[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2009150533A - ロータリーバルブ - Google Patents

ロータリーバルブ Download PDF

Info

Publication number
JP2009150533A
JP2009150533A JP2008276506A JP2008276506A JP2009150533A JP 2009150533 A JP2009150533 A JP 2009150533A JP 2008276506 A JP2008276506 A JP 2008276506A JP 2008276506 A JP2008276506 A JP 2008276506A JP 2009150533 A JP2009150533 A JP 2009150533A
Authority
JP
Japan
Prior art keywords
rotor
supply
product
side rotor
stator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008276506A
Other languages
English (en)
Other versions
JP4944080B2 (ja
Inventor
Glenn P Wagner
ポール ワグナー グレン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Products and Chemicals Inc
Original Assignee
Air Products and Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Products and Chemicals Inc filed Critical Air Products and Chemicals Inc
Publication of JP2009150533A publication Critical patent/JP2009150533A/ja
Application granted granted Critical
Publication of JP4944080B2 publication Critical patent/JP4944080B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K11/00Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves
    • F16K11/02Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit
    • F16K11/06Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements
    • F16K11/072Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements with pivoted closure members
    • F16K11/074Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements with pivoted closure members with flat sealing faces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K3/00Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing
    • F16K3/22Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing with sealing faces shaped as surfaces of solids of revolution
    • F16K3/24Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing with sealing faces shaped as surfaces of solids of revolution with cylindrical valve members
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/047Pressure swing adsorption
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/02Preparation of oxygen
    • C01B13/0229Purification or separation processes
    • C01B13/0248Physical processing only
    • C01B13/0259Physical processing only by adsorption on solids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K3/00Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing
    • F16K3/02Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing with flat sealing faces; Packings therefor
    • F16K3/04Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing with flat sealing faces; Packings therefor with pivoted closure members
    • F16K3/10Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing with flat sealing faces; Packings therefor with pivoted closure members with special arrangements for separating the sealing faces or for pressing them together
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K3/00Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing
    • F16K3/30Details
    • F16K3/314Forms or constructions of slides; Attachment of the slide to the spindle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40003Methods relating to valve switching
    • B01D2259/40005Methods relating to valve switching using rotary valves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8593Systems
    • Y10T137/8807Articulated or swinging flow conduit
    • Y10T137/88078Actuates valve
    • Y10T137/88102Rotary valve

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Multiple-Way Valves (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Taps Or Cocks (AREA)

Abstract

【課題】実質的な漏れがなく、且つ回転子を回すのに必要なトルクを最小限とすることで、回転子を回すモーター及び歯車駆動機構の寿命を延ばすことのできるロータリーバルブを提供する。
【解決手段】回転子320,330と固定子310,340を有し、回転子320,330と固定子310,340とを接触させるため少なくとも1つの圧縮バネ350を利用し、このバネ350(単数又は複数)は、回転子320,330と固定子310,340を分離させるようにする押しつける力に対抗して、回転子320,330と固定子310,340の間からの漏れを防止しながらバルブ300内の回転子320,330を回すのに必要なトルク量を低減させるようにされている。このバネ350(単数又は複数)は、バネ位置設定表面構造によりバルブ300内部に配置することができる。
【選択図】図3

Description

本発明は、一般にはロータリーバルブに関し、より詳しく言えば、圧力スイング吸着システム用のロータリーバルブに関する。
ロータリーバルブは、1以上の供給元プロセスから1以上の指定プロセスまで反復可能な循環プロセス工程でもって流体を導くためにプロセス産業において広く用いられている。ロータリーシークエンシングバルブとも呼ばれるこれらのバルブは、圧力又は温度スイング吸着によるガス分離、濃度スイング吸着による液体分離、ガス又は液体クロマトグラフィ、再生式触媒プロセス、空気圧又は油圧式逐次制御システム及びその他の循環式プロセスといったような、循環式又は反復可能なプロセスにおいて使用される。
広く用いられているタイプのロータリーバルブは、平坦でポート付きの回転子が、平坦でポート付きの固定子の上で同軸的に回転し、固定子及び回転子のポートが予め定められた循環シーケンスで整合するか又は遮断されるようになっている、平面循環式構成を有する。シールは標準的には、平坦な固定子面上での平坦な回転子面の直接接触する接合によって提供される。接合表面における過度の漏洩を防止するためこれらの平坦な表面の製造にあたっては高い精度が必要とされる。これらの回転子及び固定子のためには標準的に、金属、セラミクス及び/又は炭素といったような硬質材料が用いられるが、部品の摩耗又は温度差によってひき起こされるひずみは、表面の形状変化をひき起こす可能性があり、かくして表面間に形成されるシールを横断した漏洩を許す。
平坦で回転する円形シール構成を有するロータリーバルブは、供給、均圧、減圧、パージ及び再加圧の工程を含めた重複する循環工程で作動する複数の並列吸着床を用いる圧力スイング吸着(PSA)システムにおいて特に有用である。標準的な利用分野においては、複数の吸着床の供給側端部と供給ガス及び排ガス管路とを接続するため、そしてまた均圧、パージ及びその他の床間移送の工程を行うため複数の床の製品側端部を接続するために、多数のポートを有する固定子が使用される。所望のPSAプロセスサイクル工程のためにガス流を導くため回転子が回転するにつれて、固定子面の開口部が回転子面の開口部と逐次的に位置を合わせるように、多数のポートをもつ回転子は固定子上でシール可能な形で回転する。
標準的なPSAサイクルにおいては、ロータリーバルブの内部通路は、PSAサイクルが進むにつれて異なる圧力にある。PSAサイクルが正圧及び真空下のプロセス工程を含む場合、床の供給側端部及び製品側端部に接続されたバルブポート間の圧力差により促進される漏れは、これらのポート間で漏れが発生した場合に様々な運転上の問題に通じる可能性がある。
固定子及び回転子のポートが予め定められた循環シーケンスで整合又は遮断されるように、平坦でポート付きの回転子が平坦でポート付きの固定子上で同軸的に回転するロータリーシークエンシングバルブが、多数の反復可能な工程をもつ循環プロセスで流体を導くために用いられる。その開示全体が参照により組入れられる2005年5月8日に提出のの米国特許出願第11/197859号(以下、859出願と呼ぶ)においては、回転子と固定子の表面を互いに対してシールするのを助け固定子と回転子のポート間の漏れを防ぐため、固定子表面に対して回転子表面を接合させるのを助けるため単一の軸方向に整合したバネを使用する複式回転子/固定子ロータリーバルブシステムが開示されている。回転子ポートは、回転子面の異なる円周方向位置にあり、異なる圧力で運転する。
859出願で開示されている従来技術のロータリーバルブの運転中には、ポート圧力差の結果、回転子及び固定子の接合面を横断して非軸線方向の力が生じる。高い運転圧力が必要とされる場合、固定子に対し回転子をシールし漏れを防ぐためには、大きいバネ力が必要とされることがある。回転子を回すのに必要な力の量は、バネが回転子を固定子に対し押しつける力の量に直接関係づけされる。回転子と固定子の間の漏れを防止するために高いバネ力が必要とされるならば、回転子を回すのに大きな力が必要となる。これらの大きな力は回転子の摩耗を増大させ、より大きな回転子モーターを必要とし、回転子ベアリングの摩耗を増大させる。
859出願に見られるような従来技術のロータリーバルブ1の分解組立図の全体的配置を、図1に示す。実際の作動時には、バルブ1の構成要素は互いに接触状態にある。図1を見るとわかるように、従来技術のロータリーバルブ1は、供給側固定子10、供給側回転子20、製品側回転子30、製品側固定子40、及び圧縮バネ50を含んでいる。この代表的な従来技術の実施形態において、供給側回転子20及び製品側回転子30は、図1に示されているように供給側固定子10及び製品側固定子40により形成されるハウジングの内部に収容される。
圧力スイング吸着(PSA)プロセスにおいては、吸着床(図示せず)は供給側固定子10のポート11a、11b、11c、11d及び製品側固定子40のポート41a、41b、41c、41dに接続される。床(図示せず)の供給側端部は、標準的に供給側固定子10のポート11a、11b、11c、11dに接続されており、床(図示せず)の製品側端部は標準的に製品側固定子40の対応するポート41a、41b、41c、41dに接続される。
図1を見ればわかるように、供給側回転子20及び製品側回転子30は、嵌合して連動するように構成されている。圧縮バネ50は、供給側回転子20と製品側回転子30の間に配置される。圧縮バネ50は、供給側固定子10に対して供給側回転子20を押しつけて、供給側固定子10に対し供給側回転子20をシールする。圧縮バネ50は同じように製品側回転子30を製品側固定子40に対して押しつけて、製品側固定子40に対し製品側回転子30をシールする。
この既知のバルブ1は更に、供給側回転子20及び製品側回転子30を回転させることができる駆動軸60を含んでいる。駆動軸60は、プロセス管路の予め定められた接続を選択するため、駆動軸60が回転されると供給側回転子20及び製品側回転子30が回転子面に直交する軸線を中心にして同様に回転し、供給側回転子20及び製品側回転子30内部のスロットが供給側固定子10及び製品側固定子40のポートとそれぞれ整合するようにして、供給側回転子20の接合表面構造(図示せず)と係合するように構成されている雄型駆動端部62を含む。
上記既知のロータリーバルブ1は種々の流体ポート及び通路を含み、それらの機能は859出願でより十分に開示されている。PSAなどのような特定の循環プロセスの操作は、バルブの作動を理解するためにここで完全に説明する必要はなく、当業者であればこれを理解しよう。一般に、プロセス操作には、循環させるべき流体の流れを選択できるようにするため既知のバルブ1の供給側回転子20及び製品側回転子30の回転した位置を変更することが含まれる。次に、従来技術のロータリーバルブ1の作動の一般的説明をする。
供給側回転子20及び製品側回転子30が予め定められた位置まで回転すると、回転子面のポートが、それらのそれぞれの固定子のポートと整合し、予め定められた接続経路を通してバルブ1へ及びバルブ1から流動するのを可能にする。このような要領で、流体は、均圧、パージ又はその他の循環プロセス工程のための必要に応じて、供給側固定子10及び製品側固定子40に接続された床の間を流れることができる。
PSAプロセスにおいては、床内の圧力は、それぞれ吸着と脱着が起こる高圧と低圧の間で交互に変化する。プロセス操作の間、各スロット内部の圧力は、供給側回転子20及び製品側回転子30に対して力を加え、それらをそれぞれ供給側固定子10及び製品側固定子40から離れるようにする。この理由から、漏洩を防ぐために供給側固定子10に対して供給側回転子20をそして製品側固定子40に対して製品側回転子30を保持することが必要とされる。バネ力及びスロット内部の押しつけの力は回転子の回転の中心の周囲で対称ではないことから、結果として生じる回転子にかかる力は、供給側回転子20及び製品側回転子30の両方の中心には位置しない。この非対称な力の負荷は結果として、回転子/固定子の接触を維持するのに必要なバネ力の増加、ならびにバルブを作動させ軸60を回すのに必要とされるトルクの増加を必要とすることになる。
図2A、2B及び2Cは、標準的なPSA循環プロセスの際にロータリーバルブの回転子200に作用する力の簡略図を示している。回転子200の中心回転軸は垂直の破線A’で表わされている。バネ力F1は、固定子(図示せず)に対し回転子200を押すときに回転子200にバネ(図示せず)が及ぼす力である。押しつける力F2は、種々のポート内の圧力からの合力である。反力F3は、バネ力F1と押しつける力F2の間の差である。F3はまた、回転子200と固定子(図示せず)の間の接触力でもある。反力F3は単一の点には位置しない。反力F3は、接合面の平坦度、力の大きさ、及び加わった負荷がひき起こす回転子200のわずかな変形に応じて、非常に複雑であり得る一定の様式で、回転子200に沿って分布する。しかしながら、簡単にするため、この分布した力を単一の合成反力F3にすることができる。回転子200及び固定子(図示せず)が接触したままである場合には、常に非ゼロの反力F3が存在しなくてはならない。反力F3がゼロ又はそれ未満である場合には、押しつける力は、回転子200を固定子から分離させ始め、回転子及び固定子(図示せず)の種々のポートの間に漏れが発生する。その大きさと場所の両方のために、回転子と固定子の間の摩擦トルクの原因となるとともに、回転子200を回すのに必要なトルク量を決定するのが、反力F3である。
図2Aは、押しつける力F2が回転子200の中心に位置する場合に回転子200に作用する力を示している。この例では、全ての力は共線的であり、反力F3はバネ力F1と押しつける力F2との差である。この結果は、押しつける力F2が回転子200の周りの対称的にバランスした押しつける力の合力である場合に起こるだけである。回転子200の種々のスロットの圧力は標準的なPSAプロセス操作の間に回転子200の中心に作用する正味の押しつける力を結果としてもたらさないことから、この対称分布は存在しない。
図2Bは、標準的なPSAプロセス操作中に発生するような、押しつける力が回転子200の中心に位置しない場合における回転子200に対し作用する力の分布を示す。上述の図2Aの検討と同様に、反力F3は、バネ力F1と押しつける力F2との差であるが、ここでは、モーメントを釣合状態に保つため回転子200上の平衡を維持するために、反力F3は回転子200の中心から、回転子の中心から離れた半径方向の位置まで移動もしなければならない。反力F3の場所及び大きさは、バネ力F1及び押しつける力F2の場所及び大きさにより左右される。同様に、バネ力F1は押しつける力F2と反力F3の和に等しくなくてはならないことから、バネ力F1は、バネ力F1と押しつける力F2が共線的でない場合は常に、押しつける力F2より大きくなくてはならない。
バネ力F1と押しつける力F2が共線的でない場合、それらは、図2Bの破線により表わされているように、回転子200に曲げモーメント210を生じさせる。曲げモーメント210は、力が特定の回転子の材料及び厚みにとって十分な大きさのものである場合、回転子200を変形させかねない。一部の利用分野においては、この変形は、より硬質の材料の使用によるかあるいは回転子の厚みの増加により、回転子をより剛性にすることによって漏洩を防ぐのに十分なだけ小さく維持することができる。より大きな回転子については、これは実用的でなくなることがある。更に、F3の偏心度はプロセス操作中に回転子200を回すのに必要とされるトルクを増大させる。
かくして、回転子200の曲げモーメントをなくすために、図2Cに示されているようなバネ力F1を、押しつける力F2とは反対側で回転中心軸A’から所定の半径方向距離のところまで移動させることが望ましい。反力F3は、このとき、押しつける力F2と同じ位置で作用することになる。この位置変えの結果として、所要バネ力F1及び反力F3は最小となり、回転子200を回すのに必要なトルクはより小さくなる。
曲げモーメント及びたわみが重要な関心事でない場合の利用分野においてさえ、モーターを回し回転子を回転させるのに必要とされるトルクは、特に回転子ポート内に高い圧力が存在する場合には、重要な関心事となり得る。通常、トルクを減少させるとサイズが縮小され及び/又は回転子を回すのに必要なモーター及び歯車駆動機構の寿命が延びることから、このトルクを最小限に保持することが望ましい。
かくして、漏洩なく作動する能力をもち且つバルブ回転子を回転させるのに必要な低いトルクを有するロータリーバルブが必要とされている。
米国特許出願第11/197859号明細書
本発明は、実質的な漏れがなく、且つ回転子を回すのに必要なトルクが最小限の、上記のような条件下で作動することができるロータリーバルブを提供する。本発明のその他の特徴及び利点は、一例として本発明の原理を説明する添付の図面と併せて、以下の好ましい実施形態についてのより詳しい説明から明らかとなる。
シールされた滑動回転動作をする回転子と固定子を有するロータリーバルブが開示される。該ロータリーバルブは、漏れを防止しながら回転子を回転させるのに必要とされるトルクの量を削減するようにされた圧縮バネを含む。このバルブは、反復可能な循環プロセス工程において1以上の供給元プロセスから1以上の指定プロセスまで流体を導くためのPSA法を含む循環プロセスにおいて使用可能である。
供給側固定子接合表面、供給側固定子背面、及び供給側固定子接合表面と供給側固定子背面とを接続する複数のポートを有する供給側固定子と、供給側回転子接合表面、供給側回転子背面、及び供給側固定子の複数の固定子ポートの間に流体の流れを導くため供給側回転子接合表面に配置された複数のポートを有し、供給側固定子に隣接する供給側回転子であって、供給側回転子表面に直交する軸線の周りを回転可能な供給側回転子と、供給側回転子と係合し、製品側回転子接合表面、製品側回転子背面、製品出口、及び複数のポートあって該複数のポートの間に流体の流れを導くため上記接合表面に配置された複数のポートを有する製品側回転子であって、この製品側回転子の面に直交する軸線の周りを回転可能な製品側回転子と、製品側固定子接合面、製品側固定子背面、及び製品側固定子接合面と製品側固定子背面とを接続する複数のポートを含み、製品側回転子に隣接する製品側固定子と、供給側回転子背面及び製品側回転子背面にかかる力の中心にバネ力を適用するようにされ、供給側回転子と製品側回転子の間に配置される少なくとも1つの圧縮バネとを含む、循環プロセス操作を実施するためのロータリーバルブを提供する本発明の実施形態が開示される。該バネ力は、バルブが作動状態にあるとき供給側回転子と製品側回転子を回すためのトルクを最小限にするように設定される。
ロータリーバルブの供給側回転子及び製品側回転子は、回転中心軸の周りを回転するようにされており、バネ力の力の中心は、回転軸からゼロより大きい所定の距離のところに位置する。
ロータリーバルブは、供給側回転子と製品側回転子の間で少なくとも1つの圧縮バネを定位置に固定するようにされた製品側回転子背面に位置する少なくとも1つのバネ位置設定表面構造と向かい合わせて供給側回転子背面に配置された少なくとも1つのバネ位置設定表面構造を更に含んでいてもよい。より一般的には、任意の数のバネ位置設定表面構造が、製品側回転子背面の類似の構造と向かい合って供給側回転子背面にあってもよい。
ポートを有する固定子ハウジングと、ポートと背面を含む回転子であって、界面で固定子ハウジングと回転中心軸の周りを回転可能な形で接触している回転子と、回転子背面とスラストランナーの間に配置されたバネ力の力の中心を有する少なくとも1つの圧縮バネと、スラストランナーと固定子ハウジングの間に配置されたスラストベアリングとを含む、循環プロセス操作を実施するためのロータリーバルブを提供する本発明のもう1つの実施形態が開示される。ロータリーバルブは更に、バルブが作動状態にあるとき、所定のバネ力に対して回転子を回すのに必要とされるトルクを最小限にするようにされたバネ力を適用する少なくとも1つの圧縮バネを含む。
ロータリーバルブは更に、回転軸からゼロより大きい所定の距離のところに位置するバネ力の力の中心を有し、且つ少なくとも1つの圧縮バネを配置するため回転子背面に少なくとも1つのバネ位置設定表面構造を含む。ロータリーバルブは更に、供給側回転子とスラストランナーの間で定位置に2つ以上の圧縮バネを固定して配置するため、スラストランナーに同じようにして位置する2つ以上のバネ位置設定表面構造と向き合って回転子背面上に2つ以上のバネ位置設定表面構造を含むことができる。
複数の吸着床及び1以上の回転子を有するロータリーバルブを含み、該ロータリーバルブは複数の吸着床に接続されて、圧力スイング吸着プロセスの際に該複数の吸着床に流れを導くようにされている、圧力スイング吸着システムを提供する本発明のもう1つの実施形態が開示される。
ロータリーバルブは、回転軸の周りを回転するようにされた1以上の回転子と、加えられたバネ力に対して1以上の回転子を回すのに必要とされるトルクを最小限にするバネ力を該1以上の回転子に対して適用するようされた力の中心もつバネ力を有する少なくとも1つの圧縮バネとを含む。
圧力スイング吸着システムは、供給側固定子接合表面、供給側固定子背面、及び供給側固定子接合表面と供給側固定子背面の間を接続する複数の供給側固定子ポートを有する供給側固定子を含むことができ、そして1以上の回転子は製品側回転子と係合する供給側回転子を含む。供給側回転子は、供給側回転子接合表面、供給側回転子背面、及び複数の供給側固定子ポートの間に流体の流れを導くため供給側回転子接合表面に配置された複数の供給側回転子ポートを含み、該供給側回転子は供給側回転子表面に対し直交する回転軸の周りを回転するようにされている。製品側回転子は、製品側回転子接合表面、製品側回転子背面、製品出口、及び複数の製品側回転子ポートであって複数の製品側固定子ポートの間に流体の流れを導くため接合表面に配置された複数の製品側回転子ポートを含む。製品側回転子は、製品側回転子面に対し直交する回転軸の周りを回転するようにされる。製品側固定子は、製品側固定子接合面、製品側固定子背面、及び製品側回転子と回転可能な形で接触して製品側固定子接合面と製品側固定子背面とを接続する複数のポートを含む。
供給側回転子と製品側回転子の間に配置された少なくとも1つの圧縮バネは、バルブが作動状態にあるときにバネ力に対して回転子を回すためのトルクを最小限にする結果となる力の中心をもつバネ力を、供給側回転子背面と製品側回転子背面に適用する。バネ力の力の中心は、回転中心軸からゼロより大きい所定の距離のところに位置する。供給側回転子背面に配置された少なくとも1つのバネ位置設定表面構造は、製品側回転子背面に配置された少なくとも1つのバネ位置設定表面構造と向かい合って整合する。バネ位置設定表面構造(単数又は複数)は、供給側回転子と製品側回転子の間で圧縮バネ(単数又は複数)を定位置に固定するようにされている。圧力スイング吸着システムは更に、供給側回転子と製品側回転子の間で2つ以上の圧縮バネを定位置に固定して配置するため、製品側回転子背面に同じようにして位置する2つ以上のバネ位置設定表面構造と向き合って供給側回転子背面に位置する2つ以上のバネ位置設定表面構造を含んでもよい。
あるいはまた、圧力スイング吸着システムは、ポートを有する固定子ハウジング、ポートと背面を含む回転子であって、回転中心軸の周りを回転可能な形で界面において固定子ハウジングと接触する回転子、固定子ハウジングと接触するスラストベアリング、スラストベアリングと接触するスラストランナー、及び回転子背面とスラストランナーの間に配置された少なくとも1つの圧縮バネを含むことができる。少なくとも1つの圧縮バネは、バルブが作動状態にあるとき所定のバネ力に対して回転子を回すための最小限のトルクをもたらすことになる力の中心をもつバネ力を、回転子に加えるようにされる。バネ力の力の中心は、回転中心軸からゼロより大きい所定の距離のところに位置する。
少なくとも1つのバネ位置設定表面構造が、スラストランナーに配置された少なくとも1つのバネ位置設定表面構造と向き合い、且つそれと整合して、回転子背面に配置される。これらのバネ位置設定表面構造は、回転子とスラストランナーの間に圧縮バネを固定して配置するようにされる。
ここには方法及び装置の更なる側面が開示される。本発明のその他の特徴及び利点は、例として本発明の原理を説明する添付図面と併せて、好ましい実施形態についての以下のより詳しい説明から明らかになろう。
以下では、本発明の好ましい実施形態が示されている添付の図面を参照しながら、本発明をより全面的に説明する。とは言え、本発明は、多くの異なる形態で実施することができ、ここに示す実施形態に限定されるものと解すべきではない。それよりもむしろ、これらの実施形態は、本開示が十分且つ完全なものとなり、そして当業者に本発明の範囲を十分に伝えるために提供されるものである。
本発明の代表的な実施形態は、ロータリーバルブ内で回転子を回転させることにより、循環式に運転する圧力スイング吸着(PSA)システムで使用可能であるロータリーバルブの動作を扱うものである。PSAシステムには、大気圧を超える又は大気圧を下回る圧力、あるいは大気圧を超える圧力と大気圧を下回る圧力の組合せである圧力を有するPSAシステムが含まれる。本発明の代表的な実施形態は、改良ロータリーバルブの設計及びロータリーバルブを回すのに必要なトルクの量を削減するロータリーバルブを作製する方法を提供する。
本発明の1つの代表的実施形態は、図3及び4に示されているように、2つの回転子、2つの固定子のロータリーバルブ300によって例示される。ロータリーバルブ300は、例えば、4つの吸収剤床を利用し、そして、(1)製品を作る工程、(2)製品を供給/補給して製品再加圧ガスを提供する工程、(3)下降均圧工程、(4)パージを行う工程、(5)排出工程、(6)パージを受入れる工程、(7)上昇均圧工程、及び(8)製品再加圧ガスを受入れる工程、を通して各床が進行するPSAサイクルを利用して、空気から酸素を回収するためのPSAシステムにおいて使用することができる。ロータリーバルブ300の種々のポートは、参照により全体がここに組み入れられる859号出願に開示されているのと同じようにPSAシステムに接続される。更に、バルブ300の運転を含めたPSAシステムの運転は、859号出願に開示された運転と同様であり、その全体が参照によりここに組み入れられる。
本発明によるロータリーバルブ300の代表的実施形態の分解図の一般的なものを、図3及び4に示す。図3はロータリーバルブ300の上方斜視図であり、図4はバルブ300の下方斜視図である。ロータリーバルブ300は、供給側固定子310、供給側回転子320、製品側回転子330、製品側固定子340、及び2つの圧縮バネ350を含む。ロータリーバルブ300は中心軸線Aを有する。
供給側固定子310は、接合表面312と背面314を含む。供給側固定子310は更に、種々の管路(図示せず)を介してプロセス床(図示せず)の供給側端部に接続される複数のポート316を含む。供給側固定子310はまた、物質供給ポート319も含む。物質供給ポート319は、供給ガスを供給側固定子310に提供するため、供給管路(図示せず)に接続される。物質供給ポート319はまた、駆動軸(図示せず)が供給側固定子310を通り抜けて供給側回転子320まで通過することも可能にする。供給側固定子310はまた、真空管路(図示せず)に接続される廃棄物ポート317も含む。廃棄物ポート317は環状溝318に接続される。
供給側回転子320は、接合表面321及び背面322を含む。供給側回転子320の接合表面321は、供給側固定子310の接合表面312と回転可能に接触する。供給側回転子は更に、接合表面321に、排出/パージポート323、供給ポート324、及び開口部325を含む。供給側固定子310の物質供給ポート319は、供給ポート324に内部通路(図示せず)を介して接続される開口部325に供給ガスを提供する。開口部325もまた、供給側固定子310の物質供給ポート319を通り抜ける駆動軸(図示せず)がボス328により係合されるよう供給側回転子320内へと進むのを可能にする。物質供給ポート319及び開口部325は、駆動軸(図示せず)が存在するときに供給ガスがポート319及び開口部325を通って流れることができるように大きさを決定される、という点に留意すべきである。
排出/パージポート323は、供給側固定子310の環状溝318と常に連通しているようにされる。排出/パージポート323が供給側固定子310の複数のポート316のうちの1つの上に位置している場合、床(図示せず)からのガスはポート316を通り抜けて排出/パージポート323に流れ込み、その後環状キャビティ318に流れ込み、そして最終的に廃棄物ポート317に流れ込み、そこからガスが真空システム(図示せず)により排気される。供給側回転子背面322は、駆動ラグ326を含む。駆動ラグ326はトルクを製品側回転子330に伝達する。供給側回転子320は、ボス328に係合された駆動軸(図示せず)から供給側回転子320へトルクが伝達されるのに伴って、軸線Aの周りを回転するようにされている。
図3及び4に示されているように、この代表的実施形態の供給側回転子320は、製品側回転子330の6個のバネロケータ361と向かい合って配置された6個のバネロケータ327を有する。供給側回転子320に配置された6個のバネロケータ327は、回転軸を通過する平面との関係において対称的に位置する3つの位置設定表面構造の2つのグループからなる。製品側回転子330に配置されたバネロケータ361は、供給側回転子320のバネロケータ320と向かい合って存在し、同様に位置設定されている。一般に、所望のバネ力を得て、そのバネ力を要求された箇所に位置づけするために、任意の配列の任意の数のバネ位置設定表面構造を使用することができる。
バネロケータ327は、供給側回転子320と製品側回転子330の間で少なくとも1つの圧縮バネを定位置に固定する。この実施形態で示されているように、2つのバネ350が、製品側回転子330の2つのバネロケータ361と向かい合った供給側回転子320の2つのバネロケータ327によって所定の位置に配置される。供給側回転子320の2つのバネロケータは、回転軸線を通過する平面との関係において対称的に位置している。製品側回転子330の対応する2つの向き合ったバネロケータは同じように位置している。一般に、中心軸線Aの周りの異なる数及び配置のバネ350を可能にするよう、回転子320、330には任意の数の位置設定表面構造327、361が存在できるということを理解すべきである。更に、実質的なバルブの漏れを防止するため固定子310、340に対してそれぞれ回転子320、330をシールするための力を提供しながら、回転子320、330を回すのに必要とされるトルクの量を最小限にするため所望の合計バネ力及びその結果としての力の中心をもたらす限りにおいて、既知のバネ力をもつ任意の数のバネ350を選択し、位置設定表面構造327、361のところに配置することが可能である。更に、位置設定表面構造327、361は隆起した材料として示されているが、位置設定表面構造は、それに代えて、回転子背面にバネ350を位置設定して配置する凹部又はその他の形状であってもよい。
供給側固定子310及び供給側回転子320は、図3及び4に示したように接合されるようにされている。接合されたとき、供給側固定子接合表面312はバネ350の力により供給側回転子接合表面321と回転可能に接触しシールされる。供給側固定子接合表面312と供給側回転子接合表面321とのシールは、供給側固定子310と供給側回転子320の間の実質的に漏れのないバルブ300の作動を可能にする。ここで使用し、さもなければこの開示の全体にわたって使用する、実質的に漏れのないという用語は、少量で且つ運転上許容できる量の漏れを含めようとするものである。例えば、特定の運転については流量の1%未満の漏れが許容可能であり得る一方で、異なる運転条件下では流量の5%未満の漏れが許容可能であり得る。
図3及び4を見ればわかるように、供給側回転子320を軸線Aの周りを回転させることにより、供給ガスを供給側固定子310の供給ポート319に提供して、供給側回転子320の中央供給ポート325及び供給ポート324を介して供給側固定子310の選択されたポート(単数又は複数)316に分配することができる。典型的なPSAサイクルにおける完全なバルブの運転については、859号出願で提示され全体が参照によりここに組み入れられることから、ここで更に説明はしない。
製品側回転子330は、接合表面331と背面332を含む。製品側回転子330は更に、パージ提供ポート333、パージ受入れポート334、上昇均圧ポート335、製品再加圧ポート336、製品ポート337、及び下降均圧ポート338を含む。製品ポート337は、製品出口339に接続される中央キャビティ(図示せず)に、内部通路(図示せず)により接続される。各種のポート(333、334、335、336、337、338)は、接合表面331に配置され、参照により全体がここに組入れられる859号出願で開示されているように互いに及び/又は製品出口339に内部通路(図示せず)により接続される。
製品側回転子330の背面332は、駆動ラグ360及びバネロケータ361を含む。製品側回転子330の駆動ラグ360は、図3及び4に示されているように供給側回転子の駆動ラグ326と嵌合するようにされている。製品側回転子330を軸線Aの周りを回転させるため、供給側回転子320の駆動ラグ326から製品側回転子330の駆動ラグ360へとトルクが伝達される。供給側回転子320を製品側回転子330に係合させるために、駆動ラグのこのほかの幾何学形状を使用してもよい。背面332はまた、供給側回転子320と製品側回転子330とが係合されるときに供給側回転子320のボス328を受入れるための環状部分362を含む。
製品側固定子340は、接合表面342と背面344を含む。製品側固定子は更に、接合表面342と背面344とを接続するポート326を含む。ポート346は製品管路(図示せず)に接続され、そしてそれは当該技術分野において公知であるように吸着床(図示せず)の製品側端部に接続される。製品側固定子340は更に、製品側回転子330の製品出口339を受入れるようにされた中央開口部348を含む。
製品側固定子340及び製品側回転子330は、図3及び4に示されているように接合するようにされている。接合されたときに、製品側固定子接合表面342は、バネ350の力により製品側回転子接合表面331と回転可能な形で接触し、それに対してシールされる。製品側固定子接合表面342と製品側回転子接合表面331の間のシールは、製品側固定子340と製品側回転子330の間で実質的に漏れのないバルブ300の作動を可能にする。図3及び4を見ればわかるように、製品側回転子330が回転すると、各種の製品側回転子ポート(333、334、335、336、337、338)は、859号出願に記載されそして参照により全体がここに組入れられるように、製品を集め、吸着床(図示せず)をパージし又は再加圧するために、固定子製品側ポート346と整合する。
バルブ300は、当業者に理解されるように、バルブ300を支持し、接続し、そしてシールするようにされた適切なハウジング(図示せず)の中に設置可能である。供給側回転子320及び製品側回転子330は、ハウジング(図示せず)内で軸線Aの周りを同軸的に回転するようにされる。あるいはまた、ハウジングは、同じように当業者により理解されるように、バルブチャンバを形成するよう供給側固定子310及び/又は製品側固定子340を改造して形成してもよい。駆動軸(図示せず)は、図1に開示されている構成と同じように、シールされたハウジングに進入し、供給側固定子310を軸線方向に横断して、供給側回転子320にトルクを伝達する。駆動軸(図示せず)は、供給側回転子320を回転させるためモーター(図示せず)により駆動される。
供給側回転子の駆動ラグ326は、供給側回転子310の回転動作を製品側回転子320に伝達するため製品側回転子の嵌合ラグ360と係合する。駆動ラグ326と嵌合ラグ360はまた、供給側固定子ポート316が供給側回転子320で覆われ及び覆いを取られると、しかるべき製品側固定子ポート346も同時に固定子回転子330により覆われ及び覆いを取られるように、回転子間の角度的整合を維持する。駆動ラグ326及び嵌合ラグ360の特定の構成は重要でなく、例えば適切なピン及び/又はソケットによるような、その他の整合方法及び同軸駆動方法が可能である。整合及び駆動システムは、1つの回転子から他のものへと回転運動を伝達し、回転子部品間の角度的整合を維持し、そして回転子を、それらがそのそれぞれの固定子に対し接した状態にとどまるように互いとの関係において軸線方向に移動するのを可能にするようにされている。
回転子510及び固定子ハウジング520を有する別態様のロータリーバルブ500の代表的な実施形態を、図5に示す。この実施形態においては、ロータリーバルブ500を供給又は製品ロータリーバルブのいずれかとして使用することができる。回転子510のポート(図示せず)及び固定子ハウジング520のポート(図示せず)は、PSAシステムのプロセスで使用する場合、図3及び図4に示したように、また先に検討したように、ロータリーバルブ300の対応する供給側及び製品側回転子及び固定子ポートと同じになるか又はそれに類似するようにすることができる。同様に、ポートは、回転子510及び固定子ハウジング520の接合表面(図示せず)において図3及び4に示したロータリーバルブ300の回転子及び固定子の接合表面の構成と同じか又は類似したものになるようにすることができる。
ロータリーバルブは、スラストランナー540により回転子510に対して所定の位置に保たれる圧縮バネ530を含む。スラストランナー540は、ピン560で軸550に取付けられる。それに代えて、ピン560を用いてスラストランナー540を回転子510に取付けてもよい。軸550が回転したとき軸線Bの周りをスラストランナー540が回転するのを可能ににするため、スラストランナーと固定子ハウジング520の間でスラストベアリング570を使用する。スラストベアリング570は、スラストランナー540が最小限の摩擦量で回転できるようにしながら、バネ530のバネ力を支える。
バネ530は、回転子510と固定子ハウジング520の界面515での接触を維持するバネ力を提供する。回転子510は、界面515で回転可能に固定子ハウジング520と接触し、固定子ハウジングに対しシールされる。バネ力は、バルブを作動させたときに界面515において回転子及び固定子ポート(図示せず)からの実質的な漏れを防止するのに十分であるように選択されるべきである。バネ530は、先に検討したロータリーバルブ300のものと同じように位置設定表面構造(図示せず)に接して位置する。この実施形態においては、不同のバネ力をもつ2つのバネ530が、回転子510とスラストランナー540の間に配置した状態で示されている。
ここで、回転子を回すのに必要なトルクを最小限にするため、合成したバネ力の大きさ及び位置を決定する典型的方法を提示する。バネ力が回転子の中心軸にあるときに回転子を回すのに必要とされるトルクは、次の式1により与えられる。
Figure 2009150533
この式中、
μ=摩擦係数、
F=回転子と固定子との接触力(図2からF3)、
R=回転子の半径、
である。
更に、回転子と固定子との接触力が回転子の縁部にある場合には、回転子を回すのに必要とされるトルクはμFRとなる、ということを示すことができる。
求めるのを簡略化するために、回転子を回すのに必要とされるトルクは回転子と固定子との接触力の箇所の半径の一次関数であると仮定することができる。この仮定を用いて、回転子を回すのに必要とされるトルクは式2により与えられる。
Figure 2009150533
式中のr=接触反力の半径である。
これらの計算から、回転子を回すのに必要とされるトルクを最小限にするためには、反力が回転子の中心に位置すべきである、ということが明らかである。しかしながら、回転子にかかる圧力の合力は、回転子の種々の高圧及び低圧ポートの位置のために、回転子の中心には位置しないので、接触反力も中心には位置しない。
かくして、押しつける力の既知の合力をもつ選択された循環式プロセスについて漏れを防止しながらトルクを最小限にするバネ力の大きさ及び位置を決定するためには、以下の方法が用いられる。
(a)1以上のバネ位置設定表面構造をもつ1以上の回転子を含むロータリーバルブを提供する。
(b)選択した圧力スイング吸着システムについて1以上の回転子に作用する大きさ及び位置をもつ押しつける力の合力を求める。
(c)圧力スイング吸着プロセス中の漏れに対して1以上の回転子をシールするのに十分な大きさをもつバネ力を選択する。
(d)1以上の回転子に及ぼすバネ力の中心についての位置を選択する。
(e)選択されたバネ力と押しつける力の合力について、接触力の合力と位置を計算する。
(f)式2を用いて、1以上の回転子の各回転子を回すのに必要とされるトルクを計算する。
(g)1以上の回転子の各回転子を回すのに必要とされるトルクを合算して合計トルクを求める。
(h)ステップ(d)〜(g)を反復して、回転子(単数又は複数)を回すのに必要とされる最小の合計トルクをもたらすバネ力の中心について位置を見つける。
(i)合計のバネ力が(c)で選択されたバネ力に等しく且つバネ力の中心の位置が(h)で選択されたとおりの位置にあるように、1以上のバネをバネ位置設定表面構造のところに配置する。
(j)バネ力が圧力スイング吸着プロセス中の漏れに対して1以上の回転子をシールするのに不十分である場合、(c)に戻り、バルブが実質的に漏れなしに作動するまで、選択されたバネ力を徐々に増大させる。
ここで、公称のPSAプロセス条件下で作動する典型的な複式回転子/固定子ロータリーバルブについて最小のトルクをもたらすバネ位置を計算する例を提示する。種々のスロットの圧力を、PSAプロセス中の標準的な運転圧力で選択した。
図6は、表面630に供給スロット610及び排出/パージスロット620をもつ代表的な供給側回転子600を示す。回転子600の半径はRである。例えば、半径Rはおよそ1インチであることができる。供給側回転子600は、プロセス操作中に回されると供給側回転子600がその周りを回転する中心軸線Cを有する。中心軸線Cは、バルブの中心軸線A(図3、4)と整合する。PSAプロセスでは、供給スロット610は7psigという平均の高い圧力で運転し、排出/パージスロット620は−7psigという平均の低い圧力で運転する。供給スロット610における圧力、排出/パージスロット620における圧力、及びその他の回転子表面の圧力は、供給側回転子600を固定子(図示せず)から分離するように作用する約6.8ポンドの押しつける力をもたらす。この力は、中心軸線Aから約0.5インチの距離dだけオフセットされた、図6に示された位置Fp1で作用する。
図7は、パージ提供ポート733、パージ受入れポート734、上昇均圧ポート735、製品再加圧ポート736、製品ポート737、及び下降均圧ポート738を有し、そして回転子ベアリングと製品出口を収容するための中央の孔739を有する、典型的な製品側回転子700を示す。スロット(733、734、735、736、737、738、739及びその他の回転子表面における圧力は、製品側固定子(図示せず)から製品側回転子700を分離するように作用する約9.3ポンドの押しつける力をもたらす。この力は、図7に示したように、およそ0.3インチの距離だけ中心軸線Cからオフセットされた位置Fp2で、製品側回転子700に対して作用する。製品スロット737及び中央の孔739は、最高の平均運転圧力である約7psigと、それに続く、製品再加圧ポート736、下降均圧ポート738、上昇均圧ポート735、パージ提供ポート733、及びパージ受入れポート734における逐次的に低くなる圧力を有する。製品側回転子700は、プロセス操作中に回されると製品側回転子がその周りを回転する中心軸線Cを有する。中心軸線Cはバルブの中心軸線A(図3、4)と整合する。
種々のバネ力、及びバネ力の中心(COF)の半径の範囲について、供給側回転子600(図6)及び製品側回転子700(図7)を回転させるのに必要とされるトルクを求めた結果を、図8に示す。水平軸は、バネ力が加えられる半径又は偏心度である。垂直軸は、両方の回転子を回すために必要とされるトルクである。各曲線は、表示されたとおりの種々のバネ力を表わす。
所要バネ力を求めるのは、回転子に作用する押しつける力を最初に求めることによって行われる。押しつける力を求めるのは、いくつかの理由で困難である。第1に、回転子ポートにおけるプロセス圧力は、吸着床内の変化する圧力と回転子の位置の変化の結果として、連続的に変化している。第2に、システムに供給ガス及び真空を提供するために往復ポンプが使用される場合、回転子ポート圧力にその他の変動が発生することがあり、これが一部のポートで圧力の脈動をひき起こすことがある。第3に、ポートのない箇所での回転子面上の圧力分布は、いずれも完全には平坦でない回転子の面と固定子の面との接触パターンに応じた推定である。この非平坦性は、一部の圧力が回転子面へと漏れるのを許し、そして圧力がその力を及ぼす領域を変化させる可能性がある。これらの理由から、作動中にどれだけのバネ力が実際に必要とされるかを決定するのは困難である。理想的には、バネ力は、回転子と固定子を接触状態に保つため押しつける力と接触力との和よりもごくわずかだけ大きいことしか必要とされない。実際には、押しつける力と接触力との和よりも数ポンドだけ少し大きいバネ力を選択し、バルブを漏れについて観察する。バルブがその用途にとって許容可能な量を超えて漏れる場合には、実質的な漏れがなくなるまで、バネ力を徐々に増加させる。こうして、図8を用いることにより、バネ力を増加させながら、回転子を回すのに必要とされる最小トルクを維持するように、バネ力の位置を調整する。
図8の各曲線の終点は、1つの回転子の縁部で反力が発生する点を表わす。これらの終点を越えると、押しつける力は回転子/固定子対のうちの一方を分離し始めるので、回転子の静的平衡を維持するのは不可能である。図8は、所定のバネ力について、回転子を回すのに必要とされるトルクを最小限にするためにバネ力を加える最適な半径方向の箇所が存在することを示している。最小トルクのための半径方向の箇所は一定ではなく、加えられるバネ力とともに変動する。図8に示したように、バネ力の位置を設定する最適な半径は、バネ力の増加とともに減少する。先に説明したバネ選択方法について言えば、バルブの漏れがなくなるまでバネ力の増加が試され、特定のバネ力についてバネ力の中心の最適な箇所が図8から見いだされる。
所定の合計バネ力及び箇所を得るために、異なる力のバネを選択することができる。例えば、回転子は、後に決定される用途に基づいてバネ力の中心を配置するのを可能にするいくつかの箇所に配置されたバネ位置ロケータを有することができる。
本発明の一般的実施形態は、加圧供給空気、真空廃棄物又は排気接続部、及び製品出口を有するとともに、複数の吸着床の供給側及び製品側端部に接続するためのポートを有するロータリーバルブを含む。このバルブは、1以上の供給元プロセスから1以上の指定プロセスまで反復可能な循環プロセス工程でもって流体を導くための任意のプロセスにおいて使用可能である。
本発明を好ましい実施形態を参照して説明してきたが、当業者には、本発明の範囲から逸脱することなく様々な変更を加えることができ、またその構成要素に代えて同等のものを用いてもよいということが理解されよう。更に、本発明の本質的な範囲から逸脱することなく、その教示に対して特定の状況を適合させるため多くの改変を行なうことができる。従って、本発明はそれを実施するために考えられる最良の態様として開示されている特定の実施形態に限定されず、特許請求の範囲に記載の範囲内に入る全ての実施形態を包含するものであるということが意図されている。
典型的な従来技術のロータリーバルブの分解組立図である。 押しつける力とバネ力が両方とも回転子の中心に位置する場合の典型的な回転子に作用する力を説明する簡略概要図である。 押しつける力が回転子の中心に加えられていない場合の典型的な回転子に作用する力を説明する簡略概要図である。 バネ力が押しつける力と同じ場所で回転子上に加えられた場合の典型的な回転子に作用する力を説明する簡略概要図である。 本発明によるロータリーバルブの代表的な実施形態の拡大上面図である。 本発明によるロータリーバルブの代表的な実施形態の拡大底面図である。 本発明によるロータリーバルブの単一回転子の実施形態の概略的断面図である。 本発明による代表的な供給側回転子の供給側回転子面の図である。 本発明による代表的な製品側回転子の製品側回転子面の図である。 本発明による、種々のバネ力に対して回転子を回すのに必要とされるトルクとバネ力の力の中心の半径方向の位置との関係を説明するグラフである。

Claims (15)

  1. 供給側固定子接合表面、供給側固定子背面、及び供給側固定子接合表面と供給側固定子背面とを接続する複数のポートを含む供給側固定子、
    供給側回転子接合表面、供給側回転子背面、及び供給側固定子の複数の固定子ポートの間に流体の流れを導くため供給側回転子接合表面に配置された複数のポートを含み、供給側固定子に隣接する供給側回転子であって、供給側回転子表面に直交する軸線の周りを回転可能な供給側回転子、
    供給側回転子と係合し、製品側回転子接合表面、製品側回転子背面、製品出口、及び複数のポートあって該複数のポートの間に流体の流れを導くため上記接合表面に配置された複数のポートを含む製品側回転子であって、この製品側回転子の面に直交する軸線の周りを回転可能な製品側回転子、
    製品側固定子接合面、製品側固定子背面、及び製品側固定子接合面と製品側固定子背面とを接続する複数のポートを含み、製品側回転子に隣接する製品側固定子、及び、
    供給側回転子背面及び製品側回転子背面にかかる力の中心にバネ力を適用するようにされ、供給側回転子と製品側回転子の間に配置される少なくとも1つの圧縮バネであって、該バネ力はバルブが作動状態にあるとき供給側回転子と製品側回転子を回すのに必要とされるトルクを最小限にするようにされている圧縮バネ、
    を含む、循環プロセス操作を実施するためのロータリーバルブ。
  2. 供給側回転子及び製品側回転子が、回転中心軸の周りを回転するようにされている、請求項1に記載のロータリーバルブ。
  3. バネ力の力の中心が回転軸からゼロより大きい所定の距離のところに位置する、請求項1に記載のロータリーバルブ。
  4. 供給側回転子と製品側回転子の間で少なくとも1つの圧縮バネを定位置に固定して配置するようにされた製品側回転子背面に位置する少なくとも1つのバネ位置設定表面構造と向かい合わせて供給側回転子背面に配置された少なくとも1つのバネ位置設定表面構造を更に含む、請求項1に記載のロータリーバルブ。
  5. 供給側回転子と製品側回転子の間で2つ以上の圧縮バネを定位置に固定して配置するように、2つ以上のバネ位置設定表面構造が供給側回転子背面に回転軸を通過する平面との関係において対称的に、製品側回転子背面に同じように設けられた2つ以上のバネ位置設定表面構造に向かい合って位置している、請求項1に記載のロータリーバルブ。
  6. ポートを有する固定子ハウジング、
    ポートと背面を含む回転子であって、回転中心軸の周りを回転可能な形で固定子ハウジングと界面で接触している回転子、
    回転子背面とスラストランナーの間に配置されたバネ力の力の中心を有する少なくとも1つの圧縮バネ、
    スラストランナーと固定子ハウジングの間に配置されたスラストベアリング、
    を含み、
    該少なくとも1つの圧縮バネは、バルブが作動状態にあるとき、所定のバネ力に対して回転子を回すのに必要とされる最小トルクをもたらす力の中心を回転子背面に有するバネ力を適用するようにされている、循環プロセス操作を実施するためのロータリーバルブ。
  7. バネ力の力の中心が回転軸からゼロより大きい所定の距離のところに位置する、請求項6に記載のロータリーバルブ。
  8. 回転子背面に少なくとも1つのバネ位置設定表面構造を更に含む、請求項6に記載のロータリーバルブ。
  9. バネ位置設定表面構造の少なくとも1つの鏡像対が、回転軸を通過する平面と対称的に回転子背面に位置している、請求項6に記載のロータリーバルブ。
  10. 複数の吸着床、及び
    1以上の回転子を有するロータリーバルブであって、該複数の吸着床に接続されて圧力スイング吸着プロセスの間に該複数の吸着床へ流れを導くようにされているロータリーバルブ、
    を含む圧力スイング吸着システムであって、該ロータリーバルブが、
    回転軸の周りを回転するようにされた1以上の回転子、及び
    力の中心が該1以上の回転子をバネ力に対して回すのに必要とされるトルクの量を最小限にするバネ力を該1以上の回転子に対して適用するようにされたバネ力をもつ少なくとも1つの圧縮バネ、
    を含んでいる、圧力スイング吸着システム。
  11. 前記ロータリーバルブが、
    次のものを含む供給側固定子、すなわち、
    供給側固定子接合表面、
    供給側固定子背面、及び
    供給側固定子接合表面と供給側固定子背面とを接続する複数の供給側固定子ポート、
    を含む供給側固定子、
    を更に含み、
    前記1以上の回転子が、製品側回転子と係合された供給側回転子を含み、
    ここで、該供給側回転子は、供給側回転子接合表面、供給側回転子背面、及び複数の供給側固定子ポートの間に流体の流れを導くため供給側回転子接合表面に配置された複数の供給側回転子ポートを含み、該供給側回転子は供給側回転子表面に対し直交する回転軸の周りを回転するようにされており、
    そして該製品側回転子は、製品側回転子接合表面、製品側回転子背面、製品出口、及び複数の製品側固定子ポートの間に流体の流れを導くため接合表面に配置された複数の製品側回転子ポートを含み、該製品側回転子は製品側回転子面に対し直交する回転軸の周りを回転するようにされており、
    製品側固定子が、製品側固定子接合面、製品側固定子背面、及び製品側固定子接合面と製品側固定子背面とを該製品側回転子と回転可能に接触した状態で接続する複数のポートを含み、
    前記少なくとも1つの圧縮バネが供給側回転子と製品側回転子の間に配置されている、
    請求項10に記載の圧力スイング吸着システム。
  12. 前記ロータリーバルブが、
    ポートを有する固定子ハウジング、
    ポートと背面を含み、固定子ハウジングと界面で回転中心軸の周りを回転可能に接触する回転子、
    固定子ハウジングと接触するスラストベアリング、
    スラストベアリングと接触するスラストランナー、及び
    回転子背面とスラストランナーの間に配置された少なくとも1つの圧縮バネ、
    を含む、請求項10に記載の圧力スイング吸着システム。
  13. 前記バネ力の力の中心が、回転中心軸からゼロより大きい所定の距離のところに位置する、請求項10に記載の圧力スイング吸着システム。
  14. 製品側回転子背面に配置された少なくとも1つのバネ位置設定表面構造に向き合って供給側回転子背面に配置された少なくとも1つのバネ位置設定表面構造を更に含み、該バネ位置設定表面構造は、前記圧縮バネを供給側回転子と製品側回転子の間で定位置に固定するようにされている、請求項11に記載の圧力スイング吸着システム。
  15. 前記圧縮バネを回転子とスラストランナーの間に固定するようスラストランナーに配置された複数のバネ位置設定表面構造と整合した、回転子背面に配置された複数のバネ位置設定表面構造を更に含む、請求項12に記載の圧力スイング吸着システム。
JP2008276506A 2007-10-29 2008-10-28 ロータリーバルブ及びロータリーバルブを含む圧力スイング吸着システム Active JP4944080B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/926,424 2007-10-29
US11/926,424 US7819948B2 (en) 2007-10-29 2007-10-29 Rotary valve

Publications (2)

Publication Number Publication Date
JP2009150533A true JP2009150533A (ja) 2009-07-09
JP4944080B2 JP4944080B2 (ja) 2012-05-30

Family

ID=40318966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008276506A Active JP4944080B2 (ja) 2007-10-29 2008-10-28 ロータリーバルブ及びロータリーバルブを含む圧力スイング吸着システム

Country Status (7)

Country Link
US (1) US7819948B2 (ja)
EP (3) EP2573434B1 (ja)
JP (1) JP4944080B2 (ja)
KR (1) KR101097507B1 (ja)
CN (1) CN101446361B (ja)
ES (3) ES2533689T3 (ja)
TW (1) TWI350356B (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014038095A (ja) * 2012-08-10 2014-02-27 Dionex Softron Gmbh 液体クロマトグラフィー用の切り替えバルブ、とりわけ高速液体クロマトグラフィー用の高圧切り替えバルブ
US9063114B2 (en) 2012-08-10 2015-06-23 Dionex Softron Gmbh Switching valve for liquid chromatography
JP2016089901A (ja) * 2014-10-31 2016-05-23 株式会社不二工機 流路切換弁
JP2016089902A (ja) * 2014-10-31 2016-05-23 株式会社不二工機 流路切換弁
JP2016098965A (ja) * 2014-11-26 2016-05-30 株式会社不二工機 流路切換弁
JP2016205430A (ja) * 2015-04-16 2016-12-08 株式会社不二工機 流路切換弁
JP2020180624A (ja) * 2019-04-23 2020-11-05 株式会社不二工機 流路切換弁

Families Citing this family (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5710263B2 (ja) * 2007-11-12 2015-04-30 エクソンモービル アップストリーム リサーチ カンパニー ユーティリティガスの製造及び利用方法
MY158840A (en) * 2008-04-30 2016-11-15 Exxonmobil Upstream Res Co Method and apparatus for removal of oil from utility gas stream
US8656955B2 (en) 2010-05-20 2014-02-25 Bio-Rad Laboratories, Inc. Rotary column selector valve
MY162263A (en) 2010-05-28 2017-05-31 Exxonmobil Upstream Res Co Integrated adsorber head and valve design and swing adsorption methods related thereto
US8695633B2 (en) * 2010-09-09 2014-04-15 Uop Llc Control of rotary valve operation for reducing wear
TWI495501B (zh) 2010-11-15 2015-08-11 Exxonmobil Upstream Res Co 動力分餾器及用於氣體混合物之分餾的循環法
CA2842928A1 (en) 2011-03-01 2012-11-29 Exxonmobil Upstream Research Company Apparatus and systems having a rotary valve assembly and swing adsorption processes related thereto
AU2012223487A1 (en) 2011-03-01 2013-09-19 Exxonmobil Upstream Research Company Apparatus and systems having compact configuration multiple swing adsorption beds and methods related thereto
US9017457B2 (en) 2011-03-01 2015-04-28 Exxonmobil Upstream Research Company Apparatus and systems having a reciprocating valve head assembly and swing adsorption processes related thereto
SG192573A1 (en) 2011-03-01 2013-09-30 Exxonmobil Upstream Res Co Methods of removing contaminants from a hydrocarbon stream by swing adsorption and related apparatus and systems
BR112013018597A2 (pt) 2011-03-01 2019-01-08 Exxonmobil Upstream Res Co aparelho e sistemas tendo um contator adsorvente encaixado e processos de adsorção oscilante
EP2680954B1 (en) 2011-03-01 2018-09-12 Exxonmobil Upstream Research Company Methods of removing contaminants from a hydrocarbon stream by pressure swing adsorption and related apparatus and systems
CA2824162A1 (en) 2011-03-01 2012-09-07 Exxonmobil Upstream Research Company Apparatus and systems having a rotary valve assembly and swing adsorption processes related thereto
US8960231B2 (en) 2011-09-21 2015-02-24 Neil Robert Picha Multi-mode injection valve
CN103486310B (zh) * 2012-06-15 2016-02-03 上海浦东汉威阀门有限公司 一种便于表面再加工的定盘结构
US9435440B2 (en) 2012-08-06 2016-09-06 Mécanique Analytique Inc. Valve with a loading varying mechanism, and method of operating the same
US9034078B2 (en) 2012-09-05 2015-05-19 Exxonmobil Upstream Research Company Apparatus and systems having an adsorbent contactor and swing adsorption processes related thereto
US9303775B2 (en) 2012-12-21 2016-04-05 Waters Technologies Corporation Rotary shear valve and associated methods
US9801767B2 (en) * 2013-03-14 2017-10-31 Kap Medical, Inc. Patient support apparatus and method
DE102014211703A1 (de) * 2013-06-24 2014-12-24 MAHLE Behr GmbH & Co. KG Rotationsventil für eine Adsorptionswärmepumpe
TWI516698B (zh) * 2013-07-31 2016-01-11 Apex Medical Corp Air cushion device and its vent valve
CN103697194B (zh) * 2013-12-12 2016-06-01 大连橡胶塑料机械股份有限公司 液体布料装置
WO2015170236A1 (en) * 2014-05-06 2015-11-12 I.M.A. Industria Macchine Automatiche S.P.A. Rotary distributor
CA2949262C (en) 2014-07-25 2020-02-18 Shwetha Ramkumar Cyclical swing absorption process and system
CN104330508B (zh) * 2014-10-31 2016-10-05 华南理工大学 智能自动切换多通道气相色谱柱连接装置
KR20170053682A (ko) 2014-11-11 2017-05-16 엑손모빌 업스트림 리서치 캄파니 페이스트 임프린트를 통한 고용량 구조체 및 모노리스
WO2016094034A1 (en) 2014-12-10 2016-06-16 Exxonmobil Research And Engineering Company Adsorbent-incorporated polymer fibers in packed bed and fabric contactors, and methods and devices using same
CN107635644A (zh) 2014-12-23 2018-01-26 埃克森美孚上游研究公司 结构化吸附床,其生产方法及其用途
EP3279530A4 (en) * 2015-04-02 2019-09-11 Science & Technology Development Fund HYDRAULIC SERVOVALVES WITH DIRECT CONTROL
CN104747756B (zh) * 2015-04-23 2017-08-04 肖永初 一种旋转阀及应用其的五管吸附塔、以及制氧机
AU2016265110B2 (en) 2015-05-15 2019-01-24 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes related thereto
SG11201707069QA (en) 2015-05-15 2017-11-29 Exxonmobil Upstream Res Co Apparatus and system for swing adsorption processes related thereto comprising mid-bed purge systems
US10293298B2 (en) 2015-09-02 2019-05-21 Exxonmobil Upstream Research Company Apparatus and system for combined temperature and pressure swing adsorption processes related thereto
WO2017039991A1 (en) 2015-09-02 2017-03-09 Exxonmobil Upstream Research Company Process and system for swing adsorption using an overhead stream of a demethanizer as purge gas
CN108348837B (zh) 2015-10-27 2021-02-19 埃克森美孚上游研究公司 具有主动控制的进料提升阀和被动控制的产物阀的装置和与其相关的用于摆动吸附方法的系统
CN108348838B (zh) 2015-10-27 2021-11-05 埃克森美孚上游研究公司 具有多个阀门的变吸附方法相关的装置和系统
WO2017074656A1 (en) 2015-10-27 2017-05-04 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes related thereto having a plurality of valves
SG11201803968XA (en) 2015-11-16 2018-06-28 Exxonmobil Upstream Res Co Adsorbent materials and methods of adsorbing carbon dioxide
USD805114S1 (en) * 2016-01-26 2017-12-12 Roy Jones Traveling rotary valve
US11035480B2 (en) * 2016-02-24 2021-06-15 Leanna Levine and Aline, Inc. Mechanically driven sequencing manifold
USD788268S1 (en) 2016-03-16 2017-05-30 Mécanique Analytique Inc. Rotary valve
RU2714063C1 (ru) 2016-03-18 2020-02-11 Эксонмобил Апстрим Рисерч Компани Устройство и система для осуществления процессов короткоцикловой адсорбции
EP3463619A1 (en) 2016-05-31 2019-04-10 ExxonMobil Upstream Research Company Apparatus and system for swing adsorption processes
EP3463620A1 (en) 2016-05-31 2019-04-10 ExxonMobil Upstream Research Company Apparatus and system for swing adsorption processes
US10882003B2 (en) * 2016-06-29 2021-01-05 Koninklijke Philips N.V. Rotary valve assembly for sieve beds for pressure swing adsorption control
US10843120B2 (en) * 2016-06-29 2020-11-24 Koninklijke Philips N.V. Rotary valve assembly for pressure swing adsorption system
US10434458B2 (en) 2016-08-31 2019-10-08 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes related thereto
CN109922872A (zh) 2016-09-01 2019-06-21 埃克森美孚上游研究公司 使用3a沸石结构移除水的变化吸附处理
US10328382B2 (en) 2016-09-29 2019-06-25 Exxonmobil Upstream Research Company Apparatus and system for testing swing adsorption processes
CA3045040C (en) 2016-12-21 2022-04-26 Exxonmobil Upstream Research Company Self-supporting structures having foam-geometry structure and active materials
US10710053B2 (en) 2016-12-21 2020-07-14 Exxonmobil Upstream Research Company Self-supporting structures having active materials
DE102017101629A1 (de) 2017-01-27 2018-08-02 Agilent Technologies, Inc. - A Delaware Corporation - Fluidventil mit goldhaltiger und/oder platinhaltiger Beschichtung
US10500538B2 (en) 2017-02-15 2019-12-10 Exxonmobil Research And Engineering Company Fast cycle gas phase simulated moving bed apparatus and process
JP6969895B2 (ja) * 2017-05-09 2021-11-24 日本電産サンキョー株式会社 バルブ装置
US10544650B2 (en) * 2017-10-29 2020-01-28 Weatherford Technology Holdings, Llc Rotating disk valve for rotary steerable tool
CN109958780A (zh) * 2017-12-25 2019-07-02 重庆昂宇自控仪表有限公司 一种角行程调节阀
WO2019147516A1 (en) 2018-01-24 2019-08-01 Exxonmobil Upstream Research Company Apparatus and system for temperature swing adsorption
EP3758828A1 (en) 2018-02-28 2021-01-06 ExxonMobil Upstream Research Company Apparatus and system for swing adsorption processes
US10730006B2 (en) * 2018-08-14 2020-08-04 Air Products And Chemicals, Inc. Port separation for rotary bed PSA
US11806734B2 (en) 2018-08-30 2023-11-07 Hewlett-Packard Development Company, L.P. Locking nozzles
KR102594512B1 (ko) * 2018-11-15 2023-10-25 엘지전자 주식회사 세탁기
US11318410B2 (en) 2018-12-21 2022-05-03 Exxonmobil Upstream Research Company Flow modulation systems, apparatus, and methods for cyclical swing adsorption
US11376545B2 (en) 2019-04-30 2022-07-05 Exxonmobil Upstream Research Company Rapid cycle adsorbent bed
CN110131465A (zh) * 2019-05-24 2019-08-16 广东荧天生物技术有限公司 一种排氮气导阀门及其减低噪音的方法
US11655910B2 (en) 2019-10-07 2023-05-23 ExxonMobil Technology and Engineering Company Adsorption processes and systems utilizing step lift control of hydraulically actuated poppet valves
EP4045173A1 (en) 2019-10-16 2022-08-24 Exxonmobil Upstream Research Company (EMHC-N1-4A-607) Dehydration processes utilizing cationic zeolite rho
CN111659229B (zh) * 2020-06-30 2020-12-08 浙江勤策空分设备有限公司 一种变压吸附氧气设备
CN115306921A (zh) 2021-05-08 2022-11-08 中国石油化工股份有限公司 变压吸附装置及其旋转阀

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6117777A (ja) * 1984-05-09 1986-01-25 ゲフイピ アクツイエンゲゼルシヤフト 混合弁
US4930540A (en) * 1988-06-07 1990-06-05 Itw-Fastex Italia, S.P.A. Flow diverter for a vehicle heating system
JPH04125368A (ja) * 1990-09-18 1992-04-24 Chiyoda Corp 多流路切換弁
JPH09118232A (ja) * 1995-08-10 1997-05-06 Westinghouse Air Brake Co 自己摩耗補償弁
JPH112341A (ja) * 1997-06-11 1999-01-06 Nippon Furnace Kogyo Kaisha Ltd 流路切換装置
JP2005076858A (ja) * 2003-09-03 2005-03-24 Nsk Ltd ロータリー分配弁及び潤滑装置
JP2007046784A (ja) * 2005-08-05 2007-02-22 Air Products & Chemicals Inc 内部漏洩抑制システムを有する回転弁

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3040777A (en) * 1959-04-10 1962-06-26 Universal Oil Prod Co Rotary valve
US3479006A (en) * 1964-11-12 1969-11-18 Halliburton Co Balanced rotary valve
DE1235083B (de) * 1965-02-04 1967-02-23 Bitter & Co Drehschieber fuer Mischventile
US4326567A (en) * 1979-12-26 1982-04-27 Vercon Inc. Variable volume, positive displacement sanitary liquid dispensing machine
US6779557B2 (en) * 2002-08-22 2004-08-24 Mego Afek Industrial Measuring Instruments Rotary disc valve
US4569371A (en) * 1984-12-28 1986-02-11 Uop Inc. Axial multiport rotary valve
US4574840A (en) * 1984-12-28 1986-03-11 Uop Inc. Multiport axial valve with balanced rotor
US4948565A (en) * 1989-04-25 1990-08-14 Fisher Scientific Company Analytical system
ES2107533T3 (es) * 1991-05-24 1997-12-01 Bishop A E Valvula rotatoria para direccion asistida.
US5406041A (en) * 1993-11-09 1995-04-11 Delco Electronics Corp Rotary vacuum valve and electric switch assembly
US6063161A (en) * 1996-04-24 2000-05-16 Sofinoy Societte Financiere D'innovation Inc. Flow regulated pressure swing adsorption system
US5814130A (en) * 1996-09-27 1998-09-29 The Boc Group, Inc. Process and apparatus for gas separation
US5827358A (en) * 1996-11-08 1998-10-27 Impact Mst, Incorporation Rapid cycle pressure swing adsorption oxygen concentration method and apparatus
US5820656A (en) * 1997-01-21 1998-10-13 The Boc Group, Inc. Process and apparatus for gas separation
FR2759962B1 (fr) * 1997-02-25 1999-05-14 Renault Vehicules Ind Vanne pneumatique notamment pour dispositif de freinage d'un vehicule automobile
US6143056A (en) * 1998-11-19 2000-11-07 Praxair Technology, Inc. Rotary valve for two bed vacuum pressure swing absorption system
US6234417B1 (en) * 1999-06-01 2001-05-22 Coxwells, Inc. Hose reel retractor with uni-directional viscous speed governor
US6311719B1 (en) * 1999-08-10 2001-11-06 Sequal Technologies, Inc. Rotary valve assembly for pressure swing adsorption system
US6691702B2 (en) * 2000-08-03 2004-02-17 Sequal Technologies, Inc. Portable oxygen concentration system and method of using the same
US20050199299A1 (en) * 2001-05-25 2005-09-15 Schick Hans G. Methods and apparatus for micro-fluidic analytical chemistry
US6471744B1 (en) * 2001-08-16 2002-10-29 Sequal Technologies, Inc. Vacuum-pressure swing absorption fractionator and method of using the same
US6748975B2 (en) * 2001-12-26 2004-06-15 Micralyne Inc. Microfluidic valve and method of manufacturing same
US6889710B2 (en) * 2002-11-15 2005-05-10 Air Products And Chemicals, Inc. Rotary sequencing valve with flexible port plate
US6994316B2 (en) * 2003-01-16 2006-02-07 General Electric Company Rotor valve and seal

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6117777A (ja) * 1984-05-09 1986-01-25 ゲフイピ アクツイエンゲゼルシヤフト 混合弁
US4930540A (en) * 1988-06-07 1990-06-05 Itw-Fastex Italia, S.P.A. Flow diverter for a vehicle heating system
JPH04125368A (ja) * 1990-09-18 1992-04-24 Chiyoda Corp 多流路切換弁
JPH09118232A (ja) * 1995-08-10 1997-05-06 Westinghouse Air Brake Co 自己摩耗補償弁
JPH112341A (ja) * 1997-06-11 1999-01-06 Nippon Furnace Kogyo Kaisha Ltd 流路切換装置
JP2005076858A (ja) * 2003-09-03 2005-03-24 Nsk Ltd ロータリー分配弁及び潤滑装置
JP2007046784A (ja) * 2005-08-05 2007-02-22 Air Products & Chemicals Inc 内部漏洩抑制システムを有する回転弁

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014038095A (ja) * 2012-08-10 2014-02-27 Dionex Softron Gmbh 液体クロマトグラフィー用の切り替えバルブ、とりわけ高速液体クロマトグラフィー用の高圧切り替えバルブ
US9063114B2 (en) 2012-08-10 2015-06-23 Dionex Softron Gmbh Switching valve for liquid chromatography
JP2016089901A (ja) * 2014-10-31 2016-05-23 株式会社不二工機 流路切換弁
JP2016089902A (ja) * 2014-10-31 2016-05-23 株式会社不二工機 流路切換弁
JP2016098965A (ja) * 2014-11-26 2016-05-30 株式会社不二工機 流路切換弁
JP2016205430A (ja) * 2015-04-16 2016-12-08 株式会社不二工機 流路切換弁
JP2020180624A (ja) * 2019-04-23 2020-11-05 株式会社不二工機 流路切換弁
JP7258340B2 (ja) 2019-04-23 2023-04-17 株式会社不二工機 流路切換弁

Also Published As

Publication number Publication date
KR20090043467A (ko) 2009-05-06
EP2056005B1 (en) 2013-07-17
EP2573435A1 (en) 2013-03-27
ES2533689T3 (es) 2015-04-14
US7819948B2 (en) 2010-10-26
ES2627520T3 (es) 2017-07-28
CN101446361A (zh) 2009-06-03
KR101097507B1 (ko) 2011-12-22
EP2573435B1 (en) 2017-05-31
EP2056005A3 (en) 2011-07-13
US20090107332A1 (en) 2009-04-30
JP4944080B2 (ja) 2012-05-30
CN101446361B (zh) 2011-04-06
ES2423280T3 (es) 2013-09-19
EP2056005A2 (en) 2009-05-06
TW200925474A (en) 2009-06-16
EP2573434A1 (en) 2013-03-27
EP2573434B1 (en) 2015-03-04
TWI350356B (en) 2011-10-11

Similar Documents

Publication Publication Date Title
JP4944080B2 (ja) ロータリーバルブ及びロータリーバルブを含む圧力スイング吸着システム
US6889710B2 (en) Rotary sequencing valve with flexible port plate
JP4975022B2 (ja) 回転バルブ及び吸着分離装置
JP4886415B2 (ja) 内部漏洩抑制システムを有する回転弁
EP2331859B1 (en) Compact pressure balanced rotary valve
US3752167A (en) Fluid switching device
US20100077920A1 (en) Multi-port indexing drum valve for vpsa
US20120141315A1 (en) External Gear Pump
US9726175B2 (en) Scroll compressor having a back pressure plate and a gasket coupled to a fixed scroll plate by at least one coupling member
JP4709225B2 (ja) ロータリーバルブ
US20140105766A1 (en) Face drive fluid pump
JP2008519952A5 (ja)
CN110239804A (zh) 刺破装置及微流控设备
JP2886850B1 (ja) 冷暖房装置における冷媒ガスの流路切換装置
US3718411A (en) Hydraulic motor
CN117990300A (zh) 一种轴向柱塞泵的气密性检测装置
KR20130048334A (ko) 엔진 오일용 기계식 다단 가변 베인 펌프
JPH07208612A (ja) メカニカルシール装置
CN221610640U (zh) 一种双进液口切换阀
US20010000934A1 (en) Intermediate metallic layer for flat packing and process for the production of a flat packing with such an intermediate layer
JP2010223383A (ja) ロータリージョイント
JPH07119657A (ja) スクロール式流体機械
JPH0216398A (ja) 軸封装置
JPH04203281A (ja) スクロール流体装置

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110524

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20110823

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20110826

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120131

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120301

R150 Certificate of patent or registration of utility model

Ref document number: 4944080

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150309

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250