[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2009106373A - Sensing apparatus for biological surface tissue - Google Patents

Sensing apparatus for biological surface tissue Download PDF

Info

Publication number
JP2009106373A
JP2009106373A JP2007279461A JP2007279461A JP2009106373A JP 2009106373 A JP2009106373 A JP 2009106373A JP 2007279461 A JP2007279461 A JP 2007279461A JP 2007279461 A JP2007279461 A JP 2007279461A JP 2009106373 A JP2009106373 A JP 2009106373A
Authority
JP
Japan
Prior art keywords
light
light emitting
light receiving
living body
tissue
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007279461A
Other languages
Japanese (ja)
Inventor
Kaname Okuno
要 奥野
Katsuhiko Maruo
勝彦 丸尾
Takehiro Nakagawa
武大 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Panasonic Electric Works Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Electric Works Co Ltd filed Critical Panasonic Electric Works Co Ltd
Priority to JP2007279461A priority Critical patent/JP2009106373A/en
Publication of JP2009106373A publication Critical patent/JP2009106373A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To secure the S-N ratio of measurement signals with safe near infrared rays of low energy density, while miniaturizing and reducing the cost for the sensing apparatus. <P>SOLUTION: The sensing apparatus includes a light emitting means 22 for emitting light to irradiate biological surface tissue, and a light receiving means 23 for receiving diffused reflection light from the biological surface tissue. The light receiving means 23 is layered on the light emitting means 22 disposed on a board 24, and a reflector 27 for reflecting the light output from a side face of the light emitting means 22, which is an end face light emitting type light emitting diode, in the right-angled direction is disposed on a side of the light emitting means. The distance for receiving/emitting light, appropriate for securing the selectivity in the direction of depth of the skin, can be obtained between the reflector and the light receiving means. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、生体成分や性状の定性・定量分析、特に皮膚組織のグルコース濃度変化を代用特性として生体の血糖値を測定することを目的として、生体の表層組織である皮膚組織に光(殊に近赤外光)の照射と生体表層組織からの拡散反射光の受光とを行う生体表層組織用センシング装置に関するものである。   The present invention is directed to qualitative / quantitative analysis of biological components and properties, in particular, to measure the blood glucose level of a living body using a change in the glucose concentration of the skin tissue as a substitute characteristic. The present invention relates to a sensing device for living body surface tissue that performs irradiation with near-infrared light and reception of diffusely reflected light from the living body surface tissue.

生体表層組織に近赤外光を照射し、生体表層組織内で拡散反射した光を受光して得られる信号やスペクトルから生体組織を定性・定量分析する近赤外分光法に代表される手法は、生体内の種々の上方を非侵襲的にその場で即時に得ることができる上に、試薬も必要しないことから、医療分野における多くの用途で注目されており、既に血中酸素濃度測定については広く利用されている。   A technique represented by near-infrared spectroscopy that qualitatively and quantitatively analyzes biological tissue from signals and spectra obtained by irradiating the biological surface tissue with near-infrared light and receiving diffusely reflected light within the biological surface tissue. In addition to being able to obtain various in-vivo areas in a non-invasive manner on the spot and without the need for reagents, it has been attracting attention in many applications in the medical field. Is widely used.

そして血糖値測定について、近赤外領域のグルコース特異吸収波長を利用する分光分析によって推定する方法が特開2006‐87913号公報(特許文献3)に示されている。図6はこの方式に該当する例を示しており、ハロゲンランプ1から発光された近赤外光は熱遮蔽板2、ピンホール3、レンズ4、光ファイババンドル5を介して生体組織6に入射される。光ファイババンドル5には測定用光ファイバ7の一端とリファレンス用光ファイバ8の一端が接続されており、測定用光ファイバ7の他端は測定用プローブ9に接続され、リファレンス用光ファイバ8の他端はリファレンス用プローブ10に接続されている。さらに、測定プローブ9およびリファレンスプローブ10は光ファイバを介して測定側出射体11とリファレンス側出射体12とにそれぞれ接続されている。   Japanese Unexamined Patent Publication No. 2006-87913 (Patent Document 3) discloses a method for estimating blood glucose level by spectroscopic analysis using a glucose specific absorption wavelength in the near infrared region. FIG. 6 shows an example corresponding to this method. Near-infrared light emitted from the halogen lamp 1 enters the living tissue 6 through the heat shielding plate 2, the pinhole 3, the lens 4, and the optical fiber bundle 5. Is done. One end of the measurement optical fiber 7 and one end of the reference optical fiber 8 are connected to the optical fiber bundle 5, and the other end of the measurement optical fiber 7 is connected to the measurement probe 9. The other end is connected to the reference probe 10. Furthermore, the measurement probe 9 and the reference probe 10 are connected to the measurement-side emitter 11 and the reference-side emitter 12 via optical fibers, respectively.

人体の前腕部など生体組織6の表面に測定プローブ9の先端面を所定圧力で接触させて近赤外スペクトル測定を行う時、光源1から光ファイババンドル5に入射した近赤外光は、測定用光ファイバ7内を伝達し、図6(b)に示すように、測定用プローブ9の先端面に同心円周上に配置された12本の光ファイバ20より生体組織6の表面に照射される。生体組織6に照射されたこの測定光は生体組織内で拡散反射した後に、その一部が上記光ファイバ20の中央に位置する受光側光ファイバ19に受光され、その後、測定側出射体11からレンズ13を通して回折格子14に入射して分光された後、受光素子15において検出される。   When the near-infrared spectrum measurement is performed by bringing the tip surface of the measurement probe 9 into contact with the surface of the living tissue 6 such as the forearm of the human body at a predetermined pressure, the near-infrared light incident on the optical fiber bundle 5 from the light source 1 is measured. As shown in FIG. 6 (b), the surface of the living tissue 6 is irradiated from 12 optical fibers 20 arranged concentrically on the distal end surface of the measurement probe 9, as shown in FIG. . The measurement light applied to the living tissue 6 is diffusely reflected in the living tissue, and then a part of the measurement light is received by the light receiving side optical fiber 19 located at the center of the optical fiber 20. After being incident on the diffraction grating 14 through the lens 13 and separated, it is detected by the light receiving element 15.

受光素子15で検出された光信号はA/Dコンバーター16でAD変換された後、パーソナルコンピュータなどの演算装置17に入力される。血糖値はこのようにして得たスペクトルデータを解析することによって算出される。   The optical signal detected by the light receiving element 15 is AD converted by the A / D converter 16 and then input to the arithmetic unit 17 such as a personal computer. The blood glucose level is calculated by analyzing the spectrum data thus obtained.

リファレンス測定はセラミック板など基準板18を反射した光を測定し、これを基準光として行う。すなわち、光源1から光ファイババンドル5に入射した近赤外光はリファレンス用光ファイバ8を通して、リファレンス用プローブ10の先端から基準板18の表面に照射される。基準板に照射された光の反射光はリファレンス用プローブ10の先端に配置された受光光ファイバ19を介してリファレンス側出射体12から出射される。上記の測定側出射体11とレンズ13の間、及びこのリファンレス側出射体12とレンズ13の間にはそれぞれシャッター22が配置してあり、シャッター22の開閉によって測定側出射体11からの光とリファンレス側出射体12からの光のいずれか一方が選択的に通過する。なお、測定プローブ9端面の円上に配置された12本の発光側光ファイバ20から中心に位置する1本の受光側光ファイバ19までの距離Lは0.65mmとされている。   In the reference measurement, light reflected from the reference plate 18 such as a ceramic plate is measured, and this is used as reference light. That is, near-infrared light incident on the optical fiber bundle 5 from the light source 1 is applied to the surface of the reference plate 18 from the tip of the reference probe 10 through the reference optical fiber 8. The reflected light of the light irradiated on the reference plate is emitted from the reference-side emitting body 12 through the light receiving optical fiber 19 disposed at the tip of the reference probe 10. A shutter 22 is disposed between the measurement-side emitting body 11 and the lens 13 and between the refanless-side emitting body 12 and the lens 13, respectively. One of the light from the refanless side emitter 12 selectively passes. The distance L from the 12 light-emitting side optical fibers 20 arranged on the circle on the end face of the measurement probe 9 to the one light-receiving side optical fiber 19 located at the center is 0.65 mm.

ここで、上記距離L(0.65mm)に光ファイバを配置しているのは、表皮、真皮、皮下組織の層状構造を有する皮膚組織から真皮部分のスペクトルを選択的に測定するためであり、上記間隔で発光側光ファイバ20と受光側光ファイバ19入射光ファイバとを配置した場合、発光側光ファイバ20から照射された近赤外光が皮膚組織内を拡散反射して受光側光ファイバ19に到達する時、その伝播経路は“バナナ・シェイプ”と呼ばれる経路をとり、真皮部分を中心に伝播するものであり、このためにSN比の良い吸光信号を得ることができる。   Here, the reason why the optical fiber is disposed at the distance L (0.65 mm) is to selectively measure the spectrum of the dermis part from the skin tissue having a layered structure of epidermis, dermis, and subcutaneous tissue, When the light-emitting side optical fiber 20 and the light-receiving side optical fiber 19 incident optical fiber are arranged at the above interval, the near-infrared light irradiated from the light-emitting side optical fiber 20 is diffusely reflected in the skin tissue and received light-side optical fiber 19. , The propagation path takes a path called “banana shape” and propagates around the dermis part, so that an absorption signal with a good S / N ratio can be obtained.

このように、1100〜2500nm波長の近赤外光を用いた血糖測定技術に関しては、従来、光源としてハロゲンランプを用い、光ファイバを介して生体へ近赤外光を導き信号測定を行なう事例が多い。光ファイバを利用することで、高温化するハロゲンランプ光源と生体との物理的な距離を確保して火傷等の障害を回避することができる上に、光ファイバのフレキシブルな特性を活かして比較的自由な条件で生体信号を測定できるからであるが、光源と生体(皮膚組織)の間に光ファイバやレンズ系が数多く介在すれば、その分、光学ロスが大きくなり、その結果、光源の消費電力や装置サイズの大きなものになる。また、光ファイバはその屈曲させることができる半径をあまり小さくすることができないことから、取り回しの点で制限がある。   As described above, with regard to blood glucose measurement technology using near infrared light having a wavelength of 1100 to 2500 nm, there has been a case in which a signal is measured by using a halogen lamp as a light source and introducing near infrared light to a living body via an optical fiber. Many. By using an optical fiber, it is possible to avoid physical problems such as burns by securing a physical distance between the halogen lamp light source that is heated and the living body, and by taking advantage of the flexible characteristics of the optical fiber, This is because the biological signal can be measured under free conditions. However, if many optical fibers and lens systems are interposed between the light source and the living body (skin tissue), the optical loss increases accordingly, resulting in the consumption of the light source. The power and device size will be large. In addition, since the radius of the optical fiber that can be bent cannot be made very small, there is a limitation in handling.

受光系についても同様に、光学ロスのために受光感度を上げなくてはならず、たとえばインジウム・ガリウム・砒素系等の受光素子の場合、素子を冷却して暗電流(ダークノイズ)を下げて使用する必要が生じており、これは受光ユニットの大型化や消費電力の増加の要因になっている。また、上記のようにハロゲンランプを光源として用いると、大きな電源容量を必要とするためにどうしても大型の装置構成となり、血糖値のトレンドを連続的にモニターするといった用途を想定したものとすることができない。   Similarly, for the light receiving system, it is necessary to increase the light receiving sensitivity due to optical loss. For example, in the case of light receiving elements such as indium, gallium, and arsenic, cool the element to lower the dark current (dark noise). The necessity to use has arisen, and this becomes the factor of the enlargement of a light receiving unit and the increase in power consumption. In addition, when a halogen lamp is used as a light source as described above, a large power supply capacity is required, and thus a large-sized device configuration is inevitably used, and it is assumed that the blood glucose trend is continuously monitored. Can not.

一方、発光ダイオードやダイオードレーザーのような半導体素子を発光手段として用いれば、発熱量が大きくないので高温化せず、生体の直近に発光手段を配置できるために、光ファイバやレンズ系を介さずとも測定系を構築することができる。しかも、腕時計のような大きさにまで小型化することも可能であり、血糖値管理の上で用途が広がる。
特開2006‐87913号公報
On the other hand, if a semiconductor element such as a light emitting diode or a diode laser is used as the light emitting means, the amount of heat generated is not large, so the temperature does not rise, and the light emitting means can be placed in the immediate vicinity of the living body. Both can build a measurement system. In addition, it is possible to reduce the size to the size of a wristwatch, and the use expands in terms of blood glucose level management.
JP 2006-87913 A

本発明は上記の点に鑑みてなされたものであり、小型化、低コスト化を図ることができる上に生体に安全なエネルギー密度の低い近赤外光で測定信号のSN比を確保できる生体表層組織用センシング装置を提供することを課題としている。   The present invention has been made in view of the above points, and can reduce the size and cost of the living body and can secure the SN ratio of the measurement signal with near-infrared light having a low energy density that is safe for the living body. It is an object to provide a sensing device for surface tissue.

上記課題を解決するために本発明に係る生体表層組織用センシング装置は、生体表層組織に照射する光を照射する発光手段と、生体表層組織からの拡散反射光を受光する受光手段を備える生体表層組織用センシング装置であって、基板上に配置された前記発光手段上に受光手段が積層配置されているとともに、端面発光型の発光ダイオードである上記発光手段の側面から出力された光を直角方向に反射させる反射板が発光手段の側方に配されていることに特徴を有している。   In order to solve the above problems, a sensing device for living body surface tissue according to the present invention comprises a light emitting means for irradiating light to irradiate the living body surface tissue and a light receiving means for receiving diffusely reflected light from the living body surface tissue. A tissue sensing device, wherein a light receiving means is stacked on the light emitting means arranged on a substrate, and light output from a side surface of the light emitting means, which is an end face light emitting type light emitting diode, is perpendicular to the light emitting means. It is characterized in that a reflecting plate for reflecting light is disposed on the side of the light emitting means.

皮膚組織は、一般に大きく表皮(Epidermis)、真皮(Dermis)、皮下組織(Subcutaneous Tissue)の3層の組織で構成されており、血糖値測定という点からすれば、表皮組織は組織内に毛細血管が発達していないために、血液中のグルコース濃度が変動しても、この表皮組織中のグルコース濃度は追随して変化しない。また、皮下組織は血管が発達しているものの、主に脂肪組織で構成されており、水溶性であるグルコースの信号を測定する組織としては適切ではない。これに対して、真皮組織は表皮の基底層で細胞を作り出すための栄養を血液から供給するために毛細血管が発達して活発な生理活動が行われており、しかも生体成分、たとえばグルコースは組織内で高い浸透性を有することから、真皮の組織内グルコース濃度は、細胞間質液(ISF:InterstitialFluid)と同様に血糖値に追随して変化すると推定できる。   Skin tissue is generally composed of three layers of epidermis, dermis, and subcutaneous tissue. From the viewpoint of blood glucose measurement, epidermal tissue is composed of capillaries in the tissue. Therefore, even if the glucose concentration in the blood fluctuates, the glucose concentration in the epidermal tissue does not follow. In addition, although the subcutaneous tissue has developed blood vessels, it is mainly composed of adipose tissue and is not suitable as a tissue for measuring a water-soluble glucose signal. On the other hand, dermal tissue develops capillaries in order to supply nutrients for creating cells in the basal layer of the epidermis from the blood, and active physiological activities are performed, and biological components such as glucose are tissue Since it has high permeability in the skin, it can be estimated that the glucose concentration in the tissue of the dermis changes following the blood glucose level in the same manner as the interstitial fluid (ISF).

したがって、表皮組織と皮下組織からの情報を避けて、真皮組織からグルコース濃度に関する情報を選択的に得られるようにすることで精度良い血糖値測定を行うことが期待できるが、この時、受発光間隔を0.2mmから2mmの間(更に好ましくは0.35mm以上0.8mm以下)に設定することで、皮膚の深さ方向における真皮組織に対する選択性を確保することができる。   Therefore, accurate information on blood glucose level can be expected by avoiding information from epidermal tissue and subcutaneous tissue and selectively obtaining information on glucose concentration from dermal tissue. By setting the interval between 0.2 mm and 2 mm (more preferably 0.35 mm or more and 0.8 mm or less), selectivity for the dermis tissue in the depth direction of the skin can be ensured.

ここにおいて、受発光間隔は上述のように0.2mmから2mmが好ましいわけであるが、受光手段及び発光手段として共に半導体素子を用いたとしても、その外形寸法が大きければ上記受発光間隔で配置することは困難となる場合がある上に、上記受発光間隔に合わせた外形寸法の受光素子及び発光素子を用意しなくてはならない場合がある。   Here, the light receiving / emitting interval is preferably 0.2 mm to 2 mm as described above. However, even if a semiconductor element is used as both the light receiving means and the light emitting means, the light receiving / emitting interval is arranged at the light receiving / emitting interval as long as the outer dimensions are large. It may be difficult to do this, and a light-receiving element and a light-emitting element having external dimensions that match the light receiving and emitting intervals may have to be prepared.

これに対し、本発明においては発光手段として端面発光型の発光ダイオードを用いて発光手段の側面から出力される光は反射板で直角方向に反射させ、上記発光手段上に受光手段を積層して、生体からの拡散反射光を受けることができるようにしていることから、受発光間隔を上記距離に設定することについての素子寸法の制限が少なくなり、好ましい受発光間隔を容易に得ることができる。   On the other hand, in the present invention, an edge-emitting light emitting diode is used as the light emitting means, and the light output from the side surface of the light emitting means is reflected at right angles by the reflecting plate, and the light receiving means is laminated on the light emitting means. Since the diffuse reflected light from the living body can be received, the limit of the element size for setting the light receiving / emitting interval to the above distance is reduced, and a preferable light receiving / emitting interval can be easily obtained. .

受光手段としては面入射型の受光素子を好適に用いることができるが、これに限定されるものではなく、発光ダイオード上に積層されるものであればよい。   As the light receiving means, a surface incident type light receiving element can be suitably used, but the light receiving means is not limited to this, and any light emitting diode may be used as long as it is stacked on the light emitting diode.

また、前記受光手段は生体組織表面に接触させるセンシング面から離して配置することで、生体からの熱の影響を受けにくくしておくことが、SN比の低下を防ぐことができる点で好ましい。   In addition, it is preferable that the light receiving means is arranged away from the sensing surface to be brought into contact with the surface of the living tissue so that the light receiving means is less susceptible to the influence of heat from the living body in terms of preventing the SN ratio from being lowered.

前記反射板はその外形状が四角形もしくは円形のものを好適に用いることができる。特に円形とした場合、受発光間隔を全ての方向でほぼ等距離にすることができるために、測定精度の向上に有効であり、この時、受光手段は受光面が円形の受光素子を用いると、更に好ましい結果を得ることができる。   As the reflection plate, a rectangular or circular outer shape can be suitably used. In particular, in the case of a circular shape, the light receiving and emitting intervals can be made substantially equal in all directions, which is effective in improving measurement accuracy. At this time, if the light receiving means uses a light receiving element having a circular light receiving surface. Further preferable results can be obtained.

前記発光手段として、複数の端面発光型発光ダイオードを積層したものを用いてもよい。光量を増やすことができるためにSN比を向上させることができる。複数の発光ダイオードを用いるにあたり、発光波長の異なるものを用いると同時に発光タイミングをずらすことで、複数波長での測定を行えるようにすることも可能である。   As the light emitting means, a stack of a plurality of edge-emitting light emitting diodes may be used. Since the amount of light can be increased, the SN ratio can be improved. When using a plurality of light emitting diodes, it is possible to perform measurement at a plurality of wavelengths by using light emitting diodes having different emission wavelengths and simultaneously shifting the light emission timing.

前記発光手段と受光手段は共に正方形状のものであるとともに、受光手段はその角の方向を発光手段の角の方向に合わせて積層されていることを特徴とする請求項1〜5のいず 前記受光手段を夫々積層した4つの発光手段を田の字型に配置してもよい。光量の増大や多波長化を図ることができ、さらに生体組織内での光のパスが不均一になる影響を低減することができる。   6. The light emitting device according to claim 1, wherein the light emitting device and the light receiving device are both square-shaped, and the light receiving device is laminated so that the direction of the corner is aligned with the direction of the corner of the light emitting device. You may arrange | position four light emission means which each laminated | stacked the said light-receiving means in the shape of a rice field. The amount of light can be increased and the number of wavelengths can be increased, and the influence of non-uniform light paths in the living tissue can be reduced.

そして、前記発光手段と受光手段は前記基板に立体配線で接続すれば、ボンディングワイヤを利用した配線に比して小型化に有利である。   If the light emitting means and the light receiving means are connected to the substrate by a three-dimensional wiring, it is advantageous for miniaturization as compared to wiring using bonding wires.

本発明によれば、発光手段と受光手段との間隔を皮膚組織の深さ方向に対する選択性の点において好ましい値の範囲内に保つにあたり、発光手段や受光手段に用いる素子の形状の大きさによる制限を小さくすることができるものであり、このために目的とする測定を精度良く行うことについて有利である。しかも発光手段が発光ダイオードであるために、装置のセンシング部を数mm程度の大きさで構成することが可能である上に、ハロゲンランプを光源とする場合のように大きな電源容量を必要とせず、従って、腕時計のようなサイズにまとめることができて、血糖値等の生体情報を非侵襲的に連続計測することにも容易に対応することができ、血糖値管理への応用という点で医療上のメリットは極めて大である。   According to the present invention, in keeping the distance between the light emitting means and the light receiving means within a preferable range in terms of selectivity with respect to the depth direction of the skin tissue, it depends on the size of the element used for the light emitting means and the light receiving means. The limitation can be reduced, and for this purpose, it is advantageous to accurately perform the intended measurement. Moreover, since the light emitting means is a light emitting diode, it is possible to configure the sensing part of the apparatus with a size of about several millimeters, and it does not require a large power source capacity as in the case of using a halogen lamp as a light source. Therefore, it can be combined into a size like a wristwatch, can easily cope with non-invasive continuous measurement of biological information such as blood glucose level, and is medical in terms of application to blood glucose level management. The above advantages are extremely large.

以下、本発明を添付図面に示す実施形態に基いて説明すると、本発明に係る生体表層組織用センシング装置は、皮膚組織、特に、真皮層を標的とし、真皮組織中のグルコース濃度変化を代用特性として血糖値を非侵襲的に測定するためのものであり、真皮組織に近赤外光を選択的に伝播させてグルコース濃度変化に伴う散乱係数の変化を信号として検出し、血糖値を推定するためのものとして構成した一例を図1に示す。   Hereinafter, the present invention will be described based on an embodiment shown in the accompanying drawings. A living body tissue sensing device according to the present invention targets a skin tissue, in particular, a dermis layer, and substitutes for a glucose concentration change in the dermis tissue. As a non-invasive measurement of blood glucose level, and by selectively transmitting near-infrared light to the dermal tissue to detect changes in the scattering coefficient associated with changes in glucose concentration as a signal and to estimate blood glucose level An example configured for this purpose is shown in FIG.

図中24は基板であり、この基板24上に発光発光手段としての発光ダイオード22を実装してあり、更に該発光ダイオード22上に受光手段としてフォトダイオードのような受光素子23を積層してある。また、基板24の周囲部分には外壁26を立設して、センシング面25を構成する近赤外線帯域で透明なカバーグラスを設けている。   In the figure, reference numeral 24 denotes a substrate, on which a light emitting diode 22 as a light emitting and emitting means is mounted, and a light receiving element 23 such as a photodiode is laminated on the light emitting diode 22 as a light receiving means. . Further, an outer wall 26 is erected on the peripheral portion of the substrate 24, and a cover glass transparent in the near infrared band constituting the sensing surface 25 is provided.

ここで上記発光ダイオード22は、端面部全周に発光部となるPN接合部が出て側方に向けて発光する端面発光型のもので、この発光ダイオード22上に積層した受光素子23は面入射型のものである。そして、上記発光ダイオード22の周囲には反射板27を配置してある。基板24に対して45°の角度をなす反射面を備えるとともに該反射面を発光ダイオード22側に向けている反射板27は、上記端面発光型の発光ダイオード22の側面から出力された光をセンシング面25側に向けて反射し、センシング面25に接触させた生体表層組織に投射する。   Here, the light emitting diode 22 is of an end surface light emitting type in which a PN junction portion serving as a light emitting portion is provided around the entire end surface portion and emits light toward the side, and the light receiving element 23 stacked on the light emitting diode 22 has a surface. Incident type. A reflecting plate 27 is disposed around the light emitting diode 22. A reflection plate 27 having a reflection surface forming an angle of 45 ° with respect to the substrate 24 and directing the reflection surface toward the light emitting diode 22 side senses light output from the side surface of the end surface light emitting diode 22. The light is reflected toward the surface 25 and projected onto the living body tissue that is in contact with the sensing surface 25.

上記発光ダイオード22には、中心波長1300nmの近赤外光を発光するとともに、縦横高さの寸法が0.6mm×0.6mm×0.25mm、上記PN接合部の厚みが0.05mm程度のものを用いており、受光素子23には縦横高さの寸法が0.3mm×0.3mm×0.2mm、受光面の寸法が0.2mm角のものを用いている。なお、発光ダイオード22は上記波長のものに限定するものではなく、1000〜2500nmの近赤外波長域の光を発光するものであればよい。   The light emitting diode 22 emits near-infrared light having a center wavelength of 1300 nm, has a height and width height of 0.6 mm × 0.6 mm × 0.25 mm, and a thickness of the PN junction of about 0.05 mm. The light receiving element 23 has a height and width height of 0.3 mm × 0.3 mm × 0.2 mm and a light receiving surface of 0.2 mm square. In addition, the light emitting diode 22 is not limited to the said wavelength, What is necessary is just to light-emit the light of a 1000-2500 nm near-infrared wavelength range.

受光素子23はセンシング面25(カバーグラス)の内面側に接触する位置にあってもよいが、ここではセンシング面25を介して生体の熱的影響を受けてしまうことを避けるために、センシング面25から0.1〜1mmほど離している。   The light receiving element 23 may be in a position in contact with the inner surface side of the sensing surface 25 (cover glass), but here, in order to avoid being affected by the thermal effect of the living body via the sensing surface 25, the sensing surface. It is about 0.1 to 1 mm away from 25.

前記反射板27は、断面三角形の樹脂製材の表面に近赤外線を反射する金属膜を蒸着することで反射面を形成したものであり、本例の場合、前記受発光間隔は反射板27と受光素子23との間隔となるために、発光ダイオード22の外周で且つ前記受発光間隔の条件を満たす位置に配置している。   The reflection plate 27 has a reflective surface formed by vapor-depositing a metal film that reflects near infrared rays on the surface of a resin material having a triangular cross section. In order to provide a distance from the element 23, the light emitting diode 22 is arranged on the outer periphery of the light emitting diode 22 at a position that satisfies the condition of the light emitting / receiving interval.

また、図1に示すものでは、平面形状が四角形となっている端面発光型の発光ダイオード22の各側面に平行となる四角形の外形を有する反射板27を用いているが、図2に示すように円形の外形をなす反射板27を用いてもよく、この方が受発光間隔のばらつきを小さくすることができる。また、反射板27の反射面が平面であるものを示したが、曲面であってもよい。   1 uses a reflector 27 having a rectangular outer shape parallel to each side surface of the edge-emitting light emitting diode 22 having a square planar shape, as shown in FIG. Alternatively, a reflecting plate 27 having a circular outer shape may be used, and this can reduce variations in the light receiving and emitting intervals. Moreover, although the reflecting surface of the reflecting plate 27 is a flat surface, it may be a curved surface.

図3に他例を示す。これは基板24上に端面発光型の発光ダイオード22を2つ積み重ね、この上に更に受光素子23を配したものである。反射板27が上記両発光ダイオード22,22の側面から出た光をいずれも反射させることができるようにしているのはもちろんである。複数の発光ダイオード22,22が同じ波長の光を発光するようにすることで光量の増大を図ることができる。また、両者が異なる波長の光を発光するようにしてもよく、この場合、両発光ダイオード22,22の発光タイミングをずらすことによって、異なる波長による測定を行うことができる。いずれにしても、受発光間隔は反射板27と受光素子23との間隔で決定されるために、発光ダイオード22の数を増やすことが受発光間隔に影響を与えることはない。   FIG. 3 shows another example. In this example, two edge-emitting light emitting diodes 22 are stacked on a substrate 24, and a light receiving element 23 is further disposed thereon. Of course, the reflecting plate 27 can reflect both the light emitted from the side surfaces of the light emitting diodes 22 and 22. The light quantity can be increased by causing the plurality of light emitting diodes 22 and 22 to emit light having the same wavelength. In addition, both may emit light of different wavelengths, and in this case, measurement with different wavelengths can be performed by shifting the light emission timings of the light emitting diodes 22 and 22. In any case, since the light receiving / emitting interval is determined by the interval between the reflecting plate 27 and the light receiving element 23, increasing the number of the light emitting diodes 22 does not affect the light receiving / emitting interval.

図4に別の例を示す。これは受光素子23が上面に夫々積層されている4つの端面発光型発光ダイオード22を基板1上に田の字型に並べて実装したもので、反射板27はこれら発光ダイオード22群の回りを囲むように配置している。この場合においても、各発光ダイオード22が出力する光の波長が同一であっても異なっていてもよい。   FIG. 4 shows another example. In this example, four edge-emitting light-emitting diodes 22 each having a light-receiving element 23 laminated on the upper surface are mounted on the substrate 1 in a square shape, and a reflector 27 surrounds the light-emitting diodes 22 group. Are arranged as follows. Also in this case, the wavelength of the light output from each light emitting diode 22 may be the same or different.

図5は発光ダイオード22及び受光素子23と基板24との間の配線29を立体配線としたものの例を示している。ちなみに、センシング面25(カバーグラス)側の配線29は、カバーグラスの内面に形成した電路パターンで行っており、カバーグラスから発光ダイオード22や受光素子23への配線はワイヤでもよいが、導電性樹脂を介在させることで行うとよい。   FIG. 5 shows an example in which the wiring 29 between the light emitting diode 22 and the light receiving element 23 and the substrate 24 is a three-dimensional wiring. Incidentally, the wiring 29 on the sensing surface 25 (cover glass) side is made of an electric circuit pattern formed on the inner surface of the cover glass, and the wiring from the cover glass to the light emitting diode 22 and the light receiving element 23 may be a wire, but it is conductive. It is good to carry out by interposing resin.

本発明の実施の形態の一例を示しており、(a)は断面図、(b)は平面図である。1 illustrates an example of an embodiment of the present invention, where (a) is a cross-sectional view and (b) is a plan view. 他例の平面図である。It is a top view of other examples. 更に他例の断面図である。Furthermore, it is sectional drawing of another example. 別の例の平面図である。It is a top view of another example. 他の例の断面図である。It is sectional drawing of another example. 従来例を示すもので、(a)はシステム構成の概略図、(b)はそのプローブ構成の概略図である。1 shows a conventional example, in which (a) is a schematic diagram of a system configuration, and (b) is a schematic diagram of a probe configuration thereof.

符号の説明Explanation of symbols

22 発光ダイオード
23 受光素子
24 基板
27 反射板
22 Light emitting diode 23 Light receiving element 24 Substrate 27 Reflector

Claims (7)

生体表層組織に照射する光を照射する発光手段と、生体表層組織からの拡散反射光を受光する受光手段を備える生体表層組織用センシング装置であって、
基板上に配置された前記発光手段上に受光手段が積層配置されているとともに、端面発光型の発光ダイオードである上記発光手段の側面から出力された光を直角方向に反射させる反射板が発光手段の側方に配されていることを特徴とする生体表層組織用センシング装置。
A sensing device for living body surface tissue comprising a light emitting means for irradiating light to irradiate a living body surface tissue, and a light receiving means for receiving diffusely reflected light from the living body surface tissue,
A light receiving means is disposed on the light emitting means arranged on the substrate, and a reflecting plate for reflecting light output from the side surface of the light emitting means, which is an end face light emitting diode, in a right angle direction is a light emitting means. A living body surface tissue sensing device, characterized by being arranged on the side of the body.
前記受光手段は面入射型の受光素子であることを特徴とする請求項1記載の生体表層組織用センシング装置。   2. The living body surface tissue sensing device according to claim 1, wherein the light receiving means is a surface incident type light receiving element. 前記受光手段は生体組織表面に接触させるセンシング面から離して配置されていることを特徴とする請求項1または2記載の生体表層組織用センシング装置。   The living body surface tissue sensing device according to claim 1, wherein the light receiving means is disposed apart from a sensing surface to be brought into contact with the surface of the living tissue. 前記反射板はその外形状が四角形もしくは円形であることを特徴とする請求項1〜3のいずれか1項に記載の生体表層組織用センシング装置。   The living body surface tissue sensing device according to any one of claims 1 to 3, wherein the reflecting plate has a quadrangular or circular outer shape. 前記発光手段は、複数の端面発光型発光ダイオードが積層されたものであることを特徴とする請求項1〜4のいずれか1項に記載の生体表層組織用センシング装置。   The living body surface tissue sensing device according to any one of claims 1 to 4, wherein the light emitting means is formed by laminating a plurality of edge-emitting light emitting diodes. 前記受光手段を夫々積層した4つの発光手段を田の字型に配置していることを特徴とする請求項1〜5のいずれか1項に記載の生体表層組織用センシング装置。   The living body surface tissue sensing device according to any one of claims 1 to 5, wherein four light emitting means each having the light receiving means stacked thereon are arranged in a square shape. 前記発光手段と受光手段は前記基板に立体配線で接続されていることを特徴とする請求項1〜6のいずれか1項に記載の生体表層組織用センシング装置。   The living body surface tissue sensing device according to any one of claims 1 to 6, wherein the light emitting means and the light receiving means are connected to the substrate by a three-dimensional wiring.
JP2007279461A 2007-10-26 2007-10-26 Sensing apparatus for biological surface tissue Pending JP2009106373A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007279461A JP2009106373A (en) 2007-10-26 2007-10-26 Sensing apparatus for biological surface tissue

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007279461A JP2009106373A (en) 2007-10-26 2007-10-26 Sensing apparatus for biological surface tissue

Publications (1)

Publication Number Publication Date
JP2009106373A true JP2009106373A (en) 2009-05-21

Family

ID=40775585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007279461A Pending JP2009106373A (en) 2007-10-26 2007-10-26 Sensing apparatus for biological surface tissue

Country Status (1)

Country Link
JP (1) JP2009106373A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011139726A (en) * 2010-01-05 2011-07-21 Seiko Epson Corp Biological information detector and biological information measuring device
JP2011147584A (en) * 2010-01-21 2011-08-04 Seiko Epson Corp Biological information detector and biological information measuring apparatus
JP2016036728A (en) * 2014-08-05 2016-03-22 パナソニックIpマネジメント株式会社 Pulse wave sensor
JP2018524073A (en) * 2015-07-02 2018-08-30 マシモ・コーポレイション Advanced pulse oximetry sensor
US10912501B2 (en) 2008-07-03 2021-02-09 Masimo Corporation User-worn device for noninvasively measuring a physiological parameter of a user
US11638532B2 (en) 2008-07-03 2023-05-02 Masimo Corporation User-worn device for noninvasively measuring a physiological parameter of a user
US12114974B2 (en) 2020-01-13 2024-10-15 Masimo Corporation Wearable device with physiological parameters monitoring

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07506987A (en) * 1992-03-12 1995-08-03 ウォン,ヤコブ ワイ. Non-invasive blood chemistry measurement using infrared stimulated relaxed emission
JP2004229920A (en) * 2003-01-30 2004-08-19 Nippon Telegr & Teleph Corp <Ntt> Sensor part of rheometer and rheometer
JP2004337605A (en) * 2003-04-23 2004-12-02 Otax Co Ltd Optical probe, measuring system using the same, and reflected light detecting method using the same
WO2006051726A1 (en) * 2004-11-09 2006-05-18 Kyushu University, National University Corporation Sensor part and biological sensor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07506987A (en) * 1992-03-12 1995-08-03 ウォン,ヤコブ ワイ. Non-invasive blood chemistry measurement using infrared stimulated relaxed emission
JP2004229920A (en) * 2003-01-30 2004-08-19 Nippon Telegr & Teleph Corp <Ntt> Sensor part of rheometer and rheometer
JP2004337605A (en) * 2003-04-23 2004-12-02 Otax Co Ltd Optical probe, measuring system using the same, and reflected light detecting method using the same
WO2006051726A1 (en) * 2004-11-09 2006-05-18 Kyushu University, National University Corporation Sensor part and biological sensor

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11484230B2 (en) 2008-07-03 2022-11-01 Masimo Corporation User-worn device for noninvasively measuring a physiological parameter of a user
US12023139B1 (en) 2008-07-03 2024-07-02 Masimo Corporation User-worn device for noninvasively measuring a physiological parameter of a user
US12036009B1 (en) 2008-07-03 2024-07-16 Masimo Corporation User-worn device for noninvasively measuring a physiological parameter of a user
US11426103B2 (en) 2008-07-03 2022-08-30 Masimo Corporation Multi-stream data collection system for noninvasive measurement of blood constituents
US10912501B2 (en) 2008-07-03 2021-02-09 Masimo Corporation User-worn device for noninvasively measuring a physiological parameter of a user
US10912500B2 (en) 2008-07-03 2021-02-09 Masimo Corporation Multi-stream data collection system for noninvasive measurement of blood constituents
US10912502B2 (en) 2008-07-03 2021-02-09 Masimo Corporation User-worn device for noninvasively measuring a physiological parameter of a user
US11751773B2 (en) 2008-07-03 2023-09-12 Masimo Corporation Emitter arrangement for physiological measurements
US11647914B2 (en) 2008-07-03 2023-05-16 Masimo Corporation User-worn device for noninvasively measuring a physiological parameter of a user
US11642036B2 (en) 2008-07-03 2023-05-09 Masimo Corporation User-worn device for noninvasively measuring a physiological parameter of a user
US10945648B2 (en) 2008-07-03 2021-03-16 Masimo Corporation User-worn device for noninvasively measuring a physiological parameter of a user
US11484229B2 (en) 2008-07-03 2022-11-01 Masimo Corporation User-worn device for noninvasively measuring a physiological parameter of a user
US11638532B2 (en) 2008-07-03 2023-05-02 Masimo Corporation User-worn device for noninvasively measuring a physiological parameter of a user
US11642037B2 (en) 2008-07-03 2023-05-09 Masimo Corporation User-worn device for noninvasively measuring a physiological parameter of a user
JP2011139726A (en) * 2010-01-05 2011-07-21 Seiko Epson Corp Biological information detector and biological information measuring device
JP2011147584A (en) * 2010-01-21 2011-08-04 Seiko Epson Corp Biological information detector and biological information measuring apparatus
JP2016036728A (en) * 2014-08-05 2016-03-22 パナソニックIpマネジメント株式会社 Pulse wave sensor
JP2018524073A (en) * 2015-07-02 2018-08-30 マシモ・コーポレイション Advanced pulse oximetry sensor
JP7004575B2 (en) 2015-07-02 2022-01-21 マシモ・コーポレイション Optical physiologic measurement system
US12114974B2 (en) 2020-01-13 2024-10-15 Masimo Corporation Wearable device with physiological parameters monitoring

Similar Documents

Publication Publication Date Title
US8670819B2 (en) Optical biological information detecting apparatus and optical biological information detecting method
US10117612B2 (en) Detecting device
JP4580684B2 (en) Portable instrument for measuring physiological values including devices that illuminate the surface of organic tissue
KR100827138B1 (en) Apparatus for measuring living body information
JP5093597B2 (en) Biosignal measurement probe
TWI594445B (en) Opto-electronic modules including features to help reduce stray light and/or optical cross-talk
JP2009106373A (en) Sensing apparatus for biological surface tissue
US20160313244A1 (en) Optical sensing apparatus provided with light source and light detector
JP2022506275A (en) Equipment and methods for analyzing substances
JP2009106376A (en) Sensing apparatus for biological surface tissue
KR101981632B1 (en) Glucose measuring device
JP2012055454A (en) Bioinformation measurement device
JP5031896B2 (en) Self-luminous sensor device
WO2013137145A1 (en) Non-destructive measuring device
JP2008126017A (en) Optical sensor, and measurement system using the same
TWI477759B (en) Detecting module and detecting device
CN109199401A (en) Detection device and apparatus for measuring biological data
JP6507670B2 (en) Information acquisition device
JP2008289807A (en) Sensing apparatus for biological surface tissue
KR102358662B1 (en) Biometric Sensor
JP2008154687A (en) Optical measurement unit and optical measurement method using it
JP2008289808A (en) Sensing apparatus for biological surface tissue
WO2023100536A1 (en) Measurement device
JP2011167318A (en) Method for manufacturing optical device, optical device, and biological information detector
JP6946707B2 (en) Detection device and biological information measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100525

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100816

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120221

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120703