[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2009036429A - Integrated adsorber - Google Patents

Integrated adsorber Download PDF

Info

Publication number
JP2009036429A
JP2009036429A JP2007201385A JP2007201385A JP2009036429A JP 2009036429 A JP2009036429 A JP 2009036429A JP 2007201385 A JP2007201385 A JP 2007201385A JP 2007201385 A JP2007201385 A JP 2007201385A JP 2009036429 A JP2009036429 A JP 2009036429A
Authority
JP
Japan
Prior art keywords
heat exchanger
condensation
evaporation
heat
adsorbate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007201385A
Other languages
Japanese (ja)
Inventor
Norihiro Hori
紀弘 堀
Ichiro Otomo
一朗 大友
Masaki Kondo
正樹 今藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Noritz Corp
Original Assignee
Noritz Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Noritz Corp filed Critical Noritz Corp
Priority to JP2007201385A priority Critical patent/JP2009036429A/en
Publication of JP2009036429A publication Critical patent/JP2009036429A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an integrated adsorber capable of making compatible further miniaturization and achievement of high efficiency in cold heat generation, in a system using an adsorption type refrigerating cycle. <P>SOLUTION: The inside of a housing 21 maintained in a vacuum state by a vacuum pump 20, is partitioned into a reaction space 210 and a thermal insulation space 211 by a partition wall 24. An adsorption/desorption heat exchanger 22 is arranged on the upper side of the reaction space, and a condensation/evaporation heat exchanger 23 is arranged on the lower side. A fin part 231 of the condensation/evaporation heat exchanger is stored in a basin vessel part 240 formed of the partition wall 24, and a space with a housing inside surface is thermally insulated by separating by the thermal insulation space. Steam adsorbed to an adsorbent S is desorbed, and condensed-liquefied water W is gathered in a basin vessel. The thermal insulation space is also vacuum-exhausted by a vacuum gate valve, and thermal insulation of the condensation/evaporation heat exchanger is attained when functioning as a condenser. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、吸着式冷凍サイクルを利用した吸着式ヒートポンプあるいは吸着式冷凍機に用いられ、吸着質の吸着/脱着を行う吸着/脱着用熱交換器と、吸着質を凝縮/蒸発させる凝縮/蒸発用熱交換器とを1つのハウジング内に配設させた一体型吸着器に関する。   INDUSTRIAL APPLICABILITY The present invention is used in an adsorption heat pump or adsorption refrigerator using an adsorption refrigeration cycle, and an adsorption / desorption heat exchanger that performs adsorption / desorption of adsorbate, and condensation / evaporation that condenses / evaporates the adsorbate. The present invention relates to an integrated adsorber in which a heat exchanger for operation is disposed in one housing.

従来、吸着式冷凍サイクルを利用した吸着式冷凍機として、一対の吸着用熱交換器と、これら一対の吸着用熱交換器の上側位置に配置した凝縮器と、下側位置に配置した蒸発器と互いに区切った状態で備えたものが知られている(例えば特許文献1参照)。このものでは、一対の吸着用熱交換器を個別に仕切り、これらと凝縮器が配置された区画との間を仕切ってそれぞれ個別に水蒸気バルブで開閉可能に連通させると共に、上記の個別に仕切った一対の吸着用熱交換器と蒸発器が配置された区画との間も仕切ってそれぞれ個別に水蒸気バルブで開閉可能に連通させている。   Conventionally, as an adsorption refrigerator using an adsorption refrigeration cycle, a pair of adsorption heat exchangers, a condenser disposed at an upper position of the pair of adsorption heat exchangers, and an evaporator disposed at a lower position Are provided in a state of being separated from each other (see, for example, Patent Document 1). In this, a pair of heat exchangers for adsorption are individually partitioned, and the partition where the condenser is disposed is partitioned so as to be individually openable and closable by a steam valve, and the above-described individual partitions are partitioned. The pair of adsorption heat exchangers and the compartments where the evaporators are arranged are also partitioned and communicated with each other so as to be opened and closed individually by a steam valve.

又、吸着式冷凍サイクルを利用する吸着式冷凍機に用いる吸着器として、内部に吸着剤を充填させた吸着/脱着用の熱交換部材と、内部に冷媒を封入させて凝縮/蒸発作用を行う熱交換部材とを備えたものも知られている(例えば特許文献2又は特許文献3参照)。   Also, as an adsorber used in an adsorption refrigeration machine using an adsorption refrigeration cycle, an adsorption / desorption heat exchange member filled with an adsorbent and a refrigerant inside are condensed and evaporated. A device provided with a heat exchange member is also known (see, for example, Patent Document 2 or Patent Document 3).

特許3490543号公報Japanese Patent No. 3490543 特開2005−300129号公報JP-A-2005-300129 特開2006−200870号公報JP 2006-200870 A

ところで、吸着式冷凍サイクルを利用して低温排熱を熱源として冷熱を連続して取り出すためには、吸着/脱着を行うコア部分として同じ構成のものを少なくとも2つ備えるようにして、吸着/脱着を交互に繰り返させることが必要になるため、全体システムの大型化を招くことになる。このため、全体システムの小型化を図る上で、吸着/脱着用熱交換器と、凝縮/蒸発用熱交換器とを同じハウジング内に配設した一体型の吸着器を用いるようにすることが考えられている。すなわち、凝縮器と蒸発器とを別個に備えるのではなくて、1つの熱交換器を用い内部に供給する熱媒体を変えることによって凝縮と蒸発とを交互に行わせるようにし、例えば図8に示すように、1つのハウジング101内に吸着/脱着用の1つの熱交換器102と、凝縮/蒸発用の1つの熱交換器103とを配設し、略真空状態にしたハウジング101の内部に吸着質(例えば水)Wを封入するのである。   By the way, in order to continuously extract cold heat using low-temperature exhaust heat as a heat source using an adsorption refrigeration cycle, at least two core parts having the same configuration are provided as adsorption / desorption, and adsorption / desorption is performed. Since it is necessary to repeat these steps alternately, the overall system is increased in size. Therefore, in order to reduce the size of the entire system, it is possible to use an integrated adsorber in which an adsorption / desorption heat exchanger and a condensation / evaporation heat exchanger are arranged in the same housing. It is considered. That is, instead of separately providing a condenser and an evaporator, condensation and evaporation are performed alternately by changing the heat medium supplied to the inside using a single heat exchanger. As shown, one heat exchanger 102 for adsorption / desorption and one heat exchanger 103 for condensation / evaporation are disposed in one housing 101, and the housing 101 is in a substantially vacuum state. The adsorbate (for example, water) W is enclosed.

このような一体型の吸着器を用いる場合、上側位置の吸着/脱着用熱交換器102から脱着した気相吸着質(例えば水蒸気)が、凝縮器として機能するように内部に低温の熱媒が供給された凝縮/蒸発用熱交換器103と触れることにより凝縮・液化してハウジング101底部に水Wとなって溜まることになる。ところが、その凝縮・液化の際にハウジング101底部の内表面近傍位置はハウジング101の壁を介して直接に外部と接触しているため、ハウジング101底部の内表面の存在自体が凝縮/蒸発用熱交換器103による吸着質の凝縮・液化という反応を阻害する側に作用することになる。   When such an integrated adsorber is used, a low-temperature heat medium is provided so that the gas phase adsorbate (for example, water vapor) desorbed from the adsorption / desorption heat exchanger 102 at the upper position functions as a condenser. When the supplied heat exchanger 103 for condensing / evaporating is touched, it is condensed and liquefied and accumulated as water W at the bottom of the housing 101. However, since the position near the inner surface of the bottom of the housing 101 is in direct contact with the outside through the wall of the housing 101 during the condensation / liquefaction, the presence of the inner surface of the bottom of the housing 101 itself is the heat for condensation / evaporation. It acts on the side which inhibits the reaction of condensation / liquefaction of adsorbate by the exchanger 103.

従って、一体型吸着器を構成する場合には、特に凝縮/蒸発用熱交換器の断熱性能の向上、吸着質自体の減容量化、凝縮/蒸発用熱交換器の凝縮と蒸発との切換え時に吸着質の顕熱の影響を排しつつ蒸発潜熱による冷熱生成の効率化などを図ることにより、より一層の小型化と冷熱生成の高効率化との両立を図る必要がある。   Therefore, when configuring an integrated adsorber, especially when improving the heat insulation performance of the heat exchanger for condensation / evaporation, reducing the capacity of the adsorbate itself, and switching between condensation and evaporation of the heat exchanger for condensation / evaporation. It is necessary to achieve both further miniaturization and higher efficiency of cold heat generation by eliminating the influence of sensible heat of adsorbate and improving the efficiency of cold heat generation by latent heat of evaporation.

本発明は、このような事情に鑑みてなされたものであり、その目的とするところは、吸着式冷凍サイクルを利用したシステムにおいて用いる一体型吸着器において、より一層の小型化と冷熱生成の高効率化との両立を図り得る一体型吸着器を提供することにある。   The present invention has been made in view of such circumstances, and an object of the present invention is to achieve further downsizing and higher cooling generation in an integrated adsorber used in a system using an adsorption refrigeration cycle. An object of the present invention is to provide an integrated adsorber capable of achieving both efficiency.

上記目的を達成するために、第1の発明では、内部に吸着質が封入された真空容器としてのハウジング内に、吸着質を吸着したり脱着したりと相互切換可能な吸着剤を備えた吸着/脱着用熱交換器と、脱着された吸着質を凝縮したり吸着のために吸着質を蒸発したりと相互切換される凝縮/蒸発用熱交換器とが配設された一体型吸着器を対象にして、次の特定事項を備えることとした。すなわち、上記凝縮/蒸発用熱交換器の下側を覆うように配設されてその凝縮/蒸発用熱交換器と上記ハウジングの底部の内表面との間のハウジング内を仕切る仕切り壁と、上記仕切り壁によってその仕切り壁と上記ハウジングの底部の内表面との間に区画形成される断熱空間とを備えることとした(請求項1)。   To achieve the above object, according to the first aspect of the present invention, an adsorbent having an adsorbent capable of switching between adsorbate adsorption and desorption in a housing as a vacuum container in which adsorbate is enclosed is provided. An integrated adsorber comprising a heat exchanger for desorption / desorption and a heat exchanger for condensation / evaporation that is switched between condensing the desorbed adsorbate and evaporating the adsorbate for adsorption. The following specific items were prepared for the target. A partition wall that covers the lower side of the condensation / evaporation heat exchanger and partitions the housing between the condensation / evaporation heat exchanger and an inner surface of the bottom of the housing; A heat insulating space defined by the partition wall is formed between the partition wall and the inner surface of the bottom of the housing (claim 1).

この発明の場合、一体型吸着器が脱着−凝縮工程に入ると、吸着/脱着用熱交換器の吸着剤に吸着されていた吸着質が脱着されて仕切り壁の上側のハウジング内に放出される一方、その脱着された吸着質が凝縮器として機能するように設定された凝縮/蒸発用熱交換器によって凝縮・液化し、凝縮・液化した液相の吸着質が仕切り壁の上に溜まることになる。この凝縮・液化の際に、凝縮器として機能する凝縮/蒸発用熱交換器が仕切り壁によってハウジングの底部の内表面との間が断熱空間を挟んで完全に隔てられて断熱されることになるため、ハウジングの内表面との接触により凝縮・液化作用が阻害もしくは低減されることもない。これにより、凝縮/蒸発用熱交換器による凝縮性能を高めることが可能になり、小型化を図りつつも、冷熱生成の効率化をも図ることが可能となる。   In the case of the present invention, when the integrated adsorber enters the desorption-condensation process, the adsorbate adsorbed by the adsorbent of the adsorption / desorption heat exchanger is desorbed and released into the housing above the partition wall. On the other hand, the desorbed adsorbate is condensed and liquefied by a heat exchanger for condensation / evaporation set to function as a condenser, and the condensed and liquefied liquid phase adsorbate accumulates on the partition wall. Become. During this condensation and liquefaction, the heat exchanger for condensation / evaporation functioning as a condenser is insulated from the inner surface of the bottom of the housing by a partition wall with a heat insulation space being completely separated. Therefore, the condensation / liquefaction action is not hindered or reduced by contact with the inner surface of the housing. As a result, the condensation performance of the heat exchanger for condensation / evaporation can be improved, and the efficiency of cold heat generation can be improved while reducing the size.

本発明においては、上記仕切り壁として上方に開放された深皿容器部を備えるものとし、上記凝縮/蒸発用熱交換器をその熱交換部が上記深皿容器部内に収容されるように配設するようにすることができる(請求項2)。このようにすることにより、上記の脱着−凝縮工程に入って凝縮・液化した液相の吸着質が深皿容器部内に溜まることになり、次の吸着−蒸発工程に切換えられたときには深皿容器部内に溜まった液相の吸着質が凝縮/蒸発用熱交換器の熱交換部によって蒸発されることになる。このように、深皿容器部内に収容された凝縮/蒸発用熱交換器によって吸着質の凝縮/蒸発が行われることになるため、ハウジング底部に液相の吸着質を溜める場合よりも、効率良く吸着冷凍サイクルを実現させることが可能になる。   In the present invention, the partition wall is provided with a deep dish container part opened upward, and the heat exchanger for condensation / evaporation is disposed so that the heat exchange part is accommodated in the deep dish container part. (Claim 2). In this way, the adsorbate of the liquid phase condensed and liquefied by entering the above desorption-condensation process is accumulated in the deep dish container, and when the next adsorption-evaporation process is switched to the deep dish container The adsorbate of the liquid phase accumulated in the part is evaporated by the heat exchange part of the heat exchanger for condensation / evaporation. In this way, since the condensation / evaporation of the adsorbate is performed by the heat exchanger for condensation / evaporation accommodated in the deep dish container, it is more efficient than the case where the liquid phase adsorbate is accumulated at the bottom of the housing. An adsorption refrigeration cycle can be realized.

又、本発明において、上記仕切り壁に形成されてその仕切り壁よりも上側の反応空間と上記断熱空間とを互いに連通させる連通孔と、この連通孔を開閉可能に閉止する真空仕切り弁とを備えるようにし、上記反応空間の真空引きに伴い上記真空仕切り弁が開作動されて断熱空間も共に真空引きされる構成とすることができる(請求項3)。このようにすることにより、反応空間を所定の真空状態にすれば、断熱空間をも所定の真空状態にすることが可能となり、反応空間を真空引きするための手段(例えば真空ポンプ)が1つあればよくなる。従って、断熱空間の真空引きのために例えば真空ポンプを別途設置する必要もなくなる。又、断熱空間を真空状態にし得ることで、断熱性能を高めて請求項1又は請求項2による作用をより増大させることも可能となる。   In the present invention, a communication hole that is formed in the partition wall and communicates with the reaction space above the partition wall and the heat insulation space, and a vacuum partition valve that closes the communication hole so as to be openable and closable. In this way, the vacuum partition valve is opened as the reaction space is evacuated, and the heat insulation space is also evacuated (Claim 3). In this way, if the reaction space is brought into a predetermined vacuum state, the heat insulation space can also be brought into a predetermined vacuum state, and one means (for example, a vacuum pump) for evacuating the reaction space is provided. It will be better if there is. Therefore, it is not necessary to separately install a vacuum pump, for example, for evacuation of the heat insulation space. In addition, since the heat insulating space can be in a vacuum state, the heat insulating performance can be improved and the effect of the first or second aspect can be further increased.

さらに、本発明において、上記凝縮/蒸発用熱交換器の少なくとも熱交換部の周囲を上側から下側にかけて覆う吸湿材を備えこととし、上記吸湿材を、その少なくとも下端部が、上記吸着/脱着用熱交換器の吸着剤から脱着し凝縮/蒸発用熱交換器により凝縮・液化されて上記仕切り壁の上に溜まる液相の吸着質に浸かるように設定することができる(請求項4)。このようにすることにより、凝縮/蒸発用熱交換器として通常採用されるフィン・アンド・チューブ形式の熱交換器の金属製フィンから蒸発させる場合よりも、蒸発させ易い上に、蒸発表面積を大幅に増大させて蒸発に伴う気化熱も大幅に増大させることが可能となる。これにより、凝縮/蒸発用熱交換器を蒸発器として機能させて冷熱を生成させる際の冷熱生成性能を大幅に向上させることが可能となる。   Furthermore, in the present invention, a moisture absorbing material that covers at least the periphery of the heat exchanging portion of the heat exchanger for condensation / evaporation from the upper side to the lower side is provided, and the moisture absorbing material has at least a lower end at the adsorption / desorption. It can be set so as to be immersed in the adsorbate of the liquid phase which is desorbed from the adsorbent of the heat exchanger for use and condensed and liquefied by the heat exchanger for condensation / evaporation and accumulates on the partition wall. By doing so, it is easier to evaporate than the metal fins of fin-and-tube heat exchangers that are normally used as heat exchangers for condensation / evaporation, and the evaporation surface area is greatly increased. It is possible to greatly increase the heat of vaporization accompanying evaporation. As a result, it is possible to significantly improve the cold heat generation performance when the heat exchanger for condensation / evaporation functions as an evaporator to generate cold heat.

第2の発明では、内部に吸着質が封入された真空容器としてのハウジング内に、吸着質を吸着したり脱着したりと相互切換可能な吸着剤を備えた吸着/脱着用熱交換器と、脱着された吸着質を凝縮したり吸着のために吸着質を蒸発したりと相互切換される凝縮/蒸発用熱交換器とが配設された一体型吸着器を対象として、次の特定事項を備えることとした。すなわち、上記凝縮/蒸発用熱交換器の少なくとも熱交換部の周囲を上側から下側にかけて覆う吸湿材を備えることとし、上記吸湿材を、その少なくとも下端部が、上記吸着/脱着用熱交換器の吸着剤から脱着し凝縮/蒸発用熱交換器により凝縮・液化されてハウジング底部に溜まる液相の吸着質に浸かるように設定することとした(請求項5)。   In the second invention, an adsorption / desorption heat exchanger provided with an adsorbent capable of switching between adsorbate adsorption and desorption in a housing as a vacuum vessel in which the adsorbate is enclosed; For an integrated adsorber with a condensation / evaporation heat exchanger that can be switched between condensing desorbed adsorbate and evaporating adsorbate for adsorption, I decided to prepare. That is, the heat exchanger for condensation / evaporation is provided with a hygroscopic material that covers at least the periphery of the heat exchange section from the upper side to the lower side, and the hygroscopic material has at least the lower end at the adsorption / desorption heat exchanger. The adsorbent is set so as to be immersed in the liquid phase adsorbate which is desorbed from the adsorbent, condensed and liquefied by the heat exchanger for condensation / evaporation and accumulated at the bottom of the housing.

この発明の場合、一体型吸着器が吸着−蒸発工程に切換えられたとき、前工程で液相の吸着質を吸い込んで吸湿した吸湿材から吸着質が蒸発されることになり、凝縮/蒸発用熱交換器として通常採用されるフィン・アンド・チューブ形式の熱交換器の金属製フィンから蒸発させる場合よりも、蒸発させ易い上に、蒸発表面積を大幅に増大させて蒸発に伴う気化熱も大幅に増大させることが可能となる。これにより、凝縮/蒸発用熱交換器を蒸発器として機能させて冷熱を生成させる際の冷熱生成性能を大幅に向上させることが可能となる。   In the case of the present invention, when the integrated adsorber is switched to the adsorption-evaporation process, the adsorbate is evaporated from the hygroscopic material that has absorbed the liquid phase adsorbate in the previous process and absorbed moisture, and is used for condensation / evaporation. Evaporation is easier than evaporation from metal fins of fin-and-tube heat exchangers normally used as heat exchangers, and the evaporation surface area is greatly increased to significantly increase the heat of vaporization caused by evaporation. Can be increased. As a result, it is possible to significantly improve the cold heat generation performance when the heat exchanger for condensation / evaporation functions as an evaporator to generate cold heat.

又、上記第2の発明において、上記凝縮/蒸発用熱交換器を、その熱交換部が上記ハウジング底部に溜まる液相の吸着質よりも上方に離されるように位置設定することができる(請求項6)。このようにすることにより、凝縮/蒸発用熱交換器の熱交換部が液相の吸着質に浸っている場合にはその吸着質の顕熱の影響を受けるのに対し、上記の如く熱交換部がハウジング底部に溜まる液相の吸着質よりも上方に離されるように位置設定されているため、蒸発と凝縮との交互切換えの際に、上記の吸着質の顕熱の影響を排除・抑制することが可能となる。このため、蒸発と凝縮との交互切換えの際には吸湿材が吸湿している吸着質だけを温度変化させれば済み、吸着質の顕熱の影響を考慮する必要がなくなる分、高効率化を図ることが可能となる。   In the second aspect of the invention, the heat exchanger for condensation / evaporation can be positioned so that its heat exchanging portion is separated above the adsorbate of the liquid phase accumulated at the bottom of the housing. Item 6). In this way, when the heat exchange part of the heat exchanger for condensation / evaporation is immersed in the liquid phase adsorbate, it is affected by the sensible heat of the adsorbate. The position is set to be separated from the adsorbate of the liquid phase that accumulates at the bottom of the housing, so the effects of sensible heat on the adsorbate are eliminated and suppressed when switching between evaporation and condensation. It becomes possible to do. For this reason, when switching between evaporation and condensation, it is only necessary to change the temperature of the adsorbate absorbed by the hygroscopic material, which eliminates the need to consider the effects of sensible heat on the adsorbate, thus increasing efficiency. Can be achieved.

以上、説明したように、請求項1〜請求項4のいずれかの一体型吸着器によれば、脱着−凝縮工程に入って、吸着/脱着用熱交換器の吸着剤に吸着されていた吸着質が脱着され、脱着された吸着質が凝縮器として機能するように設定された凝縮/蒸発用熱交換器によって凝縮・液化する際に、凝縮器として機能する凝縮/蒸発用熱交換器が仕切り壁によってハウジングの底部の内表面との間が断熱空間を挟んで完全に隔てられて断熱された状態にすることができる。このため、ハウジングの内表面との接触により凝縮・液化作用が阻害もしくは低減されることもなく、これにより、凝縮/蒸発用熱交換器による凝縮性能を高めることができ、小型化を図りつつも、冷熱生成の効率化をも図ることができるようになる。   As described above, according to the integrated adsorber according to any one of claims 1 to 4, the adsorption that has been adsorbed by the adsorbent of the adsorption / desorption heat exchanger after entering the desorption-condensation step. When the quality is desorbed and the desorbed adsorbate is condensed and liquefied by the condensation / evaporation heat exchanger set to function as a condenser, the condensation / evaporation heat exchanger functioning as a condenser is partitioned. The wall can be completely insulated from the inner surface of the bottom portion of the housing with the heat insulation space interposed therebetween to be insulated. For this reason, the condensation / liquefaction action is not hindered or reduced due to contact with the inner surface of the housing, thereby improving the condensation performance by the heat exchanger for condensation / evaporation, while reducing the size. Moreover, it becomes possible to improve the efficiency of cold heat generation.

特に、請求項2によれば、深皿容器部内に収容した凝縮/蒸発用熱交換器によって吸着質の凝縮/蒸発が行われることになるため、ハウジング底部に液相の吸着質を溜める場合よりも、効率良く吸着冷凍サイクルを実現させることができるようになる。   In particular, according to the second aspect, since the condensation / evaporation of the adsorbate is performed by the heat exchanger for condensation / evaporation accommodated in the deep dish container portion, the case where the adsorbate of the liquid phase is accumulated at the bottom of the housing is obtained. However, the adsorption refrigeration cycle can be realized efficiently.

請求項3によれば、反応空間を所定の真空状態にすれば、断熱空間をも所定の真空状態にすることができる。このため、反応空間の真空引きのための手段だけで済み、断熱空間の真空引きのために例えば真空ポンプを別途設置する必要もなくすことができる。   According to the third aspect, if the reaction space is set to a predetermined vacuum state, the heat insulation space can be set to a predetermined vacuum state. For this reason, only a means for evacuation of the reaction space is required, and it is possible to eliminate the need to separately install a vacuum pump for evacuation of the heat insulation space.

請求項4によれば、凝縮/蒸発用熱交換器として通常採用されるフィン・アンド・チューブ形式の熱交換器の金属製フィンから蒸発させる場合よりも、蒸発させ易い上に、蒸発表面積を大幅に増大させて蒸発に伴う気化熱も大幅に増大させることができる。これにより、凝縮/蒸発用熱交換器を蒸発器として機能させて冷熱を生成させる際の冷熱生成性能を大幅に向上させることができる。   According to claim 4, it is easier to evaporate than the case of evaporating from a metal fin of a fin-and-tube heat exchanger usually employed as a heat exchanger for condensation / evaporation, and the evaporation surface area is greatly increased. It is possible to greatly increase the heat of vaporization accompanying evaporation. As a result, it is possible to greatly improve the cold heat generation performance when the heat exchanger for condensation / evaporation functions as an evaporator to generate cold heat.

又、請求項5又は請求項6の一体型吸着器によれば、吸着−蒸発工程に切換えられたとき、前工程で液相の吸着質を吸い込んで吸湿した吸湿材から吸着質が蒸発されるため、凝縮/蒸発用熱交換器として通常採用されるフィン・アンド・チューブ形式の熱交換器の金属製フィンから蒸発させる場合よりも、蒸発させ易い上に、蒸発表面積を大幅に増大させて蒸発に伴う気化熱も大幅に増大させることができるようになる。これにより、凝縮/蒸発用熱交換器を蒸発器として機能させて冷熱を生成させる際の冷熱生成性能を大幅に向上させることができるようになる。   Further, according to the integrated adsorber of claim 5 or 6, when switching to the adsorption-evaporation process, the adsorbate is evaporated from the hygroscopic material sucked in by absorbing the liquid phase adsorbate in the previous process. Therefore, it is easier to evaporate than metal fins of fin-and-tube heat exchangers usually used as heat exchangers for condensation / evaporation, and the evaporation surface area is greatly increased for evaporation. As a result, the heat of vaporization can be greatly increased. As a result, it is possible to greatly improve the cold heat generation performance when the heat exchanger for condensation / evaporation functions as an evaporator to generate cold heat.

特に請求項6によれば、熱交換部がハウジング底部に溜まる液相の吸着質よりも上方に離されるように位置設定しているため、蒸発と凝縮との交互切換えの際に、液相の吸着質の顕熱の影響を排除・抑制することができる。これにより、蒸発と凝縮との交互切換えの際には吸湿材が吸湿している吸着質だけを温度変化させれば済み、吸着質の顕熱の影響を考慮する必要がなくなる分、高効率化を図ることができるようになる。   In particular, according to the sixth aspect of the present invention, since the heat exchanging portion is positioned so as to be separated from the adsorbate of the liquid phase accumulated in the bottom of the housing, the liquid phase of the liquid phase is switched at the time of alternately switching between evaporation and condensation. The influence of sensible heat of the adsorbate can be eliminated / suppressed. As a result, when switching between evaporation and condensation, it is only necessary to change the temperature of the adsorbate absorbed by the hygroscopic material, and it is no longer necessary to consider the effect of sensible heat on the adsorbate. Can be planned.

以下、本発明の実施形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は発明の実施形態に係る一体型吸着器を適用した吸着式ヒートポンプの例を示す原理図である。同図において、符号2,2はそれぞれ一体型吸着器、3は例えば廃棄温水等の廃熱を利用して熱媒を所定の高温状態にして保持する高温熱媒部、4は熱媒を所定の低温状態に維持して保持する放熱部(例えば室外機)、5はこれに戻される最も低温の熱媒から熱交換により冷熱を回収して取り出すための冷熱取り出し用熱交換器を内蔵した冷却部、6,7,8,9はそれぞれ4つの開閉弁V1〜V4を備えて構成された第1〜第4切換部、11,12,13,14はそれぞれ各切換部6,7,8,9をバイパスする経路に介装された開閉弁である。まず、吸着式冷凍サイクルに基づいてこの吸着式ヒートポンプによる冷熱取り出しの原理について簡単に説明する。   FIG. 1 is a principle diagram showing an example of an adsorption heat pump to which an integrated adsorber according to an embodiment of the invention is applied. In the figure, reference numerals 2 and 2 are respectively integrated adsorbers, 3 is a high-temperature heat medium part that holds the heat medium at a predetermined high temperature using waste heat such as waste hot water, and 4 is a predetermined heat medium. A heat radiating part (for example, an outdoor unit) that maintains and maintains the low temperature state of 5 is a cooling unit that incorporates a cold heat extraction heat exchanger for recovering and extracting cold heat from the lowest temperature heat medium returned to this by heat exchange , 6, 7, 8, and 9 are first to fourth switching units each including four on-off valves V1 to V4, and 11, 12, 13, and 14 are switching units 6, 7, 8, and 14, respectively. 9 is an on-off valve interposed in a path bypassing 9. First, the principle of cold extraction by this adsorption heat pump will be briefly described based on the adsorption refrigeration cycle.

上記一対の一体型吸着器2,2は、互いに同じ構成を有し、ハウジング21内に吸着/脱着用熱交換器22と、凝縮/蒸発用熱交換器23との双方が配設されて構成されたものである。上記ハウジング21は内部が略真空状態に維持されて、内部には例えば水、アルコール、アンモニア等の吸着質が所要量封入されている。又、上記吸着/脱着用熱交換器22には後述するようにその外表面に例えばゼオライト、シリカゲル、活性炭等の吸着剤が固定されている。以下の説明では、吸着質として水が封入され、吸着剤としてはその水(水蒸気)を吸着するゼオライトが固定されているものとする。   The pair of integrated adsorbers 2 and 2 have the same configuration, and are configured such that both an adsorption / desorption heat exchanger 22 and a condensation / evaporation heat exchanger 23 are disposed in a housing 21. It has been done. The inside of the housing 21 is maintained in a substantially vacuum state, and a required amount of adsorbate such as water, alcohol, ammonia or the like is sealed inside. The adsorption / desorption heat exchanger 22 is fixed with an adsorbent such as zeolite, silica gel, activated carbon or the like on its outer surface as will be described later. In the following description, it is assumed that water is enclosed as an adsorbate and zeolite that adsorbs the water (water vapor) is fixed as the adsorbent.

一方(例えば図1の左側)の吸着器2では脱着−凝縮工程が次のようにして行われる。すなわち、一方の吸着器2内の吸着/脱着用熱交換器22では、ポンプ31の作動により高温熱媒部3から高温熱媒が第1切換部6を通して内部に供給されると、その高温熱媒により吸着剤が加熱されて脱着(脱離・再生)工程を行うようになり、これにより、吸着剤がそれまで吸着していた水蒸気(気相吸着質)を放出して脱着させることになる。その際、併せて上記一方の吸着器2内の凝縮/蒸発用熱交換器23では、ポンプ41の作動により放熱部4から低温熱媒の一部が第4切換部9を通して内部に供給されて凝縮器として機能するようになる。このため、上記の脱着した水蒸気は主として凝縮/蒸発用熱交換器23の外表面と接触することにより凝縮・液化し、ハウジング21内の底部に水(液相吸着質)となって溜まることになる。   On the other hand (for example, the left side of FIG. 1), the desorption-condensation process is performed as follows. That is, in the adsorption / desorption heat exchanger 22 in one adsorber 2, when a high temperature heat medium is supplied from the high temperature heat medium part 3 through the first switching part 6 by the operation of the pump 31, The adsorbent is heated by the medium, and the desorption (desorption / regeneration) step is performed, thereby releasing the water vapor (vapor phase adsorbate) adsorbed by the adsorbent until it is desorbed. . At that time, in the condensation / evaporation heat exchanger 23 in the one adsorber 2, a part of the low-temperature heat medium is supplied from the heat radiating unit 4 to the inside through the fourth switching unit 9 by the operation of the pump 41. It will function as a condenser. For this reason, the desorbed water vapor is condensed and liquefied mainly by coming into contact with the outer surface of the heat exchanger 23 for condensation / evaporation, and is stored as water (liquid phase adsorbate) at the bottom of the housing 21. Become.

これと併行して、他方(図1の右側)の吸着器2では吸着−蒸発工程が次のようにして行われる。すなわち、上記の他方の吸着器2内の吸着/脱着用熱交換器22では、ポンプ41の作動により放熱部4から低温熱媒の残りが第2切換部7を通して内部に供給されて吸着剤が冷却されると、吸着/脱着用熱交換器22の吸着剤はハウジング21内の水蒸気を吸着する吸着工程を行うようになる。そして、上記の他方の吸着器2内の凝縮/蒸発用熱交換器23では、冷却部5の冷熱取り出し熱交換器との熱交換により昇温した熱媒がポンプ51の作動により第4切換部9を通して内部に供給され、これにより、蒸発器として機能するようになる。これにより、前工程での凝縮・液化によりハウジング21の底部に溜まった水が蒸発し、この蒸発の気化熱により凝縮/蒸発用熱交換器23内の熱媒が冷却されて温度低下し、温度低下した熱媒が第3切換部8を介して冷却部5に戻されることになる。そして、冷却部5に戻された熱媒から冷却部5内の冷熱取り出し熱交換器での熱交換によって冷熱の取り出しが行われることになる。   At the same time, in the other adsorber 2 (right side in FIG. 1), the adsorption-evaporation process is performed as follows. That is, in the adsorption / desorption heat exchanger 22 in the other adsorber 2, the remainder of the low-temperature heat medium is supplied from the heat radiating unit 4 to the inside through the second switching unit 7 by the operation of the pump 41, and the adsorbent is supplied. When cooled, the adsorbent of the adsorption / desorption heat exchanger 22 performs an adsorption process for adsorbing water vapor in the housing 21. In the condensation / evaporation heat exchanger 23 in the other adsorber 2, the heat medium heated by heat exchange with the cold heat extraction heat exchanger of the cooling unit 5 is operated by the pump 51 and the fourth switching unit. 9 is supplied to the inside, thereby functioning as an evaporator. As a result, the water accumulated at the bottom of the housing 21 evaporates due to condensation and liquefaction in the previous process, and the heat medium in the condensation / evaporation heat exchanger 23 is cooled by the evaporation heat of evaporation to lower the temperature. The lowered heat medium is returned to the cooling unit 5 via the third switching unit 8. Then, cold heat is extracted from the heat medium returned to the cooling unit 5 by heat exchange in the cold heat extraction heat exchanger in the cooling unit 5.

以上の一方の吸着器2での脱着−凝縮工程と、他方の吸着器2での吸着−蒸発工程とがそれぞれバッチ処理により一対の吸着器2,2間で交互に切換えられ、この交互切換えが繰り返し行われることにより上記の冷却部5での冷熱取り出しが連続して行われるようになっている。以下、上記の各吸着器2として用いられる種々の実施形態の吸着器2a〜2dについて詳細に説明する。   The desorption-condensation process in one adsorber 2 and the adsorption-evaporation process in the other adsorber 2 are alternately switched between the pair of adsorbers 2 and 2 by batch processing. By being repeatedly performed, the cooling heat extraction in the cooling unit 5 is continuously performed. Hereinafter, the adsorbers 2a to 2d of various embodiments used as the respective adsorbers 2 will be described in detail.

<第1実施形態>
図2は、本発明の第1実施形態に係る一体型吸着2aを示し、同図中の符号20は真空ポンプ、21はハウジング、22は吸着/脱着用熱交換器、23はハウジング21内の下側位置に配設された凝縮/蒸発用熱交換器、24は特にこの凝縮/蒸発用熱交換器23の側方及び下方に空間が存するように仕切る仕切り壁、Wは吸着質としての水である。吸着/脱着用熱交換器22及び凝縮/蒸発用熱交換器23は共にフィン・アンド・チューブ形式の熱交換器により構成されている。
<First Embodiment>
FIG. 2 shows an integrated adsorption 2a according to the first embodiment of the present invention, in which a reference numeral 20 denotes a vacuum pump, 21 denotes a housing, 22 denotes an adsorption / desorption heat exchanger, and 23 denotes an inside of the housing 21. A heat exchanger 24 for condensation / evaporation disposed at the lower position, 24 is a partition wall for partitioning in such a way that there is a space on the side and lower side of the heat exchanger 23 for condensation / evaporation, and W is water as an adsorbate. It is. Both the adsorption / desorption heat exchanger 22 and the condensation / evaporation heat exchanger 23 are constituted by fin-and-tube heat exchangers.

上記ハウジング21は、例えばステンレスにより内部が密閉空間となるように形成され、真空ポンプ20の作動により内部が略真空に維持された状態で所定量の水Wが封入されたものである。そして、ハウジング21の内部は、上記の仕切り壁24によって仕切られて反応空間210と、断熱空間211とに区画されている。反応空間210がハウジング21内の上部から下部にかけての大部分の空間を占め、その反応空間210の上側位置に吸着/脱着用熱交換器22が配設され、下側位置に凝縮/蒸発用熱交換器23が配設されている。   The housing 21 is formed of, for example, stainless steel so that the inside becomes a sealed space, and a predetermined amount of water W is sealed in a state where the inside is maintained in a substantially vacuum state by the operation of the vacuum pump 20. The interior of the housing 21 is partitioned by the partition wall 24 into a reaction space 210 and a heat insulating space 211. The reaction space 210 occupies most of the space from the upper part to the lower part in the housing 21, the adsorption / desorption heat exchanger 22 is disposed at the upper position of the reaction space 210, and the heat for condensation / evaporation is disposed at the lower position. An exchanger 23 is provided.

上記の吸着/脱着用熱交換器22は、図3に詳細を示すように、そのフィン221やチューブ222の外表面に吸着剤Sが所定厚みで固定(例えば接着固定)されており、チューブ内に低温熱媒が通されて吸着剤Sが冷却されると反応空間210内の水蒸気を吸着して保持する一方、チューブ内に高温熱媒が通されて吸着剤Sが加熱されるとその吸着した水蒸気を脱着して反応空間210に放出するようになっている。   As shown in detail in FIG. 3, the adsorption / desorption heat exchanger 22 has an adsorbent S fixed to the outer surface of the fin 221 or the tube 222 with a predetermined thickness (for example, adhesively fixed). When the adsorbent S is cooled by passing a low-temperature heat medium, the water vapor in the reaction space 210 is adsorbed and held, while when the high-temperature heat medium is passed through the tube and the adsorbent S is heated, the adsorption is performed. The water vapor is desorbed and released into the reaction space 210.

仕切り壁24は、凝縮/蒸発用熱交換器23による熱交換を実質的に行うことになる熱交換部であるフィン部分231の下側と前後左右の側方とを囲むように深皿容器状に形成した上で、ハウジング21内を仕切る役割を果たすように構成されている。すなわち、仕切り壁24は、底壁241と、その周囲から上方に立ち上がる側壁242,242,…とにより上方が開放された深皿容器部240を備えると共に、側壁242,242,…の各上端からハウジング21の側壁面に延びて固定されるフランジ壁243を備え、このフランジ壁243によってハウジング21内が反応空間210と断熱空間211とに仕切られることになるようになっている。そして、前後の側壁242,242を凝縮/蒸発用熱交換器23のチューブ部分232が貫通する一方、深皿容器部240の内部にフィン部分231が収容された状態にされ、フィン部分231が収容された深皿容器部240内に凝縮・液化した水が溜まるようにされている。そして、深皿容器部240内のフィン部分231の側方が側壁242,242,…によって、底側が底壁241によって、それぞれハウジング21の内表面との間に断熱空間211が存在してハウジング21から断熱された状態に維持されるようになっている。   The partition wall 24 is in the shape of a deep dish so as to surround the lower side of the fin portion 231 and the front, rear, left and right sides which are heat exchange portions that substantially perform heat exchange by the condensation / evaporation heat exchanger 23. In addition, the housing 21 is configured to partition the inside of the housing 21. That is, the partition wall 24 includes a deep dish container portion 240 opened upward by a bottom wall 241 and side walls 242, 242,... Rising upward from the periphery thereof, and from each upper end of the side walls 242, 242,. A flange wall 243 that extends and is fixed to the side wall surface of the housing 21 is provided, and the inside of the housing 21 is partitioned into a reaction space 210 and a heat insulation space 211 by the flange wall 243. And while the tube part 232 of the heat exchanger 23 for condensation / evaporation penetrates the front and rear side walls 242 and 242, the fin part 231 is accommodated inside the deep dish container part 240, and the fin part 231 is accommodated. The condensed and liquefied water is accumulated in the deep dish container 240. And the heat insulation space 211 exists between the inner surface of the housing 21 by the side wall 242,242, ... on the side of the fin part 231 in the deep dish container part 240, and the bottom wall 241 on the bottom side, respectively. It is designed to be maintained in an insulated state.

この第1実施形態の一体型吸着器2aによれば、脱着−凝縮工程に入ると、吸着/脱着用熱交換器22に供給される高温熱媒により吸着剤Sが加熱されるため吸着剤Sに吸着されていた水蒸気が脱着されて反応空間210内に放出される一方、凝縮/蒸発用熱交換器23に低温熱媒が供給されて凝縮/蒸発用熱交換器23が凝縮器として機能するため、上記の反応空間210に放出された水蒸気が凝縮・液化し、凝縮・液化した水滴が深皿容器部240内に溜まることになる(図2の水W参照)。この凝縮・液化の際に、その凝縮器として機能する凝縮/蒸発用熱交換器23のフィン部分231が仕切り壁24によってハウジング21の内表面との間が断熱空間211を挟んで完全に隔てられて断熱されているため、ハウジング21の内表面との接触により凝縮・液化作用が阻害もしくは低減されることもなく、熱交換部であるフィン部分231の有する凝縮性能を有効にかつ効率的に利用することができるようになる。   According to the integrated adsorber 2a of the first embodiment, when entering the desorption-condensation step, the adsorbent S is heated by the high-temperature heat medium supplied to the adsorption / desorption heat exchanger 22, so that the adsorbent S. The water vapor adsorbed on the water is desorbed and released into the reaction space 210, while a low temperature heat medium is supplied to the condensation / evaporation heat exchanger 23, and the condensation / evaporation heat exchanger 23 functions as a condenser. Therefore, the water vapor released into the reaction space 210 is condensed and liquefied, and the condensed and liquefied water droplets are accumulated in the deep dish container 240 (see water W in FIG. 2). During the condensation and liquefaction, the fin portion 231 of the heat exchanger for condensation / evaporation 23 functioning as the condenser is completely separated from the inner surface of the housing 21 by the partition wall 24 with the heat insulating space 211 interposed therebetween. Therefore, the condensation / liquefaction action is not hindered or reduced by contact with the inner surface of the housing 21, and the condensation performance of the fin portion 231 that is the heat exchange part is effectively and efficiently used. Will be able to.

その上に、吸着質である水の量を、たとえフィン部分231を水に浸からせるにしても、深皿容器部240の内容積に対応する量に設定すればよく、仕切り壁24による深皿容器部240が存在しない場合のハウジング21の内底部の内容積を基準に設定する場合よりも大幅に減容量化させることができる。以上により、一体型吸着器2aにして小型化を図りつつも、同じ低温熱媒の供給に基づいて凝縮器としての凝縮機能を仕切り壁24の存在しない場合よりも高い性能を発揮させることができる上に、必要な吸着質の量も減容量化させることができる。換言すると、凝縮/蒸発用熱交換器23による凝縮性能を高めることができ、同じ凝縮性能をより小さい熱容量で得ることができ、これにより、より一層の小型化を図ることができることになる。なお、吸着質としての水の量は、次の蒸発工程において深皿容器部240内に溜まった水の全てが蒸発し切ってなくなる程度に設定することができる。   In addition, even if the fin portion 231 is immersed in water, the amount of water that is an adsorbate may be set to an amount corresponding to the inner volume of the deep dish container portion 240, and the depth of the partition wall 24 may be increased. The capacity can be significantly reduced as compared with the case where the inner volume of the inner bottom portion of the housing 21 when the dish container portion 240 is not present is set as a reference. As described above, while reducing the size of the integrated adsorber 2a, the condensing function as a condenser based on the supply of the same low-temperature heat medium can be performed more than when the partition wall 24 is not present. In addition, the amount of adsorbate required can be reduced. In other words, the condensation performance by the heat exchanger 23 for condensation / evaporation can be improved, and the same condensation performance can be obtained with a smaller heat capacity, and thereby further miniaturization can be achieved. It should be noted that the amount of water as the adsorbate can be set to such an extent that all of the water accumulated in the deep dish container 240 is not completely evaporated in the next evaporation step.

又、この際、断熱空間211を単なる密閉空間にするだけでもよいが、例えば第2の真空ポンプ20aを断熱空間211に連通するように設け、断熱空間211を略真空状態にすることにより、深皿容器部240のフィン部231に対する断熱性能をより一層高めることができ、これにより、上記の凝縮性能をより一層高めることができるようになる。   At this time, the heat insulating space 211 may be merely a sealed space. For example, the second vacuum pump 20a is provided so as to communicate with the heat insulating space 211, and the heat insulating space 211 is brought into a substantially vacuum state so that the depth is reduced. The heat insulation performance with respect to the fin part 231 of the dish container part 240 can be further improved, and thereby the condensation performance can be further improved.

さらに、上記の第2の真空ポンプ20aを設けずに、図4に示す一体型吸着器2bのように、仕切り壁24に連通孔244を設け、この連通孔244に対し真空仕切り弁25を設けるようにしてもよい。この場合には、真空ポンプ20を作動させて反応空間210内を真空引きすれば、それに伴い真空仕切り弁25も開変換されて断熱空間211内も真空引きされて、反応空間210及び断熱空間211の双方を共に所定の真空状態にすることができる。このため、上記の如く第2の真空ポンプ20aを設けることなく、1つの真空ポンプ20によって反応空間210を所定の真空状態にするだけではなくて、断熱空間211をも所定の真空状態にすることができる。なお、図4の一体型吸着器2bの上記真空仕切り弁25以外の構成は図2の一体型吸着器2aと同様である。   Further, without providing the second vacuum pump 20a, a communication hole 244 is provided in the partition wall 24 as in the integrated adsorber 2b shown in FIG. 4, and a vacuum partition valve 25 is provided for the communication hole 244. You may do it. In this case, if the inside of the reaction space 210 is evacuated by operating the vacuum pump 20, the vacuum partition valve 25 is also opened and the inside of the heat insulating space 211 is evacuated accordingly, and the reaction space 210 and the heat insulating space 211 are also evacuated. Both can be in a predetermined vacuum state. Therefore, without providing the second vacuum pump 20a as described above, not only the reaction space 210 is brought into a predetermined vacuum state by one vacuum pump 20, but also the heat insulating space 211 is brought into a predetermined vacuum state. Can do. The structure of the integrated adsorber 2b in FIG. 4 other than the vacuum gate valve 25 is the same as that of the integrated adsorber 2a in FIG.

<第2実施形態>
図5は、本発明の第2実施形態に係る一体型吸着器2cを示すものである。この第2実施形態の一体型吸着器2cは、凝縮/蒸発用熱交換器23の熱交換部であるフィン部分231の周囲を吸湿材26で覆うようにしたものであり、蒸発潜熱(気化熱)に基づく冷却効率の向上、冷熱生成効率の向上を図ったものである。なお、第1実施形態と同じ構成要素には第1実施形態と同じ符号を付して重複した詳細説明を省略する。
Second Embodiment
FIG. 5 shows an integrated adsorber 2c according to a second embodiment of the present invention. The integrated adsorber 2c according to the second embodiment is configured such that the periphery of the fin portion 231 which is a heat exchange part of the condensation / evaporation heat exchanger 23 is covered with a moisture absorbent 26, and the latent heat of vaporization (heat of vaporization). ) To improve the cooling efficiency and the cold heat generation efficiency. In addition, the same code | symbol as 1st Embodiment is attached | subjected to the same component as 1st Embodiment, and the detailed description which overlapped is abbreviate | omitted.

上記の吸湿材26は、例えばろ紙などの紙、不織布などの布等の熱容量を殆ど有しない材料により構成され、上記フィン部分231を内部に収容し得るような袋状、又は、所定幅の帯状に形成されたものである。袋状の場合にはその袋状の吸湿材26をフィン部分231の全体に被せ、帯状の場合にはその帯状の吸湿材26をフィン部分231の周囲に巻き付けることにより、図6(a)に示すようにフィン部分231の周囲を吸湿材26を覆うようにする。   The hygroscopic material 26 is made of a material having almost no heat capacity such as paper such as filter paper, cloth such as non-woven fabric, and the like, or a belt shape that can accommodate the fin portion 231 inside, or a belt shape having a predetermined width. It is formed. In the case of a bag shape, the bag-shaped hygroscopic material 26 is covered over the entire fin portion 231, and in the case of a belt-like shape, the band-shaped hygroscopic material 26 is wrapped around the fin portion 231, so that FIG. As shown, the hygroscopic material 26 is covered around the fin portion 231.

この第2実施形態の一体型吸着器2cの場合には、脱着−凝縮工程によって吸着剤Sから脱着した水蒸気が凝縮・液化されてハウジング21の底部に水Wとなって溜まり、凝縮/蒸発用熱交換器23のフィン部分231の下半が水に浸ることになる。これにより、吸湿材26の下半も水に浸り、上半の側にも水分が吸湿されることになる。そして、工程切換えによって吸着−蒸発工程に入ると、吸着/脱着用熱交換器22に供給される低温熱媒により吸着剤Sが冷却されるためハウジング21内の水蒸気が吸着剤Sに吸着されることになる。加えて、凝縮/蒸発用熱交換器23には冷却部5で冷熱取り出し熱交換器との熱交換により昇温した熱媒が内部に供給され、これにより、凝縮/蒸発用熱交換器23は蒸発器として機能するようになる。この際、吸湿材26が液相吸着質である水を吸い込んで十分に吸湿した状態になっているため、フィン部分231の金属フィンの表面からというよりは、この吸湿材26自体から水蒸気が蒸発することになる。つまり、吸湿材26のない状態のフィン部分231の金属フィンの表面からの蒸発よりも蒸発し易くなる上に、吸湿材26により蒸発表面積の大幅な拡大が図られて蒸発効率を大幅に増大させることができるようになる。このため、凝縮/蒸発用熱交換器23のフィン部分231からだけの蒸発の場合よりも大幅に気化熱を増大させることができ、これに伴い、気化熱(蒸発潜熱)が奪われることによる凝縮/蒸発用熱交換器23内の熱媒の冷却を大幅に効率よく行うことができ冷熱生成の効率化を図ることができるようになる。これにより、冷熱生成について同じ性能を発揮させる上でより一層の小型化を図ることができたり、あるいは、冷熱生成についての性能をより高く向上させることができたりするようになる。   In the case of the integrated adsorber 2c according to the second embodiment, the water vapor desorbed from the adsorbent S by the desorption-condensation process is condensed and liquefied and accumulated as water W at the bottom of the housing 21 for condensation / evaporation. The lower half of the fin portion 231 of the heat exchanger 23 is immersed in water. Thereby, the lower half of the hygroscopic material 26 is also immersed in water, and moisture is also absorbed by the upper half side. When entering the adsorption-evaporation process by switching the process, the adsorbent S is cooled by the low-temperature heat medium supplied to the adsorption / desorption heat exchanger 22, so that the water vapor in the housing 21 is adsorbed by the adsorbent S. It will be. In addition, the condensation / evaporation heat exchanger 23 is supplied with a heat medium whose temperature has been raised by heat exchange with the heat extraction heat exchanger in the cooling unit 5, whereby the condensation / evaporation heat exchanger 23 is It will function as an evaporator. At this time, since the hygroscopic material 26 sucks water as a liquid phase adsorbate and has sufficiently absorbed moisture, the water vapor evaporates from the hygroscopic material 26 itself rather than from the surface of the metal fin of the fin portion 231. Will do. That is, it is easier to evaporate than the fin portion 231 without the moisture absorbent 26 from the surface of the metal fin, and the evaporation surface area is greatly increased by the moisture absorbent 26 to greatly increase the evaporation efficiency. Will be able to. For this reason, the heat of vaporization can be greatly increased as compared with the case of evaporation only from the fin portion 231 of the heat exchanger for condensation / evaporation 23, and condensing due to the loss of heat of vaporization (latent heat of vaporization). / The heat medium in the evaporating heat exchanger 23 can be cooled much more efficiently, and the efficiency of cold heat generation can be improved. Accordingly, it is possible to further reduce the size when exhibiting the same performance with respect to the cold heat generation, or to further improve the performance with respect to the cold heat generation.

なお、以上の第2実施形態では布製などの吸湿材26を凝縮/蒸発用熱交換器23のフィン部分231の周囲に巻き付けて設置する場合を説明したが、これに限らず、例えば凝縮/蒸発用熱交換器23の特にフィン部分231の各金属フィンの外表面に対し、液状に調製した吸湿材又は粉状・粒状の吸湿材に例えば結合剤等を混合してゲル状に調製したものを塗布し、乾燥・固着させるようにしてもよい。そして、その吸湿材に対し、脱着−凝縮工程により凝縮・液化してハウジング21の底部に溜まった水Wから吸湿し、これが上記の同様に吸着−蒸発工程において蒸発するようになる。   In the above second embodiment, the case where the moisture absorbent material 26 made of cloth or the like is wound around the fin portion 231 of the heat exchanger 23 for condensation / evaporation has been described. In particular, the outer surface of each fin of the fin portion 231 of the heat exchanger 23 is prepared in a gel by mixing, for example, a binder or the like with a moisture absorbent prepared in a liquid state or a powder / particulate moisture absorbent. It may be applied, dried and fixed. The hygroscopic material absorbs moisture from the water W condensed and liquefied by the desorption-condensation process and collected at the bottom of the housing 21, and is evaporated in the adsorption-evaporation process as described above.

<第3実施形態>
図7は、本発明の第3実施形態に係る一体型吸着器2dを示すものである。この第3実施形態の一体型吸着器2dは、ハウジング21のサイズを吸着質の容量との関係で第1又は第2実施形態の場合よりも下方に拡大し、凝縮/蒸発用熱交換器23の熱交換部であるフィン部分231を覆うように含んで吸湿材27を下方に垂らした状態に設置したものである。狙いは、第2実施形態と同様に、蒸発潜熱(気化熱)に基づく冷却効率の向上、冷熱生成効率の向上を図ったものである。なお、第1実施形態と同じ構成要素には第1実施形態と同じ符号を付して重複した詳細説明を省略する。
<Third Embodiment>
FIG. 7 shows an integrated adsorber 2d according to a third embodiment of the present invention. The integrated adsorber 2d of the third embodiment expands the size of the housing 21 downward in comparison with the first or second embodiment in relation to the capacity of the adsorbate, and condenses / evaporates the heat exchanger 23. The hygroscopic material 27 is installed in a state of hanging downward so as to cover the fin portion 231 which is the heat exchange part of the heat sink. The aim is to improve the cooling efficiency based on the latent heat of vaporization (heat of vaporization) and the efficiency of generating cold heat, as in the second embodiment. In addition, the same code | symbol as 1st Embodiment is attached | subjected to the same component as 1st Embodiment, and the detailed description which overlapped is abbreviate | omitted.

第3実施形態のハウジング21の上下方向サイズは次のように設定される。すなわち、脱着−凝縮工程によって吸着剤Sから脱着した水蒸気が凝縮・液化されてハウジング21の底部に溜まる水Wよりも凝縮/蒸発用熱交換器23のフィン部分231が上方に位置することになるように、ハウジング21の上下方向サイズが設定される。つまり、脱着−凝縮工程終了時点にハウジング21の底部に溜まる水Wが凝縮/蒸発用熱交換器23のフィン部分231と接触しないように、凝縮/蒸発用熱交換器23の下側に所定高さの下側空間212を余分に形成しているのである。   The vertical size of the housing 21 of the third embodiment is set as follows. That is, the fin portion 231 of the heat exchanger 23 for condensation / evaporation is positioned above the water W which is condensed and liquefied and accumulated in the bottom of the housing 21 due to the water vapor desorbed from the adsorbent S in the desorption-condensation process. Thus, the vertical size of the housing 21 is set. In other words, the water W accumulated at the bottom of the housing 21 at the end of the desorption / condensation process does not come into contact with the fin portion 231 of the condensation / evaporation heat exchanger 23, and has a predetermined height below the condensation / evaporation heat exchanger 23. The lower space 212 is formed excessively.

上記の吸湿材27は、第2実施形態の吸湿材26と同様の材料により構成されたものであり、第2実施形態と同様に袋状又は所定幅の帯状に形成されたものである。この第3実施形態の吸湿材27は、図6(b)に示すように、袋状であれば凝縮/蒸発用熱交換器23のフィン部分231に被せた状態で下側空間212側に垂下して水Wに最下部が浸るようにし、帯状の場合にはフィン部分231の上側から下の下側空間212側に垂下して水Wに下端部が浸るように巻き付けられる。つまり、吸湿材27はフィン部分231の周囲を覆うと共に下端部が下側空間212の下方にまで垂下して底部に溜まることになる水Wに浸ることになるように設置される。これにより、凝縮/蒸発用熱交換器23のフィン部分231自体は凝縮・液化後の水Wに浸ったり水没したりすることはないものの、吸湿材27の一部である下端部が水Wに浸るようにしている。   The hygroscopic material 27 is made of the same material as the hygroscopic material 26 of the second embodiment, and is formed in a bag shape or a band shape having a predetermined width as in the second embodiment. As shown in FIG. 6 (b), the moisture absorbent 27 of the third embodiment hangs down on the lower space 212 side in a state of covering the fin portion 231 of the heat exchanger 23 for condensation / evaporation if it is a bag. Then, the lowermost part is immersed in the water W, and in the case of a strip shape, the fin part 231 is wound from the upper side to the lower lower space 212 side so that the lower end is immersed in the water W. That is, the hygroscopic material 27 is installed so as to cover the periphery of the fin portion 231 and to be immersed in the water W that the lower end portion hangs down below the lower space 212 and accumulates at the bottom portion. As a result, the fin portion 231 itself of the heat exchanger for condensation / evaporation 23 is not immersed in or submerged in the water W after condensation / liquefaction, but the lower end part of the hygroscopic material 27 becomes the water W. I'm trying to dip.

この第3実施形態の一体型吸着器2dの場合には、脱着−凝縮工程によって吸着剤Sから脱着した水蒸気が凝縮・液化されてハウジング21の底部である下側空間212に水Wとなって溜まると、吸湿材27の少なくとも下端部がその水Wに浸って、水が吸湿材27に吸い上げられて吸湿材27は吸湿した状態となる。そして、工程切換えによって吸着−蒸発工程に入ると、吸着/脱着用熱交換器22に供給される低温熱媒により吸着剤Sが冷却されるためハウジング21内の水蒸気が吸着剤Sに吸着されることになる。加えて、凝縮/蒸発用熱交換器23には冷却部5で冷熱取り出し熱交換器との熱交換により昇温した熱媒が内部に供給され、これにより、凝縮/蒸発用熱交換器23は蒸発器として機能するようになる。これにより、液相吸着質である水を吸い込んで十分に吸湿した状態になっている吸湿材27からその水分が蒸発することになる。   In the case of the integrated adsorber 2d of the third embodiment, the water vapor desorbed from the adsorbent S by the desorption-condensation process is condensed and liquefied, and becomes water W in the lower space 212 which is the bottom of the housing 21. When accumulated, at least the lower end portion of the moisture absorbent material 27 is immersed in the water W, the water is sucked up by the moisture absorbent material 27, and the moisture absorbent material 27 is in a state of moisture absorption. When entering the adsorption-evaporation process by switching the process, the adsorbent S is cooled by the low-temperature heat medium supplied to the adsorption / desorption heat exchanger 22, so that the water vapor in the housing 21 is adsorbed by the adsorbent S. It will be. In addition, the condensation / evaporation heat exchanger 23 is supplied with a heat medium whose temperature has been raised by heat exchange with the heat extraction heat exchanger in the cooling unit 5, whereby the condensation / evaporation heat exchanger 23 is It will function as an evaporator. Thereby, the water | moisture content will evaporate from the hygroscopic material 27 in the state which suck | inhaled the water which is a liquid phase adsorbate and was fully moisture-absorbing.

この場合、第2実施形態と同様に、吸湿材27が無くフィン部分231の一部が水Wに浸ってその金属フィンの表面から蒸発する場合よりも蒸発し易くなる上に、吸湿材27により蒸発表面積の大幅な拡大が図られて蒸発効率を大幅に増大させることができるようになる。これにより、気化熱の大幅増大、冷熱生成の大幅な効率化を図ることができるようになる。さらに加えて、第3実施形態の場合には、凝縮/蒸発用熱交換器23のフィン部分231の一部又は全部が水Wに水没していなくて、フィン部分231を水Wから離しているため、蒸発と凝縮との交互切換え、つまり凝縮/蒸発用熱交換器23のチューブ232に供給される熱媒温度の切換えの際に、水没している場合に受ける水Wの顕熱の影響を排除・抑制することができるようになる。このため、蒸発と凝縮との交互切換えの際には吸湿材27が吸湿している水分だけを温度変化させればすむようにすることができ、上記の如き水Wの顕熱の影響を考慮する必要がなくなる分、高効率化を図ることができるようになる。   In this case, as in the second embodiment, there is no hygroscopic material 27 and a part of the fin portion 231 is more easily evaporated than the case where the fin portion 231 is immersed in the water W and evaporates from the surface of the metal fin. The evaporation surface area can be greatly enlarged, and the evaporation efficiency can be greatly increased. As a result, the heat of vaporization can be greatly increased, and the efficiency of cold heat generation can be greatly increased. In addition, in the case of the third embodiment, part or all of the fin portion 231 of the heat exchanger 23 for condensation / evaporation is not submerged in the water W, and the fin portion 231 is separated from the water W. Therefore, the influence of the sensible heat of the water W received when submerged in the alternate switching between evaporation and condensation, that is, the switching of the temperature of the heat medium supplied to the tube 232 of the heat exchanger 23 for condensation / evaporation. It becomes possible to eliminate and suppress. For this reason, it is possible to change the temperature of only the moisture absorbed by the moisture absorbent 27 when alternately switching between evaporation and condensation, and it is necessary to consider the influence of the sensible heat of the water W as described above. As a result, the efficiency can be improved.

<他の実施形態>
なお、本発明は上記各実施形態に限定されるものではなく、その他種々の実施形態を包含するものである。すなわち、第2実施形態の吸湿材26を第1実施形態の凝縮/蒸発用熱交換器23に適用するようにしてもよい。この場合は、深皿容器部240内にフィン部分231を配設する構成と、吸湿材26とによる相乗効果によって、より一層高度な冷熱生成性能の向上を図ることができる。
<Other embodiments>
In addition, this invention is not limited to said each embodiment, Other various embodiment is included. That is, the hygroscopic material 26 of the second embodiment may be applied to the condensation / evaporation heat exchanger 23 of the first embodiment. In this case, it is possible to further improve the heat generation performance by the synergistic effect of the configuration in which the fin portion 231 is disposed in the deep dish container portion 240 and the hygroscopic material 26.

本発明の実施形態を適用した吸着式ヒートポンプの例を示す模式図である。It is a mimetic diagram showing an example of an adsorption heat pump to which an embodiment of the present invention is applied. 第1実施形態の一体型吸着器を示す断面説明図である。It is a section explanatory view showing an integrated adsorption machine of a 1st embodiment. 吸着/脱着用熱交換器のフィンを断面状態にした部分拡大断面説明図である。It is a partial expanded sectional explanatory view which made the fin of the adsorption / desorption heat exchanger into the section state. 第1実施形態の他の形態を示す図2対応図である。It is a figure corresponding to FIG. 2 which shows the other form of 1st Embodiment. 第2実施形態の一体型吸着器を示す断面説明図である。It is sectional explanatory drawing which shows the integrated adsorption device of 2nd Embodiment. 図6(a)は図5の凝縮/蒸発用熱交換器の縦断方向の拡大断面説明図であり、図6(b)は図7の凝縮/蒸発用熱交換器の縦断方向の拡大断面説明図である。6A is an enlarged sectional explanatory view of the condensation / evaporation heat exchanger of FIG. 5 in the longitudinal direction, and FIG. 6B is an enlarged sectional view of the condensation / evaporation heat exchanger of FIG. 7 in the longitudinal direction. FIG. 第3実施形態の一体型吸着器を示す断面説明図である。It is a section explanatory view showing an integrated adsorption machine of a 3rd embodiment. 本発明の課題を導くために本発明と対比される一体型吸着器を示す図2対応図である。FIG. 3 is a view corresponding to FIG. 2 showing an integrated adsorber to be compared with the present invention in order to guide the problem of the present invention.

符号の説明Explanation of symbols

2,2a,2b,2c,2d 一体型吸着器
21 ハウジング
22 吸着/脱着用熱交換器
23 凝縮/蒸発用熱交換器
24 仕切り壁
25 真空仕切り弁
26,27 吸湿材
210 反応空間
211 断熱空間
231 フィン部分(熱交換部)
240 深皿容器部
244 連通孔
2, 2a, 2b, 2c, 2d Integrated adsorber 21 Housing 22 Adsorption / desorption heat exchanger 23 Condensation / evaporation heat exchanger 24 Partition wall 25 Vacuum partition valve 26, 27 Hygroscopic material 210 Reaction space 211 Heat insulation space 231 Fin part (Heat exchange part)
240 Deep dish container part 244 Communication hole

Claims (6)

内部に吸着質が封入された真空容器としてのハウジング内に、吸着質を吸着したり脱着したりと相互切換可能な吸着剤を備えた吸着/脱着用熱交換器と、脱着された吸着質を凝縮したり吸着のために吸着質を蒸発したりと相互切換される凝縮/蒸発用熱交換器とが配設された一体型吸着器であって、
上記凝縮/蒸発用熱交換器の下側を覆うように配設されてその凝縮/蒸発用熱交換器と上記ハウジングの底部の内表面との間のハウジング内を仕切る仕切り壁と、
上記仕切り壁によってその仕切り壁と上記ハウジングの底部の内表面との間に区画形成される断熱空間と
を備えていることを特徴とする一体型吸着器。
An adsorption / desorption heat exchanger equipped with an adsorbent that can be switched between adsorbate adsorption and desorption, and a desorbed adsorbate in a housing as a vacuum vessel in which the adsorbate is enclosed. An integrated adsorber provided with a condensation / evaporation heat exchanger that is switched between condensing and evaporating adsorbate for adsorption,
A partition wall arranged to cover a lower side of the condensation / evaporation heat exchanger and partitioning the inside of the housing between the condensation / evaporation heat exchanger and an inner surface of the bottom of the housing;
An integrated adsorber comprising a heat insulating space defined by the partition wall between the partition wall and the inner surface of the bottom of the housing.
請求項1に記載の一体型吸着器であって、
上記仕切り壁は上方に開放された深皿容器部を備え、
上記凝縮/蒸発用熱交換器はその熱交換部が上記深皿容器部内に収容されるように配設されている、一体型吸着器。
The integrated adsorber according to claim 1, wherein
The partition wall includes a deep dish container portion opened upward,
The condensing / evaporating heat exchanger is an integrated adsorber arranged so that its heat exchanging portion is accommodated in the deep dish container portion.
請求項1又は請求項2に記載の一体型吸着器であって、
上記仕切り壁に形成されてその仕切り壁よりも上側の反応空間と上記断熱空間とを互いに連通させる連通孔と、この連通孔を開閉可能に閉止する真空仕切り弁とを備え、
上記反応空間の真空引きに伴い上記真空仕切り弁が開作動されて断熱空間も共に真空引きされるように構成されている、一体型吸着器。
The integrated adsorber according to claim 1 or 2,
A communication hole formed on the partition wall and communicating with the reaction space above the partition wall and the heat insulation space, and a vacuum partition valve that closes the communication hole so as to be openable and closable,
An integrated adsorber configured so that the vacuum partition valve is opened and the heat insulating space is evacuated together with the reaction space being evacuated.
請求項1〜請求項3のいずれかに記載の一体型吸着器であって、
上記凝縮/蒸発用熱交換器の少なくとも熱交換部の周囲を上側から下側にかけて覆う吸湿材を備え、
上記吸湿材は、その少なくとも下端部が、上記吸着/脱着用熱交換器の吸着剤から脱着し凝縮/蒸発用熱交換器により凝縮・液化されて上記仕切り壁の上に溜まる液相の吸着質に浸かるように設定されている、一体型吸着器。
The integrated adsorber according to any one of claims 1 to 3,
A moisture absorbent covering at least the periphery of the heat exchange part of the heat exchanger for condensation / evaporation from the upper side to the lower side;
The hygroscopic material has a liquid phase adsorbate having at least a lower end portion desorbed from the adsorbent of the adsorption / desorption heat exchanger, condensed and liquefied by the condensation / evaporation heat exchanger, and accumulated on the partition wall. An integrated adsorber set to immerse in
内部に吸着質が封入された真空容器としてのハウジング内に、吸着質を吸着したり脱着したりと相互切換可能な吸着剤を備えた吸着/脱着用熱交換器と、脱着された吸着質を凝縮したり吸着のために吸着質を蒸発したりと相互切換される凝縮/蒸発用熱交換器とが配設された一体型吸着器であって、
上記凝縮/蒸発用熱交換器の少なくとも熱交換部の周囲を上側から下側にかけて覆う吸湿材を備え、
上記吸湿材は、その少なくとも下端部が、上記吸着/脱着用熱交換器の吸着剤から脱着し凝縮/蒸発用熱交換器により凝縮・液化されてハウジング底部に溜まる液相の吸着質に浸かるように設定されている
ことを特徴とする一体型吸着器。
An adsorption / desorption heat exchanger equipped with an adsorbent that can be switched between adsorbate adsorption and desorption, and a desorbed adsorbate in a housing as a vacuum vessel in which the adsorbate is enclosed. An integrated adsorber provided with a condensation / evaporation heat exchanger that is switched between condensing and evaporating adsorbate for adsorption,
A moisture absorbent covering at least the periphery of the heat exchange part of the heat exchanger for condensation / evaporation from the upper side to the lower side;
At least the lower end of the hygroscopic material is immersed in the adsorbate of the liquid phase that is desorbed from the adsorbent of the adsorption / desorption heat exchanger, condensed and liquefied by the heat exchanger for condensation / evaporation, and accumulated at the bottom of the housing. An integrated adsorber characterized by being set to.
請求項5に記載の一体型吸着器であって、
上記凝縮/蒸発用熱交換器は、その熱交換部が上記ハウジング底部に溜まる液相の吸着質よりも上方に離されるように位置設定されている、一体型吸着器。
The integrated adsorber according to claim 5, wherein
The heat exchanger for condensation / evaporation is an integrated adsorber that is positioned so that its heat exchanging portion is separated above the liquid-phase adsorbate accumulated in the bottom of the housing.
JP2007201385A 2007-08-01 2007-08-01 Integrated adsorber Withdrawn JP2009036429A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007201385A JP2009036429A (en) 2007-08-01 2007-08-01 Integrated adsorber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007201385A JP2009036429A (en) 2007-08-01 2007-08-01 Integrated adsorber

Publications (1)

Publication Number Publication Date
JP2009036429A true JP2009036429A (en) 2009-02-19

Family

ID=40438500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007201385A Withdrawn JP2009036429A (en) 2007-08-01 2007-08-01 Integrated adsorber

Country Status (1)

Country Link
JP (1) JP2009036429A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016059777A1 (en) * 2014-10-15 2016-04-21 株式会社デンソー Adsorber
JP2016080340A (en) * 2014-10-15 2016-05-16 株式会社デンソー Adsorber
CN110617647A (en) * 2019-10-17 2019-12-27 哈尔滨商业大学 Adsorption type refrigeration system and method based on activated carbon/nano-mineral crystal/graphene densified composite adsorbent

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016059777A1 (en) * 2014-10-15 2016-04-21 株式会社デンソー Adsorber
JP2016080340A (en) * 2014-10-15 2016-05-16 株式会社デンソー Adsorber
US10539344B2 (en) 2014-10-15 2020-01-21 Denso Corporation Adsorber
CN110617647A (en) * 2019-10-17 2019-12-27 哈尔滨商业大学 Adsorption type refrigeration system and method based on activated carbon/nano-mineral crystal/graphene densified composite adsorbent
CN110617647B (en) * 2019-10-17 2024-03-19 哈尔滨商业大学 Adsorption refrigeration system and method based on activated carbon/nano-ore crystal/graphene densification composite adsorbent

Similar Documents

Publication Publication Date Title
JP6004381B2 (en) Adsorption refrigerator
KR20130140090A (en) Vacuum container for removing foreign gases from an adsorption chiller
JP2009036429A (en) Integrated adsorber
JP5838985B2 (en) Adsorption heat pump
JP4357340B2 (en) Adsorption refrigerator
JP2009121740A (en) Adsorption type heat pump and its operation control method
JP2007218504A (en) Adsorber
JP2014001876A (en) Adsorptive refrigeration device and engine-driven air conditioner
JP4363336B2 (en) Air conditioning
JP5315893B2 (en) Adsorption heat pump
JP4074399B2 (en) Operation method of adsorption refrigeration system
JP6714866B2 (en) Adsorber
JP2660253B2 (en) Adsorption heat pump
US10386100B2 (en) Adsorption system heat exchanger
JP6398621B2 (en) refrigerator
JPH07301469A (en) Adsorption type refrigerator
JPH074776A (en) Adsorption type refrigerator and adsorption type refrigerating machine and its defrosting method
JP4134841B2 (en) Adsorber for adsorption refrigerator
JP2006052889A (en) Adsorption tower for adsorption type refrigeration system
JP2011191032A (en) Compression refrigerating cycle
JP4563378B2 (en) Rapid and high performance low temperature manufacturing method and apparatus
JPS61147133A (en) Heat energy sensor and device utilizing said sensor
JP4300677B2 (en) Adsorption type refrigerator
JP3282244B2 (en) Adsorption refrigeration equipment
JP3882242B2 (en) Adsorption refrigeration system

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20101005