースペクトルをS(FE”n(N−1))とする。また、βを更新係数とする。
そして、この設定において、残響エコースペクトルS(FE”n(N))を次式で表し、算出する。
S(FE”n(N))=(1−β)S(FE”n(N−1))+βS(FE’n(N))
−−−演算式(1)
このように、擬似反響音信号FE’nの周波数スペクトルS(FE’n)に基づいて残響エコースペクトルS(FE”n)を推定することで、適応型フィルタ20で除去しきれない残響エコーの周波数スペクトルを取得することができる。すなわち、適応型フィルタ20は、FIRフィルタ等からなり、タップ数等の仕様により表現可能な擬似反響音信号FE’nが制限される。これにより、時間軸上に復元した場合に擬似反響音信号FE’tと現実の回り込み音とで差が生じる。しかしながら、周波数領域で擬似反響音信号FE’nから残響エコーを推定することで、この時間軸上の制限を取り除くことができ、擬似反響音信号FE’tでは除去しきれない残響エコーを推定することができる。
さらに、更新係数βを用いることで、当該音響エコーキャンセラ1が備えられた装置の設置環境に応じて推定アルゴリズム(上述の演算式(1))をより最適に調整することができる。具体的には、更新係数βを適宜設定することで、今回のサンプリングタイミングNでの擬似反響音信号の周波数スペクトルS(FE’n(N))と、前回のサンプリングタイミングN−1での残響エコーの周波数スペクトルS(FE”n(N−1))との加算時のレベル比が調整される。ここで、更新係数βは、反響が小さいほど値が大きく、反響が大きいほど値が小さくなるように設定されている。これにより、反響が小さい場合には更新係数βが大きくなり、演算式(1)から、今回のサンプリングタイミングNでの擬似反響音信号の周波数スペクトルS(FE’n(N))が残響エコースペクトルS(FE”n(N))の推定に大きな影響を与える。一方で、反響が大きい場合には更新係数βが小さくなり、前回のサンプリングタイミングN−1での残響エコーの周波数スペクトルS(FE”n(N−1))が今回のサンプリングタイミングNでの残響エコースペクトルS(FE”n(N))に大きな影響を与える。これは、すなわち、反響が小さい場合には、残響エコーが殆ど残らないので、この極短時間の部分を今回のサンプリングタイミングNでの擬似反響音信号の周波数スペクトルS(FE’n(N))のみで推定できることを意味する。一方で、反響が大きい場合には、残響エコーが長時間存在しているので、この過去の部分を前回のサンプリングタイミングN−1での残響エコーの周波数スペクトルS(FE”n(N−1))で推定できることを意味する。このように更新係数βを用いることで、音響環境に応じて残響エコースペクトルS(FE”n(N))を精度良く推定することができる。
ノイズスペクトル推定部302は、低域成分第1補正音声信号NLE’nの周波数スペクトルS(NLE’n)を順次取得するとともに、一時記憶する。ノイズスペクトル推定部302は、この取得および記憶した複数回の低域成分第1補正音声信号NLE’nの周波数スペクトルS(NLE’n)に基づいて、ノイズスペクトルS(NLE”n)を推定する。
例えば、或るサンプリングタイミングNでのノイズスペクトルをS(NLE”n(N))とし、同サンプリングタイミングNでの低域成分第1補正音声信号の周波数スペクトルをS(NLE’n(N))とし、直前のサンプリングタイミングN−1での低域成分第1補正音声信号の周波数スペクトルをS(NLE’n(N−1))とする。また、α,γを定数とする。
そして、この設定において、ノイズスペクトルS(NLE”n(N))を次式で表し、算出する。
S(NLE”n(N))=αS(NLE’n(N−1))+γS(NLE’n(N))
このように、エコーキャンセル後の信号である低域成分第1補正音声信号NLE’nの周波数スペクトルに基づいてノイズスペクトルS(NLE”n)を推定することで、エコーとは別の暗騒音等の定常ノイズを推定することができる。この際、ノイズスペクトル推定部302は、状態判定部10から「無音」状態の情報を取得した場合にのみ、上述の推定による学習を行う。なお、このような推定、学習も、音響エコーキャンセラ1の動作中に繰り返し行われる。
加算器70は、周波数領域で演算を行う加算器であり、低域成分第1補正音声信号NLE’nの周波数スペクトルS(NLE’n)から、残響エコースペクトルS(FE”n)およびノイズスペクトルS(NLE”n)を減算することで、低域成分第2補正音声信号S(NLOn)を生成して出力する。なお、この処理は各スペクトルが同期するようにして行われる。すなわち、ここで言う同期とは、同じサンプリングタイミングに形成された各スペクトルを用いて演算することであり、例えば、サンプリングタイミングNの場合、
S(NLOn(N))=S(NLE’n(N))−S(FE”n(N))−S(NLE”n(N))
の演算処理を行うことを意味する。これにより、第二段の補正として、適応型のエコーキャンセルとは別方式で、残響エコーや定常ノイズの除去が行われる。
IFFT922は、逆高速フーリエ変換回路であり、周波数領域の関数である低域成分第2補正音声信号NLOnを時間領域の関数である低域成分第2補正音声信号NLOtへ変換して、加算器80へ与える。
エコーサプレッサ40は、減衰器401とディレイ回路402とからなる。減衰器401は、状態判定部10からの状態判定結果に基づいて、収音音声信号NEtの高域成分NHEtの減衰量を調整し、減衰処理済高域成分NHE’tを出力する。
図5はエコーサプレッサ40の減衰器401の減衰量を示す図である。
減衰器401は、「放音用音声信号の放音のみ有り」状態または「無音」状態の判定結果を取得すると、減衰量を無限大、すなわち、高域成分NHEtを遮断する(NHE’t=0)。これは、放音用音声信号のみの場合や無音状態の場合、話者音声が含まれていないので、高域成分を遮断することで、高域成分として存在するエコーや定常ノイズをより確実に除去することができるからである。
また、減衰器401は、「放音が無く収音音声信号が有り」状態の情報を取得すると、減衰量を「0」、すなわち、高域成分NHEtを減衰することなく通過させる(NHE’t=NHEt)。このように収音音声信号のみの場合、高域成分が話者音声に支配されるので、この高域成分を減衰させないことにより、話者音声をより正確に出力することができるからである。
さらに、減衰器401は、「Wトーク」状態の情報を取得すると、減衰量を予め設定した所定値に設定する。これは、Wトーク時には、除去したい放音用音声信号FEtの成分と、話者音声成分とが混在しているために、或程度の減衰量に設定する。これにより、話者音声を若干犠牲にしながらも、放音用音声信号FEtによるエコー成分を減衰させることができる。
減衰器401から出力された減衰処理済高域成分NHE’tは、ディレイ回路402へ入力される。ディレイ回路402は、処理演算が容易で高速な高域成分NHEt(NHE’t)と、上述のエコーキャンセルおよびエコー除去処理を行った低域成分第2補正音声信号NLOtとを時間同期して加算するためのディレイ処理を行う。このディレイ処理により、遅延減衰処理済高域成分NHE”tが生成され、加算器80へ与えられる。
加算器80は、低域成分第2補正音声信号NLOtとこれに時間同期する遅延減衰処理済高域成分NHE”tとを加算して、出力音声信号NO’tを生成し、外部へ出力する。
以上のような構成および処理を行うことで、適応型フィルタのみで行われるエコーキャンセル処理では除去しきれない残響エコーや定常ノイズを精度良く効果的に除去することができる。この際、部屋等の設置環境の残響エコー等の音響環境を検出して、当該音響環境に応じた推定アルゴリズムを用いて残響エコースペクトルを得ることで、より高精度に残響エコーを除去することができる。
さらに、低域成分のみをエコーキャンセルおよびエコー除去処理して、高域成分を減衰処理することで処理演算量を低減することができる。この際、高域成分に上述のエコーキャンセルおよびエコー除去処理を行わなくても、人の音声の主成分が低域成分側にあるとともに、高域成分は低域成分と比較して反射回り込み量が少ないので、音質の劣化を抑制することができる。さらに、上述のように放収音状態毎に減衰量を変化させることで、より確実にエコーを除去し、且つ話者音声の音質の劣化を抑制することができる。
なお、上述の説明では、適応型フィルタを周波数領域演算で実現する例を示したが、時間領域による適応型フィルタを用いてもよい。
また、上述の説明では、状態判定部10において信号レベルのみで状態判定を行う例を示したが、各信号の相関に基づいて状態判定を行ってもよい。
また、上述の説明では、スピーカとマイクとを備える音響エコーキャンセラを例に示したが、スピーカ等の放音素子への出力端子と、マイク等の収音素子からの入力端子とを備え、放音素子や収音素子を別体にしたものであってもよい。
また、上述の説明では、状態判定部10から各部へ状態判定結果を与える例を示したが、状態判定部10が各部の学習タイミングの条件を記憶しておき、状態判定部10から各部へ学習タイミングを与えてもよい。
また、上述の説明では、収音音声信号を低域成分と高域成分とに分離する例を示したが、図6に示すように、これらを分離せずにエコーキャンセル処理およびエコー除去処理を行うようにしても、上述の作用効果を得ることができる。
また、上述の説明では、外乱スペクトル推定部に、エコースペクトル推定部とノイズスペクトル推定部とを備えた例を示したが、エコースペクトル推定部のみであっても、残響エコーを高精度に除去することができる。
第1の実施形態の音響エコーキャンセラの主要構成を示すブロック図である。 図1に示した音響エコーキャンセラの状態判定および学習処理の判断概念を示した図である。 更新係数βの設定概念を示す図である。 スピーカからマイクまでのインパルス応答信号のエンベロープ特性を示した図である。 エコーサプレッサ40の減衰量を示す図である。 他の構成からなる音響エコーキャンセラの主要構成を示すブロック図である。
符号の説明
1−音響エコーキャンセラ、10−状態判定部、11−制御部、12−操作部、13−表示部、14−音響環境検出部、20−適応型フィルタ、201−擬似反響音信号生成部、202−擬似反響音信号推定部、30−外乱スペクトル推定部、301−エコースペクトル推定部、302−ノイズスペクトル推定部、40−エコーサプレッサ、401−減衰器、402−ディレイ回路、50−帯域分割部、60,70,80−加算器、900−周波数領域演算部、911,912−FFT演算部、921,922,141−IFFT演算部、SP−スピーカ、MIC−マイク

Claims (5)

  1. 収音音声信号に含まれる目的音声以外の音を除去する音響エコーキャンセラであって、
    放音用音声信号に基づいて擬似反響音信号を生成する適応型フィルタと、
    前記収音音声信号から前記擬似反響音信号を差分して第1補正音声信号を生成する第1差分手段と、
    前記第1補正音声信号に含まれる外乱スペクトルを、前記擬似反響音信号のスペクトルと設置環境に基づく音響環境パラメータとを用いて推定する外乱スペクトル推定手段と、
    前記第1補正音声信号の周波数スペクトルに対して前記外乱スペクトルを差分して出力する第2差分手段と、
    を備えた音響エコーキャンセラ。
  2. 前記適応型フィルタのフィルタ係数に基づいて前記音響環境パラメータを設定する音響環境パラメータ設定手段を備えた、請求項1に記載の音響エコーキャンセラ。
  3. 前記放音用音声信号と前記第1補正音声信号とに基づいて放収音の状態判定を行い、前記音響環境パラメータ設定手段に対して状態判定結果を与える状態判定手段を備え、
    前記音響環境パラメータ設定手段は、前記状態判定手段から無音状態の判定を取得すると、前記音響環境パラメータの設定処理を行う、請求項2に記載の音響エコーキャンセラ。
  4. 前記収音音声信号を低域成分と高域成分とに分離し、収音音声信号低域成分を前記第1差分手段へ出力する帯域分割手段と、
    該帯域分割手段から出力される収音音声信号高域成分を、前記状態判定の結果に応じて減衰する減衰器と、を備えた請求項3に記載の音響エコーキャンセラ。
  5. 前記外乱スペクトル推定手段は、
    前記擬似反響音信号の周波数スペクトルと前記音響環境パラメータとに基づいて残響エコースペクトルを推定するエコースペクトル推定手段と、
    前記第1補正音声信号の周波数スペクトルに基づいて定常ノイズスペクトルを推定するノイズスペクトル推定手段と、を備える、請求項1〜請求項4に記載の音響エコーキャンセラ。
JP2008144132A 2008-06-02 2008-06-02 音響エコーキャンセラ Withdrawn JP2009290825A (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2008144132A JP2009290825A (ja) 2008-06-02 2008-06-02 音響エコーキャンセラ
EP09758316A EP2293595A1 (en) 2008-06-02 2009-06-02 Acoustic echo canceller and acoustic echo cancel method
US12/995,650 US20110110526A1 (en) 2008-06-02 2009-06-02 Acoustic echo canceller and acoustic echo cancellation method
PCT/JP2009/060055 WO2009148049A1 (ja) 2008-06-02 2009-06-02 音響エコーキャンセラ及び音響エコーキャンセル方法
CN2009801204728A CN102047689A (zh) 2008-06-02 2009-06-02 音响回波消除器和音响回波消除方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008144132A JP2009290825A (ja) 2008-06-02 2008-06-02 音響エコーキャンセラ

Publications (1)

Publication Number Publication Date
JP2009290825A true JP2009290825A (ja) 2009-12-10

Family

ID=41398125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008144132A Withdrawn JP2009290825A (ja) 2008-06-02 2008-06-02 音響エコーキャンセラ

Country Status (5)

Country Link
US (1) US20110110526A1 (ja)
EP (1) EP2293595A1 (ja)
JP (1) JP2009290825A (ja)
CN (1) CN102047689A (ja)
WO (1) WO2009148049A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014194457A (ja) * 2013-03-28 2014-10-09 Fujitsu Ltd 信号処理装置、及び信号処理方法
CN112542177A (zh) * 2020-11-04 2021-03-23 北京百度网讯科技有限公司 信号增强方法、装置及存储介质

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4929740B2 (ja) * 2006-01-31 2012-05-09 ヤマハ株式会社 音声会議装置
CN103168479B (zh) * 2011-10-14 2016-11-23 松下知识产权经营株式会社 振鸣抑制装置、助听器、振鸣抑制方法和集成电路
JP6019969B2 (ja) * 2011-11-22 2016-11-02 ヤマハ株式会社 音響処理装置
US9595997B1 (en) * 2013-01-02 2017-03-14 Amazon Technologies, Inc. Adaption-based reduction of echo and noise
US9697847B2 (en) * 2013-03-14 2017-07-04 Semiconductor Components Industries, Llc Acoustic signal processing system capable of detecting double-talk and method
JP6201949B2 (ja) * 2014-10-08 2017-09-27 株式会社Jvcケンウッド エコーキャンセル装置、エコーキャンセルプログラム及びエコーキャンセル方法
CN106448691B (zh) * 2015-08-10 2020-12-11 深圳市潮流网络技术有限公司 一种用于扩音通信系统的语音增强方法
GB2545263B (en) * 2015-12-11 2019-05-15 Acano Uk Ltd Joint acoustic echo control and adaptive array processing
US10554822B1 (en) * 2017-02-28 2020-02-04 SoliCall Ltd. Noise removal in call centers
CN110136733B (zh) * 2018-02-02 2021-05-25 腾讯科技(深圳)有限公司 一种音频信号的解混响方法和装置
CN110176244B (zh) * 2018-06-19 2023-10-03 腾讯科技(深圳)有限公司 回声消除方法、装置、存储介质和计算机设备
CN109716432B (zh) * 2018-11-30 2023-05-02 深圳市汇顶科技股份有限公司 增益处理方法及其装置、电子设备、信号采集方法及其系统

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69738288T2 (de) * 1996-05-31 2008-09-25 Koninklijke Philips Electronics N.V. Einrichtung zur unterdrückung einer störenden komponente eines eingangssignals
FI114422B (fi) * 1997-09-04 2004-10-15 Nokia Corp Lähteen puheaktiviteetin tunnistus
DE19743192C2 (de) * 1997-09-30 1999-09-09 Siemens Ag Echokompensationsverfahren, Echokompensationsvorrichtung und Telekommunikationsgerät
JP3420705B2 (ja) 1998-03-16 2003-06-30 日本電信電話株式会社 エコー抑圧方法及び装置並びにエコー抑圧プログラムが記憶されたコンピュータに読取り可能な記憶媒体
CN1533665A (zh) * 2001-07-20 2004-09-29 皇家菲利浦电子有限公司 含有用于谐波计算的非线性回波抑制器的回波消除器
JP3568922B2 (ja) * 2001-09-20 2004-09-22 三菱電機株式会社 エコー処理装置
ATE464738T1 (de) * 2004-10-13 2010-04-15 Koninkl Philips Electronics Nv Echolöschung
KR100842590B1 (ko) * 2004-11-09 2008-07-01 삼성전자주식회사 이동 단말에서 음향 반향 제거 방법 및 장치
US8335311B2 (en) * 2005-07-28 2012-12-18 Kabushiki Kaisha Toshiba Communication apparatus capable of echo cancellation

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014194457A (ja) * 2013-03-28 2014-10-09 Fujitsu Ltd 信号処理装置、及び信号処理方法
CN112542177A (zh) * 2020-11-04 2021-03-23 北京百度网讯科技有限公司 信号增强方法、装置及存储介质
CN112542177B (zh) * 2020-11-04 2023-07-21 北京百度网讯科技有限公司 信号增强方法、装置及存储介质

Also Published As

Publication number Publication date
EP2293595A1 (en) 2011-03-09
US20110110526A1 (en) 2011-05-12
WO2009148049A1 (ja) 2009-12-10
CN102047689A (zh) 2011-05-04

Similar Documents

Publication Publication Date Title
WO2009148049A1 (ja) 音響エコーキャンセラ及び音響エコーキャンセル方法
EP3568854B1 (en) Post-mixing acoustic echo cancellation systems and methods
JP5347794B2 (ja) エコー抑圧方法およびその装置
US9461702B2 (en) Systems and methods of echo and noise cancellation in voice communication
JP4913155B2 (ja) 音響エコーキャンセラ
EP1080463B1 (en) Signal noise reduction by spectral subtraction using spectrum dependent exponential gain function averaging
JP4957810B2 (ja) 音処理装置、音処理方法及び音処理プログラム
AU4664499A (en) Signal noise reduction by spectral subtraction using linear convolution and causal filtering
JPWO2009037733A1 (ja) 能動消音装置および能動消音装置の制御方法
US11380312B1 (en) Residual echo suppression for keyword detection
JP5292931B2 (ja) 音響エコーキャンセラおよびエコーキャンセル装置
EP2490218B1 (en) Method for interference suppression
JP4690243B2 (ja) デジタルフィルタ、周期性騒音低減装置および騒音低減装置
US8406430B2 (en) Simulated background noise enabled echo canceller
WO2009107750A1 (ja) 音響エコーキャンセラ
JP2008005094A (ja) エコー抑圧方法、装置、エコー抑圧プログラム、記録媒体
Ykhlef et al. A post-filter for acoustic echo cancellation in frequency domain
JP2010011272A (ja) 音響エコーキャンセラ
JP5640393B2 (ja) エコー除去装置、方法及びプログラム
KR101283105B1 (ko) 능동잡음 제어장치 및 그 방법
JP6369192B2 (ja) エコー抑圧装置、エコー抑圧プログラム、エコー抑圧方法及び通信端末
JP6356087B2 (ja) エコー消去装置、その方法及びプログラム
JPH11289283A (ja) エコー除去方法およびエコーキャンセラ
JP4239993B2 (ja) ハウリングキャンセラ
JP4438632B2 (ja) ハウリングキャンセラ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110420

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20120321