[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2009121740A - Adsorption type heat pump and its operation control method - Google Patents

Adsorption type heat pump and its operation control method Download PDF

Info

Publication number
JP2009121740A
JP2009121740A JP2007295716A JP2007295716A JP2009121740A JP 2009121740 A JP2009121740 A JP 2009121740A JP 2007295716 A JP2007295716 A JP 2007295716A JP 2007295716 A JP2007295716 A JP 2007295716A JP 2009121740 A JP2009121740 A JP 2009121740A
Authority
JP
Japan
Prior art keywords
adsorption
heat
desorption
condensation
heat medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007295716A
Other languages
Japanese (ja)
Inventor
Ichiro Otomo
一朗 大友
Kenichi Nakayama
賢一 中山
Masaki Kondo
正樹 今藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Noritz Corp
Original Assignee
Noritz Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Noritz Corp filed Critical Noritz Corp
Priority to JP2007295716A priority Critical patent/JP2009121740A/en
Publication of JP2009121740A publication Critical patent/JP2009121740A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an adsorption type heat pump improved in operation efficiency to produce cold by utilizing an adsorption type refrigerating cycle. <P>SOLUTION: A batch processing mode for alternately repeating switching of a desorption-condensation process and an adsorption-evaporation process between a pair of adsorption tanks 2a, 2b is performed. A sensible heat exchange mode is performed in switching the process of this time to the next time. A heat medium of an intermediate temperature from a radiating portion 4 is supplied and passed to a heat exchanger 22a of the desorption process this time, then allowed to flow to a heat exchanger 22b performing the desorption process in the next time through by a bypass passage 12, and returned. A heat medium of low temperature from a cooling portion 5 is supplied and passed to a heat exchanger 23a of the condensation process this time, then allowed to flow to a heat exchanger 23b performing the condensation process in the next through a bypass passage 14, and returned. A thermal condition of the next process is accessible more easily in advance by effectively utilizing sensible heat previously disposed, when the batch processing mode is simply switched. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、吸着式冷凍サイクルを利用した吸着式ヒートポンプであって、吸着質の吸着又は脱着を行う吸着/脱着用熱交換器と、吸着質を凝縮させる又は凝縮した吸着質を蒸発させる凝縮/蒸発用熱交換器とを1つのハウジング内に配設した一体型吸着槽を用いた吸着式ヒートポンプ及びその運転制御方法に関する。   The present invention relates to an adsorption heat pump using an adsorption refrigeration cycle, an adsorption / desorption heat exchanger that adsorbs or desorbs an adsorbate, and a condensation / condensation that condenses the adsorbate or evaporates the condensed adsorbate. The present invention relates to an adsorption heat pump using an integrated adsorption tank in which an evaporation heat exchanger is disposed in one housing, and an operation control method thereof.

従来、吸着式冷凍サイクルを利用したシステムとして、内部に吸着質を封入した1つのハウジング内に吸着/脱着用熱交換器と、凝縮用熱交換器と、蒸発用熱交換器とを配設した吸着槽を4つ備え、各吸着槽内の吸着/脱着用熱交換器に対する熱媒の温度を切換えることにより、脱着−凝縮工程と、吸着−蒸発工程とを4つの吸着槽で順に切換えていき、これにより、連続した冷熱取り出しを行うようにしたものが知られている(例えば特許文献1参照)。このものでは、吸着槽の構成として、1つのハウジング内の下側位置に蒸発用熱交換器を、上側位置に吸着/脱着用熱交換器をそれぞれ配設すると共に、吸着/脱着用熱交換器の周囲側方位置に凝縮用熱交換器を配設している。   Conventionally, as a system using an adsorption refrigeration cycle, an adsorption / desorption heat exchanger, a heat exchanger for condensation, and a heat exchanger for evaporation are arranged in a single housing in which an adsorbate is enclosed. By providing four adsorption tanks and switching the temperature of the heat medium for the adsorption / desorption heat exchanger in each adsorption tank, the desorption-condensation process and the adsorption-evaporation process are sequentially switched in the four adsorption tanks. Thus, there is known one in which continuous cold extraction is performed (see, for example, Patent Document 1). In this structure, as a configuration of the adsorption tank, an evaporation heat exchanger is disposed at a lower position in one housing, and an adsorption / desorption heat exchanger is disposed at an upper position, and an adsorption / desorption heat exchanger is provided. Condensation heat exchangers are arranged at positions around the side of the.

又、一対の吸着/脱着用熱交換器と、この一対の吸着/脱着用熱交換器の上側位置に配設した1つの凝縮用熱交換器と、上記一対の吸着/脱着用熱交換器の下側位置に1つの蒸発用熱交換器とを組み合わせ、各吸着/脱着用熱交換器と、凝縮用熱交換器と、蒸発用熱交換器とをそれぞれ個別に密閉空間に区画収容して水蒸気バルブにより吸着質を移動させるようにしたものも知られている(例えば特許文献2参照)。このものでは一対の吸着/脱着用熱交換器で脱着−凝縮工程と、吸着−蒸発工程とを交互に切換えて、連続した冷熱取り出しを行うようにしている。   A pair of adsorption / desorption heat exchangers, one condensation heat exchanger disposed above the pair of adsorption / desorption heat exchangers, and the pair of adsorption / desorption heat exchangers. Combined with one evaporating heat exchanger at the lower position, each adsorption / desorption heat exchanger, condensing heat exchanger, and evaporating heat exchanger are individually accommodated in a sealed space to store water vapor. There is also known one in which the adsorbate is moved by a valve (for example, see Patent Document 2). In this apparatus, a pair of adsorption / desorption heat exchangers are alternately switched between a desorption-condensation process and an adsorption-evaporation process to perform continuous cold extraction.

特開2006−52889号公報JP 2006-52889 A 特許3490543号公報Japanese Patent No. 3490543

ところで、吸着式冷凍サイクルを利用して低温排熱を熱源として冷熱を連続して取り出すためには、吸着/脱着を行うコア部分として同じ構成のものを少なくとも2つ備えるようにして、吸着/脱着を交互に繰り返させることが必要になるため、全体システムの大型化を招くことになる。このため、全体システムの小型化を図る上で、凝縮用熱交換器と蒸発用熱交換器とを1つの熱交換器で共用し、つまり凝縮器と蒸発器とを一体型にして、吸着/脱着用熱交換器と共に1つのハウジング内の同じ空間に配設した一体型吸着槽を用いるようにすることが考えられている。例えば図6に示すように、一体型吸着槽100として、1つのハウジング101内の上側位置に吸着剤(例えばシリカゲル)を設けた吸着/脱着用の1つの熱交換器102を、下側位置に凝縮/蒸発用の1つの熱交換器103をそれぞれ配設し、真空ポンプ104により所定の真空状態にしたハウジング101の内部に吸着質(例えば水)Wを封入するのである。   By the way, in order to continuously extract cold heat using low-temperature exhaust heat as a heat source using an adsorption refrigeration cycle, at least two core parts having the same configuration are provided as adsorption / desorption, and adsorption / desorption is performed. Since it is necessary to repeat these steps alternately, the overall system is increased in size. For this reason, in order to reduce the size of the entire system, the heat exchanger for condensation and the heat exchanger for evaporation are shared by one heat exchanger, that is, the condenser and the evaporator are integrated, and the adsorption / It has been considered to use an integrated adsorption tank disposed in the same space in one housing together with the desorption heat exchanger. For example, as shown in FIG. 6, as an integrated adsorption tank 100, one adsorption / desorption heat exchanger 102 provided with an adsorbent (for example, silica gel) at an upper position in one housing 101 is disposed at a lower position. One heat exchanger 103 for condensation / evaporation is provided, and an adsorbate (for example, water) W is sealed inside the housing 101 that is brought into a predetermined vacuum state by the vacuum pump 104.

このような一体型吸着槽100,100を複数個(例えば2つ)用いて構成した場合の吸着式ヒートポンプの例の構成と冷熱取り出しに関する作動原理について図7の例に基づいて簡単に説明すると、次のようになる。図7中の符号、110は例えば廃棄温水等の廃熱を利用して熱媒を所定の高温状態にして保持する高温熱媒部、111は熱媒を所定の低温状態に維持して保持する放熱部(例えば室外機)、112はこれに戻される最も低温の熱媒から熱交換により冷熱を回収して取り出すための冷熱取り出し用熱交換器を内蔵した冷却部、113,114,115,116はそれぞれ4つの開閉弁V1〜V4を備えて構成された第1〜第4切換部である。   Based on the example of FIG. 7, the configuration of an example of an adsorption heat pump in the case where a plurality of (for example, two) such integrated adsorption tanks 100, 100 are used and the operation principle related to cold heat extraction will be briefly described. It becomes as follows. In FIG. 7, reference numeral 110 denotes a high-temperature heat medium unit that holds the heat medium in a predetermined high temperature state using waste heat such as waste warm water, and 111 holds the heat medium in a predetermined low temperature state. A heat dissipating part (for example, an outdoor unit) 112 is a cooling part having a built-in heat exchanger for taking out cold heat for recovering and taking out cold heat from the coldest heat medium returned to the heat exchanger 113, 114, 115, 116 Are first to fourth switching sections each including four on-off valves V1 to V4.

まず、一方(例えば図7の左側)の吸着槽100での脱着−凝縮工程が次のようにして行われる。すなわち、上記一方の吸着槽100内の吸着/脱着用熱交換器102では、ポンプ117の作動により高温熱媒部110から温度TH(例えば80℃)の熱媒が第2切換部114(V3を開)を通して内部に供給されると、その熱媒により吸着剤が加熱されて脱着(脱離・再生)工程を行うようになり、これにより、吸着剤がそれまで吸着していた水蒸気(気相吸着質)を放出して脱着させることになる。その際、併せて上記一方の吸着槽100内の凝縮/蒸発用熱交換器103では、ポンプ118の作動により放熱部111から温度TM(例えば40℃)の熱媒の一部が第4切換部116(V1を開)を通して内部に供給されて凝縮器として機能するようになる。このため、上記の脱着した水蒸気は主として凝縮/蒸発用熱交換器103の外表面と接触することにより凝縮・液化し、ハウジング101内の底部に水(液相吸着質)となって溜まることになる。   First, the desorption-condensation step in one adsorption tank 100 (for example, the left side in FIG. 7) is performed as follows. That is, in the adsorption / desorption heat exchanger 102 in the one adsorption tank 100, the heat medium having a temperature TH (for example, 80 ° C.) is transferred from the high-temperature heat medium unit 110 to the second switching unit 114 (V3 by the operation of the pump 117. If the adsorbent is heated by the heating medium, the desorption (desorption / regeneration) process is performed by the heating medium. Adsorbate) is released and desorbed. At that time, in the heat exchanger 103 for condensation / evaporation in the one adsorption tank 100, a part of the heat medium having a temperature TM (for example, 40 ° C.) is transferred from the heat radiating unit 111 by the operation of the pump 118. 116 (open V1) is supplied to the inside and functions as a condenser. Therefore, the desorbed water vapor is condensed and liquefied mainly by coming into contact with the outer surface of the heat exchanger 103 for condensation / evaporation, and is stored as water (liquid phase adsorbate) at the bottom of the housing 101. Become.

これと併行して、他方(図7の右側)の吸着槽100では吸着−蒸発工程が次のようにして行われることになる。すなわち、上記の他方の吸着槽100内の吸着/脱着用熱交換器102では、ポンプ118の作動により放熱部111から熱媒の残りが第2切換部114(V2を開)を通して内部に供給されて吸着剤が冷却されると、吸着/脱着用熱交換器102の吸着剤はハウジング101内の水蒸気を吸着する吸着工程を行うようになる。そして、上記の他方の吸着槽100内の凝縮/蒸発用熱交換器103では、冷却部112の冷熱取り出し熱交換器との熱交換により昇温した温度TL(例えば15℃)の熱媒がポンプ119の作動により第4切換部116(V4を開)を通して内部に供給され、これにより、蒸発器として機能するようになる。これにより、前工程での凝縮・液化によりハウジング101の底部に溜まった水が蒸発し、この蒸発の気化熱により凝縮/蒸発用熱交換器103内の熱媒が冷却されて温度低下し、温度低下した熱媒が第3切換部115を介して冷却部112に戻されることになる。そして、冷却部112に戻された熱媒から冷却部112内の冷熱取り出し熱交換器での熱交換によって冷熱の取り出しが行われることになる。   At the same time, the adsorption-evaporation process is performed as follows in the other adsorption tank 100 (the right side in FIG. 7). That is, in the adsorption / desorption heat exchanger 102 in the other adsorption tank 100 described above, the remaining heat medium is supplied from the heat radiating unit 111 to the inside through the second switching unit 114 (V2 opened) by the operation of the pump 118. When the adsorbent is cooled, the adsorbent of the adsorption / desorption heat exchanger 102 performs an adsorption process for adsorbing water vapor in the housing 101. In the heat exchanger 103 for condensing / evaporating in the other adsorption tank 100, the heat medium having a temperature TL (for example, 15 ° C.) raised by heat exchange with the cold extraction heat exchanger of the cooling unit 112 is pumped. By the operation of 119, it is supplied to the inside through the fourth switching unit 116 (V4 is opened), thereby functioning as an evaporator. As a result, the water accumulated at the bottom of the housing 101 is evaporated due to condensation and liquefaction in the previous step, and the heat medium in the condensation / evaporation heat exchanger 103 is cooled by the heat of vaporization of the evaporation to lower the temperature. The lowered heat medium is returned to the cooling unit 112 via the third switching unit 115. Then, cold heat is extracted from the heat medium returned to the cooling unit 112 by heat exchange in the cold heat extraction heat exchanger in the cooling unit 112.

以上の一方の吸着槽100での脱着−凝縮工程と、他方の吸着槽100での吸着−蒸発工程とがそれぞれバッチ処理により一対の吸着槽100,100間で交互に切換えられ、この交互の工程切換が繰り返し行われることにより上記の冷却部112での冷熱取り出しが連続して行われることになる。   The desorption-condensation process in the one adsorption tank 100 and the adsorption-evaporation process in the other adsorption tank 100 are alternately switched between the pair of adsorption tanks 100, 100 by batch processing. By repeatedly performing the switching, the cooling heat extraction in the cooling unit 112 is continuously performed.

しかしながら、このような一体型吸着槽100,100を用いた吸着式ヒートポンプによると、各一体型吸着槽100において上記の工程切換の際にそれまでの工程の進行に伴い生じた顕熱が無駄に廃棄されて顕熱ロスを招いたり、あるいは、その顕熱により冷熱生成の効率低下を招いたりするという不都合を有している。   However, according to the adsorption heat pump using such integrated adsorption tanks 100, 100, the sensible heat generated by the progress of the processes up to this point in use in each integrated adsorption tank 100 is wasted. It has the disadvantage that it is discarded and causes sensible heat loss, or the sensible heat causes a decrease in efficiency of cold heat generation.

例えば、脱着−凝縮工程にある上記一方の吸着槽100の吸着/脱着用熱交換器102には高温熱媒部110から温度TH(例えば80℃)の熱媒が供給され、この熱媒により吸着/脱着用熱交換器102が加熱されて脱着工程が行われるものの、次の工程切換により同じ吸着/脱着用熱交換器102に対し吸着工程を行うために放熱部111から温度TM(例えば40℃)の熱媒が供給され、これにより前工程で80℃まで暖められた吸着/脱着用熱交換器102を冷却することになる。この際の熱交換により昇温された熱媒は放熱部111に戻されて、この放熱部111で温度TMまで放熱・冷却されることになり、顕熱が無駄に廃棄される結果となっている。   For example, a heat medium having a temperature TH (for example, 80 ° C.) is supplied from the high-temperature heat medium unit 110 to the adsorption / desorption heat exchanger 102 of the one adsorption tank 100 in the desorption-condensation process, and is adsorbed by the heat medium. Although the desorption process is performed by heating the desorption heat exchanger 102, the temperature TM (for example, 40 ° C.) is used from the heat radiating unit 111 to perform the adsorption process on the same adsorption / desorption heat exchanger 102 by the next process switching. Thus, the adsorption / desorption heat exchanger 102 heated to 80 ° C. in the previous step is cooled. The heat medium raised in temperature by the heat exchange at this time is returned to the heat radiating section 111, and the heat radiating section 111 radiates and cools to the temperature TM, resulting in wasteful disposal of sensible heat. Yes.

あるいは、脱着−凝縮工程にある上記一方の吸着槽100の凝縮/蒸発用熱交換器103には放熱部111から温度TM(例えば40℃)の熱媒が供給されて凝縮工程が行われていたのが、上記の工程切換によって、同じ凝縮/蒸発用熱交換器103に対し冷却部112から温度TL(例えば15℃)の熱媒が供給開始されて冷却部112との間で循環されることになり、工程切換の当初はそれまで供給されていた温度TMの熱媒が冷却部112に戻されてしまうことになる。これにより、冷却部112での冷熱取り出しの効率が一時的に低下する結果を招くことになる。   Alternatively, the condensation process is performed by supplying a heat medium having a temperature TM (for example, 40 ° C.) from the heat radiating unit 111 to the heat exchanger 103 for condensation / evaporation of the one adsorption tank 100 in the desorption-condensation process. However, by the above process switching, supply of a heat medium having a temperature TL (for example, 15 ° C.) from the cooling unit 112 to the same condensation / evaporation heat exchanger 103 is started and circulated between the cooling unit 112. Thus, the heat medium having the temperature TM that has been supplied until the process switching is returned to the cooling unit 112. As a result, the efficiency of the cold heat extraction in the cooling unit 112 is temporarily reduced.

本発明は、このような事情に鑑みてなされたものであり、その目的とするところは、以上の不都合を抑制・解消することにあり、吸着式冷凍サイクルを利用して冷熱生成を行うための運転効率の向上を図り得る吸着式ヒートポンプ及びその運転制御方法を提供することにある。   The present invention has been made in view of such circumstances, and an object of the present invention is to suppress / eliminate the above inconveniences and to generate cold using an adsorption refrigeration cycle. An object of the present invention is to provide an adsorption heat pump capable of improving the operation efficiency and an operation control method thereof.

上記目的を達成するために、本発明では、一対の一体型吸着槽と、各吸着槽に所定の熱媒を循環供給させる熱媒供給系と、この熱媒供給系による熱媒供給を切換制御することで冷熱生成のための運転制御を実行する運転制御手段とを備え、上記各吸着槽は、内部に吸着質が封入された真空容器としてのハウジング内に、吸着質を吸着したり脱着したりと相互切換可能な吸着剤を備えた吸着/脱着用熱交換器と、脱着された吸着質を凝縮したり吸着のために吸着質を蒸発したりと相互切換される凝縮/蒸発用熱交換器とが配設されて構成され、上記熱媒供給系は、上記各吸着槽内の吸着/脱着用熱交換器及び凝縮/蒸発用熱交換器に対し吸着/脱着用及び凝縮/蒸発用のために温度の異なる熱媒を循環供給させる複数の熱媒供給源と、上記各熱媒供給源からの熱媒を上記各吸着槽内の吸着/脱着用熱交換器及び凝縮/蒸発用熱交換器に対し個別かつ切換可能に供給する通路及びこの通路を切換える切換部とを備えてなる吸着式ヒートポンプを対象にして、次の特定事項を備えるようにした。   In order to achieve the above object, in the present invention, a pair of integrated adsorption tanks, a heat medium supply system that circulates and supplies a predetermined heat medium to each adsorption tank, and heat medium supply by the heat medium supply system are switched and controlled. Operation control means for executing operation control for cold heat generation, and each of the adsorption tanks adsorbs or desorbs the adsorbate in a housing as a vacuum container in which the adsorbate is enclosed. Heat exchanger for adsorption / desorption with an adsorbent that can be switched to each other, and heat exchange for condensation / evaporation that can be switched between condensing the adsorbed adsorbate and evaporating the adsorbate for adsorption And the heat medium supply system is used for adsorption / desorption and condensation / evaporation with respect to the adsorption / desorption heat exchanger and the condensation / evaporation heat exchanger in each adsorption tank. A plurality of heat medium supply sources for circulatingly supplying the heat medium having different temperatures in order to A passage for supplying the heat medium from the supply source to the adsorption / desorption heat exchanger and the condensation / evaporation heat exchanger in each adsorption tank individually and in a switchable manner, and a switching portion for switching the passage. The following specific items were provided for the adsorption heat pump.

すなわち、上記運転制御手段として、運転制御モードとして、上記熱媒供給源から熱媒を循環供給させることにより、一方の吸着槽の吸着/脱着用熱交換器で脱着させつつ凝縮/蒸発用熱交換器により凝縮させる脱着−凝縮工程を実行させている間に、併行して他方の吸着槽の吸着/脱着用熱交換器で吸着させつつ凝縮/蒸発用熱交換器により蒸発させる吸着−蒸発工程を実行させ、この脱着−凝縮工程及び吸着−蒸発工程を上記一対の吸着槽の間で交互に工程切換えさせて繰り返すバッチ処理モードと、その工程切換の間に介在させて一対の吸着槽間で顕熱を交換させる顕熱交換モードと、を備えるようにする。そして、上記顕熱交換モードとして、前工程のバッチ処理モードにより脱着−凝縮工程が実行された側の吸着槽から次工程のバッチ処理モードにより脱着−凝縮工程が開始される側の吸着槽に対し熱媒が流れるように熱媒の流れを切換制御する構成とする(請求項1)。   That is, as the operation control means, as the operation control mode, the heat medium is circulated and supplied from the heat medium supply source, so that the heat exchange for condensation / evaporation is performed while being desorbed by the adsorption / desorption heat exchanger of one adsorption tank. While performing the desorption-condensation step for condensing by the vessel, the adsorption-evaporation step for evaporating with the heat exchanger for condensing / evaporating while being adsorbed by the adsorption / desorption heat exchanger of the other adsorption tank at the same time The batch processing mode in which the desorption-condensation step and the adsorption-evaporation step are alternately switched between the pair of adsorption tanks and repeated between the pair of adsorption tanks, and is manifested between the pair of adsorption tanks. And a sensible heat exchange mode for exchanging heat. And as said sensible heat exchange mode, with respect to the adsorption tank by which the desorption-condensation process is started by the batch process mode of the next process from the adsorption tank of the side by which the desorption-condensation process was performed by the batch process mode of the previous process. The flow of the heating medium is switched and controlled so that the heating medium flows (claim 1).

本発明の場合、単に工程切換するだけでバッチ処理モードを繰り返す単純切換の場合には工程切換直後にそれまでの前工程で受けた顕熱が外部に廃棄されていたのに対し、本発明の如く顕熱交換モードを介在させることによって、その顕熱を次工程のバッチ処理モードにより脱着−凝縮工程が開始される側の吸着槽に付与して次工程の熱的条件に予め近付けて準備させることが可能となり、次工程の進行を開始直後からスムースにさせることが可能となると共に、上記の廃棄されていた顕熱の有効利用が図られる。このため、吸着式冷凍サイクルを利用した吸着式ヒートポンプの運転効率を向上させることが可能となる。   In the case of the present invention, in the case of the simple switching in which the batch processing mode is repeated simply by switching the process, the sensible heat received in the previous process immediately after the process switching is discarded to the outside. By interposing the sensible heat exchange mode as described above, the sensible heat is applied to the adsorption tank on the side where the desorption-condensation process is started in the batch processing mode of the next process, and is prepared in advance by approaching the thermal conditions of the next process. As a result, the progress of the next process can be made smooth immediately after the start, and the sensible heat that has been discarded can be effectively used. For this reason, it becomes possible to improve the operation efficiency of the adsorption heat pump using the adsorption refrigeration cycle.

本発明の吸着式ヒートポンプにおいて、一対の吸着槽内の両吸着/脱着用熱交換器の間で一方から他方に熱媒を流すためのバイパス通路と、上記一対の吸着槽内の両凝縮/蒸発用熱交換器の間で一方から他方に熱媒を流すためのバイパス通路とをさらに備えることとし、上記運転制御手段として、上記一対の吸着槽間で熱媒が上記バイパス通路を通過するように熱媒の流れを切換制御することにより顕熱交換モードを実行する構成とすることができる(請求項2)。この場合、一方の吸着槽から他方の吸着槽へ熱媒を直接的に流すことが上記バイパス通路を通るように熱媒の流れを切換制御するだけで容易に実現させることが可能となり、一方の吸着槽から他方の吸着槽への熱媒の直接的な流れに基づく顕熱の交換によって、上記発明の作用を確実に得られるようになる。   In the adsorption heat pump of the present invention, a bypass passage for flowing a heat medium from one to the other between both adsorption / desorption heat exchangers in a pair of adsorption tanks, and both condensation / evaporation in the pair of adsorption tanks And a bypass passage for flowing a heat medium from one to the other between the heat exchangers, and as the operation control means, the heat medium passes between the pair of adsorption tanks through the bypass passage. The sensible heat exchange mode can be executed by switching and controlling the flow of the heat medium. In this case, direct flow of the heat medium from one adsorption tank to the other adsorption tank can be easily realized simply by switching the flow of the heat medium so as to pass through the bypass passage. By exchanging sensible heat based on the direct flow of the heat medium from the adsorption tank to the other adsorption tank, the operation of the present invention can be obtained reliably.

又、本発明の吸着式ヒートポンプにおいて、上記次工程のバッチ処理モードにより脱着−凝縮工程が開始される側の吸着槽を通過した後の戻り側の熱媒の温度を検出する熱媒温度検出手段をさらに備え、上記運転制御手段として、上記顕熱交換モードを、上記熱媒温度検出手段により上記次工程のバッチ処理モードにより開始される脱着−凝縮工程で供給される熱媒温度近傍まで上昇したことが検知されるまで継続させる構成とすることができる(請求項3)。この場合には、前工程のバッチ処理モードにより脱着−凝縮工程が実行された側の吸着槽の顕熱が、上記次工程のバッチ処理モードにより脱着−凝縮工程が開始される側の吸着槽に対し確実に移動されて顕熱交換が行われたことを確認した上で、次工程のバッチ処理モードを開始させることが可能となる。これによって、本発明の顕熱交換を確実に実現させて、本発明の作用を確実に得られるようになる。   Further, in the adsorption heat pump of the present invention, the heat medium temperature detecting means for detecting the temperature of the return side heat medium after passing through the adsorption tank on the side where the desorption-condensation process is started in the batch process mode of the next step. As the operation control means, the sensible heat exchange mode is raised to near the heat medium temperature supplied in the desorption-condensation process started in the batch process mode of the next process by the heat medium temperature detection means. It can be set as the structure continued until it is detected (Claim 3). In this case, the sensible heat of the adsorption tank on the side where the desorption-condensation process is executed in the batch process mode of the previous process is transferred to the adsorption tank on the side where the desorption-condensation process is started in the batch process mode of the next process. On the other hand, it is possible to start the batch processing mode of the next process after confirming that the sensible heat exchange has been performed by being surely moved. As a result, the sensible heat exchange of the present invention can be realized with certainty, and the operation of the present invention can be obtained with certainty.

一方、吸着式ヒートポンプの運転制御方法に係る発明では、一対の一体型吸着槽と、各吸着槽に所定の熱媒を循環供給させる熱媒供給系と、この熱媒供給系による熱媒供給を切換制御することで冷熱生成のための運転制御を実行する運転制御手段とを備え、上記各吸着槽は、内部に吸着質が封入された真空容器としてのハウジング内に、吸着質を吸着したり脱着したりと相互切換可能な吸着剤を備えた吸着/脱着用熱交換器と、脱着された吸着質を凝縮したり吸着のために吸着質を蒸発したりと相互切換される凝縮/蒸発用熱交換器とが配設されて構成され、上記熱媒供給系は、上記各吸着槽内の吸着/脱着用熱交換器及び凝縮/蒸発用熱交換器に対し吸着/脱着用及び凝縮/蒸発用のために温度の異なる熱媒を循環供給させる複数の熱媒供給源と、上記各熱媒供給源からの熱媒を上記各吸着槽内の吸着/脱着用熱交換器及び凝縮/蒸発用熱交換器に対し個別かつ切換可能に供給する通路及びこの通路を切換える切換部とを備え、上記熱媒供給源から熱媒を循環供給させることにより、一方の吸着槽の吸着/脱着用熱交換器で脱着させつつ凝縮/蒸発用熱交換器により凝縮させる脱着−凝縮工程を実行させている間に、併行して他方の吸着槽の吸着/脱着用熱交換器で吸着させつつ凝縮/蒸発用熱交換器により蒸発させる吸着−蒸発工程を実行させ、この脱着−凝縮工程及び吸着−蒸発工程を上記一対の吸着槽の間で交互に工程切換えさせて繰り返すバッチ処理モードによって冷熱生成を行う吸着式ヒートポンプの運転制御方法を対象にして、次の特定事項を備えることとした。   On the other hand, in the invention relating to the operation control method of the adsorption heat pump, a pair of integrated adsorption tanks, a heat medium supply system for circulatingly supplying a predetermined heat medium to each adsorption tank, and heat medium supply by the heat medium supply system are provided. Operation control means for performing operation control for cold heat generation by switching control, and each of the adsorption tanks adsorbs the adsorbate in a housing as a vacuum container in which the adsorbate is enclosed. Adsorption / desorption heat exchanger with adsorbent that can be desorbed and switched, and condensation / evaporation for switching desorbed adsorbate and vaporizing adsorbate for adsorption The heat medium supply system is configured to adsorb / desorb and condense / evaporate the adsorption / desorption heat exchanger and the condensation / evaporation heat exchanger in each adsorption tank. Multiple heating media that circulate and supply heating media at different temperatures And a passage for supplying the heat medium from each heat medium supply source to the adsorption / desorption heat exchanger and the condensation / evaporation heat exchanger in each adsorption tank individually and in a switchable manner. A desorption-condensation that is condensed by a heat exchanger for condensation / evaporation while being desorbed by an adsorption / desorption heat exchanger of one adsorption tank by circulating and supplying the heat medium from the heat medium supply source While performing the process, the adsorption / evaporation process of evaporating with the heat exchanger for condensation / evaporation is performed while being adsorbed by the adsorption / desorption heat exchanger of the other adsorption tank, and this desorption / condensation is performed. The following specific matters are provided for an operation control method of an adsorption heat pump that performs cold heat generation in a batch processing mode in which a process and an adsorption-evaporation process are alternately switched between the pair of adsorption tanks and repeated. did.

すなわち、今回のバッチ処理モードの終了後であって次回のバッチ処理モードを開始する前に、今回のバッチ処理モードにより脱着−凝縮工程が実行された側の吸着槽から次回のバッチ処理モードにより脱着−凝縮工程が開始される側の吸着槽に対し熱媒が流れるように熱媒の流れを切換制御する顕熱交換モードを実行し、この顕熱交換モードの実行により一対の吸着槽間で顕熱を交換させた上で、上記次回のバッチ処理モードを開始させるようにする(請求項4)。この吸着式ヒートポンプの運転制御方法の場合、上記の請求項1の発明により得られる作用と同様の作用を得ることが可能となる。   That is, after the end of the current batch processing mode and before the next batch processing mode is started, the desorption-condensation process is performed in the next batch processing mode from the adsorption tank on the side where the desorption-condensation process is performed in the current batch processing mode. -A sensible heat exchange mode is performed in which the flow of the heat medium is switched and controlled so that the heat medium flows to the adsorption tank on the side where the condensation process is started. After the heat is exchanged, the next batch processing mode is started (Claim 4). In the case of this operation control method for the adsorption heat pump, it is possible to obtain the same action as that obtained by the invention of claim 1.

又、上記の吸着式ヒートポンプの運転制御方法において、上記今回のバッチ処理モードにより脱着−凝縮工程が実行された側の吸着槽から流された熱媒が上記次回のバッチ処理モードにより脱着−凝縮工程が開始される側の吸着槽を通過した後の温度を検出して、その熱媒の温度が上記次工程のバッチ処理モードにより開始される脱着−凝縮工程で供給される熱媒温度近傍まで上昇したことを条件に、上記顕熱交換モードの実行を終了させて上記次回のバッチ処理モードを開始させるようにすることができる(請求項5)。この場合には、今回のバッチ処理モードにより脱着−凝縮工程が実行された側の吸着槽の顕熱が、次回のバッチ処理モードにより脱着−凝縮工程が開始される側の吸着槽に対し確実に移動されて顕熱交換が行われたことを確認した上で次回のバッチ処理モードを開始させることが可能となる。これによって、請求項4に係る発明の運転制御方法に基づく顕熱交換を確実に実現させて、その作用を確実に得られるようになる。   Further, in the operation control method of the adsorption heat pump, the heat medium flown from the adsorption tank on the side where the desorption-condensation step is executed in the current batch processing mode is desorbed-condensed in the next batch processing mode. Detects the temperature after passing through the adsorption tank on the side where the heat treatment starts, and the temperature of the heat medium rises to near the heat medium temperature supplied in the desorption-condensation process started in the batch processing mode of the next process. On the condition, the execution of the sensible heat exchange mode can be terminated and the next batch processing mode can be started (Claim 5). In this case, the sensible heat of the adsorption tank on the side where the desorption-condensation process is executed in the current batch processing mode is surely applied to the adsorption tank on the side where the desorption-condensation process is started in the next batch processing mode. It is possible to start the next batch processing mode after confirming that the sensible heat exchange has been carried out. Thus, the sensible heat exchange based on the operation control method according to the fourth aspect of the invention can be realized with certainty, and the operation can be obtained with certainty.

以上、説明したように、請求項1〜請求項3のいずれかの吸着式ヒートポンプによれば、単に工程切換するだけでバッチ処理モードを繰り返す単純切換の場合には前工程で受けた顕熱が工程切換直後に外部に廃棄されていたのに対し、顕熱交換モードを介在させることによって、上記顕熱を次工程のバッチ処理モードにより脱着−凝縮工程が開始される側の吸着槽に付与して次工程の熱的条件に予め近付けて準備させることができるようになる。これにより、次工程の進行を開始直後からスムースにさせることができると共に、上記の廃棄されていた顕熱の有効利用を図ることができるようになる。これにより、吸着式冷凍サイクルを利用した吸着式ヒートポンプの運転効率を向上させることができる。   As described above, according to the adsorption heat pump of any one of claims 1 to 3, in the case of simple switching that repeats the batch processing mode only by switching the process, the sensible heat received in the previous process is reduced. The sensible heat is applied to the adsorption tank on the side where the desorption-condensation process is started in the batch process mode of the next process by interposing the sensible heat exchange mode, while being discarded outside immediately after the process switching. Thus, the thermal condition of the next process can be prepared in advance. As a result, the progress of the next process can be made smooth immediately after the start, and effective use of the sensible heat that has been discarded can be achieved. Thereby, the operating efficiency of the adsorption heat pump using the adsorption refrigeration cycle can be improved.

特に、請求項2によれば、熱媒の流れをバイパス通路へ切換えるだけで、一方の吸着槽から他方の吸着槽へ熱媒を直接的に流すことができるようになり、一方の吸着槽から他方の吸着槽への熱媒の直接的な流れに基づく顕熱の交換によって、本発明の効果を確実に得ることができるようになる。   In particular, according to claim 2, it is possible to flow the heat medium directly from one adsorption tank to the other adsorption tank only by switching the flow of the heat medium to the bypass passage. By exchanging sensible heat based on the direct flow of the heat medium to the other adsorption tank, the effect of the present invention can be obtained with certainty.

又、請求項3によれば、前工程のバッチ処理モードにより脱着−凝縮工程が実行された側の吸着槽の顕熱が、上記次工程のバッチ処理モードにより脱着−凝縮工程が開始される側の吸着槽に対し確実に移動されて顕熱交換が行われたことを確認した上で、次工程のバッチ処理モードを開始させることができるようになり、これにより、上記の顕熱交換を確実に実現させることができ、本発明の効果を確実に得ることができるようになる。   According to claim 3, the sensible heat of the adsorption tank on the side where the desorption-condensation step is executed in the batch processing mode of the previous step is the side where the desorption-condensation step is started in the batch processing mode of the next step. After confirming that the sensible heat exchange has been performed with respect to the adsorption tank, the batch processing mode of the next process can be started, thereby ensuring the above sensible heat exchange. Therefore, the effects of the present invention can be obtained with certainty.

一方、請求項4又は請求項5の吸着式ヒートポンプの運転制御方法によれば、上記の請求項1の吸着式ヒートポンプにより得られる効果と同様の効果を得ることができ、特に請求項5によれば、上記請求項3に係る吸着式ヒートポンプにより得られる効果と同様の効果を得ることができるようになる。   On the other hand, according to the operation control method of the adsorption heat pump of claim 4 or claim 5, the same effect as that obtained by the adsorption heat pump of claim 1 can be obtained. Thus, the same effect as that obtained by the adsorption heat pump according to the third aspect can be obtained.

以下、本発明の実施形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は本発明の実施形態に係る吸着式ヒートポンプの例を示す原理図である。同図において、符号2a,2bは一体型吸着槽、3は例えば廃棄温水等の廃熱を利用して熱媒を所定の高温状態にして保持する高温熱媒部、4は熱媒を所定の低温状態に維持して保持する放熱部(例えば室外機)、5はこれに戻される最も低温の熱媒から熱交換により冷熱を回収して取り出すための冷熱取り出し用熱交換器を内蔵した冷却部、6,7,8,9はそれぞれ4つの開閉弁V1〜V4,V5〜V8,V9〜V12,V13〜V16を備えて構成された第1〜第4切換部、11,12,13,14はそれぞれ開閉弁V21,V22,V23,V24が介装されて各切換部6,7,8,9をバイパスするために配設されたバイパス通路である。上記の高温熱媒部3、放熱部4及び冷却部5及びそれぞれに付設された後述のポンプ31,41,51が熱媒供給源を構成し、後述の各種通路32,33、42〜47、52,53、61a,61b、71a,71b、81a,81b、91a,91bや各切換部6〜9と共に熱媒供給系を構成する。   FIG. 1 is a principle view showing an example of an adsorption heat pump according to an embodiment of the present invention. In the figure, reference numerals 2a and 2b are integrated adsorption tanks, 3 is a high-temperature heat medium section that retains the heat medium at a predetermined high temperature using waste heat such as waste hot water, and 4 is a predetermined heat medium. A heat radiating unit (for example, an outdoor unit) that maintains and maintains a low temperature state, 5 is a cooling unit with a built-in cold heat extraction heat exchanger for collecting and taking out cold heat from the coldest heat medium returned to this by heat exchange , 6, 7, 8, and 9 are first to fourth switching units configured with four on-off valves V1 to V4, V5 to V8, V9 to V12, and V13 to V16, respectively. Are bypass passages arranged to bypass the switching units 6, 7, 8, and 9 with the on-off valves V21, V22, V23, and V24 interposed therebetween. The high temperature heat medium part 3, the heat radiating part 4 and the cooling part 5 and the pumps 31, 41, 51 described later attached to each constitute a heat medium supply source, and various passages 32, 33, 42-47, described later, 52, 53, 61a, 61b, 71a, 71b, 81a, 81b, 91a, 91b and the switching units 6-9 constitute a heat medium supply system.

上記一対の一体型吸着槽2a,2bは、互いに同じ構成を有しており、吸着槽2aはハウジング21a内に吸着/脱着用熱交換器22aと、凝縮/蒸発用熱交換器23aとの双方が配設されて構成されたものであり、吸着槽2bも同様にハウジング21b内に吸着/脱着用熱交換器22bと、凝縮/蒸発用熱交換器23bとの双方が配設されて構成されたものである。上記各ハウジング21a,21bは内部が図示省略の真空ポンプ等により略真空状態に維持されて、内部には例えば水、アルコール、アンモニア等の吸着質が所要量封入されている。又、上記各吸着/脱着用熱交換器22a,22bにはその外表面に例えばゼオライト、シリカゲル、活性炭等の吸着剤が固定されている。   The pair of integrated adsorption tanks 2a and 2b have the same configuration, and the adsorption tank 2a has both an adsorption / desorption heat exchanger 22a and a condensation / evaporation heat exchanger 23a in the housing 21a. Similarly, the adsorption tank 2b is also constructed by arranging both the adsorption / desorption heat exchanger 22b and the condensation / evaporation heat exchanger 23b in the housing 21b. It is a thing. Each of the housings 21a and 21b is maintained in a substantially vacuum state by a vacuum pump (not shown) or the like, and a required amount of adsorbate such as water, alcohol or ammonia is sealed inside. Further, adsorbents such as zeolite, silica gel, activated carbon and the like are fixed to the outer surfaces of the adsorption / desorption heat exchangers 22a and 22b.

上記高温熱媒部3からはポンプ31の作動により温度TH(例えば80℃)の熱媒が往き路32を通して第2切換部7に供給され、開閉弁V7を開にすればその熱媒が通路71aを通して吸着槽2aの吸着/脱着用熱交換器22aに,あるいは、開閉弁V8を開にすればその熱媒が通路71bを通して吸着槽2bの吸着/脱着用熱交換器22bに供給されるようになっている。そして、各吸着/脱着用熱交換器22a,22bからは通路61a,61bを通して第1切換部6に戻され、さらに、対応する開閉弁V3,V4及び戻り路33を通して上記高温熱媒部3に戻されて再び上記温度THまで熱媒が昇温されて循環されるようになっている。   From the high-temperature heat medium section 3, a heat medium having a temperature TH (for example, 80 ° C.) is supplied to the second switching section 7 through the forward path 32 by the operation of the pump 31, and the heat medium passes through the opening / closing valve V7. The heat medium 22a is supplied to the adsorption / desorption heat exchanger 22a of the adsorption tank 2a through the passage 71b or the heat exchanger 22b of the adsorption tank 2b through the passage 71b when the on-off valve V8 is opened. It has become. And from each adsorption | suction / desorption heat exchanger 22a, 22b, it returns to the 1st switching part 6 through passage 61a, 61b, and also to the said high-temperature heat-medium part 3 through the corresponding on-off valve V3, V4 and the return path 33. The heating medium is returned to the temperature TH and is circulated after being heated again.

上記放熱部4からはポンプ41の作動により往き路42を通して温度TM(例えば40℃)の熱媒が2つに分岐した往き路43,44を経て第2切換部7及び第4切換部9に分岐供給されるようになっている。第2切換部7では開閉弁V5を開にすればその熱媒が通路71aを通して吸着槽2aの吸着/脱着用熱交換器22aに,あるいは、開閉弁V6を開にすればその熱媒が通路71bを通して吸着槽2bの吸着/脱着用熱交換器22bに供給されるようになっている。そして、各吸着/脱着用熱交換器22a,22bからは通路61a,61bを通して第1切換部6に戻され、さらに、対応する開閉弁V1,V2及び戻り路46,47を通して上記放熱部4に戻されて再び上記温度TMまで熱媒が冷却・降温されて循環されるようになっている。又、第4切換部9では開閉弁V13を開にすればその熱媒が通路91aを通して吸着槽2aの凝縮/蒸発用熱交換器23aに,あるいは、開閉弁V14を開にすればその熱媒が通路91bを通して吸着槽2bの凝縮/蒸発用熱交換器23bに供給されるようになっている。そして、各凝縮/蒸発用熱交換器23a,23bからは通路81a,81bを通して第3切換部8に戻され、さらに、対応する開閉弁V9,V10及び戻り路45,47を通して上記放熱部4に戻されて再び上記温度TMまで熱媒が冷却・降温されて循環されるようになっている。   From the heat radiating unit 4, the pump 41 is operated to the second switching unit 7 and the fourth switching unit 9 through the outgoing paths 43 and 44 where the heating medium having a temperature TM (for example, 40 ° C.) is branched into two through the outgoing path 42. Branch supply is provided. In the second switching unit 7, if the on-off valve V5 is opened, the heat medium passes through the passage 71a to the adsorption / desorption heat exchanger 22a of the adsorption tank 2a, or if the on-off valve V6 is opened, the heat medium passes through the passage 71a. It is supplied to the adsorption / desorption heat exchanger 22b of the adsorption tank 2b through 71b. And from each adsorption | suction / desorption heat exchanger 22a, 22b, it returns to the 1st switching part 6 through passage 61a, 61b, and also to the said heat radiating part 4 through corresponding opening-and-closing valve V1, V2 and return path 46,47. The heating medium is returned to the above temperature TM again and cooled and cooled to circulate. In the fourth switching section 9, if the on-off valve V13 is opened, the heat medium passes through the passage 91a to the heat exchanger 23a for condensation / evaporation in the adsorption tank 2a, or if the on-off valve V14 is opened, the heat medium. Is supplied to the condensation / evaporation heat exchanger 23b of the adsorption tank 2b through the passage 91b. The heat exchangers 23a and 23b for condensation / evaporation are returned to the third switching unit 8 through the passages 81a and 81b, and further to the heat radiating unit 4 through the corresponding on-off valves V9 and V10 and the return passages 45 and 47. The heating medium is returned to the above temperature TM again and cooled and cooled to circulate.

上記冷却部5からはポンプ51の作動により温度TL(例えば15℃)の熱媒が往き路52を通して第4切換部9に供給され、開閉弁V15を開にすればその熱媒が通路91aを通して吸着槽2aの凝縮/蒸発用熱交換器23aに,あるいは、開閉弁V16を開にすればその熱媒が通路91bを通して吸着槽2bの凝縮/蒸発用熱交換器23bに供給されるようになっている。そして、各凝縮/蒸発用熱交換器23a,23bからは通路81a,81bを通して第3切換部8に戻され、さらに、対応する開閉弁V11,V12及び戻り路53を通して上記冷却部5に戻されて、冷熱取り出し後に再び上記温度TLの熱媒が循環されるようになっている。   When the pump 51 is operated from the cooling unit 5, a heat medium having a temperature TL (for example, 15 ° C.) is supplied to the fourth switching unit 9 through the forward path 52, and if the on-off valve V15 is opened, the heat medium passes through the passage 91a. If the open / close valve V16 is opened to the condensation / evaporation heat exchanger 23a of the adsorption tank 2a, the heat medium is supplied to the condensation / evaporation heat exchanger 23b of the adsorption tank 2b through the passage 91b. ing. The heat exchangers 23a and 23b for condensation / evaporation are returned to the third switching unit 8 through the passages 81a and 81b, and are further returned to the cooling unit 5 through the corresponding on-off valves V11 and V12 and the return passage 53. Thus, the heat medium having the temperature TL is circulated again after the cold heat is taken out.

又、バイパス通路11は通路61bと通路71aとの間を接続するように配設され、開閉弁V21を開にすることにより両通路61b,71aとが互いに連通されるようになっている。バイパス通路12は通路61aと通路71bとの間を接続するように配設され、開閉弁V22を開にすることにより両通路61a,71bとが互いに連通されるようになっている。バイパス通路13は通路81bと通路91aとの間を接続するように配設され、開閉弁V23を開にすることにより両通路81b,91aとが互いに連通されるようになっている。そして、バイパス通路14は通路81aと通路91bとの間を接続するように配設され、開閉弁V24を開にすることにより両通路81a,91bとが互いに連通されるようになっている。   The bypass passage 11 is disposed so as to connect between the passage 61b and the passage 71a, and the passages 61b and 71a are communicated with each other by opening the on-off valve V21. The bypass passage 12 is disposed so as to connect between the passage 61a and the passage 71b, and the passages 61a and 71b are communicated with each other by opening the on-off valve V22. The bypass passage 13 is disposed so as to connect the passage 81b and the passage 91a, and the passages 81b and 91a are communicated with each other by opening the on-off valve V23. The bypass passage 14 is disposed so as to connect the passage 81a and the passage 91b, and the passages 81a and 91b are communicated with each other by opening the on-off valve V24.

以上のポンプ31,41,51の作動制御や、開閉弁V1〜V16,V21〜V24の開閉切換制御は図示省略の運転制御手段による運転制御によって行われるようになっており、これにより、次に説明する吸着式冷凍サイクルに基づく冷熱取り出しのための運転が行われることになる。以下、かかる冷熱取り出しのための運転制御について説明する。   The above-described operation control of the pumps 31, 41, 51 and on / off switching control of the on-off valves V1 to V16, V21 to V24 are performed by operation control by operation control means (not shown). An operation for taking out the cold based on the adsorption refrigeration cycle described will be performed. Hereinafter, the operation control for taking out the cold energy will be described.

図2は、吸着槽2a(「A槽」と表示)と吸着槽2b(「B槽」と表示)とで、脱着−凝縮工程と吸着−蒸発工程とを交互に切換えるバッチ処理モードModを繰り返すと共に、その工程切換の際に顕熱交換モードMexを間に介在させるという運転制御を実行した場合における、時間経過−冷熱出力の関係を示している。   FIG. 2 repeats the batch processing mode Mod that alternately switches between the desorption-condensation process and the adsorption-evaporation process in the adsorption tank 2a (labeled "A tank") and the adsorption tank 2b (labeled "B tank"). In addition, the relationship between the passage of time and the cooling output is shown when the operation control is executed such that the sensible heat exchange mode Mex is interposed between the processes.

本実施形態による運転制御について説明すると、まず、吸着槽2a(A槽)で例えば脱着−凝縮工程を行うと同時に、吸着槽2b(B槽)で吸着−蒸発工程を行うというバッチ処理モードModを所定の設定時間が経過するまで実行し、次に、工程切換前に顕熱交換モードMexを所定の切換条件が成立するまで実行し、そして、工程切換、つまり吸着槽2a(A槽)で吸着−蒸発工程を行うと同時に、吸着槽2b(B槽)で脱着−凝縮工程を行うというバッチ処理モードModを所定の設定時間が経過するまで実行し、以後、同様に顕熱交換モードMexを介して交互にバッチ処理モードModの工程切換を繰り返すようになっている。例えば吸着槽2a(A槽)では、脱着−凝縮工程、顕熱交換工程、吸着−蒸発工程、顕熱交換工程、脱着−凝縮工程、顕熱交換工程、吸着−蒸発工程、顕熱交換工程、…というように、顕熱交換モードMexによる顕熱交換工程を間に挟んで脱着−凝縮工程と吸着−蒸発工程とが交互に切換えられるバッチ処理モードModが繰り返されることになる。これに対応して吸着槽2b(B槽)では、吸着−蒸発工程、顕熱交換工程、脱着−凝縮工程、顕熱交換工程、吸着−蒸発工程、顕熱交換工程、脱着−凝縮工程、顕熱交換工程、…というように、顕熱交換モードMexによる顕熱交換工程を間に挟んで脱着−凝縮工程と吸着−蒸発工程とが交互に切換えられるバッチ処理モードModが繰り返されることになる。   The operation control according to the present embodiment will be described. First, a batch processing mode Mod in which, for example, a desorption-condensation process is performed in the adsorption tank 2a (A tank) and an adsorption-evaporation process is performed in the adsorption tank 2b (B tank). The process is executed until a predetermined set time elapses, and then the sensible heat exchange mode Mex is executed before the process is switched until a predetermined switching condition is satisfied, and the process is switched, that is, the adsorption is performed in the adsorption tank 2a (A tank). -At the same time as performing the evaporation step, the batch processing mode Mod, in which the desorption-condensation step is performed in the adsorption tank 2b (B tank), is executed until a predetermined set time elapses, and thereafter, similarly, through the sensible heat exchange mode Mex. The process switching of the batch processing mode Mod is repeated alternately. For example, in adsorption tank 2a (A tank), desorption-condensation process, sensible heat exchange process, adsorption-evaporation process, sensible heat exchange process, desorption-condensation process, sensible heat exchange process, adsorption-evaporation process, sensible heat exchange process, As described above, the batch processing mode Mod in which the desorption-condensation process and the adsorption-evaporation process are alternately switched is repeated with the sensible heat exchange process in the sensible heat exchange mode Mex interposed therebetween. Correspondingly, in the adsorption tank 2b (B tank), the adsorption-evaporation process, sensible heat exchange process, desorption-condensation process, sensible heat exchange process, adsorption-evaporation process, sensible heat exchange process, desorption-condensation process, The batch processing mode Mod in which the desorption-condensation step and the adsorption-evaporation step are alternately switched is repeated with the sensible heat exchange step in the sensible heat exchange mode Mex in between.

図3のフローチャート(図2も併せて参照)に基づいて説明すると、まず運転開始のあたり安定運転のために全て(2つ)の吸着槽2a,2bの吸着/脱着用熱交換器22a,22bを共に強制脱着させる(ステップS1)。このための通路切換制御(開閉弁の開閉切換制御)としては、第2切換部7の開閉弁V7,V8及び第1切換部6の開閉弁V3,V4をそれぞれ開にし、ポンプ31を作動させることにより高温熱媒部3から高温(温度TH:例えば80℃)の熱媒を吸着/脱着用熱交換器22a,22bの双方に供給する。これを強制脱着のために予め設定された時間が経過するまで行う。   Explaining based on the flow chart of FIG. 3 (see also FIG. 2), first, the adsorption / desorption heat exchangers 22a, 22b of all (two) adsorption tanks 2a, 2b for stable operation at the start of operation. Are forcibly desorbed together (step S1). As the passage switching control (open / close switching control), the on / off valves V7 and V8 of the second switching unit 7 and the on / off valves V3 and V4 of the first switching unit 6 are opened to operate the pump 31. Thus, a high-temperature (temperature TH: 80 ° C.) heat medium is supplied from the high-temperature heat medium section 3 to both the adsorption / desorption heat exchangers 22a and 22b. This is performed until a preset time has passed for forced desorption.

次に、冷熱取り出しのための運転を開始し、例えば吸着槽2a(A槽)で脱着−凝縮工程、吸着槽2b(B槽)で吸着−蒸発工程を行うバッチ処理モードModを所定の設定時間t1(例えば120〜180sec)が経過するまで行う(ステップS2,ステップS3でNO)。この場合のバッチ処理モードModにおける通路切換制御や熱媒の流れ(太線と矢印参照)について図4を参照しつつ説明すると、次のようになる。   Next, an operation for taking out the cold is started, and for example, a batch processing mode Mod for performing a desorption-condensation process in the adsorption tank 2a (A tank) and an adsorption-evaporation process in the adsorption tank 2b (B tank) is set for a predetermined time. This is performed until t1 (for example, 120 to 180 seconds) elapses (NO in steps S2 and S3). The passage switching control and heat medium flow (see thick lines and arrows) in the batch processing mode Mod in this case will be described with reference to FIG.

すなわち、吸着槽2a(A槽)内の吸着/脱着用熱交換器22aに対し、ポンプ31を作動させて高温熱媒部3から温度THの高温の熱媒を第2切換部7の開作動させた開閉弁V7を通して内部に供給する。この熱媒により吸着/脱着用熱交換器22aの吸着剤が加熱されて脱着(脱離・再生)工程を行うようになり、これにより、吸着剤がそれまで吸着していた水蒸気(気相吸着質)を放出して脱着させることになる。同時に凝縮/蒸発用熱交換器23aに対し、ポンプ41を作動させて放熱部4から温度TM(例えば40℃)の熱媒を第4切換部9の開作動させた開閉弁V13を通して内部に供給する。この熱媒により凝縮/蒸発用熱交換器23aは凝縮器として機能するようになり、上記の脱着した水蒸気は主としてその凝縮/蒸発用熱交換器23aの外表面と接触することにより凝縮・液化し、ハウジング21a内の底部に水(液相吸着質)となって溜まることになる。   That is, for the adsorption / desorption heat exchanger 22a in the adsorption tank 2a (A tank), the pump 31 is operated to open the second switching part 7 from the high-temperature heat medium part 3 with a high-temperature heat medium. It supplies to the inside through the open / close valve V7. The adsorbent of the adsorption / desorption heat exchanger 22a is heated by this heat medium, and a desorption (desorption / regeneration) step is performed, whereby the adsorbent has adsorbed water vapor (gas phase adsorption). Quality) will be released and desorbed. At the same time, the pump 41 is operated to the heat exchanger 23a for condensing / evaporating to supply the heat medium at the temperature TM (for example, 40 ° C.) from the heat radiating section 4 through the on-off valve V13 opened by the fourth switching section 9. To do. This heat medium causes the condensation / evaporation heat exchanger 23a to function as a condenser, and the desorbed water vapor is condensed and liquefied mainly by coming into contact with the outer surface of the condensation / evaporation heat exchanger 23a. Then, water (liquid phase adsorbate) accumulates at the bottom of the housing 21a.

これと併行して、吸着槽2b(B槽)内の吸着/脱着用熱交換器22bに対し、第2切換部7の開閉弁V6を開作動させて上記ポンプ41の作動により放熱部4から熱媒を供給する。この熱媒により吸着/脱着用熱交換器22bの吸着剤が冷却されて、吸着/脱着用熱交換器22bの吸着剤はハウジング21b内の水蒸気を吸着する吸着工程を行うようになる。そして、同時に凝縮/蒸発用熱交換器23bに対し、ポンプ51を作動させて冷却部5から温度TL(例えば15℃)の熱媒を第4切換部9の開作動させた開閉弁V16を通して内部に供給する。これにより、凝縮/蒸発用熱交換器23bは蒸発器として機能するようになり、前工程での凝縮・液化によりハウジング21bの底部に溜まった水が蒸発し、この蒸発の気化熱により凝縮/蒸発用熱交換器23b内の熱媒が冷却されて温度低下し、温度低下した熱媒が第3切換部8の開作動させた開閉弁V12を通して冷却部5に戻されることになる。そして、冷却部5に戻された熱媒から冷却部5内の冷熱取り出し熱交換器での熱交換によって冷熱の取り出しが行われることになる。   At the same time, the opening / closing valve V6 of the second switching unit 7 is opened for the adsorption / desorption heat exchanger 22b in the adsorption tank 2b (B tank), and the pump 41 is operated to release the heat from the heat radiation part 4. Supply heat medium. The adsorbent of the adsorption / desorption heat exchanger 22b is cooled by the heat medium, and the adsorbent of the adsorption / desorption heat exchanger 22b performs an adsorption process for adsorbing water vapor in the housing 21b. At the same time, with respect to the heat exchanger 23b for condensation / evaporation, the pump 51 is operated, and the heat medium having a temperature TL (for example, 15 ° C.) is supplied from the cooling unit 5 through the on-off valve V16 in which the fourth switching unit 9 is opened. To supply. As a result, the heat exchanger 23b for condensation / evaporation functions as an evaporator, and water accumulated at the bottom of the housing 21b is evaporated due to condensation / liquefaction in the previous process, and condensation / evaporation is caused by the heat of vaporization of this evaporation. The heat medium in the heat exchanger 23b is cooled and the temperature is lowered, and the heat medium having the lowered temperature is returned to the cooling unit 5 through the on-off valve V12 that has opened the third switching unit 8. Then, cold heat is extracted from the heat medium returned to the cooling unit 5 by heat exchange in the cold heat extraction heat exchanger in the cooling unit 5.

上記の時間t1の経過により(ステップS3でYES)、ステップS2のバッチ処理モードModを終了させ、続いて顕熱交換モードMexを切換条件が成立するまで行う(ステップS4,ステップS5でNO)。この顕熱交換モードMexにおける通路切換制御や熱媒の流れ(図4と同様に太線と矢印参照)について図5を参照しつつ説明すると、次のようになる。すなわち、ポンプ31の作動を停止させ、第1切換部6の開閉弁V3を閉にして開閉弁V2を開のままとし、第2切換部7の開閉弁V6,V7を共に閉にして開閉弁V5を開にする。加えてバイパス通路12の開閉弁V22を開にする。すると、作動状態のポンプ41により放熱部4から温度TMの熱媒が通路42,43、開閉弁V5及び通路71aを通して吸着槽2aの吸着/脱着用熱交換器22aに供給されることになる。この温度TMの熱媒によって、それまでの脱着工程で流されていた高温熱媒3からの温度THの熱媒の顕熱を受けて加熱された吸着/脱着用熱交換器22aが冷却されて、次工程の吸着工程のための予備冷却が行われることになる。続いて、この熱交換により昇温(最大限で温度THまで)した熱媒が通路61a、開状態にされた開閉弁V22を介装したバイパス通路12、通路71bを通過して吸着槽2bの吸着/脱着用熱交換器22bに流される。この昇温した熱媒によって、それまでの吸着工程では温度TMの熱媒が供給されていた吸着/脱着用熱交換器22bが加熱されて、次工程の脱着工程のための予備加熱が行われる。   When the time t1 has elapsed (YES in step S3), the batch processing mode Mod in step S2 is terminated, and then the sensible heat exchange mode Mex is performed until the switching condition is satisfied (NO in step S4 and step S5). The passage switching control and the flow of the heat medium in the sensible heat exchange mode Mex (see the thick lines and arrows as in FIG. 4) will be described with reference to FIG. That is, the operation of the pump 31 is stopped, the on-off valve V3 of the first switching unit 6 is closed and the on-off valve V2 is kept open, and both the on-off valves V6 and V7 of the second switching unit 7 are closed. Open V5. In addition, the on-off valve V22 of the bypass passage 12 is opened. Then, the heat pump having the temperature TM is supplied from the heat radiating unit 4 to the adsorption / desorption heat exchanger 22a of the adsorption tank 2a through the passages 42 and 43, the on-off valve V5, and the passage 71a by the pump 41 in the activated state. By this heat medium having the temperature TM, the adsorption / desorption heat exchanger 22a heated by receiving the sensible heat of the heat medium having the temperature TH from the high-temperature heat medium 3 that has been flown in the previous desorption process is cooled. Then, preliminary cooling for the adsorption step of the next step is performed. Subsequently, the heat medium raised in temperature by this heat exchange (up to the maximum temperature TH) passes through the passage 61a, the bypass passage 12 provided with the opened on-off valve V22, the passage 71b, and enters the adsorption tank 2b. Flowed through the adsorption / desorption heat exchanger 22b. With this heated medium, the adsorption / desorption heat exchanger 22b to which the heating medium at the temperature TM has been supplied in the previous adsorption process is heated, and preheating for the next desorption process is performed. .

一方、凝縮/蒸発用熱交換器23a,23bの側でも、第3切換部8の開閉弁V9を閉にして開閉弁V12を開のままとし、第4切換部9の開閉弁V13,V16を共に閉にして開閉弁V15を開にする。加えてバイパス通路14の開閉弁V24を開にする。すると、作動状態のポンプ51により冷却部5から温度TLの熱媒が通路52、開閉弁V15及び通路91aを通して吸着槽2aの凝縮/蒸発用熱交換器23aに供給されることになる。この温度TLの熱媒によって、それまでの凝縮工程で流されていた放熱部4からの温度TMの熱媒の顕熱を受けていた吸着/脱着用熱交換器22aの温熱が熱交換されて冷却されて、次工程の蒸発工程のための予備冷却が行われることになる。続いて、この熱交換により昇温(最大限で温度TMまで)した熱媒が通路81a、開状態にされた開閉弁V24を介装したバイパス通路14、通路91bを通過して吸着槽2bの凝縮/蒸発用熱交換器23bに流される。この昇温した熱媒によって、それまでの蒸発工程では温度TLの熱媒が供給されていた凝縮/蒸発用熱交換器23bが加温されて、次工程の凝縮工程のための予備加熱が行われる。   On the other hand, on the side of the heat exchangers 23a and 23b for condensation / evaporation, the on-off valve V9 of the third switching unit 8 is closed and the on-off valve V12 is kept open, and the on-off valves V13 and V16 of the fourth switching unit 9 are opened. Both are closed and the on-off valve V15 is opened. In addition, the on-off valve V24 of the bypass passage 14 is opened. Then, the heat pump having the temperature TL is supplied from the cooling unit 5 to the condensation / evaporation heat exchanger 23a of the adsorption tank 2a through the passage 52, the on-off valve V15, and the passage 91a by the pump 51 in the operating state. The heat of the adsorption / desorption heat exchanger 22a that has received the sensible heat of the heat medium of the temperature TM from the heat radiating unit 4 that has been flown in the condensing process is heat-exchanged by the heat medium of the temperature TL. After cooling, preliminary cooling for the next evaporation step is performed. Subsequently, the heat medium raised in temperature by this heat exchange (up to the maximum temperature TM) passes through the passage 81a, the bypass passage 14 provided with the opened on-off valve V24, and the passage 91b, and the adsorption medium 2b. It flows to the heat exchanger 23b for condensation / evaporation. This heated heat medium heats the condensation / evaporation heat exchanger 23b, to which the heat medium of temperature TL has been supplied in the previous evaporation process, and performs preheating for the next condensation process. Is called.

以上、要するに、顕熱交換モードMexとは、一対の内の一方の吸着槽(例えば2a)と他方の吸着槽(例えば2b)との間でそれまでの工程での顕熱を交換させて、次工程のために有効利用させることである。単に工程切換するだけでバッチ処理モードModを繰り返す単純切換の場合には、工程切換直後にそれまでの工程で受けた顕熱を放熱部4では放熱により外部に廃棄していたのに対し、本実施形態の如く顕熱交換モードMexを介在させることによって、吸着工程から脱着工程に切換られる側の吸着/脱着用熱交換器22bを、単純切換の場合には廃棄されていた顕熱の有効利用で予備加熱させることができる。その上に、脱着工程から吸着工程に切換えられる側の吸着/脱着用熱交換器22aを予備冷却して次工程の進行をスムースにすることができる。同様に、蒸発工程から凝縮工程に切換えられる側の凝縮/蒸発用熱交換器23bをそれまで凝縮工程にあった凝縮/蒸発用熱交換器23aの顕熱を有効利用して凝縮工程を開始するための準備をすることができる一方、凝縮工程から蒸発工程に切換えられる側の凝縮/蒸発用熱交換器23aを次工程の蒸発工程のための温度条件(温度TL)に近付けて次工程の進行をスムースにすることができる。その上、単純切換の場合には、凝縮工程から蒸発工程に切換えられる側の凝縮/蒸発用熱交換器23aから工程切換直後にそれまでの凝縮工程で温度TMの熱媒の顕熱に基づく温熱が冷却部5に戻されることになって、顕熱の廃棄ばかりではなくて冷熱取り出しの効率低下を招いていたのに対し、本実施形態によれば、上記の如くその温熱の有効利用と同時に、その温熱が冷却部5に戻るのを回避して冷熱取り出しの効率向上をも図ることができるようになる。   In short, in sensible heat exchange mode Mex, the sensible heat in the previous process is exchanged between one adsorption tank (for example, 2a) and the other adsorption tank (for example, 2b) in a pair, It is to make effective use for the next process. In the case of simple switching in which the batch processing mode Mod is repeated simply by switching the process, the sensible heat received in the previous process immediately after the process switching is discarded to the outside in the heat radiating unit 4 by heat radiation. By using the sensible heat exchange mode Mex as in the embodiment, the adsorption / desorption heat exchanger 22b on the side switched from the adsorption process to the desorption process is effectively used for the sensible heat that has been discarded in the case of simple switching. Can be preheated. In addition, the adsorption / desorption heat exchanger 22a on the side switched from the desorption process to the adsorption process can be pre-cooled to smoothly advance the next process. Similarly, the condensation process is started by effectively utilizing the sensible heat of the condensation / evaporation heat exchanger 23a that has been in the condensation process until the condensation / evaporation heat exchanger 23b on the side switched from the evaporation process to the condensation process. On the other hand, the condensation / evaporation heat exchanger 23a that is switched from the condensation process to the evaporation process is brought close to the temperature condition (temperature TL) for the evaporation process of the next process, and the next process proceeds. Can be made smooth. In addition, in the case of simple switching, the heat based on the sensible heat of the heat medium at the temperature TM in the condensing process until immediately after the process switching from the condensation / evaporation heat exchanger 23a on the side switched from the condensation process to the evaporation process. Is returned to the cooling unit 5 and not only the sensible heat is discarded but also the cooling efficiency is lowered. According to the present embodiment, as described above, the thermal energy is used effectively as described above. Thus, it is possible to avoid the return of the heat to the cooling unit 5 and improve the efficiency of taking out the heat.

上記の顕熱交換モードMexの終了、つまりステップS5の切換条件成立としては、戻り側の通路46,53を通過する戻り熱媒の温度が所定温度に達したことを検知することにより切換条件成立とする。すなわち、通路46には内部を通過する熱媒の温度を検出する熱媒温度検出手段461が配設され、同様に通路53にも熱媒温度検出手段531が配設されている。温度検知をもって切換条件成立とする方法としては、次の(1)〜(4)のいずれかを採用することができるが、冷熱生成の効率上は(1)の温度検知を優先させること、つまり(1)の温度検知をもって切換条件成立とする又は(1)の温度検知を少なくとも含んで切換条件成立とすることが好ましい。(1).凝縮/蒸発用熱交換器23a,23bの側の通路53の熱媒温度検出手段531が設定戻り温度T1を超えたことの検知、(2).吸着/脱着用熱交換器22a,22bの側の通路46の熱媒温度検出手段461が設定戻り温度T2を超えたことの検知、(3).(1)の温度検知か(2)の温度検知かのいずれか一方、(4).(1)の温度検知と(2)の温度検知の双方。設定戻り温度T1としては、温度TLより高く温度TM以下の温度範囲の内の温度TMに近い温度値を設定する。温度TMが例えば40℃であれば30〜40℃の範囲内の温度値を設定戻り温度T1として設定すればよい。又、設定戻り温度T2としては、温度TMより高く温度TH以下の温度範囲の内の温度THに近い温度値を設定する。温度THが例えば80℃であれば60〜80℃の範囲内の温度値を設定戻り温度T2として設定すればよい。   The completion of the sensible heat exchange mode Mex, that is, the establishment of the switching condition in step S5, is established by detecting that the temperature of the return heat medium passing through the return-side passages 46 and 53 has reached a predetermined temperature. And That is, the passage 46 is provided with a heat medium temperature detecting means 461 for detecting the temperature of the heat medium passing through the inside, and the passage 53 is also provided with a heat medium temperature detecting means 531. Any of the following (1) to (4) can be adopted as a method for establishing the switching condition by detecting the temperature, but in terms of the efficiency of the cold heat generation, priority is given to the temperature detection of (1), that is, It is preferable that the switching condition is satisfied by detecting the temperature in (1) or that the switching condition is satisfied at least including the temperature detection in (1). (1). Detection that the heat medium temperature detecting means 531 in the passage 53 on the side of the heat exchangers 23a and 23b for condensation / evaporation exceeds the set return temperature T1, (2). Detection that the heat medium temperature detecting means 461 in the passage 46 on the adsorption / desorption heat exchangers 22a, 22b side exceeds the set return temperature T2, (3). Either (1) temperature detection or (2) temperature detection, (4). Both (1) temperature detection and (2) temperature detection. As the set return temperature T1, a temperature value close to the temperature TM within the temperature range higher than the temperature TL and lower than the temperature TM is set. If the temperature TM is 40 ° C., for example, a temperature value within a range of 30 to 40 ° C. may be set as the set return temperature T1. Further, as the set return temperature T2, a temperature value close to the temperature TH in the temperature range higher than the temperature TM and lower than the temperature TH is set. If the temperature TH is 80 ° C., for example, a temperature value in the range of 60 to 80 ° C. may be set as the set return temperature T2.

ステップS5の切換条件が成立すれば(ステップS5でYES)、工程切換したバッチ処理モードModを開始する(ステップS6)。すなわち、吸着槽2a(A槽)で吸着−蒸発工程、吸着槽2b(B槽)で脱着−凝縮工程を行うバッチ処理モードModを所定の設定時間t1が経過するまで行う(ステップS6,ステップS7でNO)。このステップS6のバッチ処理モードModにおける熱媒の流れは図4に示す場合と左右逆になる。   If the switching condition in step S5 is satisfied (YES in step S5), the process-switched batch processing mode Mod is started (step S6). That is, the batch processing mode Mod in which the adsorption-evaporation process is performed in the adsorption tank 2a (A tank) and the desorption-condensation process is performed in the adsorption tank 2b (B tank) is performed until a predetermined set time t1 elapses (step S6, step S7). NO). The flow of the heating medium in the batch processing mode Mod in step S6 is opposite to that shown in FIG.

時間t1の経過により(ステップS7でYES)、ステップS6のバッチ処理モードModを終了させ、続いて顕熱交換モードMexを切換条件が成立するまで行う(ステップS8,ステップS9でNO)。このステップS8の顕熱交換モードMexにおける熱媒の流れは図5に示す場合と左右逆になる。又、ステップS9の切換条件成立の内容はステップS5の場合と同様である。   When the time t1 has elapsed (YES in step S7), the batch processing mode Mod in step S6 is terminated, and then the sensible heat exchange mode Mex is performed until the switching condition is satisfied (NO in steps S8 and S9). The flow of the heat medium in the sensible heat exchange mode Mex in step S8 is opposite to that shown in FIG. The contents of the establishment of the switching condition in step S9 are the same as in step S5.

そして、ステップS9の切換条件が成立すれば(ステップS9でYES)、ステップS2に戻って再度工程切換してバッチ処理モードModを行い、以後、ステップS3以降を繰り返す。   If the switching condition in step S9 is satisfied (YES in step S9), the process returns to step S2 to switch the process again to perform the batch processing mode Mod, and thereafter repeat step S3 and subsequent steps.

以上によれば、顕熱交換モードMexを、バッチ処理モードModを繰り返す際の工程切換時に介在させることにより、単純切換する場合には廃棄されていた顕熱の有効利用を図ることができる、顕熱の有効利用によって工程切換される各吸着槽2a,2bを次工程のための温度条件に近付けて次工程をスムースに進行させることができる、このスムースな進行によって運転効率を向上させることができる、単純切換する場合には温熱が冷却部5に戻り冷熱取り出しの効率を阻害していたのに対しその温熱が冷却部5に戻ることを回避させて冷熱生成の効率を向上させることができる、という種々の作用・効果を得ることができるようになる。   According to the above, by interposing the sensible heat exchange mode Mex at the time of the process switching when repeating the batch processing mode Mod, it is possible to effectively utilize the sensible heat that has been discarded in the case of simple switching. Each adsorption tank 2a, 2b whose process is switched by the effective use of heat can be brought close to the temperature condition for the next process and the next process can proceed smoothly, and this smooth progress can improve the operation efficiency. In the case of simple switching, the heat is returned to the cooling unit 5 to inhibit the efficiency of taking out the cold, whereas the heat is prevented from returning to the cooling unit 5 and the efficiency of generating the cold can be improved. Various actions and effects can be obtained.

<他の実施形態>
なお、本発明は上記実施形態に限定されるものではなく、その他種々の実施形態を包含するものである。すなわち、上記実施形態では、顕熱交換モードMexの終了タイミングである切換条件成立として所定の温度検知を適用しているが、これに限らず、顕熱交換モードMexについても所定の設定時間t2(例えば20〜30sec)の経過をもって切換条件成立としてもよい。
<Other embodiments>
In addition, this invention is not limited to the said embodiment, Other various embodiment is included. That is, in the above-described embodiment, the predetermined temperature detection is applied as the switching condition that is the end timing of the sensible heat exchange mode Mex is applied. However, the present invention is not limited to this, and the predetermined set time t2 ( For example, the switching condition may be satisfied after 20 to 30 seconds).

又、上記の温度検知を行うための熱媒温度検出手段461,531の配設位置について、顕熱を交換する対象の熱交換器(ステップS4の顕熱交換モードMexであると、吸着/脱着用熱交換器22b、凝縮/蒸発用熱交換器23b)の出口から放熱部4又は冷却部5の入口までの通路であればよい。   Further, regarding the arrangement position of the heat medium temperature detecting means 461 and 531 for performing the temperature detection, the heat exchanger to be subjected to sensible heat exchange (in the sensible heat exchange mode Mex in step S4, adsorption / desorption) The path from the outlet of the heat exchanger 22b for condensation and the heat exchanger 23b for condensation / evaporation to the inlet of the heat radiation part 4 or the cooling part 5 may be used.

本発明の実施形態に係る吸着式ヒートポンプを示す模式図である。It is a mimetic diagram showing an adsorption heat pump concerning an embodiment of the present invention. 吸着−蒸発工程にある吸着槽における経過時間と冷熱出力との関係等を示す図である。It is a figure which shows the relationship between the elapsed time in the adsorption tank in an adsorption | suction-evaporation process, and a cold-heat output. 吸着式ヒートポンプの運転制御を示すフローチャートである。It is a flowchart which shows the operation control of an adsorption | suction heat pump. バッチ処理モードModの熱媒の流れ状況の例を示す図1対応図である。FIG. 2 is a diagram corresponding to FIG. 1 illustrating an example of a flow state of a heat medium in a batch processing mode Mod. 顕熱交換モードMexの熱媒の流れ状況の例を示す図1対応図である。FIG. 2 is a diagram corresponding to FIG. 1 illustrating an example of a flow state of a heat medium in a sensible heat exchange mode Mex. 本願発明の課題を説明するために一体型吸着槽の例を示す断面説明図である。It is sectional explanatory drawing which shows the example of an integrated adsorption tank, in order to demonstrate the subject of this invention. 図6の一体型吸着槽を一対用いた吸着式ヒートポンプの例を示す模式図である。It is a schematic diagram which shows the example of the adsorption | suction type heat pump which used a pair of integrated adsorption tanks of FIG.

符号の説明Explanation of symbols

2a,2b 一体型吸着槽
3 高温熱媒部(熱媒供給源)
4 放熱部(熱媒供給源)
5 冷却部(熱媒供給源)
6〜8 切換部
11〜14 バイパス通路
21a,21b ハウジング
22a,22b 吸着/脱着用熱交換器
23a,23b 凝縮/蒸発用熱交換器
461,531 熱媒温度検出手段
Mod バッチ処理モード
Mex 顕熱交換モード
2a, 2b Integrated adsorption tank 3 High temperature heating medium (heating medium supply source)
4 Heat radiation part (heat medium supply source)
5 Cooling section (heat medium supply source)
6 to 8 Switching portions 11 to 14 Bypass passages 21a and 21b Housings 22a and 22b Adsorption / desorption heat exchangers 23a and 23b Condensation / evaporation heat exchangers 461 and 531 Heat medium temperature detection means Mod Batch processing mode Mex Sensible heat exchange mode

Claims (5)

一対の一体型吸着槽と、各吸着槽に所定の熱媒を循環供給させる熱媒供給系と、この熱媒供給系による熱媒供給を切換制御することで冷熱生成のための運転制御を実行する運転制御手段とを備え、上記各吸着槽は、内部に吸着質が封入された真空容器としてのハウジング内に、吸着質を吸着したり脱着したりと相互切換可能な吸着剤を備えた吸着/脱着用熱交換器と、脱着された吸着質を凝縮したり吸着のために吸着質を蒸発したりと相互切換される凝縮/蒸発用熱交換器とが配設されて構成され、上記熱媒供給系は、上記各吸着槽内の吸着/脱着用熱交換器及び凝縮/蒸発用熱交換器に対し吸着/脱着用及び凝縮/蒸発用のために温度の異なる熱媒を循環供給させる複数の熱媒供給源と、上記各熱媒供給源からの熱媒を上記各吸着槽内の吸着/脱着用熱交換器及び凝縮/蒸発用熱交換器に対し個別かつ切換可能に供給する通路及びこの通路を切換える切換部とを備えてなる吸着式ヒートポンプであって、
上記運転制御手段は、運転制御モードとして、上記熱媒供給源から熱媒を循環供給させることにより、一方の吸着槽の吸着/脱着用熱交換器で脱着させつつ凝縮/蒸発用熱交換器により凝縮させる脱着−凝縮工程を実行させている間に、併行して他方の吸着槽の吸着/脱着用熱交換器で吸着させつつ凝縮/蒸発用熱交換器により蒸発させる吸着−蒸発工程を実行させ、この脱着−凝縮工程及び吸着−蒸発工程を上記一対の吸着槽の間で交互に工程切換えさせて繰り返すバッチ処理モードと、その工程切換の間に介在させて一対の吸着槽間で顕熱を交換させる顕熱交換モードと、を備え、
上記顕熱交換モードは、前工程のバッチ処理モードにより脱着−凝縮工程が実行された側の吸着槽から次工程のバッチ処理モードにより脱着−凝縮工程が開始される側の吸着槽に対し熱媒が流れるように熱媒の流れを切換制御するように構成されている
ことを特徴とする吸着式ヒートポンプ。
A pair of integrated adsorption tanks, a heat medium supply system that circulates and supplies a predetermined heat medium to each adsorption tank, and operation control for cold heat generation by switching control of the heat medium supply by this heat medium supply system Each adsorbing tank is provided with an adsorbent capable of switching between adsorbate adsorption and desorption in a housing as a vacuum vessel in which adsorbate is enclosed. A desorption heat exchanger and a condensing / evaporation heat exchanger that is switched between condensing the desorbed adsorbate and evaporating the adsorbate for adsorption. The medium supply system circulates and supplies the heat medium having different temperatures for adsorption / desorption and condensation / evaporation to the adsorption / desorption heat exchanger and the condensation / evaporation heat exchanger in each adsorption tank. The heat medium supply source and the heat medium from each heat medium supply source / To desorption heat exchanger and the condensation / evaporation heat exchanger a sorption heat pump comprising a switching unit for switching the individual and switchably supplying passage and the passage,
As the operation control mode, the operation control means circulates and supplies the heat medium from the heat medium supply source, and is desorbed by the adsorption / desorption heat exchanger of one of the adsorption tanks while being desorbed by the heat exchanger for condensation / evaporation. While performing the desorption-condensation process for condensation, the adsorption-evaporation process for evaporating with the heat exchanger for condensation / evaporation is performed while adsorbing with the adsorption / desorption heat exchanger of the other adsorption tank. The desorption-condensation step and the adsorption-evaporation step are alternately switched between the pair of adsorption tanks, and the batch processing mode is repeated, and the sensible heat is interposed between the pair of adsorption tanks interposed between the process switching. Sensible heat exchange mode to be exchanged,
In the sensible heat exchange mode, the heat medium is transferred from the adsorption tank on the side where the desorption-condensation process is executed in the batch process mode of the previous process to the adsorption tank on the side where the desorption-condensation process is started in the batch process mode of the next process. An adsorption heat pump, characterized in that the flow of the heat medium is controlled so as to flow.
請求項1に記載の吸着式ヒートポンプであって、
一対の吸着槽内の両吸着/脱着用熱交換器の間で一方から他方に熱媒を流すためのバイパス通路と、上記一対の吸着槽内の両凝縮/蒸発用熱交換器の間で一方から他方に熱媒を流すためのバイパス通路とをさらに備え、
上記運転制御手段は、上記一対の吸着槽間で熱媒が上記バイパス通路を通過するように熱媒の流れを切換制御することにより顕熱交換モードを実行するように構成されている、吸着式ヒートポンプ。
The adsorption heat pump according to claim 1,
A bypass passage for flowing a heat medium from one to the other between the two adsorption / desorption heat exchangers in the pair of adsorption tanks, and one between the condensation / evaporation heat exchangers in the pair of adsorption tanks A bypass passage for flowing a heat medium from one to the other,
The operation control means is configured to perform a sensible heat exchange mode by switching the flow of the heat medium so that the heat medium passes through the bypass passage between the pair of adsorption tanks. heat pump.
請求項1又は請求項2に記載の吸着式ヒートポンプであって、
上記次工程のバッチ処理モードにより脱着−凝縮工程が開始される側の吸着槽を通過した後の戻り側の熱媒の温度を検出する熱媒温度検出手段をさらに備え、
上記運転制御手段は、上記顕熱交換モードを、上記熱媒温度検出手段により上記次工程のバッチ処理モードにより開始される脱着−凝縮工程で供給される熱媒温度近傍まで上昇したことが検知されるまで継続させるように構成されている、吸着式ヒートポンプ。
The adsorption heat pump according to claim 1 or 2,
A heating medium temperature detecting means for detecting the temperature of the heating medium on the return side after passing through the adsorption tank on the side where the desorption-condensation process is started in the batch processing mode of the next process;
The operation control means detects that the sensible heat exchange mode has risen to the vicinity of the heat medium temperature supplied in the desorption-condensation process started in the batch process mode of the next process by the heat medium temperature detection means. Adsorption heat pump configured to continue until
一対の一体型吸着槽と、各吸着槽に所定の熱媒を循環供給させる熱媒供給系と、この熱媒供給系による熱媒供給を切換制御することで冷熱生成のための運転制御を実行する運転制御手段とを備え、上記各吸着槽は、内部に吸着質が封入された真空容器としてのハウジング内に、吸着質を吸着したり脱着したりと相互切換可能な吸着剤を備えた吸着/脱着用熱交換器と、脱着された吸着質を凝縮したり吸着のために吸着質を蒸発したりと相互切換される凝縮/蒸発用熱交換器とが配設されて構成され、上記熱媒供給系は、上記各吸着槽内の吸着/脱着用熱交換器及び凝縮/蒸発用熱交換器に対し吸着/脱着用及び凝縮/蒸発用のために温度の異なる熱媒を循環供給させる複数の熱媒供給源と、上記各熱媒供給源からの熱媒を上記各吸着槽内の吸着/脱着用熱交換器及び凝縮/蒸発用熱交換器に対し個別かつ切換可能に供給する通路及びこの通路を切換える切換部とを備え、上記熱媒供給源から熱媒を循環供給させることにより、一方の吸着槽の吸着/脱着用熱交換器で脱着させつつ凝縮/蒸発用熱交換器により凝縮させる脱着−凝縮工程を実行させている間に、併行して他方の吸着槽の吸着/脱着用熱交換器で吸着させつつ凝縮/蒸発用熱交換器により蒸発させる吸着−蒸発工程を実行させ、この脱着−凝縮工程及び吸着−蒸発工程を上記一対の吸着槽の間で交互に工程切換えさせて繰り返すバッチ処理モードによって冷熱生成を行う吸着式ヒートポンプの運転制御方法であって、
今回のバッチ処理モードの終了後であって次回のバッチ処理モードを開始する前に、今回のバッチ処理モードにより脱着−凝縮工程が実行された側の吸着槽から次回のバッチ処理モードにより脱着−凝縮工程が開始される側の吸着槽に対し熱媒が流れるように熱媒の流れを切換制御する顕熱交換モードを実行し、この顕熱交換モードの実行により一対の吸着槽間で顕熱を交換させた上で、上記次回のバッチ処理モードを開始させるようにする
ことを特徴とする吸着式ヒートポンプの運転制御方法。
A pair of integrated adsorption tanks, a heat medium supply system that circulates and supplies a predetermined heat medium to each adsorption tank, and operation control for cold heat generation by switching control of the heat medium supply by this heat medium supply system Each adsorbing tank is provided with an adsorbent capable of switching between adsorbate adsorption and desorption in a housing as a vacuum vessel in which adsorbate is enclosed. A desorption heat exchanger and a condensing / evaporation heat exchanger that is switched between condensing the desorbed adsorbate and evaporating the adsorbate for adsorption. The medium supply system circulates and supplies the heat medium having different temperatures for adsorption / desorption and condensation / evaporation to the adsorption / desorption heat exchanger and the condensation / evaporation heat exchanger in each adsorption tank. The heat medium supply source and the heat medium from each heat medium supply source A passage for supplying the heat exchanger for desorption / desorption and the heat exchanger for condensation / evaporation individually and in a switchable manner and a switching portion for switching the passage, and circulating the heat medium from the heat medium supply source, While performing the desorption-condensation process of condensing with the heat exchanger for condensation / evaporation while desorbing with the adsorption / desorption heat exchanger of one adsorption tank, the adsorption / desorption of the other adsorption tank is performed concurrently. An adsorption-evaporation process is performed by adsorbing with a heat exchanger and evaporating with a heat exchanger for condensation / evaporation, and the desorption-condensation process and the adsorption-evaporation process are alternately switched between the pair of adsorption tanks. An operation control method of an adsorption heat pump that generates cold by repeating batch processing mode,
After the end of the current batch processing mode and before starting the next batch processing mode, the desorption-condensation is performed from the adsorption tank on the side where the desorption-condensation process has been executed in this batch processing mode, in the next batch processing mode. A sensible heat exchange mode is performed in which the flow of the heat medium is switched and controlled so that the heat medium flows to the adsorption tank on the side where the process is started. An operation control method for an adsorption heat pump, wherein the next batch processing mode is started after the replacement.
請求項4に記載の吸着式ヒートポンプの運転制御方法であって、
上記今回のバッチ処理モードにより脱着−凝縮工程が実行された側の吸着槽から流された熱媒が上記次回のバッチ処理モードにより脱着−凝縮工程が開始される側の吸着槽を通過した後の温度を検出して、その熱媒の温度が上記次工程のバッチ処理モードにより開始される脱着−凝縮工程で供給される熱媒温度近傍まで上昇したことを条件に、上記顕熱交換モードの実行を終了させて上記次回のバッチ処理モードを開始させるようにする、吸着式ヒートポンプの運転制御方法。
An operation control method for an adsorption heat pump according to claim 4,
After the heat medium flowed from the adsorption tank on the side where the desorption-condensation process is executed in the batch processing mode this time passes through the adsorption tank on the side where the desorption-condensation process is started in the next batch processing mode. Detecting the temperature and executing the sensible heat exchange mode on condition that the temperature of the heat medium has risen to near the temperature of the heat medium supplied in the desorption-condensation process started in the batch process mode of the next process The operation control method of the adsorption heat pump, which ends the above-described batch processing mode.
JP2007295716A 2007-11-14 2007-11-14 Adsorption type heat pump and its operation control method Withdrawn JP2009121740A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007295716A JP2009121740A (en) 2007-11-14 2007-11-14 Adsorption type heat pump and its operation control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007295716A JP2009121740A (en) 2007-11-14 2007-11-14 Adsorption type heat pump and its operation control method

Publications (1)

Publication Number Publication Date
JP2009121740A true JP2009121740A (en) 2009-06-04

Family

ID=40814073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007295716A Withdrawn JP2009121740A (en) 2007-11-14 2007-11-14 Adsorption type heat pump and its operation control method

Country Status (1)

Country Link
JP (1) JP2009121740A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013021994A1 (en) * 2011-08-09 2013-02-14 三菱樹脂株式会社 Adsorption heat pump
JP2016182937A (en) * 2015-03-27 2016-10-20 株式会社豊田中央研究所 On-vehicle heat pump and method of generating cold for vehicle
JP2016182938A (en) * 2015-03-27 2016-10-20 株式会社豊田中央研究所 On-vehicle heat pump and method of generating cold for vehicle
US9622381B2 (en) 2013-03-18 2017-04-11 Fujitsu Limited Adsorption heat pump and method of driving the same
US10267543B2 (en) 2017-02-07 2019-04-23 Panasonic Intellectual Property Management Co., Ltd. Adsorption refrigerator, method for controlling adsorption refrigerator, and cooling system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013021994A1 (en) * 2011-08-09 2013-02-14 三菱樹脂株式会社 Adsorption heat pump
US9622381B2 (en) 2013-03-18 2017-04-11 Fujitsu Limited Adsorption heat pump and method of driving the same
JP2016182937A (en) * 2015-03-27 2016-10-20 株式会社豊田中央研究所 On-vehicle heat pump and method of generating cold for vehicle
JP2016182938A (en) * 2015-03-27 2016-10-20 株式会社豊田中央研究所 On-vehicle heat pump and method of generating cold for vehicle
US10267543B2 (en) 2017-02-07 2019-04-23 Panasonic Intellectual Property Management Co., Ltd. Adsorption refrigerator, method for controlling adsorption refrigerator, and cooling system

Similar Documents

Publication Publication Date Title
JP4096646B2 (en) Cooling system
JPH02230068A (en) Absorption freezer and its operating method
JP2013249996A (en) Absorption type heat pump device
JP2011075180A (en) Absorption type refrigerating machine
JP4333627B2 (en) Adsorption heat pump device
JP2009121740A (en) Adsorption type heat pump and its operation control method
JP2010107156A (en) Engine-driven heat pump
JP5347620B2 (en) Heat pump, heat pump operation method
JP4184197B2 (en) Hybrid absorption heat pump system
JP6722860B2 (en) Adsorption refrigerator, method for controlling adsorption refrigerator and cooling system
JP2004293905A (en) Adsorption type refrigerating machine and its operating method
JP5384072B2 (en) Absorption type water heater
JP2014001876A (en) Adsorptive refrigeration device and engine-driven air conditioner
JP4363336B2 (en) Air conditioning
JP2009121741A (en) Adsorption type heat pump and its operation control method
JP2008020094A (en) Absorption type heat pump device
JP4565539B2 (en) Operation method of adsorption refrigerator
JP4553522B2 (en) Absorption refrigerator
JP6061462B2 (en) Chemical heat storage device
JP2003343939A (en) Absorption refrigerating machine
JP2022180704A (en) Adsorption type heat pump, adsorption type heat pump system, controller and program
JP2010276252A (en) Absorption type refrigerating machine
JP4596683B2 (en) Absorption refrigerator
JP2004232928A (en) Adsorption type refrigerator and method of operating the same
JP2019027715A (en) Heat storage system

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110201