[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2009161398A - Method for manufacturing nitride single crystal - Google Patents

Method for manufacturing nitride single crystal Download PDF

Info

Publication number
JP2009161398A
JP2009161398A JP2008000617A JP2008000617A JP2009161398A JP 2009161398 A JP2009161398 A JP 2009161398A JP 2008000617 A JP2008000617 A JP 2008000617A JP 2008000617 A JP2008000617 A JP 2008000617A JP 2009161398 A JP2009161398 A JP 2009161398A
Authority
JP
Japan
Prior art keywords
solution
single crystal
nitrogen
posture
growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008000617A
Other languages
Japanese (ja)
Other versions
JP4965465B2 (en
Inventor
Makoto Iwai
真 岩井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2008000617A priority Critical patent/JP4965465B2/en
Publication of JP2009161398A publication Critical patent/JP2009161398A/en
Application granted granted Critical
Publication of JP4965465B2 publication Critical patent/JP4965465B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a growing method of a group III nitride single crystal using a flux, by which the growing amount per unit time of the nitride single crystal can be increased and the variation of the quality or the film thickness of the single crystal can be suppressed. <P>SOLUTION: The dissolution of nitrogen into a solution 2 is promoted while holding a growing vessel 1 in a first posture. After that, a nitride single crystal is grown on a seed crystal substrate 4 while holding the growing vessel 1 in a second posture. Thereby, the area B of the gas-liquid interface 2a of the solution 2 in the first posture is made larger than the area A of the gas-liquid interface 2a of the solution 2 in the second posture, and accordingly, it becomes possible to shorten the time until the concentration of nitrogen dissolved in the solution reaches a saturation level. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、窒化物単結晶の製造方法に関するものである。   The present invention relates to a method for producing a nitride single crystal.

窒化ガリウム系III−V窒化物は、優れた青色発光素子として注目を集めており、発光ダイオードや半導体レーザーダイオード用材料として実用化されている。フラックスを用いたIII族窒化物単結晶の育成方法が、各機関より報告されている。   Gallium nitride III-V nitride has attracted attention as an excellent blue light emitting device, and has been put to practical use as a material for light emitting diodes and semiconductor laser diodes. Methods for growing group III nitride single crystals using flux have been reported by various organizations.

Naフラックスを用いた窒化物単結晶育成法においては、窒素は気液界面から供給されるため、気液界面近傍の原料溶液の窒素濃度が溶液の中で最も高い。この溶液に溶け込んだ窒素を種結晶基板まで輸送し、種結晶基板上に単結晶を析出させる。単結晶の成長速度は、気液界面での窒素の溶け込み速度に律束される。   In the nitride single crystal growth method using Na flux, since nitrogen is supplied from the gas-liquid interface, the nitrogen concentration of the raw material solution in the vicinity of the gas-liquid interface is the highest among the solutions. Nitrogen dissolved in this solution is transported to the seed crystal substrate, and a single crystal is deposited on the seed crystal substrate. The growth rate of single crystals is limited by the rate of nitrogen penetration at the gas-liquid interface.

特に、特許文献1では、種結晶基板を縦に配置している。しかし、このような場合、種結晶基板を坩堝底に横に配置する場合よりも、溶液の高さを高くする必要がある。すなわち、同じ気液界面面積に対して溶液原料の量が増える。このため、溶液に溶け込んだ窒素の濃度が飽和に達して単結晶析出が開始するまで長時間を要し、単結晶の生産性が低下する。
WO 2007/122865 A1
In particular, in Patent Document 1, the seed crystal substrate is arranged vertically. However, in such a case, it is necessary to make the height of the solution higher than in the case where the seed crystal substrate is disposed horizontally on the crucible bottom. That is, the amount of the solution raw material increases for the same gas-liquid interface area. For this reason, it takes a long time until the concentration of nitrogen dissolved in the solution reaches saturation and single crystal precipitation starts, and the productivity of the single crystal decreases.
WO 2007/122865 A1

気液界面での溶液への窒素の溶け込み速度を上げるには、以下の方法が考えられる。
(1) 雰囲気の窒素圧力を高くする、
(2) 溶液の気液界面面積を増やす、
(3) 気液界面の近くで溶液を良く撹拌する。
The following methods can be considered to increase the rate of nitrogen dissolution into the solution at the gas-liquid interface.
(1) Increase the nitrogen pressure of the atmosphere,
(2) Increase the gas-liquid interface area of the solution,
(3) Stir the solution well near the gas-liquid interface.

しかし、雰囲気の窒素圧力を高くすると、気液界面での窒素濃度が上昇し、自然核発生しやすくなり、このため雑晶が発生しやすくなる。雑晶は、単結晶に付着し、単結晶から容易に剥離しない。   However, when the nitrogen pressure in the atmosphere is increased, the nitrogen concentration at the gas-liquid interface increases, and natural nuclei are likely to be generated, so that miscellaneous crystals are likely to be generated. The miscellaneous crystals adhere to the single crystal and do not easily peel off from the single crystal.

特許文献2では、ルツボ(混合溶液保持容器)の断面積が下方に向かうに伴って小さくなるような形状を開示している。ルツボをこのような形状にすることで、原料の溶液をそれほど増やさずに、気液界面面積を増加することが出来る。
特開2002−128587
Patent Document 2 discloses a shape in which the cross-sectional area of the crucible (mixed solution holding container) becomes smaller as it goes downward. By making the crucible into such a shape, the gas-liquid interface area can be increased without increasing the raw material solution so much.
JP 2002-128587 A

特許文献3、4では、溶液および種結晶基板の入ったルツボを回動軸に取り付け、単結晶育成中に揺動させることによって、溶液を撹拌し、気液界面から溶液内部への窒素の溶け込みを促進している。
WO 2007/102610 A1 WO 2004/083498 A1
In Patent Documents 3 and 4, a crucible containing a solution and a seed crystal substrate is attached to a rotating shaft, and the solution is agitated by swinging during single crystal growth, so that nitrogen dissolves from the gas-liquid interface into the solution. Promotes.
WO 2007/102610 A1 WO 2004/083498 A1

しかし、特許文献2のルツボ形状では、溶液の対流がスムーズに起こらず、澱みが生じ易い。このため、単結晶の一部の品質が劣化したり、単結晶膜厚にバラツキが生じやすい。   However, in the crucible shape of Patent Document 2, convection of the solution does not occur smoothly and stagnation is likely to occur. For this reason, the quality of a part of the single crystal is deteriorated, and the single crystal film thickness is likely to vary.

特許文献3、4記載の方法では、単結晶育成途中における溶液の撹拌は促進されるので、単結晶の膜厚や膜厚のバラツキは抑制される。しかし、最初に溶液内に窒素を溶解させるときに、溶液内の窒素濃度が飽和して単結晶の析出が開始するまでに必要な時間は長い。   In the methods described in Patent Documents 3 and 4, since the stirring of the solution during the growth of the single crystal is promoted, the thickness of the single crystal and the variation in the thickness are suppressed. However, when nitrogen is first dissolved in the solution, a long time is required until the nitrogen concentration in the solution is saturated and single crystal precipitation starts.

本発明の課題は、溶液に溶け込んだ窒素が飽和に達するまでの時間を短縮させることによって、単位時間当たりの窒化物単結晶の育成量を増大させると共に、単結晶の品質や膜厚のバラツキも抑制することである。   An object of the present invention is to increase the amount of nitride single crystal grown per unit time by shortening the time until the nitrogen dissolved in the solution reaches saturation, as well as variations in single crystal quality and film thickness. It is to suppress.

本発明は、育成容器内でフラックスおよびIII族原料を含む溶液に種結晶基板を浸漬し、窒素含有雰囲気下でこの種結晶基板上に窒化物単結晶を育成する方法であって、
育成容器を第一の姿勢で保持しつつ、溶液への窒素の溶解を促進する窒素溶解工程;および
育成容器を第二の姿勢で保持しつつ、種結晶基板上への前記窒化物単結晶の育成を行う単結晶育成工程
を備えており、第一の姿勢における溶液の気液界面の面積が、第二の姿勢における溶液の気液界面の面積よりも大きいことを特徴とする。
The present invention is a method of immersing a seed crystal substrate in a solution containing a flux and a Group III raw material in a growth vessel and growing a nitride single crystal on the seed crystal substrate in a nitrogen-containing atmosphere,
A nitrogen dissolving step for promoting the dissolution of nitrogen in the solution while holding the growth vessel in the first posture; and the nitride single crystal on the seed crystal substrate while holding the growth vessel in the second posture; A single crystal growth step for performing growth is provided, wherein the area of the gas-liquid interface of the solution in the first posture is larger than the area of the gas-liquid interface of the solution in the second posture.

本発明によれば、窒素溶解工程における溶液の気液界面積を、単結晶育成工程における溶液の気液界面積よりも大きくする。これによって、当初の溶液気液界面への窒素の溶解を促進し、溶液の窒素濃度の飽和および単結晶の析出開始に必要な時間を短縮できる。その上で、単結晶育成工程においては、溶液気液界面積を相対的に小さくするので、雑晶の発生量を抑制し、雑晶の付着などによる単結晶の品質のバラツキを抑制することができる。   According to the present invention, the gas-liquid interface area of the solution in the nitrogen dissolving step is made larger than the gas-liquid interface area of the solution in the single crystal growing step. As a result, the dissolution of nitrogen at the initial solution gas-liquid interface is promoted, and the time required for saturation of the nitrogen concentration of the solution and the start of single crystal precipitation can be shortened. In addition, in the single crystal growth process, the solution gas-liquid interface area is made relatively small, so that the amount of miscellaneous crystals generated can be suppressed, and variations in the quality of single crystals due to adhesion of miscellaneous crystals can be suppressed. it can.

以下、適宜図面を参照しつつ、本発明を更に詳細に説明する。
フラックス法で窒化物単結晶を育成する際には、III族原料とフラックスの原料を非酸化性雰囲気のグローブボックス内で封入し、図1(a)、(b)に示すように、容器1の内側空間3に非酸化性雰囲気内で封入する。この容器には蓋を設けて良い。図1(a)の例では、育成容器1の底壁1aに種結晶基板4を横置きで設置する。図1(b)の例では、容器1の底壁1a上に、種結晶基板4を縦に設置する。
Hereinafter, the present invention will be described in more detail with reference to the drawings as appropriate.
When growing a nitride single crystal by the flux method, a group III material and a flux material are enclosed in a glove box in a non-oxidizing atmosphere, and as shown in FIGS. 1 (a) and 1 (b), the container 1 The inside space 3 is sealed in a non-oxidizing atmosphere. This container may be provided with a lid. In the example of FIG. 1A, the seed crystal substrate 4 is installed horizontally on the bottom wall 1 a of the growth vessel 1. In the example of FIG. 1B, the seed crystal substrate 4 is installed vertically on the bottom wall 1 a of the container 1.

次いで、例えば図4に模式的に示すように、育成容器1を、密閉可能でかつガス導入が可能な外側容器5に入れ、外側容器5をグローブボックスから取り出し、次いでそのまま結晶育成装置内に設置する。   Next, for example, as schematically shown in FIG. 4, the growth container 1 is placed in an outer container 5 that can be sealed and into which gas can be introduced, the outer container 5 is taken out of the glove box, and then installed in the crystal growth apparatus as it is. To do.

図4に示す例においては、HIP(熱間等方圧プレス)装置の圧力容器10の中に外側容器5、育成容器1を設置する。圧力容器10の外部には、図示しない混合ガスボンベを設ける。混合ガスボンベ内には、所定組成の混合ガスが充填されており、この混合ガスを圧縮機によって圧縮して所定圧力とし、供給管9を通して圧力容器10内に矢印D、Eのように供給する。圧力容器10の雰囲気中の窒素は窒素源となり、アルゴンガス等の不活性ガスはフラックスの蒸発を抑制する。この圧力は、図示しない圧力計によって監視する。外側容器5の周囲にはヒーター8A、8B、8Cが設置されており、育成容器1内の育成温度を制御可能となっている。   In the example shown in FIG. 4, the outer container 5 and the growth container 1 are installed in a pressure container 10 of a HIP (hot isotropic pressure press) apparatus. A gas mixture cylinder (not shown) is provided outside the pressure vessel 10. The mixed gas cylinder is filled with a mixed gas having a predetermined composition. The mixed gas is compressed by a compressor to a predetermined pressure, and is supplied into the pressure vessel 10 through the supply pipe 9 as indicated by arrows D and E. Nitrogen in the atmosphere of the pressure vessel 10 serves as a nitrogen source, and an inert gas such as argon gas suppresses evaporation of the flux. This pressure is monitored by a pressure gauge (not shown). Heaters 8A, 8B, and 8C are installed around the outer container 5 so that the growth temperature in the growth container 1 can be controlled.

圧力容器10内で育成容器1を加熱および加圧すると、容器1内で原料がすべて溶解し、溶液2を生成する。ここで、所定の単結晶育成条件を保持すれば、育成容器内の空間3から窒素が溶液2中に安定して供給され、種結晶基板4上に単結晶膜が成長する。   When the growth vessel 1 is heated and pressurized in the pressure vessel 10, all the raw materials are dissolved in the vessel 1 to produce a solution 2. Here, if predetermined single crystal growth conditions are maintained, nitrogen is stably supplied into the solution 2 from the space 3 in the growth vessel, and a single crystal film grows on the seed crystal substrate 4.

ここで、図1(a)のように、種結晶基板4を横にして単結晶を育成した場合には、溶液の高さhは比較的小さくできる。これによって、溶解した窒素の種基板への輸送を促進でき、また、気液界面面積に対する溶液量の割合が小さいため、溶け込んだ窒素が飽和に達するのを促進できる。しかし、育成時に溶液の高さhを小さくし過ぎると、溶液が淀みやすくなる。このため、気液界面2aの近くで雑晶が発生しやすく、単結晶に不良が生じやすい。   Here, as shown in FIG. 1A, when the single crystal is grown with the seed crystal substrate 4 lying sideways, the height h of the solution can be made relatively small. Thereby, transportation of the dissolved nitrogen to the seed substrate can be promoted, and since the ratio of the solution amount to the gas-liquid interface area is small, it is possible to promote that the dissolved nitrogen reaches saturation. However, if the height h of the solution is too small during the growth, the solution is likely to stagnate. For this reason, miscellaneous crystals are likely to occur near the gas-liquid interface 2a, and defects in the single crystal are likely to occur.

図1(b)のように、種結晶基板4を縦にして単結晶を育成した場合には、多数枚の種結晶基板4に同時に単結晶を育成できる。しかし、溶液2の高さHは大きくなるので、気液界面面積に対する溶液量の割合が大きくなり、溶け込んだ窒素が飽和に達するには、時間がかかる。このため、単結晶の成長開始までに時間がかかる。   As shown in FIG. 1B, when a single crystal is grown with the seed crystal substrate 4 in the vertical direction, the single crystal can be grown simultaneously on a large number of seed crystal substrates 4. However, since the height H of the solution 2 is increased, the ratio of the solution amount to the gas-liquid interface area is increased, and it takes time for the dissolved nitrogen to reach saturation. For this reason, it takes time to start the growth of the single crystal.

ここで、例えば図4に示すように、回動軸6を外側容器5に取り付け、モーターによって回動軸6を回動可能な状態とする。これによって、外側容器5および育成容器1を、図4において矢印Gのように紙面方向に向かって回動可能とする。   Here, for example, as shown in FIG. 4, the rotation shaft 6 is attached to the outer container 5 so that the rotation shaft 6 can be rotated by a motor. As a result, the outer container 5 and the growth container 1 can be rotated in the paper surface direction as indicated by an arrow G in FIG.

まず、最初の窒素溶解工程では、所定の温度および窒素圧力を保持すると、一定の濃度の窒素が溶液中に溶解する。この濃度は、溶液組成や、添加物によって増減することが可能である。また、高温ほど溶解度が高くなるため、溶液中に溶解可能な窒素の飽和濃度が高くなる。一般に、加熱直後の溶液は、まだ窒素が十分に溶け込んでいないため、未飽和状態である。しかし、時間の経過と共に溶液中に窒素が溶け込み、溶液中の窒素濃度が増加していく。この結果、やがて窒素濃度は飽和濃度に達し、溶液は窒素過飽和状態となり、雑晶の析出が始まる。従って、窒素溶解工程時では、溶液が過度に過飽和状態とならない程度に、保持時間を管理する。   First, in the first nitrogen dissolving step, when a predetermined temperature and nitrogen pressure are maintained, a certain concentration of nitrogen is dissolved in the solution. This concentration can be increased or decreased depending on the solution composition and additives. Further, since the solubility increases as the temperature increases, the saturation concentration of nitrogen that can be dissolved in the solution increases. In general, a solution immediately after heating is not saturated because nitrogen has not sufficiently dissolved therein. However, as time elapses, nitrogen dissolves into the solution, and the nitrogen concentration in the solution increases. As a result, the nitrogen concentration eventually reaches a saturation concentration, the solution becomes supersaturated with nitrogen, and the precipitation of miscellaneous crystals begins. Therefore, during the nitrogen dissolving step, the holding time is managed so that the solution is not excessively saturated.

ここで、本発明においては、育成容器を第一の姿勢で保持しつつ、溶液への窒素の溶解を促進する。ここで、溶液の気液界面の面積は相対的に大きくする。   Here, in this invention, melt | dissolution of nitrogen to a solution is accelerated | stimulated, hold | maintaining a growth container in a 1st attitude | position. Here, the area of the gas-liquid interface of the solution is relatively increased.

溶液気液界面の面積を相対的に大きくする方法は特に限定されない。例えば、図2(a)の例では、育成容器1を、水平面に対して角度θだけ傾斜させた状態(第一の姿勢)で保持する。この状態で溶液内に窒素を溶解させ、過飽和状態とする。この姿勢では、単結晶の析出は始まらないようにすることが好ましい。   A method for relatively increasing the area of the solution gas-liquid interface is not particularly limited. For example, in the example of FIG. 2A, the growth container 1 is held in a state (first posture) inclined by an angle θ with respect to the horizontal plane. In this state, nitrogen is dissolved in the solution to obtain a supersaturated state. In this position, it is preferable not to start the precipitation of the single crystal.

次いで、育成容器1の傾斜角度θを0とし(第二の姿勢)、図2(b)の状態とする。この状態で単結晶の育成を行う。第二の姿勢(図2(b))における溶液2の気液界面2aの面積をAとすると、第一の姿勢(図2(a))における溶液2の気液界面2aの面積Bは(A/cosθ)となる。従って、窒素溶解工程において育成容器1を傾斜させることによって、溶液2への窒素の時間当たりの溶解量は増大し、単結晶の析出が開始するまでの時間を短縮できる。   Next, the inclination angle θ of the growth container 1 is set to 0 (second posture), and the state shown in FIG. Single crystals are grown in this state. When the area of the gas-liquid interface 2a of the solution 2 in the second posture (FIG. 2B) is A, the area B of the gas-liquid interface 2a of the solution 2 in the first posture (FIG. 2A) is ( A / cos θ). Therefore, by inclining the growth vessel 1 in the nitrogen dissolving step, the amount of nitrogen dissolved in the solution 2 per hour increases, and the time until the start of single crystal precipitation can be shortened.

また、図3(a)の例では、育成容器1Aを横倒しにし(第一の姿勢)、保持する。この状態で溶液内に窒素を溶解させ、過飽和状態とする。この姿勢では、単結晶の析出は始まらないようにすることが好ましい。   In the example of FIG. 3A, the growth container 1A is laid down (first posture) and held. In this state, nitrogen is dissolved in the solution to obtain a supersaturated state. In this position, it is preferable not to start the precipitation of the single crystal.

次いで、育成容器1を縦に置き(第二の姿勢)、図3(b)の状態とする。この状態で単結晶の育成を行う。第二の姿勢(図3(b))における溶液2の気液界面2aの面積はAであり、第一の姿勢(図3(a))における溶液2の気液界面2aの面積はBである。この容器を細長くすることによって、AとBとの比率を容易に設定することができる。そして、BをAよりも大きくすることによって、溶液2への窒素の時間当たりの溶解量は増大し、単結晶の析出が開始するまでの時間を短縮できる。   Next, the growth container 1 is placed vertically (second posture), and the state shown in FIG. Single crystals are grown in this state. The area of the gas-liquid interface 2a of the solution 2 in the second posture (FIG. 3B) is A, and the area of the gas-liquid interface 2a of the solution 2 in the first posture (FIG. 3A) is B. is there. By elongating this container, the ratio between A and B can be easily set. And by making B larger than A, the amount of nitrogen dissolved in the solution 2 per hour increases, and the time until the precipitation of the single crystal can be shortened.

窒素溶解工程後に単結晶の育成を行う。単結晶育成工程における窒素圧力P2および温度T2は、窒素溶解工程における窒素圧力P1および温度T1と同じであってよい。あるいは、単結晶育成工程における窒素圧力P2を窒素溶解工程における窒素圧力P1よりも高くすることによって、単結晶の析出を促進できる。あるいは、単結晶育成工程における温度T2を窒素溶解工程における温度T1よりも低くすることによって、飽和溶解度を下げ、単結晶の析出を促進できる。   Single crystals are grown after the nitrogen melting step. The nitrogen pressure P2 and the temperature T2 in the single crystal growth step may be the same as the nitrogen pressure P1 and the temperature T1 in the nitrogen melting step. Or precipitation of a single crystal can be accelerated | stimulated by making the nitrogen pressure P2 in a single crystal growth process higher than the nitrogen pressure P1 in a nitrogen melt | dissolution process. Alternatively, by setting the temperature T2 in the single crystal growth step to be lower than the temperature T1 in the nitrogen dissolution step, saturation solubility can be lowered and single crystal precipitation can be promoted.

窒素溶解工程においては、フラックスおよびIII族原料を含む溶液に、より多くの窒素を溶け込ませる必要がある。従って、温度T1、圧力P1は、窒素未飽和となるように設定する。   In the nitrogen dissolving step, it is necessary to dissolve more nitrogen into the solution containing the flux and the group III raw material. Therefore, the temperature T1 and the pressure P1 are set so that the nitrogen is not saturated.

窒素溶解工程での保持時間が短すぎると、溶液への窒素溶け込み量が少なく、単結晶の生産性を向上させることが難しくなる。一方、この上限は特にない。しかし、窒素溶解工程なしでも、育成工程の開始から数十から100時間で単結晶成長が始まる傾向がある。   If the holding time in the nitrogen dissolving step is too short, the amount of nitrogen dissolved in the solution is small, and it becomes difficult to improve the productivity of the single crystal. On the other hand, there is no particular upper limit. However, even without a nitrogen dissolution step, single crystal growth tends to start within several tens to 100 hours from the start of the growth step.

T1の具体的数値は、フラックスおよび単結晶の組成比率によって変化するので、適宜選択する。例えば、Naフラックスを用い、GaN単結晶を育成する場合は850−1000℃が好ましい。Sn−Mgフラックスを用い、AlN単結晶を育成する場合は1200−1500℃が好ましい。また、P1の具体的数値は、温度やフラックスおよび単結晶の組成比率、添加物などによって変化するので、適宜選択する。   Since the specific value of T1 varies depending on the flux and the composition ratio of the single crystal, it is appropriately selected. For example, when Na flux is used and a GaN single crystal is grown, 850-1000 ° C. is preferable. When an AlN single crystal is grown using Sn-Mg flux, 1200 to 1500 ° C is preferable. Further, the specific value of P1 varies depending on the temperature, the flux, the composition ratio of the single crystal, the additive, and the like, and therefore is appropriately selected.

T1とT2との差は限定されず、0℃であってよい。あるいは、窒化物単結晶の析出を促進するという観点からは、10℃以上であることが好ましく、30℃以上であることがさらに好ましい。また、この差が大きすぎると、結晶品質が低下する傾向があるので、この観点からは、100℃以下が好ましい。   The difference between T1 and T2 is not limited and may be 0 ° C. Alternatively, from the viewpoint of promoting precipitation of nitride single crystals, the temperature is preferably 10 ° C. or higher, and more preferably 30 ° C. or higher. In addition, if this difference is too large, the crystal quality tends to be lowered. From this viewpoint, 100 ° C. or less is preferable.

第一の姿勢と第二の姿勢との間で育成容器を傾斜させる場合には、傾斜角度θは、溶液気液界面積の差を大きくして窒素の溶解を促進するという観点からは、30°以上が好ましく、40°以上が更に好ましい。θの上限は特になく、直角であってよい。   In the case where the growth container is inclined between the first posture and the second posture, the inclination angle θ is 30 from the viewpoint of promoting the dissolution of nitrogen by increasing the difference in the solution gas-liquid interface area. It is preferably at least 40 °, more preferably at least 40 °. There is no particular upper limit for θ, and it may be a right angle.

第一の姿勢における溶液気液界面の面積Bと、第二の姿勢における溶液気液界面の面積Aとの比率B/Aは、溶液への窒素の溶解を促進するという観点からは、1.1以上が好ましく、1.2以上が更に好ましい。しかし、Aが相対的に小さくなり過ぎると、結晶育成工程で雑晶が発生しやすくなる。この観点からは、B/Aは、2以下が好ましく、1.8以下が更に好ましい。   The ratio B / A between the area B of the solution gas-liquid interface in the first posture and the area A of the solution gas-liquid interface in the second posture is 1.1 or more from the viewpoint of promoting the dissolution of nitrogen into the solution. Is preferable, and 1.2 or more is more preferable. However, if A is too small, miscellaneous crystals are likely to be generated in the crystal growth step. From this viewpoint, B / A is preferably 2 or less, and more preferably 1.8 or less.

育成容器の形状は特に限定されない。育成容器の内部空間3の平面的形態は、円であってよく、正三角形、正方形、長方形、正六角形などの多角形であってよい。   The shape of the growth container is not particularly limited. The planar form of the inner space 3 of the growth container may be a circle or a polygon such as a regular triangle, a square, a rectangle, or a regular hexagon.

本発明の単結晶育成装置において、原料混合物を加熱して溶液を生成させるための装置は特に限定されない。この装置は熱間等方圧プレス装置が好ましいが、それ以外の雰囲気加圧型加熱炉であってもよい。   In the single crystal growth apparatus of the present invention, the apparatus for heating the raw material mixture to produce a solution is not particularly limited. This apparatus is preferably a hot isostatic pressing apparatus, but other atmospheric pressure heating furnaces may be used.

溶液を生成するためのフラックスは特に限定されないが、アルカリ金属およびアルカリ土類金属からなる群より選ばれた一種以上の金属またはその合金が好ましい。この金属としては、例えば、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウムが例示でき、リチウム、ナトリウム、カルシウムが特に好ましく、ナトリウムが最も好ましい。   The flux for producing the solution is not particularly limited, but one or more metals selected from the group consisting of alkali metals and alkaline earth metals or alloys thereof are preferable. Examples of the metal include lithium, sodium, potassium, rubidium, cesium, beryllium, magnesium, calcium, strontium, and barium. Lithium, sodium, and calcium are particularly preferable, and sodium is most preferable.

反応を行なうための育成容器の材質は特に限定されず、目的とする加熱および加圧条件において耐久性のある材料であればよい。こうした材料としては、金属タンタル、タングステン、モリブデンなどの高融点金属、アルミナ、サファイア、イットリアなどの酸化物、窒化アルミニウム、窒化チタン、窒化ジルコニウム、窒化ホウ素などの窒化物セラミックス、タングステンカーバイド、タンタルカーバイドなどの高融点金属の炭化物、p−BN(パイロリティックBN)、p−Gr(パイロリティックグラファイト)などの熱分解生成体が挙げられる。   The material of the growth container for carrying out the reaction is not particularly limited as long as the material is durable under the intended heating and pressurizing conditions. Such materials include refractory metals such as metal tantalum, tungsten, and molybdenum, oxides such as alumina, sapphire, and yttria, nitride ceramics such as aluminum nitride, titanium nitride, zirconium nitride, and boron nitride, tungsten carbide, tantalum carbide, and the like. And pyrolytic products such as p-BN (pyrolytic BN) and p-Gr (pyrolytic graphite).

ヒーターの材質は特に限定されないが、鉄- クロム- アルミ系、ニッケル- クロム系などの合金発熱体、白金、モリブデン、タンタル、タングステンなどの高融点金属発熱体、炭化珪素、モリブデンシリサイト、カーボンなどの非金属発熱体を例示できる。   The material of the heater is not particularly limited, but iron-chromium-aluminum and nickel-chromium alloy heating elements, platinum, molybdenum, tantalum, tungsten and other refractory metal heating elements, silicon carbide, molybdenum silicite, carbon, etc. Non-metallic heating elements can be exemplified.

本発明を利用し、少なくともナトリウム金属を含むフラックスを使用して窒化ガリウム単結晶を育成できる。このフラックスには、ガリウム原料物質を溶解させる。ガリウム原料物質としては、ガリウム単体金属、ガリウム合金、ガリウム化合物を適用できるが、ガリウム単体金属が取扱いの上からも好適である。   Using the present invention, a gallium nitride single crystal can be grown using a flux containing at least sodium metal. In this flux, the gallium source material is dissolved. As the gallium source material, a gallium simple metal, a gallium alloy, and a gallium compound can be applied, but a gallium simple metal is also preferable in terms of handling.

このフラックスには、ナトリウム以外の金属、例えばリチウムを含有させることができる。また、炭素を含有させることが出来る。ガリウム原料物質とナトリウムなどのフラックス原料物質との使用割合は、適宜であってよいが、一般的には、ナトリウム過剰量を用いることが考慮される。もちろん、このことは限定的ではない。   This flux can contain metals other than sodium, such as lithium. Moreover, carbon can be contained. The use ratio of the gallium source material and the flux source material such as sodium may be appropriate, but in general, it is considered to use an excess amount of sodium. Of course, this is not limiting.

雰囲気中の窒素以外のガスは限定されないが、不活性ガスが好ましく、アルゴン、ヘリウム、ネオンが特に好ましい。   A gas other than nitrogen in the atmosphere is not limited, but an inert gas is preferable, and argon, helium, and neon are particularly preferable.

単結晶をエピタキシャル成長させるための育成用基板の材質は限定されないが、サファイア、AlNテンプレート、GaNテンプレート、シリコン単結晶、SiC単結晶、MgO単結晶、スピネル(MgAl)、LiAlO、LiGaO、LaAlO,LaGaO,NdGaO等のペロブスカイト型複合酸化物を例示できる。また組成式〔A1−y(Sr1−xBa〕〔(Al1−zGa1−u・D〕O(Aは、希土類元素である;Dは、ニオブおよびタンタルからなる群より選ばれた一種以上の元素である;y=0.3〜0.98;x=0〜1;z=0〜1;u=0.15〜0.49;x+z=0.1〜2)の立方晶系のペロブスカイト構造複合酸化物も使用できる。また、SCAM(ScAlMgO)も使用できる。 The material of the growth substrate for epitaxially growing the single crystal is not limited, but sapphire, AlN template, GaN template, silicon single crystal, SiC single crystal, MgO single crystal, spinel (MgAl 2 O 4 ), LiAlO 2 , LiGaO 2. And perovskite complex oxides such as LaAlO 3 , LaGaO 3 , and NdGaO 3 . The composition formula [A 1-y (Sr 1- x Ba x) y ] [(Al 1-z Ga z) 1-u · D u ] O 3 (A is a rare earth element; D is niobium and One or more elements selected from the group consisting of tantalum; y = 0.3-0.98; x = 0-1; z = 0-1; u = 0.15-0.49; x + z = 0 .1 to 2) cubic perovskite structure composite oxides can also be used. SCAM (ScAlMgO 4 ) can also be used.

(実施例1)
育成容器として、図2に示す角型平底ルツボ1を用いた。ルツボの内側寸法は、幅60mm、奥行き60mm、高さ100mmとした。これに、育成原料として、金属Ga 150g、金属Na 220gを入れ、種結晶基板4(直径2インチのGaNテンプレート)を3枚等間隔に配置した。GaNテンプレート基板は、サファイア基板上にGaN単結晶薄膜を5μmエピタキシャル成長させたものである。この作業は露点-85℃、酸素濃度0.1ppmのグローブボックス中で行った。ルツボ内の原料の液高さHは約7cmとなった。
Example 1
A square flat bottom crucible 1 shown in FIG. 2 was used as a growth container. The inner dimensions of the crucible were 60 mm wide, 60 mm deep, and 100 mm high. Into this, 150 g of metal Ga and 220 g of metal Na were added as growth raw materials, and three seed crystal substrates 4 (GaN templates having a diameter of 2 inches) were arranged at equal intervals. The GaN template substrate is obtained by epitaxially growing a GaN single crystal thin film on a sapphire substrate by 5 μm. This operation was performed in a glove box having a dew point of -85 ° C and an oxygen concentration of 0.1 ppm. The liquid height H of the raw material in the crucible was about 7 cm.

このルツボ1をグローブボックス中で容器の中に配置し、容器5を密閉したのち、グローブボックスから出して、育成炉内に設置した。870℃・4.5MPaまで昇温加圧後、容器5を水平面に対して45°傾けた。このときの気液界面面積Bは、当初の1.41倍に増えている。この傾斜状態での保持時間を72、96、120、150時間と変化させ、結晶成長が開始する時間を求めたところ、70時間で結晶成長が開始することがわかった。   This crucible 1 was placed in a container in a glove box, and after sealing the container 5, it was taken out of the glove box and installed in a growth furnace. After raising the temperature and pressure to 870 ° C. and 4.5 MPa, the container 5 was inclined 45 ° with respect to the horizontal plane. The gas-liquid interface area B at this time has increased to 1.41 times the initial value. When the holding time in this inclined state was changed to 72, 96, 120, and 150 hours and the time for starting crystal growth was determined, it was found that the crystal growth started in 70 hours.

このため、窒素溶解工程を開始してから70時間後にルツボの傾斜を元に戻し、その後100時間保持し、結晶育成工程を実施した。その後室温まで徐冷して、結晶を回収した。2インチの種基板全面に約0.5mmのGaN結晶が成長していた。面内の厚さバラツキは小さく、10%未満であった。また、3枚の平均厚さバラツキも10%程度と小さかった。   For this reason, after 70 hours from the start of the nitrogen melting step, the inclination of the crucible was returned to the original state, and then maintained for 100 hours, and the crystal growth step was performed. Thereafter, the mixture was gradually cooled to room temperature, and crystals were collected. A GaN crystal of about 0.5 mm was grown on the entire surface of the 2-inch seed substrate. The in-plane thickness variation was small, less than 10%. Also, the average thickness variation of the three sheets was as small as about 10%.

Figure 2009161398
Figure 2009161398

(実施例2)
育成容器として、図3に示す角型平底ルツボ1Aを用いた。ルツボ1の内径は、幅60mm、奥行き60mm、高さ120mmとした。これに、育成原料として金属Ga 150g、金属Na 220gを収容し、種結晶基板として、直径2インチのGaNテンプレートを3枚等間隔に配置した。GaNテンプレート基板とは、サファイア基板上にGaN単結晶薄膜を5ミクロンエピタキシャル成長させたものである。この作業は露点-85℃、酸素濃度0.1ppmのグローブボックス中で行った。ルツボ内の原料の液高さHは約7cmとなった。
(Example 2)
As a growth container, a square flat bottom crucible 1A shown in FIG. 3 was used. The inner diameter of the crucible 1 was 60 mm wide, 60 mm deep, and 120 mm high. In this, 150 g of metal Ga and 220 g of metal Na were accommodated as growth raw materials, and three GaN templates having a diameter of 2 inches were arranged at regular intervals as a seed crystal substrate. The GaN template substrate is obtained by epitaxially growing a GaN single crystal thin film on a sapphire substrate for 5 microns. This operation was performed in a glove box having a dew point of -85 ° C and an oxygen concentration of 0.1 ppm. The liquid height H of the raw material in the crucible was about 7 cm.

これをグローブボックス中で内容器の中に配置し、内容器を密閉したのち、グローブボックスから出して、育成炉内に設置した。このとき、ルツボ1Aを水平面に対して45度の角度で設置した。870℃・4.5MPaまで昇温加圧後、育成炉を坩堝の傾きと同じ方向に45度傾けた。このとき、ルツボは図3(a)の様になっている。気液界面面積Bは、Aの2倍に増えており、液高さhはHの半分になっている。この状態での保持時間を48、72、96時間と変化させて、結晶成長が開始する時間を求めたところ、およそ50時間で結晶成長が開始することがわかった。   This was placed in the inner container in the glove box, and after sealing the inner container, it was taken out of the glove box and installed in the growth furnace. At this time, the crucible 1A was installed at an angle of 45 degrees with respect to the horizontal plane. After raising the temperature and pressure to 870 ° C and 4.5 MPa, the growth furnace was tilted 45 degrees in the same direction as the tilt of the crucible. At this time, the crucible is as shown in FIG. The gas-liquid interface area B is twice as large as A, and the liquid height h is half of H. When the holding time in this state was changed to 48, 72, and 96 hours and the time for starting crystal growth was determined, it was found that the crystal growth started in about 50 hours.

このため、図3(a)の状態にしてから50時間後に図2(b)の状態に戻し、その後120時間保持し(結晶育成工程)、その後室温まで徐冷して、結晶を回収した。2インチの種基板全面に約0.6mmのGaN結晶が成長していた。   For this reason, after returning to the state of FIG. 3A, the state was returned to the state of FIG. 2B after 50 hours, held for 120 hours thereafter (crystal growth step), and then gradually cooled to room temperature to recover the crystals. A GaN crystal of about 0.6 mm was grown on the entire surface of the 2-inch seed substrate.

Figure 2009161398
Figure 2009161398

(比較例1)
実施例1と同様に原料を秤量し、ルツボに収容し、結晶を育成した。ただし、図2(a)に示すように、ルツボ1を水平面に対して45°傾斜させたままの状態で170時間保持し、窒素の溶液への溶解と単結晶の析出とを実施した。この結果、得られた結晶の厚さは、気液界面2a近傍が厚く、ルツボ底の方では薄くなっており、面内の厚さバラツキが大きかった。また、配置した3枚の平均厚さもばらついていた。
(Comparative Example 1)
In the same manner as in Example 1, the raw materials were weighed and accommodated in a crucible to grow crystals. However, as shown in FIG. 2 (a), the crucible 1 was held for 45 hours while being inclined at 45 ° with respect to the horizontal plane, and dissolution of nitrogen into the solution and precipitation of a single crystal were performed. As a result, the thickness of the obtained crystal was thick in the vicinity of the gas-liquid interface 2a and thin at the bottom of the crucible, and the in-plane thickness variation was large. Moreover, the average thickness of the three sheets arranged also varied.

Figure 2009161398
Figure 2009161398

(比較例2)
実施例2と同様に原料を秤量し、ルツボ1Aに収容し、単結晶を育成した。ただし、ルツボ1Aを、図3(a)のように横倒しにしたままで150時間保持し、窒素の溶解と単結晶育成とを実施した。この結果、3枚の種結晶基板のうち、一番上にあった基板は原料に接触しておらず、成長していなかった。真ん中に配置した1枚は、約1mm成長していたが、3次元成長しており、気液界面は平坦でなく、あちこちにインクルージョンが存在し、結晶品質も良くなかった。一番下にあった基板は約0.5mm成長していたが、同様に気液界面は平坦でなく、あちこちにインクルージョンが存在し、雑晶が取り込まれている部分も存在するなど、結晶品質も良くなかった。
(Comparative Example 2)
The raw materials were weighed in the same manner as in Example 2 and accommodated in the crucible 1A to grow a single crystal. However, the crucible 1A was held for 150 hours while being laid down as shown in FIG. 3 (a), and nitrogen melting and single crystal growth were performed. As a result, of the three seed crystal substrates, the uppermost substrate was not in contact with the raw material and was not grown. The one placed in the middle grew about 1 mm, but it grew three-dimensionally, the gas-liquid interface was not flat, there were inclusions around, and the crystal quality was not good. The substrate at the bottom grew about 0.5 mm, but the gas-liquid interface was not flat as well, and there were inclusions around and some crystal grains were taken in. It was not good.

Figure 2009161398
Figure 2009161398

(比較例3)
実施例1と同様に原料を秤量し、ルツボ1に収容し、単結晶を育成した。ただし、ルツボを傾斜させず、図2(b)の状態で170時間保持し、窒素の溶解および単結晶の育成を行った。結晶は約0.35mmしか成長していなかった。面内の厚さバラツキは小さく、10%程度であった。また、3枚の平均厚さバラツキも10%程度と小さかった。各保持時間を72、96、120として成長開始するまでの時間を見積もったところ、約100時間と長いことがわかった。
(Comparative Example 3)
The raw materials were weighed in the same manner as in Example 1 and accommodated in the crucible 1 to grow a single crystal. However, the crucible was not tilted and held in the state of FIG. 2B for 170 hours to dissolve nitrogen and grow a single crystal. The crystal grew only about 0.35 mm. The in-plane thickness variation was small, about 10%. Also, the average thickness variation of the three sheets was as small as about 10%. Estimating the time to start growth with each holding time being 72, 96, 120, it was found to be as long as about 100 hours.

Figure 2009161398
Figure 2009161398

(a)は、ルツボ1内に種結晶基板4を横置きにして単結晶を育成している状態を模式的に示す断面図であり、(b)は、ルツボ1内に種結晶基板4を縦置きにして単結晶を育成している状態を模式的に示す断面図である。(A) is a cross-sectional view schematically showing a state in which a seed crystal substrate 4 is placed horizontally in the crucible 1 and a single crystal is grown, and (b) is a diagram showing the seed crystal substrate 4 in the crucible 1. It is sectional drawing which shows typically the state which has grown up the single crystal vertically. (a)は、ルツボ1を傾斜させて窒素を溶液2に溶解させている状態を示す断面図であり、(b)は、ルツボ1を水平に静置して単結晶の育成を行っている状態を示す断面図である。(A) is sectional drawing which shows the state which inclined the crucible 1 and has melt | dissolved nitrogen in the solution 2, (b) is raising the crucible 1 horizontally and growing a single crystal. It is sectional drawing which shows a state. (a)は、ルツボ1Aを横長の状態に保持して窒素を溶液2に溶解させている状態を示す断面図であり、(b)は、ルツボ1Aを縦長の状態に保持して窒素を溶液2に溶解させている状態を示す断面図である。(A) is sectional drawing which shows the state which hold | maintains the crucible 1A in a horizontally long state, and dissolve | melts nitrogen in the solution 2, (b) is a solution in which the crucible 1A is held in a vertically long state It is sectional drawing which shows the state currently melt | dissolved in 2. FIG. 本発明を実施するための装置の一例を模式的に示す断面図である。It is sectional drawing which shows typically an example of the apparatus for implementing this invention.

符号の説明Explanation of symbols

1、1A ルツボ 2 溶液 2a 溶液の気液界面 3 ルツボ内空間 4 種結晶基板 5 外側容器 6 回動軸 8A、8B、8C ヒーター A 第二の姿勢における溶液気液界面の面積 B 第一の姿勢における溶液気液界面の面積 H 第二の姿勢における溶液の高さ θ 第一の姿勢と第二の姿勢とにおけるルツボの傾斜角度   1, 1A crucible 2 solution 2a gas-liquid interface of solution 3 space in crucible 4 seed crystal substrate 5 outer container 6 rotating shaft 8A, 8B, 8C heater A area of solution gas-liquid interface in second posture B first posture The area of the solution gas-liquid interface at H The height of the solution in the second position θ The inclination angle of the crucible in the first position and the second position

Claims (3)

育成容器内でフラックスおよびIII族原料を含む溶液に種結晶基板を浸漬し、窒素含有雰囲気下でこの種結晶基板上に窒化物単結晶を育成する方法であって、
前記育成容器を第一の姿勢で保持しつつ、前記溶液への窒素の溶解を促進する窒素溶解工程;および
前記育成容器を第二の姿勢で保持しつつ、前記種結晶基板上への前記窒化物単結晶の育成を行う単結晶育成工程
を備えており、前記第一の姿勢における前記溶液の気液界面の面積が、前記第二の姿勢における前記溶液の気液界面の面積よりも大きいことを特徴とする、窒化物単結晶の製造方法。
A method of immersing a seed crystal substrate in a solution containing a flux and a group III material in a growth vessel and growing a nitride single crystal on the seed crystal substrate in a nitrogen-containing atmosphere,
A nitrogen dissolving step for promoting dissolution of nitrogen in the solution while holding the growth vessel in a first posture; and the nitriding on the seed crystal substrate while holding the growth vessel in a second posture; A single crystal growth step for growing a single crystal of the product, wherein an area of the gas-liquid interface of the solution in the first posture is larger than an area of the gas-liquid interface of the solution in the second posture A method for producing a nitride single crystal.
前記第一の姿勢が、前記育成容器を傾斜させた状態で保持する姿勢であることを特徴とする、請求項1記載の方法。   The method according to claim 1, wherein the first posture is a posture for holding the growth container in an inclined state. 前記第一の姿勢と前記第二の姿勢との間で、前記育成容器の底壁がなす角度が直角であることを特徴とする、請求項1記載の方法。   The method according to claim 1, wherein an angle formed by a bottom wall of the growth vessel is a right angle between the first posture and the second posture.
JP2008000617A 2008-01-07 2008-01-07 Method for producing nitride single crystal Active JP4965465B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008000617A JP4965465B2 (en) 2008-01-07 2008-01-07 Method for producing nitride single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008000617A JP4965465B2 (en) 2008-01-07 2008-01-07 Method for producing nitride single crystal

Publications (2)

Publication Number Publication Date
JP2009161398A true JP2009161398A (en) 2009-07-23
JP4965465B2 JP4965465B2 (en) 2012-07-04

Family

ID=40964458

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008000617A Active JP4965465B2 (en) 2008-01-07 2008-01-07 Method for producing nitride single crystal

Country Status (1)

Country Link
JP (1) JP4965465B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5338672B2 (en) * 2007-09-28 2013-11-13 株式会社リコー Method and apparatus for producing group III element nitride single crystals

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004189549A (en) * 2002-12-12 2004-07-08 Sumitomo Metal Mining Co Ltd Method of manufacturing aluminum nitride single crystal
JP2005039248A (en) * 2003-07-02 2005-02-10 Matsushita Electric Ind Co Ltd Method for manufacturing group iii nitride, method for manufacturing semiconductor substrate, group iii nitride crystal, semiconductor substrate, and electron device
WO2005095682A1 (en) * 2004-03-31 2005-10-13 Ngk Insulators, Ltd. Gallium nitride single crystal growing method and gallium nitride single crystal
WO2006098288A1 (en) * 2005-03-14 2006-09-21 Ricoh Company, Ltd. Method and apparatus for producing group iii nitride crystal

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004189549A (en) * 2002-12-12 2004-07-08 Sumitomo Metal Mining Co Ltd Method of manufacturing aluminum nitride single crystal
JP2005039248A (en) * 2003-07-02 2005-02-10 Matsushita Electric Ind Co Ltd Method for manufacturing group iii nitride, method for manufacturing semiconductor substrate, group iii nitride crystal, semiconductor substrate, and electron device
WO2005095682A1 (en) * 2004-03-31 2005-10-13 Ngk Insulators, Ltd. Gallium nitride single crystal growing method and gallium nitride single crystal
WO2006098288A1 (en) * 2005-03-14 2006-09-21 Ricoh Company, Ltd. Method and apparatus for producing group iii nitride crystal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5338672B2 (en) * 2007-09-28 2013-11-13 株式会社リコー Method and apparatus for producing group III element nitride single crystals

Also Published As

Publication number Publication date
JP4965465B2 (en) 2012-07-04

Similar Documents

Publication Publication Date Title
US8999059B2 (en) Process for producing a nitride single crystal and apparatus therefor
JP5177555B2 (en) Single crystal growth method
JP4827107B2 (en) Method for producing nitride single crystal
JP2008094704A (en) Growing method of nitride single crystal, nitride single crystal and nitride single crystal substrate
JP2007238343A (en) Method of growing group iii nitride single crystal
JP5187848B2 (en) Single crystal manufacturing method
JP2010052967A (en) Method for production of group iii element nitride crystal, group iii element nitride crystal, substrate for fabricating semiconductor device, and semiconductor device
JP5235864B2 (en) Method for producing nitride single crystal
CN101405439B (en) Apparatus for producing nitride single crystal
JP4861953B2 (en) Method for producing nitride single crystal
JP4849092B2 (en) Group III nitride semiconductor manufacturing apparatus and seed crystal holder
JP4965465B2 (en) Method for producing nitride single crystal
JP5261401B2 (en) Nitride single crystal growth equipment
JP5289982B2 (en) Method for growing gallium nitride single crystal
JP2007254201A (en) Method for manufacturing single crystal
JP5318803B2 (en) Method and apparatus for producing nitride crystal
JP5361884B2 (en) Nitride single crystal growth method
JP4876002B2 (en) Melt composition for growing gallium nitride single crystal and method for growing gallium nitride single crystal
JP4886722B2 (en) Method for producing nitride single crystal
JP2010269967A (en) Method and apparatus for producing crystal
JP2015160791A (en) Method for manufacturing group iii nitride crystal, group iii nitride crystal, semiconductor device and group iii nitride crystal manufacturing apparatus
JPWO2008117571A1 (en) Method for producing nitride single crystal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120327

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120329

R150 Certificate of patent or registration of utility model

Ref document number: 4965465

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150406

Year of fee payment: 3