[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6946707B2 - Detection device and biological information measuring device - Google Patents

Detection device and biological information measuring device Download PDF

Info

Publication number
JP6946707B2
JP6946707B2 JP2017083618A JP2017083618A JP6946707B2 JP 6946707 B2 JP6946707 B2 JP 6946707B2 JP 2017083618 A JP2017083618 A JP 2017083618A JP 2017083618 A JP2017083618 A JP 2017083618A JP 6946707 B2 JP6946707 B2 JP 6946707B2
Authority
JP
Japan
Prior art keywords
light
nail
light emitting
light receiving
tissue
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017083618A
Other languages
Japanese (ja)
Other versions
JP2018175707A (en
Inventor
百瀬 嘉彦
嘉彦 百瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2017083618A priority Critical patent/JP6946707B2/en
Publication of JP2018175707A publication Critical patent/JP2018175707A/en
Application granted granted Critical
Publication of JP6946707B2 publication Critical patent/JP6946707B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Description

本発明は、被験者の生体情報を測定するための技術に関する。 The present invention relates to a technique for measuring biological information of a subject.

被験者の生体情報を測定するための技術が従来から提案されている。例えば特許文献1には、近赤外光を爪の下の皮下組織に照射し、皮下組織からの拡散反射光に応じた信号を利用して血糖値を測定する構成が開示されている。 Techniques for measuring the biological information of a subject have been conventionally proposed. For example, Patent Document 1 discloses a configuration in which near-infrared light is applied to the subcutaneous tissue under the nail and a blood glucose level is measured using a signal corresponding to diffuse reflection light from the subcutaneous tissue.

特開2005−80710号公報Japanese Unexamined Patent Publication No. 2005-80710

特許文献1の技術では、血糖値測定用のピックアップの先端面に照射用光ファイバーの端面と受光用光ファイバーの端面とが位置している。つまり、ピックアップを爪表面に装着すると、爪の表面に対して垂直に光が入射する。しかし、爪の表面に対して垂直に光が入射すると、生体情報の測定に適した信号が生成されない場合がある。例えば、非常に狭い範囲に局所的に光が照射されて、外光および正反射光の影響が大きい検出信号が生成される、または、過度に深い位置まで光が到達して、本来の測定対象となる爪直下の組織とは異なる組織の影響を含む検出信号が生成される等の問題がある。以上の事情を考慮して、本発明は、爪の下の組織における特定の部位をより多く通過した光を反映した検出信号を生成することを目的とする。 In the technique of Patent Document 1, the end face of the irradiation optical fiber and the end face of the light receiving optical fiber are located on the tip surface of the pickup for measuring the blood glucose level. That is, when the pickup is attached to the surface of the nail, light is incident on the surface of the nail perpendicularly. However, when light is incident perpendicular to the surface of the nail, a signal suitable for measuring biological information may not be generated. For example, a very narrow range is locally irradiated with light to generate a detection signal that is greatly affected by external light and specularly reflected light, or the light reaches an excessively deep position and is the original measurement target. There is a problem that a detection signal including the influence of a tissue different from the tissue directly under the nail is generated. In view of the above circumstances, it is an object of the present invention to generate a detection signal reflecting more light that has passed through a specific part of the tissue under the nail.

以上の課題を解決するために、本発明の第1態様に係る検出装置は、爪の表面に対して光を出射するための発光部と、発光部から出射して爪の下の組織を通過した光の受光レベルに応じた検出信号を生成する受光部とを具備し、発光部の光軸は、爪の表面における重心を通る垂線に対して傾斜している。以上の構成では、爪の表面に対して光を出射するための発光部の光軸が、爪の表面における重心を通る垂線に対して傾斜している。したがって、発光部の光軸が爪の表面における重心を通る垂線に対して平行な構成と比較して、発光部から出射された光は、爪の下の組織内において深度が浅い部分(例えば爪床)に広範囲にわたり伝搬する。ひいては、爪の下の組織における特定の部位をより多く通過した光を反映した検出信号の生成が可能になる。また、爪の下の組織内において深度が浅い部分に広範囲にわたり伝播するので、爪表面に対して検出装置の位置がずれた場合でも、高精度に検出信号を生成することができる。 In order to solve the above problems, the detection device according to the first aspect of the present invention has a light emitting portion for emitting light to the surface of the nail and a light emitting portion that emits light and passes through the tissue under the nail. It includes a light receiving unit that generates a detection signal according to the light receiving level of the light, and the optical axis of the light emitting unit is inclined with respect to a perpendicular line passing through the center of gravity on the surface of the nail. In the above configuration, the optical axis of the light emitting portion for emitting light to the surface of the nail is inclined with respect to the perpendicular line passing through the center of gravity on the surface of the nail. Therefore, compared to a configuration in which the optical axis of the light emitting portion is parallel to the perpendicular line passing through the center of gravity on the surface of the nail, the light emitted from the light emitting portion is a shallow portion in the tissue under the nail (for example, the nail). Spreads over a wide area (floor). As a result, it is possible to generate a detection signal that reflects more light that has passed through a specific part of the tissue under the nail. In addition, since it propagates over a wide area in the tissue under the nail to a shallow portion, it is possible to generate a detection signal with high accuracy even when the position of the detection device is displaced with respect to the nail surface.

本発明の第2態様に係る検出装置は、爪の表面に対して光を出射するための発光部と、発光部から出射して爪の下の組織を通過した光の受光レベルに応じた検出信号を生成する受光部と、爪の表面に対向する対向面とを具備し、発光部の光軸は、対向面の垂線に対して傾斜している。以上の構成では、爪の表面に対して光を出射するための発光部の光軸が、爪の表面に対向する対向面の垂線に対して傾斜している。したがって、発光部の光軸が爪の表面に対抗する対向面の垂線に対して平行な構成と比較して、発光部から出射された光は、爪の下の組織内において深度が浅い部分(例えば爪床)に広範囲にわたり伝搬する。ひいては、爪の下の組織における特定の部位をより多く通過した光を反映した検出信号の生成が可能になる。また、爪の下の組織内において深度が浅い部分に広範囲にわたり伝播するので、爪表面に対して検出装置の位置がずれた場合でも、高精度に検出信号を生成することができる。 The detection device according to the second aspect of the present invention has a light emitting portion for emitting light to the surface of the nail and detection according to the light receiving level of light emitted from the light emitting portion and passed through the tissue under the nail. It includes a light receiving portion that generates a signal and a facing surface that faces the surface of the nail, and the optical axis of the light emitting portion is inclined with respect to the perpendicular line of the facing surface. In the above configuration, the optical axis of the light emitting portion for emitting light to the surface of the nail is inclined with respect to the perpendicular line of the facing surface facing the surface of the nail. Therefore, the light emitted from the light emitting portion is a shallow portion in the tissue under the nail (compared to a configuration in which the optical axis of the light emitting portion is parallel to the perpendicular line of the facing surface facing the surface of the nail. It propagates over a wide area (for example, the nail bed). As a result, it is possible to generate a detection signal that reflects more light that has passed through a specific part of the tissue under the nail. In addition, since it propagates over a wide area in the tissue under the nail to a shallow portion, it is possible to generate a detection signal with high accuracy even when the position of the detection device is displaced with respect to the nail surface.

本発明の第1態様と第2態様の好適例において、発光部および受光部は、爪の表面側に位置する。以上の構成では、発光部および受光部が爪の表面側に位置する。したがって、爪を挟んで発光部とは反対側に受光部がある構成と比較して小型化が可能である。また、爪の下の組織における特定の部位を通過した光の影響を検出信号において大きくするという観点からも、発光部および受光部が爪の表面側に位置する構成が有効である。 In the preferred examples of the first aspect and the second aspect of the present invention, the light emitting portion and the light receiving portion are located on the surface side of the nail. In the above configuration, the light emitting portion and the light receiving portion are located on the surface side of the nail. Therefore, it is possible to reduce the size as compared with the configuration in which the light receiving portion is located on the opposite side of the light emitting portion with the claw sandwiched between them. Further, from the viewpoint of increasing the influence of the light passing through a specific portion in the tissue under the nail in the detection signal, it is effective to have the light emitting portion and the light receiving portion located on the surface side of the nail.

本発明の第1態様と第2態様の好適例において、受光部の光軸は、垂線に沿う。以上の構成では、受光部の光軸は、垂線(爪の表面における重心を通る垂線、または、爪の表面に対向する対向面の垂線)に沿う。 In the preferred examples of the first aspect and the second aspect of the present invention, the optical axis of the light receiving portion is along the perpendicular line. In the above configuration, the optical axis of the light receiving portion is along a perpendicular line (a perpendicular line passing through the center of gravity on the surface of the nail or a perpendicular line on the facing surface facing the surface of the nail).

本発明の第1態様と第2態様の好適例において、複数の発光部を具備する。以上の構成では、複数の発光部を具備するので、発光部の個数が1個の構成と比較して、爪の下の組織の内部を通過する光の光量が多い。したがって、SN比が高い検出信号を生成することができる。 In the preferred examples of the first aspect and the second aspect of the present invention, a plurality of light emitting units are provided. In the above configuration, since a plurality of light emitting portions are provided, the amount of light passing through the inside of the tissue under the nail is larger than that in the configuration in which the number of light emitting portions is one. Therefore, it is possible to generate a detection signal having a high SN ratio.

本発明の第1態様と第2態様の好適例において、複数の発光部の各々の光軸は、組織の内部で交わる。以上の構成では、複数の発光部の各々の光軸は、爪の下の組織の内部で交わるので、各発光部が出射した光が爪の下の組織を伝播する範囲が相互に重複し得る。したがって、複数の発光部の各々の光軸が爪の下の組織の内部で交わらない構成と比較して、充分な光量で爪の下の組織を均一に照射することが可能である。したがって、爪の下の組織の状態を高度に反映したSN比の高い検出信号を生成できるという利点がある。 In the preferred examples of the first aspect and the second aspect of the present invention, the optical axes of the plurality of light emitting portions intersect inside the tissue. In the above configuration, since the optical axes of the plurality of light emitting parts intersect inside the tissue under the nail, the range in which the light emitted by each light emitting part propagates through the tissue under the nail may overlap each other. .. Therefore, it is possible to uniformly irradiate the tissue under the nail with a sufficient amount of light, as compared with the configuration in which the optical axes of the plurality of light emitting portions do not intersect inside the tissue under the nail. Therefore, there is an advantage that a detection signal having a high SN ratio that highly reflects the state of the tissue under the nail can be generated.

本発明の第1態様と第2態様の好適例において、発光部の光軸と受光部の光軸とがなす角度は、30度以上60度以下である。以上の構成では、発光部の光軸と受光部の光軸とがなす角度は、30度以上60度以下である。爪の下の組織における特定の部位を通過した光の影響を大きくするという観点からは、以上の構成が特に有効である。 In the preferred examples of the first aspect and the second aspect of the present invention, the angle formed by the optical axis of the light emitting portion and the optical axis of the light receiving portion is 30 degrees or more and 60 degrees or less. In the above configuration, the angle formed by the optical axis of the light emitting unit and the optical axis of the light receiving unit is 30 degrees or more and 60 degrees or less. The above configuration is particularly effective from the viewpoint of increasing the influence of light passing through a specific part in the tissue under the nail.

本発明の第1態様と第2態様の好適例において、発光部が出射する光は、近赤外光を含む。発光部が出射する光に近赤外光が含まれる構成は、特定の生体情報(例えば血糖値)を特定する場合に特に有効である。 In the preferred examples of the first aspect and the second aspect of the present invention, the light emitted by the light emitting unit includes near-infrared light. The configuration in which the light emitted by the light emitting unit includes near-infrared light is particularly effective when specifying specific biological information (for example, blood glucose level).

本発明の第1態様と第2態様の好適例において、受光部は、発光部から出射して組織を通過した光を分光する分光器と、分光器で分光された光の受光レベルに応じた検出信号を生成する受光素子とを含む。以上の構成では、発光部から出射して組織を通過した光を分光する分光器と、分光器で分光された光の受光レベルに応じた検出信号を生成する受光素子とを受光部が含むので、爪の下の組織を通過した光のうち特定の波長帯域の光を反映した検出信号を生成することが可能である。 In the preferred examples of the first aspect and the second aspect of the present invention, the light receiving unit corresponds to a spectroscope that disperses the light emitted from the light emitting unit and passing through the tissue and the light receiving level of the light spectroscopically dispersed by the spectroscope. Includes a light receiving element that generates a detection signal. In the above configuration, the light receiving unit includes a spectroscope that disperses the light emitted from the light emitting unit and passed through the tissue, and a light receiving element that generates a detection signal according to the light receiving level of the light dispersed by the spectroscope. It is possible to generate a detection signal that reflects light in a specific wavelength band among the light that has passed through the tissue under the claw.

本発明の第1態様と第2態様の好適例において、受光素子は、InGaAsで形成される。以上の構成では、近赤外領域に高い感度を示すInGaAsにより受光素子が形成されるので、爪の下の組織を通過した光のうち近赤外光を反映した検出信号を生成することができる。 In the preferred examples of the first aspect and the second aspect of the present invention, the light receiving element is formed of InGaAs. In the above configuration, since the light receiving element is formed of InGaAs showing high sensitivity in the near infrared region, it is possible to generate a detection signal reflecting the near infrared light among the light passing through the tissue under the nail. ..

以上の各態様の検出装置は、検出装置が生成した検出信号から生体情報を特定する生体情報測定装置に利用される。 The detection device of each of the above aspects is used in a biometric information measuring device that identifies biometric information from a detection signal generated by the detection device.

本発明の好適な態様に係る検出方法は、爪の表面における重心を通る垂線に対して傾斜した方向から、発光部により爪の表面に対して光を照射し、爪の下の組織を通過した光を受光し、受光したレベルに応じた検出信号を生成する。以上の方法では、爪の表面における重心を通る垂線に対して傾斜した方向から、発光部により爪の表面に対して照射した光のうち、爪の下の組織を通過した光の受光レベルに応じた検出信号が生成される。したがって、爪の表面における重心を通る垂線と平行な方向から、発光部により爪の表面に対して光を照射する方法と比較して、発光部から出射された光は、爪の下の組織内において深度が浅い部分(例えば爪床)に広範囲にわたり伝搬する。ひいては、爪の下の組織における特定の部位をより多く通過した光を反映した検出信号の生成が可能になる。また、爪の下の組織内において深度が浅い部分に広範囲にわたり伝播するので、爪表面に対して受光部の位置がずれた場合でも、高精度に検出信号を生成することができる。 In the detection method according to a preferred embodiment of the present invention, the surface of the nail is irradiated with light by a light emitting portion from a direction inclined with respect to a perpendicular line passing through the center of gravity on the surface of the nail, and the light passes through the tissue under the nail. It receives light and generates a detection signal according to the received level. In the above method, the light emitted from the light emitting portion to the surface of the nail from the direction inclined with respect to the perpendicular line passing through the center of gravity on the surface of the nail depends on the received level of the light passing through the tissue under the nail. Detection signal is generated. Therefore, compared to the method of irradiating the surface of the nail with light from the direction parallel to the perpendicular line passing through the center of gravity on the surface of the nail, the light emitted from the light emitting portion is inside the tissue under the nail. It propagates over a wide area in shallow areas (eg, nail bed). As a result, it is possible to generate a detection signal that reflects more light that has passed through a specific part of the tissue under the nail. In addition, since it propagates over a wide area in the tissue under the nail to a shallow portion, it is possible to generate a detection signal with high accuracy even when the position of the light receiving portion is displaced with respect to the nail surface.

本発明の実施形態に係る生体情報測定装置の構成図である。It is a block diagram of the biological information measuring apparatus which concerns on embodiment of this invention. 生体情報測定装置が使用される状態における検出装置の断面図である。It is sectional drawing of the detection device in the state which the biological information measuring device is used. 爪の表面における重心を通る垂線の説明図である。It is explanatory drawing of the vertical line passing through the center of gravity on the surface of a nail. 発光部から出射した光が伝播する範囲の模式図である。It is a schematic diagram of the range in which the light emitted from a light emitting part propagates. 対比例における発光部から出射した光が伝播する範囲の模式図である。It is a schematic diagram of the range in which the light emitted from the light emitting part in inverse proportion propagates.

図1は、本発明の実施形態に係る生体情報測定装置1の側面図である。生体情報測定装置1は、被験者の生体情報を測定する測定機器である。具体的には、生体情報測定装置1は、被験者の指Fの爪Nの下の組織(以下「爪下組織」という)から生体情報を測定する。本実施形態では、爪下組織に存在する毛細血管から血糖値を生体情報として測定する。 FIG. 1 is a side view of the biological information measuring device 1 according to the embodiment of the present invention. The biological information measuring device 1 is a measuring device that measures the biological information of a subject. Specifically, the biological information measuring device 1 measures biological information from the tissue under the nail N of the finger F of the subject (hereinafter referred to as “subungual tissue”). In this embodiment, the blood glucose level is measured as biological information from the capillaries existing in the subungual tissue.

本実施形態の生体情報測定装置1は、図1に例示される通り、検出装置20と特定部40と表示部60とを具備する。図2は、生体情報測定装置1が使用される状態における検出装置20を指Fの長手方向から見た断面図である。検出装置20は、血糖値の特定に使用される検出信号を生成する機器であり、被験者の身体のうち指Fの爪Nの表面に配置される。 As illustrated in FIG. 1, the biological information measuring device 1 of the present embodiment includes a detecting device 20, a specific unit 40, and a display unit 60. FIG. 2 is a cross-sectional view of the detection device 20 in a state where the biological information measuring device 1 is used, as viewed from the longitudinal direction of the finger F. The detection device 20 is a device that generates a detection signal used for identifying the blood glucose level, and is arranged on the surface of the fingernail N of the finger F in the body of the subject.

検出装置20は、図2に例示される通り、筐体21と複数(例えば2個)の発光部23と受光部25とを具備する。筐体21は、例えば略円柱状の中空の構造体であり、発光部23と受光部25とを収容する。具体的には、筐体21は、爪Nの表面に対向する面(以下「対向面」という)13と、対向面13から受光部25に向って筒状に形成された検出経路部15とを具備する。対向面13は、実際の使用状態では爪Nに接触する。本実施形態では、筐体21に収容される発光部23と受光部25とは、対向面13を挟んで爪Nの反対側に位置する。つまり、発光部23と受光部25とは、爪Nの表面側に位置する。発光部23と受光部25とが爪Nの表面に対向するとも換言され得る。 As illustrated in FIG. 2, the detection device 20 includes a housing 21, a plurality of (for example, two) light emitting units 23, and a light receiving unit 25. The housing 21 is, for example, a substantially cylindrical hollow structure, and accommodates a light emitting unit 23 and a light receiving unit 25. Specifically, the housing 21 includes a surface facing the surface of the claw N (hereinafter referred to as “opposing surface”) 13 and a detection path portion 15 formed in a cylindrical shape from the facing surface 13 toward the light receiving portion 25. Equipped with. The facing surface 13 comes into contact with the claw N in an actual use state. In the present embodiment, the light emitting unit 23 and the light receiving unit 25 housed in the housing 21 are located on opposite sides of the claw N with the facing surface 13 interposed therebetween. That is, the light emitting unit 23 and the light receiving unit 25 are located on the surface side of the claw N. It can be paraphrased that the light emitting unit 23 and the light receiving unit 25 face the surface of the claw N.

各発光部23は、爪Nの表面に対して光Lを出射する。具体的には、各発光部23は、支持部31と発光素子33とレンズ35とを具備する。支持部31は、例えば円柱状の中空の構造体である。図2に例示される通り、支持部31の一方の端面に発光素子33が設置され、他方の端面にレンズ35が設置される。発光素子33は、光Lを出射する素子である。例えば、LED(Light Emitting Diode),ハロゲンランプまたは面発光レーザー(Vertical Cavity Surface Emitting LASER)等を発光素子33として利用するこができる。レンズ35は、発光素子33から出射された光Lを平行光にする凸レンズである。レンズ35により集光された光Lは、爪Nに対して照射される。本実施形態の発光素子33(発光部23)は、近赤外光(約800nm〜1300nm)を含む光Lを出射する。各発光素子33は、同時に光Lを出射する。 Each light emitting unit 23 emits light L to the surface of the claw N. Specifically, each light emitting unit 23 includes a support unit 31, a light emitting element 33, and a lens 35. The support portion 31 is, for example, a columnar hollow structure. As illustrated in FIG. 2, the light emitting element 33 is installed on one end face of the support portion 31, and the lens 35 is installed on the other end face. The light emitting element 33 is an element that emits light L. For example, an LED (Light Emitting Diode), a halogen lamp, a surface emitting laser (Vertical Cavity Surface Emitting LASER), or the like can be used as the light emitting element 33. The lens 35 is a convex lens that makes the light L emitted from the light emitting element 33 parallel light. The light L focused by the lens 35 is applied to the nail N. The light emitting element 33 (light emitting unit 23) of the present embodiment emits light L including near infrared light (about 800 nm to 1300 nm). Each light emitting element 33 emits light L at the same time.

発光部23からの出射光Lは、検出経路部15の側壁に形成された貫通孔70を通過して爪Nの表面に入射する。爪Nの表面に入射した光Lは、爪Nを透過して爪下組織NPに到達する。爪下組織NPに到達した光Lは、爪下組織NPで反射および散乱を繰り返したうえで一部が爪Nを再び透過して検出装置20側に出射する。すなわち、爪Nの表面側に位置する発光部23と受光部25とで反射型の光学センサーモジュールとして機能する。本実施形態では、爪Nの表面に入射した光Lは、爪Nの内部で拡散してから爪下組織NPに到達する。つまり、爪Nが導光板として機能する。したがって、例えば表皮に対して光を出射する構成と比較して、発光部23から爪Nに対して出射した光Lを生体(爪下組織NP)内において広範囲にわたり到達させることができる。 The emitted light L from the light emitting unit 23 passes through the through hole 70 formed in the side wall of the detection path unit 15 and is incident on the surface of the claw N. The light L incident on the surface of the nail N passes through the nail N and reaches the subnail tissue NP. The light L that has reached the subungual tissue NP is repeatedly reflected and scattered by the subungual tissue NP, and then a part of the light L passes through the nail N again and is emitted to the detection device 20 side. That is, the light emitting unit 23 and the light receiving unit 25 located on the surface side of the claw N function as a reflection type optical sensor module. In the present embodiment, the light L incident on the surface of the nail N diffuses inside the nail N and then reaches the subnail tissue NP. That is, the claw N functions as a light guide plate. Therefore, as compared with, for example, a configuration in which light is emitted to the epidermis, the light L emitted from the light emitting portion 23 to the nail N can reach a wide range in the living body (subungual tissue NP).

受光部25は、発光部23から出射して爪下組織NPを通過した光Lの受光レベルに応じた検出信号を生成する。本実施形態の受光部25は、分光器51と受光素子53とを具備する。爪Nの表面に対向するように分光器51が設置され、分光器51を挟んで爪Nとは反対側に受光素子53が設置される。具体的には、分光器51は、発光部23から出射して爪下組織NPを通過した光Lを分光する光学機器である。例えばファブリ・ペロー型干渉計(エタロン)が分光器51として好適に利用される。 The light receiving unit 25 generates a detection signal according to the light receiving level of the light L emitted from the light emitting unit 23 and passing through the subungual tissue NP. The light receiving unit 25 of the present embodiment includes a spectroscope 51 and a light receiving element 53. The spectroscope 51 is installed so as to face the surface of the claw N, and the light receiving element 53 is installed on the side opposite to the claw N with the spectroscope 51 interposed therebetween. Specifically, the spectroscope 51 is an optical device that disperses the light L emitted from the light emitting unit 23 and passing through the subungual tissue NP. For example, a Fabry-Perot interferometer (Etalon) is preferably used as the spectroscope 51.

爪下組織NPから爪Nを透過して検出装置20側に出射した光Lは、検出経路部15の内部空間を通過し、分光器51において爪Nの表面に対向する入射面57に入射する。本実施形態では、分光器51に入射した光のうち近赤外領域の光が分光される。受光素子53は、分光器51で分光された光の受光レベルに応じた検出信号を生成する。例えば、爪Nに対向する受光面59で光を受光するフォトダイオード(PD:Photo Diode)等の光電変換素子が受光素子53として好適に利用される。本実施形態の受光素子53は、近赤外領域に高い感度を示すInGaAs(インジウム・ガリウム・ヒ素)で形成される。なお、検出装置20は、例えば、駆動電流の供給により発光部23を駆動する駆動回路と、受光部25の出力信号を増幅およびA/D変換する出力回路(例えば増幅回路とA/D変換器)を包含するが、図2では各回路の図示を省略した。 The light L transmitted from the subungual tissue NP through the nail N and emitted to the detection device 20 side passes through the internal space of the detection path portion 15 and is incident on the incident surface 57 facing the surface of the nail N in the spectroscope 51. .. In the present embodiment, among the light incident on the spectroscope 51, the light in the near infrared region is separated. The light receiving element 53 generates a detection signal according to the light receiving level of the light dispersed by the spectroscope 51. For example, a photoelectric conversion element such as a photodiode (PD) that receives light on the light receiving surface 59 facing the claw N is preferably used as the light receiving element 53. The light receiving element 53 of the present embodiment is made of InGaAs (indium gallium arsenide), which exhibits high sensitivity in the near infrared region. The detection device 20 includes, for example, a drive circuit that drives the light emitting unit 23 by supplying a drive current, and an output circuit that amplifies and A / D converts the output signal of the light receiving unit 25 (for example, an amplifier circuit and an A / D converter). ), But the illustration of each circuit is omitted in FIG.

以下、発光部23と受光部25との位置関係を説明する。各発光部23は、発光部23の光軸OEが筐体21の対向面13の垂線P1に対して傾斜するように筐体21に設置される。発光部23の光軸OEは、発光部23が出射する光束の代表となる仮想的な軸線である。例えば、発光素子33の発光面37の中心を通過し発光面37に垂直な軸線、または、レンズ35の光軸が発光部23の光軸OEとして例示される。本実施形態において、対向面13の垂線P1と爪Nの表面における重心Cを通る垂線P2とは一致する。すなわち、発光部23の光軸OEが爪Nの表面における重心Cを通る垂線P2に対して傾斜している、とも換言され得る。爪Nの表面における重心Cとは、図3に例示される通り、爪Nの表面における爪甲(爪Nの根元から黄線までの範囲)部分NQの重心Cである。なお、実際には、垂線P1と垂線P2とが一致しない場合も想定され得る。 Hereinafter, the positional relationship between the light emitting unit 23 and the light receiving unit 25 will be described. Each light emitting unit 23 is installed in the housing 21 so that the optical axis OE of the light emitting unit 23 is inclined with respect to the perpendicular line P1 of the facing surface 13 of the housing 21. The optical axis OE of the light emitting unit 23 is a virtual axis that represents the light flux emitted by the light emitting unit 23. For example, the axis that passes through the center of the light emitting surface 37 of the light emitting element 33 and is perpendicular to the light emitting surface 37, or the optical axis of the lens 35 is exemplified as the optical axis OE of the light emitting unit 23. In the present embodiment, the perpendicular line P1 of the facing surface 13 and the perpendicular line P2 passing through the center of gravity C on the surface of the claw N coincide with each other. That is, it can be paraphrased that the optical axis OE of the light emitting unit 23 is inclined with respect to the perpendicular line P2 passing through the center of gravity C on the surface of the claw N. As illustrated in FIG. 3, the center of gravity C on the surface of the nail N is the center of gravity C of the nail plate (range from the root of the nail N to the yellow line) portion NQ on the surface of the nail N. In reality, it can be assumed that the perpendicular line P1 and the perpendicular line P2 do not match.

また、受光部25は、受光部25の光軸ORが垂線P(P1およびP2)に沿うように筐体21に設置される。受光部25の光軸ORは、受光部25が受光する光束の代表となる仮想的な軸線である。例えば、分光器51の入射面57の中心を通過し当該入射面57に垂直な軸線、または、受光素子53の受光面59の中心を通過し当該受光面59に垂直な軸線が受光部25の光軸ORとして例示される。受光部25の光軸ORが垂線Pに沿う状態とは、典型的には、受光部25の光軸ORと垂線Pとが平行である状態を意味する。光軸ORと垂線Pとが平行である状態とは、光軸ORと垂線Pとが厳密に平行である状態のほか、光軸ORと垂線Pとが実質的に平行である状態を含む。光軸ORと垂線Pとが実質的に平行である状態とは、例えば、光軸ORと垂線Pとがなす角度が0度以上10度以下(理想的には0度)の状態をいう。 Further, the light receiving unit 25 is installed in the housing 21 so that the optical axis OR of the light receiving unit 25 is along the perpendicular lines P (P1 and P2). The optical axis OR of the light receiving unit 25 is a virtual axis that represents the light flux received by the light receiving unit 25. For example, the axis that passes through the center of the incident surface 57 of the spectroscope 51 and is perpendicular to the incident surface 57, or the axis that passes through the center of the light receiving surface 59 of the light receiving element 53 and is perpendicular to the light receiving surface 59 is the axis of the light receiving unit 25. It is exemplified as an optical axis OR. The state in which the optical axis OR of the light receiving unit 25 is along the perpendicular line P typically means a state in which the optical axis OR of the light receiving unit 25 and the perpendicular line P are parallel to each other. The state in which the optical axis OR and the perpendicular line P are parallel includes a state in which the optical axis OR and the perpendicular line P are strictly parallel, and a state in which the optical axis OR and the perpendicular line P are substantially parallel to each other. The state in which the optical axis OR and the perpendicular line P are substantially parallel means, for example, a state in which the angle formed by the optical axis OR and the perpendicular line P is 0 degrees or more and 10 degrees or less (ideally 0 degrees).

図2に例示される通り、本実施形態において2個の発光部23の各々の光軸OEは、爪下組織NPの内部で交わる。受光部25は、例えば発光部23同士の光軸OEの交点Sを受光部25の光軸ORが通過するように設置される。つまり、平面視において2個の発光部23の間に受光部25が位置する。発光部23の光軸OEと受光部25の光軸OR(あるいは対向面13の垂線P1)とがなす角度θは、30度以上60度以下(例えば45度)である。 As illustrated in FIG. 2, in the present embodiment, the optical axes OE of each of the two light emitting portions 23 intersect inside the subungual tissue NP. The light receiving unit 25 is installed so that, for example, the optical axis OR of the light receiving unit 25 passes through the intersection S of the optical axes OE of the light emitting units 23. That is, the light receiving unit 25 is located between the two light emitting units 23 in a plan view. The angle θ formed by the optical axis OE of the light emitting unit 23 and the optical axis OR of the light receiving unit 25 (or the perpendicular line P1 of the facing surface 13) is 30 degrees or more and 60 degrees or less (for example, 45 degrees).

図1の特定部40は、検出装置20で生成された検出信号から血糖値を特定する。具体的には、特定部40は、検出信号から吸光スペクトルを生成し、当該吸光スペクトルから血糖値(グルコース濃度)を特定する。吸光スペクトルを利用した血糖値の特定には、例えば重回帰分析法等の公知の技術が任意に利用され得る。PLS(Partial Least Squares)回帰分析法および独立成分分析法等が重回帰分析法として例示される。表示部(例えば液晶表示パネル)60は、特定部40が特定した血糖値を表示する。 The identification unit 40 of FIG. 1 identifies the blood glucose level from the detection signal generated by the detection device 20. Specifically, the identification unit 40 generates an absorption spectrum from the detection signal and identifies the blood glucose level (glucose concentration) from the absorption spectrum. For the identification of the blood glucose level using the absorption spectrum, a known technique such as a multiple regression analysis method can be arbitrarily used. PLS (Partial Least Squares) regression analysis method, independent component analysis method and the like are exemplified as multiple regression analysis methods. The display unit (for example, a liquid crystal display panel) 60 displays the blood glucose level specified by the specific unit 40.

図4は、本実施形態における発光部23から出射した光Lが伝播する範囲Hの模式図である。図5は、発光部23の光軸OEが対向面13の垂線P1(あるいは垂線P2)に対して平行な構成(以下「対比例」という)における発光部23から出射した光Lが伝播する範囲Hの模式図である。発光部23の光軸OEが筐体21の対向面13の垂線P1(あるいは垂線P2)に対して傾斜する本実施形態の構成によれば、対比例と比較して、発光部23から出射された光Lは、爪下組織NP内において深度が浅い部分(例えば爪床)に広範囲にわたり伝播する。ここで、爪下組織NPには、毛細血管が存在する。特に、図4および図5の断面図において爪Nに近い部分の(つまり深度が浅い位置にある)組織に多数の毛細血管が存在する。つまり、本実施形態の構成によれば、対比例と比較して、爪下組織NPにおける特定の部位(つまり毛細血管)をより多く通過した光を反映した検出信号の生成が可能になる。ひいては、血糖値の測定により適した検出信号を生成することができる。また、本実施形態では、爪下組織NP内において深度が浅い部分に広範囲にわたり伝播するので、爪表面に対して検出装置20の位置がずれた場合(例えば検出装置20の対向面13の一部が爪Nの表面からはみ出ている場合)でも、高精度に検出信号を生成することができる。 FIG. 4 is a schematic view of a range H in which the light L emitted from the light emitting unit 23 in the present embodiment propagates. FIG. 5 shows a range in which the light L emitted from the light emitting unit 23 propagates in a configuration in which the optical axis OE of the light emitting unit 23 is parallel to the perpendicular line P1 (or perpendicular line P2) of the facing surface 13 (hereinafter referred to as “inverse proportion”). It is a schematic diagram of H. According to the configuration of the present embodiment in which the optical axis OE of the light emitting unit 23 is inclined with respect to the perpendicular line P1 (or the perpendicular line P2) of the facing surface 13 of the housing 21, the light emitting unit 23 is emitted from the light emitting unit 23 as compared with the inverse proportion. The light L propagates over a wide area in a shallow portion (for example, the nail bed) in the subungual tissue NP. Here, capillaries are present in the subungual tissue NP. In particular, in the cross-sectional views of FIGS. 4 and 5, a large number of capillaries are present in the tissue near the nail N (that is, at a shallow depth). That is, according to the configuration of the present embodiment, it is possible to generate a detection signal reflecting more light that has passed through a specific site (that is, capillaries) in the subungual tissue NP as compared with the inverse proportion. As a result, a detection signal more suitable for measuring the blood glucose level can be generated. Further, in the present embodiment, since it propagates over a wide range to a shallow portion in the subungual tissue NP, when the position of the detection device 20 is displaced with respect to the nail surface (for example, a part of the facing surface 13 of the detection device 20). Is protruding from the surface of the claw N), the detection signal can be generated with high accuracy.

本実施形態では、爪Nの表面に検出装置20が配置されるので、表皮に検出装置20を配置する構成と比較して、測定環境(例えば温度および圧力)の影響、または、生体内部以外の組織(例えば汗腺および体毛)の影響を低減した検出信号を生成できるという利点がある。したがって、高精度に検出信号を生成することが可能である。 In the present embodiment, since the detection device 20 is arranged on the surface of the nail N, the influence of the measurement environment (for example, temperature and pressure) or other than the inside of the living body is compared with the configuration in which the detection device 20 is arranged on the epidermis. It has the advantage of being able to generate detection signals with reduced effects of tissues (eg sweat glands and hair). Therefore, it is possible to generate a detection signal with high accuracy.

<変形例>
以上に例示した形態は多様に変形され得る。具体的な変形の態様を以下に例示する。以下の例示から任意に選択された2以上の態様を適宜に併合することも可能である。
<Modification example>
The forms exemplified above can be variously modified. A specific mode of modification is illustrated below. It is also possible to appropriately merge two or more aspects arbitrarily selected from the following examples.

(1)前述の形態では、検出装置20は2個の発光部23を具備したが、発光部23の個数を3個以上または1個とすることも可能である。ただし、複数(2個以上)の発光部23を具備する構成によれば、発光部23の個数が1個の構成と比較して、爪下組織NP内を通過する光の光量が多い。したがって、SN比が高い検出信号を生成することができる。また、発光部23の個数が1個の構成と比較して、検出装置20の位置が爪の表面に対してずれた場合でも、爪下組織NPを通過した検出信号を生成できるという利点がある。 (1) In the above-described embodiment, the detection device 20 includes two light emitting units 23, but the number of light emitting units 23 may be three or more or one. However, according to the configuration including a plurality of (two or more) light emitting units 23, the amount of light passing through the subungual tissue NP is larger than that in the configuration in which the number of light emitting units 23 is one. Therefore, it is possible to generate a detection signal having a high SN ratio. Further, as compared with the configuration in which the number of light emitting units 23 is one, there is an advantage that a detection signal that has passed through the subungual tissue NP can be generated even when the position of the detection device 20 is deviated from the surface of the nail. ..

(2)前述の形態では、2個の発光部23の各々の光軸OEが爪下組織NPの内部で交わる構成を例示したが、2個の発光部23の各々の光軸OEが爪下組織NPの内部で交わらない構成も採用され得る。ただし、2個の発光部23の各々の光軸OEが爪下組織NPの内部で交わる前述の実施形態の構成によれば、図4に例示される通り、各発光部23が出射した光が爪下組織NPを伝播する範囲が相互に重複し得る。したがって、2個の発光部23の各々の光軸OEが爪下組織NPの内部で交わらない構成と比較して、充分な光量で爪下組織NPを均一に照射することが可能である。したがって、爪下組織NPの状態を高度に反映したSN比の高い検出信号を生成できるという利点がある。 (2) In the above-described embodiment, the configuration in which the optical axis OEs of the two light emitting units 23 intersect inside the subungual tissue NP is illustrated, but the optical axis OEs of the two light emitting units 23 are under the nail. Configurations that do not intersect within the organization NP can also be adopted. However, according to the configuration of the above-described embodiment in which the optical axes OE of the two light emitting units 23 intersect inside the subungual tissue NP, as illustrated in FIG. 4, the light emitted by each light emitting unit 23 is emitted. The extent to which the subungual tissue NP propagates can overlap with each other. Therefore, it is possible to uniformly irradiate the subungual tissue NP with a sufficient amount of light as compared with the configuration in which the optical axes OE of each of the two light emitting units 23 do not intersect inside the subungual tissue NP. Therefore, there is an advantage that a detection signal having a high SN ratio that highly reflects the state of the subungual tissue NP can be generated.

(3)前述の形態では、発光部23の光軸OEと受光部25の光軸ORとがなす角度θは30度以上60度以下であったが、角度θは以上の例示に限定されない。例えば角度θを30度より小さくすること、または、60度より大きくすることも可能である。ただし、爪下組織NPにおける特定の部位(例えば爪床に存在する毛細血管)を通過した光の影響を大きくするという観点からは、角度θが30度以上60度以下である構成が特に有効である。なお、2個の発光部23の各々の角度θを相違させることも可能である。 (3) In the above-described embodiment, the angle θ formed by the optical axis OE of the light emitting unit 23 and the optical axis OR of the light receiving unit 25 is 30 degrees or more and 60 degrees or less, but the angle θ is not limited to the above examples. For example, the angle θ can be made smaller than 30 degrees or larger than 60 degrees. However, from the viewpoint of increasing the influence of light passing through a specific part (for example, capillaries existing in the nail bed) in the subungual tissue NP, a configuration in which the angle θ is 30 degrees or more and 60 degrees or less is particularly effective. be. It is also possible to make the angles θ of the two light emitting units 23 different from each other.

(4)前述の形態では、発光部23が出射する光Lに近赤外光が含まれたが、発光部23が出射する光Lの波長帯域は任意である。ただし、発光部23が出射する光Lに近赤外光が含まれる構成は、血糖値を生体情報として特定する場合に特に有効である。つまり、特定する生体情報の種類によって、発光部23が出射する光の波長帯域は任意に変更し得る。 (4) In the above-described embodiment, the light L emitted by the light emitting unit 23 includes near-infrared light, but the wavelength band of the light L emitted by the light emitting unit 23 is arbitrary. However, the configuration in which the light L emitted by the light emitting unit 23 includes near-infrared light is particularly effective when the blood glucose level is specified as biological information. That is, the wavelength band of the light emitted by the light emitting unit 23 can be arbitrarily changed depending on the type of biometric information to be specified.

(5)前述の形態では、受光部25が分光器51と受光素子53とを含んだが、発光部23から出射して爪下組織NPを通過した光の受光レベルに応じた検出信号を生成することができれば受光部25の構成は任意である。例えば受光部25が受光素子53のみを含む構成、または、分光器51にファブリ・ペロー型干渉計を利用した場合には受光部25が分光器51と受光素子53との間にバンドパスフィルターを具備する構成も採用され得る。ただし、受光部25が分光器51と受光素子53とを含む前述の実施形態の構成によれば、爪下組織NPを通過した光のうち特定の波長帯域の光を反映した検出信号を生成することが可能である。 (5) In the above-described embodiment, the light receiving unit 25 includes the spectroscope 51 and the light receiving element 53, but generates a detection signal according to the light receiving level of the light emitted from the light emitting unit 23 and passed through the subungual tissue NP. If possible, the configuration of the light receiving unit 25 is arbitrary. For example, when the light receiving unit 25 includes only the light receiving element 53, or when a Fabry-Perot type interferometer is used for the spectroscope 51, the light receiving unit 25 inserts a bandpass filter between the spectroscope 51 and the light receiving element 53. The provided configuration can also be adopted. However, according to the configuration of the above-described embodiment in which the light receiving unit 25 includes the spectroscope 51 and the light receiving element 53, a detection signal reflecting light in a specific wavelength band among the light passing through the subungual tissue NP is generated. It is possible.

(6)前述の形態では、受光素子53はInGaAsで形成されたが、受光素子53の材料は任意である。例えばシリコン(Si)で受光素子53を形成することも可能である。ただし、近赤外領域に高い感度を示すInGaAsで受光素子53を形成する前述の実施形態の構成によれば、爪下組織NPを通過した光のうち近赤外光を反映した検出信号を生成することができる。 (6) In the above-described embodiment, the light receiving element 53 is made of InGaAs, but the material of the light receiving element 53 is arbitrary. For example, it is also possible to form the light receiving element 53 from silicon (Si). However, according to the configuration of the above-described embodiment in which the light receiving element 53 is formed of InGaAs showing high sensitivity in the near-infrared region, a detection signal reflecting the near-infrared light among the light passing through the subungual tissue NP is generated. can do.

(7)前述の形態では、受光部25の光軸ORが垂線P(P1およびP2)に沿う構成を例示したが、受光部25の光軸ORの態様は以上の例示に限定されない。例えば受光部25の光軸ORが垂線Pに沿わない構成(例えば受光部25の光軸ORが発光部23の光軸OEに沿う構成)も採用され得る。以上の構成においても、爪下組織NPにおける特定の部位(例えば爪床に存在する毛細血管)をより通過した光を反映した検出信号の生成が可能になる、という効果は実現できる。 (7) In the above-described embodiment, the configuration in which the optical axis OR of the light receiving unit 25 is along the perpendicular lines P (P1 and P2) is illustrated, but the mode of the optical axis OR of the light receiving unit 25 is not limited to the above examples. For example, a configuration in which the optical axis OR of the light receiving unit 25 does not follow the perpendicular line P (for example, a configuration in which the optical axis OR of the light receiving unit 25 follows the optical axis OE of the light emitting unit 23) can be adopted. Even with the above configuration, it is possible to realize the effect that a detection signal reflecting light that has passed through a specific site (for example, a capillary vessel existing in the nail bed) in the subungual tissue NP can be generated.

(8)前述の形態では、発光部23および受光部25が爪Nの表面側に位置したが、爪Nの表面に対する発光部23と受光部25との位置は以上の例示に限定されない。例えば爪Nを挟んで発光部23とは反対側に受光部25がある構成も採用され得る。ただし、発光部23および受光部25が爪Nの表面側に位置する構成によれば、爪Nを挟んで発光部23とは反対側に受光部25がある構成と比較して小型化が可能である。また、爪下組織NPにおける特定の部位を通過した光の影響を検出信号において大きくするという観点からも、発光部23および受光部25が爪Nの表面側に位置する構成が有効である。 (8) In the above-described embodiment, the light emitting unit 23 and the light receiving unit 25 are located on the surface side of the claw N, but the positions of the light emitting unit 23 and the light receiving unit 25 with respect to the surface of the claw N are not limited to the above examples. For example, a configuration in which the light receiving unit 25 is located on the side opposite to the light emitting unit 23 with the claw N sandwiched between them can be adopted. However, according to the configuration in which the light emitting unit 23 and the light receiving unit 25 are located on the surface side of the claw N, the size can be reduced as compared with the configuration in which the light receiving unit 25 is located on the opposite side of the claw N from the light emitting unit 23. Is. Further, from the viewpoint of increasing the influence of the light passing through the specific portion in the subnail tissue NP in the detection signal, it is effective to configure the light emitting unit 23 and the light receiving unit 25 to be located on the surface side of the nail N.

(9)前述の形態では、発光部23同士の光軸OEの交点Sを受光部25の光軸ORが通過する構成を例示したが、発光部23同士の光軸OEの交点Sを受光部25の光軸ORが通過しないように受光部25を設置することも可能である。ただし、発光部23同士の光軸OEの交点Sを受光部25の光軸ORが通過するように受光部25が設置される前述の実施形態の構成によれば、爪下組織NPの状態を高度に反映したSN比の高い検出信号を生成できるという利点がある。 (9) In the above-described embodiment, the configuration in which the optical axis OR of the light receiving unit 25 passes through the intersection S of the optical axes OE of the light emitting units 23 is illustrated, but the intersection S of the optical axes OE of the light emitting units 23 is the light receiving unit. It is also possible to install the light receiving unit 25 so that the optical axis OR of the 25 does not pass through. However, according to the configuration of the above-described embodiment in which the light receiving unit 25 is installed so that the optical axis OR of the light receiving unit 25 passes through the intersection S of the optical axes OE between the light emitting units 23, the state of the subungual tissue NP is changed. There is an advantage that a detection signal having a high SN ratio that is highly reflected can be generated.

(10)前述の形態では、分光器51に入射した光のうち近赤外領域の光が分光されたが、分光器51が分光する光の波長帯域は任意である。例えば、近赤外領域の一部の領域を含む光、または、近赤外領域に加えて可視領域の光を分光する構成も採用され得る。 (10) In the above-described embodiment, the light in the near infrared region is dispersed among the light incident on the spectroscope 51, but the wavelength band of the light dispersed by the spectroscope 51 is arbitrary. For example, a configuration that disperses light including a part of the near-infrared region or light in the visible region in addition to the near-infrared region may be adopted.

(11)前述の形態では、生体情報として血糖値を特定したが、特定する生体情報の種類は血糖値に特定されない。爪下組織NPから特定できる生体情報であれば任意である。例えばコレステロール等の血液中の成分を示す指標または血流量等を生体情報として特定することも可能である。ただし、発光部23の光軸OEが筐体21の対向面13の垂線P1(爪Nの表面における重心Cを通る垂線P2に対して)に対して傾斜する前述の実施形態の構成は、爪Nに近い部分の組織(例えば爪床に存在する毛細血管)から特定できる生体情報を特定する場合に特に有効である。 (11) In the above-described form, the blood glucose level is specified as the biological information, but the type of the specified biological information is not specified by the blood glucose level. Any biological information that can be identified from the subungual tissue NP is arbitrary. For example, it is also possible to specify an index indicating a component in blood such as cholesterol or a blood flow rate as biological information. However, the configuration of the above-described embodiment in which the optical axis OE of the light emitting unit 23 is inclined with respect to the perpendicular line P1 (relative to the perpendicular line P2 passing through the center of gravity C on the surface of the claw N) of the facing surface 13 of the housing 21 is a claw. It is particularly effective when identifying biometric information that can be identified from the tissue near N (for example, the capillaries existing in the nail bed).

(12)前述の形態では、特定した血糖値を表示する表示部60を具備したが、生体情報測定装置1と通信可能(有線/無線)な端末装置に表示部60を設けることも可能である。生体情報測定装置1は特定した血糖値を端末装置に送信して、当該端末装置が血糖値を表示する。つまり、生体情報測定装置1において表示部60は必須ではない。 (12) In the above-described embodiment, the display unit 60 for displaying the specified blood glucose level is provided, but it is also possible to provide the display unit 60 on a terminal device capable of communicating (wired / wireless) with the biological information measuring device 1. .. The biological information measuring device 1 transmits the specified blood glucose level to the terminal device, and the terminal device displays the blood glucose level. That is, the display unit 60 is not indispensable in the biological information measuring device 1.

(13)特定部40および表示部60のうち一方または双方を端末装置に設けた構成(例えば端末装置で実行されるアプリケーションで実現される構成)であってもよい。つまり、生体情報測定装置1は、相互に別体で構成された複数の装置でも実現される。 (13) One or both of the specific unit 40 and the display unit 60 may be provided in the terminal device (for example, a configuration realized by an application executed by the terminal device). That is, the biological information measuring device 1 is also realized by a plurality of devices configured as separate bodies from each other.

(14)本発明は、前述の形態に係る検出装置20の動作方法(検出方法)としても特定され得る。具体的には、本発明の好適な態様の検出方法は、爪Nの表面における重心Cを通る垂線P2(もしくは対向面13の垂線P1)に対して傾斜した方向から、発光部23により爪Nの表面に対して光Lを照射し、爪下組織NPを通過した光Lを受光し、受光したレベルに応じた検出信号を生成する。 (14) The present invention can also be specified as an operation method (detection method) of the detection device 20 according to the above-described embodiment. Specifically, in the detection method of a preferred embodiment of the present invention, the claw N is formed by the light emitting unit 23 from a direction inclined with respect to the perpendicular line P2 (or the perpendicular line P1 of the facing surface 13) passing through the center of gravity C on the surface of the claw N. The surface of the nail is irradiated with light L, the light L that has passed through the subungual tissue NP is received, and a detection signal corresponding to the received level is generated.

1…生体情報測定装置、13…対向面、15…検出経路部、20…検出装置、40…特定部、60…表示部、21…筐体、23…発光部、25…受光部、31…支持部、33…発光素子、35…レンズ、37…発光面、51…分光器、53…受光素子、57…入射面、59…受光面、70…貫通孔。
1 ... Biological information measuring device, 13 ... Facing surface, 15 ... Detection path unit, 20 ... Detection device, 40 ... Specific unit, 60 ... Display unit, 21 ... Housing, 23 ... Light emitting unit, 25 ... Light receiving unit, 31 ... Support portion, 33 ... light emitting element, 35 ... lens, 37 ... light emitting surface, 51 ... spectroscope, 53 ... light receiving element, 57 ... incident surface, 59 ... light receiving surface, 70 ... through hole.

Claims (2)

爪の表面に対して光を出射する複数の発光部と、
前記複数の発光部から出射して前記爪の下の組織を通過した前記光の受光レベルに応じた検出信号を生成する受光部と、
前記爪の表面に対向する対向面と
前記対向面と前記受光部との間に設置され、中心軸が前記対向面に垂直な筒状の検出経路部とを具備し、
前記複数の発光部の各々の光軸は、前記対向面の垂線に対して傾斜し
前記複数の発光部の各々からの出射光は、前記検出経路部の側壁に形成された相異なる貫通孔を通過して前記爪の表面に到達し、
前記爪の表面からの出射光は、前記検出経路部の内部空間を通過して前記受光部に到達する
検出装置。
Multiple light emitting parts that emit light to the surface of the nail,
A light receiving unit that emits light from the plurality of light emitting units and generates a detection signal according to the light receiving level of the light that has passed through the tissue under the nail.
And the opposing surface opposite to the surface of the nail,
It is provided between the facing surface and the light receiving portion, and has a cylindrical detection path portion whose central axis is perpendicular to the facing surface .
The optical axis of each of the plurality of light emitting portions is inclined with respect to the perpendicular line of the facing surface .
The emitted light from each of the plurality of light emitting portions passes through different through holes formed in the side wall of the detection path portion and reaches the surface of the nail.
A detection device in which light emitted from the surface of the nail passes through the internal space of the detection path portion and reaches the light receiving portion.
請求項1検出装置と、
前記検出装置が生成した前記検出信号から生体情報を特定する特定部と
を具備する生体情報測定装置。
The detection device of claim 1 and
A biological information measuring device including a specific unit that identifies biological information from the detection signal generated by the detecting device.
JP2017083618A 2017-04-20 2017-04-20 Detection device and biological information measuring device Active JP6946707B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017083618A JP6946707B2 (en) 2017-04-20 2017-04-20 Detection device and biological information measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017083618A JP6946707B2 (en) 2017-04-20 2017-04-20 Detection device and biological information measuring device

Publications (2)

Publication Number Publication Date
JP2018175707A JP2018175707A (en) 2018-11-15
JP6946707B2 true JP6946707B2 (en) 2021-10-06

Family

ID=64280119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017083618A Active JP6946707B2 (en) 2017-04-20 2017-04-20 Detection device and biological information measuring device

Country Status (1)

Country Link
JP (1) JP6946707B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3497012B2 (en) * 1994-11-30 2004-02-16 謙 石原 Non-invasive blood analyzer
SG126677A1 (en) * 2001-06-26 2006-11-29 Meng Ting Choon Method and device for measuring blood sugar level
JP2008104751A (en) * 2006-10-27 2008-05-08 Sanyo Electric Co Ltd Blood-sugar level measuring instrument and method
JP2013031502A (en) * 2011-08-01 2013-02-14 Sony Corp Information processing apparatus, information processing method, program, and information processing system
WO2013023037A2 (en) * 2011-08-09 2013-02-14 Lemm Technologies, Llc Device and method for measuring an analyte under the nail
JP2015173935A (en) * 2014-03-18 2015-10-05 セイコーエプソン株式会社 Biological measurement apparatus and biological measurement method

Also Published As

Publication number Publication date
JP2018175707A (en) 2018-11-15

Similar Documents

Publication Publication Date Title
JPH07505215A (en) Method and device for measuring glucose concentration
US9874474B2 (en) Biometric sensor and biometric analysis system including the same
US20240003741A1 (en) A raman probe and apparatus and method for non-invasive in vivo measurement of analyte presence or concentration
US20110125004A1 (en) Analysis by photo acoustic displacement and interferometryl
JP6885231B2 (en) Detection device and biological information measuring device
JP2009106376A (en) Sensing apparatus for biological surface tissue
JP2009106373A (en) Sensing apparatus for biological surface tissue
TWI603067B (en) Optical measurement device and method
US20100096551A1 (en) Spectroscopy measurements
US20200375476A1 (en) System and method for an optical blood flow measurement
JP2008289807A (en) Sensing apparatus for biological surface tissue
JP6946707B2 (en) Detection device and biological information measuring device
JP4440704B2 (en) Waveguide type optical sensor
US10718709B2 (en) Device for measuring radiation backscattered by a sample and measurement method using such a device
JP4470939B2 (en) Biospectrum measurement device
KR20090025958A (en) Noninvasive probe for measuring a constituent of body fluids, system including the same, and method for noninvasively measuring a constituent of body fluids
JP2020030143A (en) Optical sensor
PL245054B1 (en) Method of determining glucose concentration in blood by means of IR radiation
JP7027742B2 (en) Spectroscopic system
JP7069786B2 (en) Detection device
KR20240153776A (en) Multi-layer and multi-mode optical imaging device and analysis method thereof
US20220071521A1 (en) Blood-sugar-level measuring apparatus and blood-sugar-level measuring method
JP5060268B2 (en) Biological measuring device and calibration jig
WO2011095072A1 (en) Devices and methods for non-invasive measurement of blood glucose by infrared dispersive reflection
JP2019090665A (en) Component concentration measuring device and component concentration estimating apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200323

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210817

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210830

R150 Certificate of patent or registration of utility model

Ref document number: 6946707

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150