[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2009017909A - Vacuum cleaner - Google Patents

Vacuum cleaner Download PDF

Info

Publication number
JP2009017909A
JP2009017909A JP2007180629A JP2007180629A JP2009017909A JP 2009017909 A JP2009017909 A JP 2009017909A JP 2007180629 A JP2007180629 A JP 2007180629A JP 2007180629 A JP2007180629 A JP 2007180629A JP 2009017909 A JP2009017909 A JP 2009017909A
Authority
JP
Japan
Prior art keywords
phase
current
state
power
determination value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007180629A
Other languages
Japanese (ja)
Other versions
JP4946681B2 (en
Inventor
Takafumi Ishibashi
崇文 石橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2007180629A priority Critical patent/JP4946681B2/en
Publication of JP2009017909A publication Critical patent/JP2009017909A/en
Application granted granted Critical
Publication of JP4946681B2 publication Critical patent/JP4946681B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electric Vacuum Cleaner (AREA)
  • Nozzles For Electric Vacuum Cleaners (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce excessive electric power by changing stably and smoothly the electric power in accordance with the suction air volume and ensuring suction power by air volume-electric power characteristics in accordance with the state of a suction fixture. <P>SOLUTION: A microcomputer 15 as the determining means switches a preset first phase-current determining value characteristic, a second phase-current determining value characteristic, and a third phase-current determining value characteristic in accordance with the state of the suction fixture that is detected by a connection detecting section 18 and controls supplied electricity of an electric air blower 2 by a phase control. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、一般家庭用、もしくは業務用の電気掃除機における、電動送風機の制御に関するものである。   The present invention relates to control of an electric blower in a general household or business use vacuum cleaner.

図13に従来の電気掃除機の概略構成図を示す。   FIG. 13 shows a schematic configuration diagram of a conventional vacuum cleaner.

図13において、1は電気掃除機本体であり、2は本体1に内蔵し、吸い込み力を発生する電動送風機であり、3は操作手段4を有したホースであり、5は延長管であり、6は清掃対象物である床面に接して、床面上に存在する塵埃を吸引する吸気口となる吸い込み具であり、回転して床面上の塵埃を掻き上げて捕集するための回転ブラシ7と、回転ブラシ7を駆動するための電動機8を内蔵している。   In FIG. 13, 1 is a main body of a vacuum cleaner, 2 is an electric blower that is built in the main body 1 and generates a suction force, 3 is a hose having operation means 4, 5 is an extension pipe, 6 is a suction tool that is in contact with the floor surface to be cleaned and serves as an air inlet for sucking dust existing on the floor surface, and rotates to rotate and collect the dust on the floor surface. A brush 7 and an electric motor 8 for driving the rotating brush 7 are incorporated.

9は吸引した塵埃を蓄積しておく集塵室であり、ホース3と集塵室9は、本体1に設けた吸気口10を介して接続され、集塵室9とホース3、または、集塵室9とホース3と延長管5、もしくは、集塵室9とホース3と延長管5と吸い込み具6等の組み合わせで吸気流路を形成している。ホース3と延長管5と吸い込み具6には、本体1の吸気口10から供給される電力を電動機8に供給、伝達する配線(図示せず)が内蔵されている。   Reference numeral 9 denotes a dust collection chamber for storing sucked dust. The hose 3 and the dust collection chamber 9 are connected to each other through an air inlet 10 provided in the main body 1, and the dust collection chamber 9 and the hose 3 or the dust collection chamber 9 are collected. The intake passage is formed by a combination of the dust chamber 9 and the hose 3 and the extension pipe 5 or the dust collection chamber 9 and the hose 3, the extension pipe 5 and the suction tool 6. The hose 3, the extension pipe 5, and the suction tool 6 contain wiring (not shown) for supplying and transmitting electric power supplied from the air inlet 10 of the main body 1 to the electric motor 8.

本体は、電源プラグを有した電源コードを有しており、商用電源に電源プラグを接続する事により、機器に電力が供給される。   The main body has a power cord having a power plug, and power is supplied to the device by connecting the power plug to a commercial power source.

電源コードが商用電源に接続された状態で、操作手段4を操作して、電動送風機2を起動すると、電流検出手段(図示せず)によって検出された電流値の信号が、制御手段(図示せず)にフィードバックされ、制御手段は、電流値に応じて予め設定された位相で電動送風機2をトリガオンし、位相制御によって所望の電力、もしくは、電流値となるよう制御される。   When the electric blower 2 is activated by operating the operating means 4 with the power cord connected to the commercial power supply, a signal of the current value detected by the current detecting means (not shown) is supplied to the control means (not shown). The control means is controlled to trigger on the electric blower 2 at a phase set in advance according to the current value, and to have a desired power or current value by phase control.

また、操作手段4を操作されると、同時に、吸気流路に内蔵された配線を介して、電動機8に電力が供給され、回転ブラシ7も回転動作を行う。   Further, when the operation means 4 is operated, at the same time, electric power is supplied to the electric motor 8 through the wiring built in the intake passage, and the rotating brush 7 also performs the rotating operation.

床面の清掃を行う際、吸い込み具6は床面に接しており、接してない状態では清掃を行われていない事が想定されるので、特許文献1記載のように、吸い込み具6が床面に押しつけられている時には、一定の吸い込み力を得るために、電動送風機2への印可電圧を高くして、床面より持ち上げられている時は、印可電圧を低くして、無駄な消費電力を抑えるような制御を行っている。
特開2001−157492号公報
When cleaning the floor surface, the suction tool 6 is in contact with the floor surface, and it is assumed that the cleaning is not performed in a state where the suction tool 6 is not in contact with the floor surface. In order to obtain a certain suction force when pressed against the surface, the applied voltage to the electric blower 2 is increased, and when it is lifted from the floor, the applied voltage is decreased to reduce wasteful power consumption. Control is performed to suppress this.
JP 2001-157492 A

しかしながら、特許文献1の構成においては、電動送風機2に流れる電流に対する電動送風機2への供給電圧の関係の特性が、吸い込み具6の状態に関わらず固定されているため、例えば、吸い込み具6を外した状態で清掃を行おうとすると、吸い込み具6を装着して清掃している時と比較して、風量は開放側へシフトする傾向があり、十分な吸引力を得られなくなる可能性がある。また、近年の電気掃除機は、高い吸引力を得るために、その消費電力も非常に高く、一般家庭用のブレーカーの制限もあり、供給電力には上限が存在するが、電動送風機2へ流れる電流、もしくは電力とは無関係に、電力を切り換える制御を行った場合、上限を優先すると、十分な吸引力を得られないという課題を有している。   However, in the configuration of Patent Document 1, the characteristics of the relationship of the supply voltage to the electric blower 2 with respect to the current flowing through the electric blower 2 are fixed regardless of the state of the suction tool 6. When cleaning is performed in the removed state, the air volume tends to shift to the open side as compared with when the suction tool 6 is attached for cleaning, and there is a possibility that sufficient suction force cannot be obtained. . Further, in recent years, vacuum cleaners have very high power consumption in order to obtain a high suction force, and there are limitations on circuit breakers for general households. When control for switching power is performed regardless of current or power, there is a problem that sufficient suction force cannot be obtained if priority is given to the upper limit.

本発明は、上記従来の課題を解決するもので、吸い込み具の状態に応じた風量―電力特性で、吸引風量に応じて電力を安定して滑らかに変化させながら吸い込み具の状態に応じた電力にでき、また、吸い込み力の必要な領域では、吸い込み具の状態に関わらず、最大の吸い込み力を得る事ができる電気掃除機を提供することを目的とする。   The present invention solves the above-described conventional problems, and has an air volume-power characteristic according to the state of the suction tool, and the power according to the state of the suction tool while stably and smoothly changing the power according to the suction air volume. It is another object of the present invention to provide a vacuum cleaner that can obtain the maximum suction force regardless of the state of the suction tool.

前記従来の課題を解決するために、本発明の電気掃除機は、吸引風を発生させる電動送風機と、回転ブラシと前記回転ブラシを駆動するための電動機を有する吸い込み具と、前記電動送風機に流れる電流を検出する電流検出手段と、複数の位相角と前記位相角の各々に1対1に対応した、前記電流検出手段の出力に対して位相角を切り換えるための電流判定値とで構成される位相−電流判定値特性を有して、前記電流検出手段の出力が前記位相−電流判定値特性上の電流値とほぼ一致するよう、前記位相角と、前記位相角と対になる前記電流判定値を段階的に切り換えて、前記電動送風機への供給電力を制御する制御手段と、前記吸い込み具の回転状態などの負荷状態や接続の状態などを検出する状態判別手段とを設けたものである。これによって、前記制御手段は、予め、前記吸い込み具の状態に応じた複数の位相−電流判定値特性を有しており、前記電流検出手段の検出する電流に応じて、前記状態判別手段の判別した吸い込み具の状態に対応した位相−電流判定値特性上の位相で、前記電動送風機の供給電力を制御を行うことになる。   In order to solve the above-described conventional problems, the vacuum cleaner of the present invention flows to the electric blower, the electric blower that generates suction air, the rotary brush and the suction tool having the electric motor for driving the rotary brush, and the electric blower. Current detection means for detecting current, and a plurality of phase angles and current judgment values for switching the phase angle with respect to the output of the current detection means corresponding to each of the phase angles on a one-to-one basis The phase angle and the current determination paired with the phase angle so as to have a phase-current determination value characteristic so that the output of the current detection means substantially matches the current value on the phase-current determination value characteristic. Control means for controlling the power supplied to the electric blower by switching values stepwise, and state determination means for detecting a load state such as a rotation state of the suction tool and a connection state are provided. . Thereby, the control means has a plurality of phase-current determination value characteristics according to the state of the suction tool in advance, and the determination of the state determination means according to the current detected by the current detection means. The electric power supplied to the electric blower is controlled with a phase on the phase-current determination value characteristic corresponding to the state of the suction tool.

また、本発明の電気掃除機は、複数の位相−電流判定値特性の、電動送風機への供給電力が高くなる方の一端を全て同じにしたものである。これによって、吸い込み力の必要なエリアでは、吸い込み具の状態にかかわらず、ほぼ同じ最大吸い込み力を供給できる。   Moreover, the vacuum cleaner of this invention makes all the one ends of the one where the electric power supplied to an electric blower high of the some phase-current determination value characteristic become the same. Thereby, in the area where the suction force is required, the same maximum suction force can be supplied regardless of the state of the suction tool.

吸い込み具の状態と集塵室への塵埃の吸引状況に応じて、供給電力を滑らかに変化させながら、最適な吸引力と最大の吸引力を発揮出来ると共に、不要な電力を削減する事が出来る。   Depending on the state of the suction tool and the state of dust suction into the dust collection chamber, the optimum power and maximum suction power can be achieved while smoothly changing the supplied power, and unnecessary power can be reduced. .

第1の発明は、本発明の電気掃除機は、吸引風を発生させる電動送風機と、回転ブラシと前記回転ブラシを駆動するための電動機を有する吸い込み具と、前記電動送風機に流れる電流を検出する電流検出手段と、複数の位相角と前記位相角の各々に1対1に対応した、前記電流検出手段の出力に対して位相角を切り換えるための電流判定値とで構成される位相−電流判定値特性を有して、前記電流検出手段の出力が前記位相−電流判定値特性上の電流値とほぼ一致するよう、前記位相角と、前記位相角と対になる前記電流判定値を段階的に切り換えて、前記電動送風機への供給電力を制御する制御手段と、前記吸い込み具の回転状態などの負荷状態や接続の状態などを検出する状態判別手段とを設けたので、前記電流検出手段の検出する電流に応じて、前記状態判別手段の判別した吸い込み具の状態に対応した位相−電流判定値特性上の位相で、前記電動送風機の供給電力を制御し、吸い込み力が必要なエリアでは、吸引力を高めるよう、吸引力が必要でないエリアは、供給電力を低くして、前記吸い込み具の状態と、塵埃の吸引量に応じて、最適な供給電力で運転できる。   In a first aspect of the present invention, the electric vacuum cleaner of the present invention detects an electric fan that generates suction air, a suction tool having a rotating brush and an electric motor for driving the rotating brush, and a current flowing through the electric fan. Phase-current determination comprising current detection means, and a plurality of phase angles and a current determination value for switching the phase angle with respect to the output of the current detection means corresponding to each of the phase angles on a one-to-one basis The phase angle and the current determination value paired with the phase angle are stepwise so that the output of the current detection means has a value characteristic and substantially matches the current value on the phase-current determination value characteristic. The control means for controlling the power supplied to the electric blower and the state determination means for detecting the load state such as the rotation state of the suction tool and the connection state are provided. Detected current Accordingly, the supply power of the electric blower is controlled with the phase on the phase-current determination value characteristic corresponding to the state of the suction tool determined by the state determination means, and the suction force is increased in the area where the suction force is required. Thus, in areas where suction force is not required, the power supply can be reduced and the operation can be performed with the optimum power supply according to the state of the suction tool and the amount of dust suction.

第2の発明は、第1の発明の複数の位相−電流判定値特性の、電動送風機への供給電力が高くなる方の一端を全て同じにしたので、吸い込み具の状態にかかわらず、ほぼ同じ最大吸い込み力を得ることができる。   In the second aspect of the invention, since one end of the plurality of phase-current determination value characteristics of the first aspect in which the power supplied to the electric blower is increased is made the same, it is almost the same regardless of the state of the suction tool. Maximum suction force can be obtained.

第3の発明は、第1または第2の発明の状態判別手段として、吸い込み具が吸気流路上に接続されているかどうかを判別する接続判別手段を設け、制御手段は、前記接続判別手段の判別する前記吸い込み具の接続状況に応じた複数の位相−電流判定値特性を有し、前記接続状況に応じて前記複数の位相−電流判定値特性を切り換える構成としたので、吸い込み具が吸気流路に接続されている時と、接続されていない時とで、制御手段が位相−電流判定値特性を切り換える事によって、吸い込み具の接続状況と、塵埃の吸引量に応じて、最適な供給電力で運転できる。   According to a third aspect of the present invention, there is provided connection determination means for determining whether or not the suction tool is connected to the intake flow path as the state determination means of the first or second invention, and the control means determines the connection determination means. The suction tool has a plurality of phase-current determination value characteristics according to the connection status of the suction tool, and the plurality of phase-current determination value characteristics are switched according to the connection status. By switching the phase-current judgment value characteristics between when connected to and when not connected, the control means switches between the suction tool connection status and the amount of dust suction. I can drive.

第4の発明は、第1または第2の発明に対し、状態判別手段として、回転ブラシが回転しているかどうかを検出する回転判別手段を設け、制御手段は、前記回転判別手段の判別する前記回転ブラシの回転状況に応じた複数の位相−電流判定値特性を有し、前記回転状況に応じて前記複数の位相−電流判定値特性を切り換える構成としたので、回転ブラシが、回転している時と、いない時とで、制御手段が位相−電流判定値特性を切り換える事によって、回転ブラシの回転状況と、塵埃の吸引量に応じて、最適な供給電力で運転できる。   According to a fourth aspect of the present invention, in contrast to the first or second aspect of the present invention, a rotation determination unit that detects whether or not the rotating brush is rotating is provided as a state determination unit, and a control unit is configured to determine the rotation determination unit. Since the plurality of phase-current determination value characteristics according to the rotation status of the rotary brush are configured and the plurality of phase-current determination value characteristics are switched according to the rotation status, the rotary brush is rotating. When the control means switches the phase-current determination value characteristic between when and when it is not, it can be operated with the optimum power supply according to the rotation state of the rotary brush and the amount of dust sucked.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態により本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In addition, this invention is not limited by this embodiment.

(実施の形態1)
以下、本発明の第1の実施の形態について図1〜図13を用いて説明する。なお、従来と同一構成の部品については同一符号を付し、詳細な説明を省略する。
(Embodiment 1)
Hereinafter, a first embodiment of the present invention will be described with reference to FIGS. In addition, about the components of the same structure as the past, the same code | symbol is attached | subjected and detailed description is abbreviate | omitted.

図1は、本発明の実施の形態1における電気掃除機における制御部分のブロック図である。図1において、2は電動送風機であり、12は電動送風機2を駆動する第1の双方向性サイリスタであり、13は電動送風機2に流れる電流を検出し、信号レベル電圧へ変換して出力する電流検出手段であり、14は電流検出手段13の出力する信号を増幅する増幅手段である。増幅手段14は、電流検出手段13が出力する電流信号を、増幅度の異なる2つの増幅信号「増幅1」と「増幅2」に変換して出力している。   FIG. 1 is a block diagram of a control portion in the electric vacuum cleaner according to Embodiment 1 of the present invention. In FIG. 1, 2 is an electric blower, 12 is a first bidirectional thyristor for driving the electric blower 2, and 13 detects a current flowing through the electric blower 2, converts it into a signal level voltage and outputs it. Reference numeral 14 denotes current detection means. Reference numeral 14 denotes amplification means for amplifying a signal output from the current detection means 13. The amplification means 14 converts the current signal output from the current detection means 13 into two amplification signals “amplification 1” and “amplification 2” having different amplification degrees, and outputs them.

ここで、図2に電動送風機2に流れる電流と風量の関係(風量−電流特性)を示すが、電動送風機2の特性が決まれば、電動送風機2に流れる電流と風量の関係は、1対1で決まり、風量と電流値の関係を予め設定してやれば、電流検出手段13により、風量の検出が可能となり、風量が検出できれば、塵埃の吸引量、つまり、集塵室9への塵埃の蓄積量も検出することができる。従って、本実施の形態では、電流検出手段13は風量を検出する風量検出手段の役割も兼ねる。   Here, FIG. 2 shows the relationship between the current flowing through the electric blower 2 and the air flow (air flow-current characteristics). If the characteristics of the electric blower 2 are determined, the relationship between the current flowing through the electric blower 2 and the air flow is 1: 1. If the relationship between the air volume and the current value is set in advance, the current detection means 13 can detect the air volume. If the air volume can be detected, the amount of dust sucked, that is, the amount of dust accumulated in the dust collecting chamber 9 is detected. Can also be detected. Therefore, in the present embodiment, the current detection means 13 also serves as an air volume detection means for detecting the air volume.

15は、マイクロコンピュータであり、電動送風機2への供給電力を制御する制御手段も兼ねている。更に本実施例においては、マイクロコンピュータ15は、第2の双方向性サイリスタ19のトリガを制御することによって、電動機8への電力供給も制御している。また、マイクロコンピュータ15は、A/D(アナログ/ディジタル)変換機能を有しており、「増幅1」を「AD1」へ、「増幅2」を「AD2」へ、入力している。「増幅1」と「増幅2」から入力される信号は、マイクロコンピュータ15内の処理の用途に応じて使い分けされる。   Reference numeral 15 denotes a microcomputer, which also serves as a control means for controlling the power supplied to the electric blower 2. Further, in this embodiment, the microcomputer 15 controls the power supply to the motor 8 by controlling the trigger of the second bidirectional thyristor 19. The microcomputer 15 has an A / D (analog / digital) conversion function, and inputs “amplification 1” to “AD1” and “amplification 2” to “AD2”. The signals input from “Amplification 1” and “Amplification 2” are selectively used according to the purpose of processing in the microcomputer 15.

18は、吸い込み具6が、吸気流路に接続されているかどうかを判別する接続判別手段の接続検出部であり、電動機8に流れる電流を検出してる。接続検出部18の検出結果で、吸い込み具6が、接続されているかどうかを判断する接続判別部は、マイクロコンピュータ15が兼ねており、接続検出部18と接続判別部で、接続判別手段を構成する。電流は、吸気流路に内蔵された電力供給の配線が、吸気口10を介して、本体1にも引き込まれていることを利用して、本体1内での検出が可能である。マイクロコンピュータ15は、操作手段4での操作情報も入力されており、操作手段4での回転ブラシ7の指示が、「動作」であるにも関わらず、接続検出部での検出電流が所定の電流値以下、つまり、電流が流れていない事が検出されると、接続判別部が、吸い込み具が「接続されていない」と判断することができ、所定の電流値以上であれば、「接続されている」と判断することができる。また、操作手段4での回転ブラシ7の指示が、「停止」である場合、吸い込み具6が接続されていると仮定すると、使用者が清掃を行う動作で、回転ブラシ7が、床面との接触により回転し、結果、電動機8が発電機となり、起電力が発生する。接続検出部18に現れるこの起電力の揺らぎを接続判別部で判断する事により、回転ブラシ7の指示が「停止」の時も、「接続されている」と判断することができる。逆に、全く揺らぎが発生せず、電流が流れていなければ、床面との接触による力を受け取るもの(回転ブラシ7)も、起電力を発生させるものも存在しない状態である「接続されていない」状態と判断することができる。以上の説明からも分かるように、本実施例においては、接続判別手段では、接続されているかどうかを判断する過程で、回転ブラシ7が回転しているかどうかも判断しており、回転判断手段を兼ねることができる。つまり、吸い込み具6の状態として、「接続されていない」、「接続されて回転ブラシ7が停止している」、「接続されて回転ブラシ7が回転している」の3つの状態が存在することになる。   Reference numeral 18 denotes a connection detection unit of connection determination means for determining whether or not the suction tool 6 is connected to the intake flow path, and detects a current flowing through the electric motor 8. The microcomputer 15 also serves as a connection determination unit that determines whether or not the suction tool 6 is connected based on the detection result of the connection detection unit 18, and the connection detection unit 18 and the connection determination unit constitute a connection determination unit. To do. The current can be detected in the main body 1 by utilizing the fact that the power supply wiring built in the intake flow path is also drawn into the main body 1 through the intake port 10. The microcomputer 15 also receives operation information from the operation means 4, and the detected current at the connection detector is a predetermined value even though the instruction of the rotary brush 7 at the operation means 4 is “operation”. When it is detected that the current is less than the current value, that is, that no current is flowing, the connection determination unit can determine that the suction tool is “not connected”. It can be determined. Further, when the instruction of the rotary brush 7 on the operation means 4 is “stop”, assuming that the suction tool 6 is connected, the user performs the cleaning operation so that the rotary brush 7 is connected to the floor surface. As a result, the electric motor 8 becomes a generator and an electromotive force is generated. By determining the fluctuation of the electromotive force appearing in the connection detection unit 18 by the connection determination unit, it can be determined that the connection is established even when the instruction of the rotary brush 7 is “stop”. On the contrary, if there is no fluctuation and no current is flowing, there is no one that receives the force due to contact with the floor (the rotating brush 7) nor one that generates an electromotive force. It can be determined that there is no state. As can be seen from the above description, in the present embodiment, the connection determining means also determines whether or not the rotating brush 7 is rotating in the process of determining whether or not it is connected. I can also serve. That is, there are three states of the suction tool 6: “not connected”, “connected and the rotating brush 7 is stopped”, and “connected and the rotating brush 7 is rotating”. It will be.

11はAC100Vの商用電源であり、16は、マイクロコンピュータ15の電源Vdd(5V)を作る電源回路であり、17は、商用電源のゼロクロスを検出してゼロクロスのタイミング信号を出力するゼロクロス検出回路である。ゼロクロスとは、ACである商用電源の極性が反転する時に、0Vを通過するタイミングである。   11 is a commercial power supply of AC100V, 16 is a power supply circuit that creates the power supply Vdd (5V) of the microcomputer 15, and 17 is a zero cross detection circuit that detects a zero cross of the commercial power supply and outputs a zero cross timing signal. is there. Zero crossing is a timing at which 0V is passed when the polarity of the commercial power source, which is AC, is reversed.

マイクロコンピュータ15は、ゼロクロス検出手段16から入力されるゼロクロスのタイミング信号により、ゼロクロスのタイミングを認識し、ゼロクロスに同期して、所定のタイミングで、第1の双方向性サイリスタ12をトリガオンし、電動送風機2への供給電力を制御する位相制御を行う。   The microcomputer 15 recognizes the zero-cross timing based on the zero-cross timing signal input from the zero-cross detection means 16 and triggers on the first bidirectional thyristor 12 at a predetermined timing in synchronization with the zero-cross. Phase control for controlling the power supplied to the blower 2 is performed.

図3に商用電源周波数の一周期分(商用電源11の周波数が50Hzであれば20msとなり、60Hzであれば16.66msとなる)の波形を示すが、斜線部が通電している領域であり、図3中の入力ライン1がフル通電、つまり、ゼロクロスと同時に、双方向性サイリスタ12をトリガオンしている波形である。入力ライン2、入力ライン3、入力ライン4となるに従って、トリガオンのタイミングが後ろへ遅れてゆき、電動送風機2に印可される電圧の実効値も低下し、供給電力も低下する。   FIG. 3 shows a waveform of one cycle of the commercial power supply frequency (20 ms if the frequency of the commercial power supply 11 is 50 Hz, and 16.66 ms if the frequency is 60 Hz). The shaded area is an energized region. 3 is a waveform in which the input line 1 in FIG. 3 is fully energized, that is, the bidirectional thyristor 12 is triggered on simultaneously with the zero crossing. As the input line 2, the input line 3, and the input line 4 are reached, the trigger-on timing is delayed, the effective value of the voltage applied to the electric blower 2 is reduced, and the supply power is also reduced.

ここで、位相制御による電動送風機2への供給電力について図4を用いて説明する。図4において、固定された異なる位相で位相制御される入力ラインAと入力ラインBという風量−電力特性がある。入力ラインAの方が、トリガオンのタイミングが、ゼロクロスに近く、印可電圧も高いため、供給電力も高くなる。今、電動送風機2の消費電力を測定しようとした時、入力ラインAで、風量Qaとなる状況に設定した時と、入力ラインBで風量Qbとした時とでは、同じ電力の値を示すことになる。つまり、電動送風機2にて実際に消費される電力は、電動送風機2が吸引する風量によっても異なるため、以降、入力ラインに関わらず、実際に消費される電力を「電力」と称し、双方向性サイリスタ2をトリガオンするタイミングによって固定される入力ラインを「供給電力」と称する。なお、印可電圧とは、図3に示す、斜線部の領域の実効値を言う事にする。   Here, the power supplied to the electric blower 2 by phase control will be described with reference to FIG. In FIG. 4, there is an air volume-power characteristic of input line A and input line B that are phase-controlled with different fixed phases. In the input line A, the trigger-on timing is closer to zero cross and the applied voltage is higher, so that the supply power is higher. Now, when trying to measure the power consumption of the electric blower 2, when the input line A is set to a state where the air volume Qa is set, and when the input line B is set to the air volume Qb, the same power value is shown. become. That is, since the electric power actually consumed by the electric blower 2 varies depending on the air volume sucked by the electric blower 2, the electric power actually consumed is hereinafter referred to as “electric power” regardless of the input line. The input line fixed at the timing when the thyristor 2 is triggered on is referred to as “supply power”. The applied voltage is an effective value in the shaded area shown in FIG.

また、電動送風機2に吸引される風量は、図5に示すように、集塵室に蓄積される塵埃の量と関係があり、塵埃の配合を所定の配合に固定して、塵埃の量(質量)と風量の関係を測定すると、図5に示すような特性となる。図5に示すように、双方向性サイリスタ12のトリガタイミングを、ゼロクロス、つまり、全導通(入力ライン1)に近づければ近づけるほど、同一質量の塵埃を吸引した時の風量の低下が遅く、吸引できる塵埃の量(質量)も多くなる。   Further, as shown in FIG. 5, the amount of air sucked into the electric blower 2 is related to the amount of dust accumulated in the dust collecting chamber, and the amount of dust ( When the relationship between (mass) and air volume is measured, the characteristics shown in FIG. 5 are obtained. As shown in FIG. 5, the closer the trigger timing of the bidirectional thyristor 12 is to zero cross, that is, closer to full conduction (input line 1), the slower the decrease in the air volume when sucking dust of the same mass, The amount (mass) of dust that can be sucked increases.

図2に示す電動送風機2の風量−電流特性は、全導通(入力ライン1)での特性と一致し、各供給電力での風量−電流特性を算出することができる。図6(b)に各供給電力毎の風量−電流検出手段出力特性を示すが、電流検出手段13の出力は、電流値を信号レベルに変換したものであるので、各供給電力毎の風量−電流特性として見ることができる。各供給電力毎の風量−電流特性と、図5に示す各供給電力毎の塵埃量−風量特性が分かれば、電流検出手段13の出力により、集塵室6に吸引されている塵埃の量に応じて電動送風機2への供給電力を可変し、電力を制御する事ができるが、塵埃量と風量の関係は分かっているので、ここでは、風量に対しての動作で説明する。   The air volume-current characteristics of the electric blower 2 shown in FIG. 2 coincide with the characteristics of all conduction (input line 1), and the air volume-current characteristics at each supply power can be calculated. FIG. 6B shows the air volume for each supply power-current detection means output characteristics. Since the output of the current detection means 13 is obtained by converting the current value into a signal level, the air volume for each supply power- It can be seen as current characteristics. If the air volume-current characteristics for each power supply and the dust volume-air volume characteristics for each power supply shown in FIG. 5 are known, the amount of dust sucked into the dust collection chamber 6 by the output of the current detection means 13 can be obtained. Accordingly, the electric power supplied to the electric blower 2 can be varied and the electric power can be controlled. However, since the relationship between the amount of dust and the air volume is known, the operation for the air volume will be described here.

また、マイクロコンピュータ15の内部には、予め設定された第1の位相−電流判定値特性と第2の位相−電流判定値特性と第3の位相−電流判定値特性を有しており、接続判別手段で判断される「接続されていない」状態に対しては、第1の位相−電流判定値特性を、「接続されて回転ブラシ7が停止している」状態に対しては、第2の位相−電流判定値特性を、「接続されて回転ブラシ7が回転している」状態に対しては、第3の位相−電流判定値特性を割り当てている。   The microcomputer 15 has a first phase-current determination value characteristic, a second phase-current determination value characteristic, and a third phase-current determination value characteristic which are set in advance. For the “not connected” state determined by the determining means, the first phase-current determination value characteristic is used. For the “connected and rotating brush 7 is stopped” state, the second The third phase-current determination value characteristic is assigned to the “connected state where the rotating brush 7 is rotating”.

接続判別部としてのマイクロコンピュータ15で判断する吸い込み具6の接続の状態に応じて位相−電流判定値特性を選択、設定し、「AD1」から取り込まれる信号に応じて、設定した位相−電流判定値特性上の位相とその位相と対になったAD1の入力値に対する判定値が設定され、設定された位相、つまり、トリガタイミングで、第1の双方向サイリスタ12をオンし、所定の供給電力で制御される。マイクロコンピュータ15は、設定された位相−電流判定値特性上の、位相とその位相と対になるAD1の入力に対する判定値を、段階的に順次切り替えながら、電動送風機2への供給電力を制御する。   The phase-current determination value characteristic is selected and set according to the connection state of the suction tool 6 determined by the microcomputer 15 as the connection determination unit, and the set phase-current determination is performed according to the signal fetched from “AD1”. A phase on the value characteristic and a determination value for the input value of AD1 paired with the phase are set, the first bidirectional thyristor 12 is turned on at the set phase, that is, the trigger timing, and a predetermined supply power It is controlled by. The microcomputer 15 controls the power supplied to the electric blower 2 while sequentially switching the phase and the determination value for the input of AD1 paired with the phase on the set phase-current determination value characteristic. .

以上のように構成された電気掃除機について、以下その動作を説明する。   About the vacuum cleaner comprised as mentioned above, the operation | movement is demonstrated below.

表1に、マイクロコンピュータ15に設定する位相−電流判定値特性の値を、図7に表1に基づいた、位相と電流判定値(「AD1」から入力される値に対する判定値)と風量と電力の関係を示す。   Table 1 shows the values of the phase-current judgment value characteristics set in the microcomputer 15, and the phase, current judgment value (determination value for the value input from “AD1”), and the air volume based on Table 1 in FIG. 7. The relationship of electric power is shown.

Figure 2009017909
Figure 2009017909

図7と表1を用いて、位相−電流判定値特性の作り方と、電動送風機2の制御の基本の考え方を説明する。   With reference to FIG. 7 and Table 1, the basic concept of how to create the phase-current determination value characteristic and control of the electric blower 2 will be described.

図7において、横軸に風量、縦軸に消費電力を取って、太実線で示した特性が、作成しようとしている風量−電力特性である。また、横軸に風量、縦軸に電流検出手段出力を取った、太線の点線で示す特性が、この風量−電力特性を得るために設定される風量−電流検出手段出力特性である。この、2つが決定すると、任意の風量に対しての位相角と電流検出手段出力の組み合わせが、一義的に決まり、これが、位相−電流判定値特性となる。   In FIG. 7, the horizontal axis represents the air volume, the vertical axis represents the power consumption, and the characteristic indicated by the thick solid line is the air volume-power characteristic to be created. Further, the characteristic indicated by the thick dotted line with the air volume on the horizontal axis and the output of the current detecting means on the vertical axis is the air volume-current detecting means output characteristic set to obtain this air volume-power characteristic. When these two are determined, the combination of the phase angle and the current detection means output for an arbitrary air volume is uniquely determined, and this becomes the phase-current determination value characteristic.

従って、位相−電流判定値特性を作成するに当たり、まず、風量−電力特性を作成するが、全導通となる風量Qp付近では、集塵室6には、ある程度の塵埃が蓄積されており、吸引力が必要となるため、電力が高くなるように、また、開放付近では、集塵室6には、ほとんど塵埃は蓄積していないので、吸引力は必要ではなく、省電力化と静音化のために、電力が低くなるようにし、異なる電力となる開放風量付近と風量Qp付近を徐々に変化させ、スムーズに電動送風機2への供給電力を可変するような位相−電力特性とする。   Accordingly, in creating the phase-current determination value characteristic, first, the air volume-power characteristic is created. However, in the vicinity of the air volume Qp at which full conduction is established, a certain amount of dust is accumulated in the dust collection chamber 6, and suction Because power is required, so that the power is high, and in the vicinity of the opening, dust is hardly accumulated in the dust collection chamber 6, so suction force is not necessary, and power saving and noise reduction are achieved. For this reason, the phase-power characteristics are set such that the power is lowered and the vicinity of the open air volume and the air volume Qp that are different powers are gradually changed to smoothly vary the power supplied to the electric blower 2.

図7において、開放風量とは異なる風量で設定される、位相−電流判定値特性の終端となる所定の位相角を全導通θpとし、入力ラインに対応する位相の数を、θ0〜θ9とθpの11本としている。尚、θ9は、開放時の位相となる。   In FIG. 7, a predetermined phase angle that is set at an air flow different from the open air flow and becomes the end of the phase-current determination value characteristic is defined as total conduction θp, and the number of phases corresponding to the input lines is represented by θ0 to θ9 and θp. 11 of them. Note that θ9 is a phase at the time of opening.

表1において、風量と電力と電流判定値と位相角は全てが対応して関連づけられている。例えば、図7において、全導通θpの入力ラインの風量−電力特性上の電力がWpとなる風量はQpとなり、全導通θpの入力ラインの風量−電流検出手段出力特性上の風量Qpとなる電流検出手段出力(電流値)はIp、となるように一義に決定しておく。   In Table 1, the air volume, power, current determination value, and phase angle are all associated with each other. For example, in FIG. 7, the air volume at which the power on the air volume-power characteristic of the input line with full conduction θp is Wp is Qp, and the current at which the air volume of the input line with all conduction θp is air volume Qp on the output characteristic of the current detection means The detection means output (current value) is uniquely determined to be Ip.

ここで、Wpは、最大の電力であり、他の位相θ0〜θ9において設定される電力W0〜W9は、Wp以下となるよう設定し、また、特に、位相θpの付近と、開放位相θ9付近の位相での話であるが、Wp≧W0、Wn≧Wn+1(n=0〜8)となるよう設定する。これは、例えば、W0<W1とするより、W0≧W1とした方が、風量変化、もしくは電流変化による電力の変化幅が小さくなり、電動送風機2の電力がより安定するからである。   Here, Wp is the maximum power, and the power W0 to W9 set in the other phases θ0 to θ9 is set to be equal to or less than Wp, and in particular, the vicinity of the phase θp and the vicinity of the open phase θ9 The phase is set so that Wp ≧ W0 and Wn ≧ Wn + 1 (n = 0 to 8). This is because, for example, when W0 ≧ W1, W0 <W1 is set, and the change amount of the power due to the change in the air volume or the current is reduced, so that the power of the electric blower 2 is more stable.

まず、所望の風量−電力特性を作成するにあたって、開放、つまり集塵室6に全く塵埃が蓄積されていない状態での、目標電力W9を決定する。そして、開放状態で電力がW9となる位相θ9を決定する。この時風量Q9と電流検出手段出力に対する判定値I9は一義に決定する。このQ9とW9が風量−電力特性の一端となり、θ9とI9が位相−電流判定値特性の一端となる。   First, in creating a desired air volume-power characteristic, a target power W9 is determined in an open state, that is, in a state where no dust is accumulated in the dust collection chamber 6. Then, the phase θ9 at which the power becomes W9 in the open state is determined. At this time, the air flow rate Q9 and the determination value I9 for the current detection means output are uniquely determined. Q9 and W9 are one end of the air volume-power characteristic, and θ9 and I9 are one end of the phase-current determination value characteristic.

次に、位相−電流値特性の他端の位相を決定するが、本実施の形態では、θpとしており既に決定している。θpはフル通電であり、吸い込み力が最大限発揮される事が期待される入力ラインであるが、吸い込み力(吸い込み仕事率)は、図7にも示すように、2次近似が可能な特性であり、電動送風機2と本体1の特性や構成によって決まる所定の風量でピークが出現する特性であるので、ピークの出現する風量より、やや開放側の風量で、θpに切り換える設定が、最も効率的に最大の吸い込み力を得る事ができるため、ピークの出現する風量よりやや開放側の風量をQpと設定し、位相θpの風量−電力特性上の風量Qpとなる電力Wpを決定する。この時、電流検出手段出力に対する判定値Ipは一義的に決定される。このQpとWpが風量−電力特性の他端となり、θpとIpが位相−電流判定値特性の他端となる。   Next, the phase at the other end of the phase-current value characteristic is determined. In this embodiment, it is already determined as θp. θp is a full energization, and is an input line where the suction force is expected to be maximized. The suction force (suction power) is a characteristic that can be second-order approximated as shown in FIG. Since the peak appears at a predetermined air volume determined by the characteristics and configuration of the electric blower 2 and the main body 1, the setting to switch to θp with the air volume slightly open from the air volume where the peak appears is the most efficient. Since the maximum suction force can be obtained, the air volume slightly open from the air volume where the peak appears is set as Qp, and the power Wp that is the air volume Qp on the air volume-power characteristic of the phase θp is determined. At this time, the determination value Ip for the current detection means output is uniquely determined. Qp and Wp are the other ends of the air volume-power characteristics, and θp and Ip are the other ends of the phase-current determination value characteristics.

位相切り換えの動作については後述するが、位相θpは到達位相であるため、Ipは、位相をI0へ切り換えるための判定値となる。従って、次に、位相θ0から位相θpへ切り換えるための設定を行う。   Although the phase switching operation will be described later, since the phase θp is the arrival phase, Ip is a determination value for switching the phase to I0. Therefore, the setting for switching from the phase θ0 to the phase θp is performed next.

I0の設定については、位相θp付近を拡大した図9を参照して行う。   The setting of I0 is performed with reference to FIG. 9 in which the vicinity of the phase θp is enlarged.

θ0はθpと最も近接した位相であり、電力W0を、W0≦Wpとなるように設定する場合、W0とWpの差が大きくなれば、位相が切り替わった時の電動送風機2の電力の変動が大きくなり、位相切り替わり時の過渡的な電流値の増加等により、Wpを越えてしまう可能性がある。従って、位相をθpに向けて変化させる時、θp付近では、徐々に電力の変化率が小さくなるようなW0を狙いの電力として設定する。位相θ0が明確になっているので、このW0に対しては、風量Q0が一義的に決まり、電流検出手段出力に対する判定値I0も決まる。   θ0 is the phase closest to θp, and when the power W0 is set so that W0 ≦ Wp, if the difference between W0 and Wp increases, the power fluctuation of the electric blower 2 when the phase is switched There is a possibility that Wp may be exceeded due to a transient increase in current value at the time of phase switching. Therefore, when changing the phase toward θp, W0 is set as the target power so that the rate of change of power gradually decreases in the vicinity of θp. Since the phase θ0 is clear, the air volume Q0 is uniquely determined for this W0, and the determination value I0 for the current detection means output is also determined.

同様に、θpに向けて徐々に電力の変化率を小さくしていくように、θ1、θ2、θ3についても、電力を決定し、風量、電流判定値を決定する。   Similarly, power is determined for θ1, θ2, and θ3 so that the rate of change in power gradually decreases toward θp, and the air volume and current determination value are determined.

図8に、開放状態付近、つまり、位相θ9付近の特性グラフを示すが、開放状態は、集塵室6に塵埃がほとんど蓄積していない状態であり、高い吸い込み力も不要であるので、なるべく、低消費電力となるよう設定し、風量の変化、つまり、塵埃の蓄積量による変化に対しても、あまり電力を変化させないようにする。これは、電動送風機2や本体1の製造における個体のバラツキ等に起因する特性公差によって、塵埃の全く入っていない風量に対する全導通での消費電力と電流値の異なる2つの固体が存在しても、電力はほぼ一定となり、特性公差を吸収できる効果も有している。更に、開放状態での、消費電力の検査や騒音の検査等においても、バラツキが改善されるため、製造管理もしやすくなるという利点も有している。   FIG. 8 shows a characteristic graph in the vicinity of the open state, that is, in the vicinity of the phase θ9. The open state is a state in which almost no dust is accumulated in the dust collection chamber 6, and a high suction force is unnecessary. The power consumption is set to be low so that the power does not change much even when the air volume changes, that is, changes due to the accumulated amount of dust. This is because even if there are two solids with different power consumption and current value in full continuity with respect to the air volume that does not contain dust at all, due to characteristic tolerance caused by individual variations in the manufacture of the electric blower 2 and the main body 1 The electric power is almost constant and has the effect of absorbing the characteristic tolerance. Furthermore, since the variation is improved in the inspection of power consumption and the inspection of noise in the open state, there is an advantage that manufacturing management is easy.

従って、開放の風量Q9に対して、電力変化を極小で抑えたい風量幅を決定し、その風量幅に対応した絶対値での風量をQ8として決定すると、位相θ9での電力W9に対して、変化量を極小にしたW8を決定する。風量Q8と電力W9が決定されると、位相θ8と電流検出手段出力判定値I8も一義的に決まる。   Accordingly, when the air volume width for which the change in electric power is desired to be minimized is determined with respect to the open air volume Q9 and the air volume at an absolute value corresponding to the air volume width is determined as Q8, the power W9 at the phase θ9 is W8 with the minimum amount of change is determined. When the air volume Q8 and the power W9 are determined, the phase θ8 and the current detection means output determination value I8 are also uniquely determined.

風量−電力特性の両端付近の特性は決定したので、後は、両端の電力を結ぶ特性を作成する。位相θ7〜位相θ3までを特性を結ぶ領域に使用される。このとき、風量に対して、この領域の電力の変化率がなるべく小さくする方が、安定して電力を切り換える事ができる。更にいうと、電流値に対しての電力の変化率がなるべく小さくする方が、より安定する。   Since the characteristics in the vicinity of both ends of the air volume-power characteristics have been determined, the characteristics connecting the power at both ends are created. The phase θ7 to the phase θ3 are used for the region connecting the characteristics. At this time, the power can be stably switched by making the change rate of the power in this region as small as possible with respect to the air volume. Furthermore, it is more stable to make the rate of change of power with respect to the current value as small as possible.

上記のθp、θ0、θ8、θ9と同様に、風量と電力と位相と電流検出手段出力判定値を決定し、最終的に、表1に示す特性ができあがる。表1の中で、実際に、マイクロコンピュータ15が、使用するパラメータは、電流判定値と位相値の2つであり、これらが、位相−電流判定値特性となり、マイクロコンピュータ15が、AD1の入力に応じて、位相角を段階的に切り換えることにより、図7の実線で示すような、風量に対する電力の軌跡を実現する事ができる。   As with the above θp, θ0, θ8, and θ9, the air volume, power, phase, and current detection means output determination value are determined, and the characteristics shown in Table 1 are finally obtained. In Table 1, the microcomputer 15 actually uses two parameters, a current judgment value and a phase value. These are phase-current judgment value characteristics, and the microcomputer 15 inputs the AD1. Accordingly, by switching the phase angle stepwise, it is possible to realize a power trajectory with respect to the air volume as shown by the solid line in FIG.

ここで、AD1の入力値、つまり、電流値に対する判定値の設定の前提条件として、必ず、In<In+1(n:p,0〜8)としなければならない。この関係が逆転していたりすると、位相が切り換わった後に、また、下の位相に戻ったりと、不安定な動作を引き起こす可能性がある。つまり、図7の横軸に風量を、縦軸に電流の信号値をとったグラフに示す、太点線の特性で、傾きが大きな(信号値の変化率が大きな)方が、安定して電力を切り換えられる。従って、開放状態付近と全導通θp付近を結ぶ、電力の変化率の大きなエリアは、太点線の傾きが小さく、不安定に近いエリアとなっている。この傾きを大きくするには、その領域に割り当てる位相(入力ライン)の密度を高くすればよい。   Here, as a precondition for setting the determination value for the input value of AD1, that is, the current value, In <In + 1 (n: p, 0 to 8) must be satisfied. If this relationship is reversed, an unstable operation may be caused after the phase is switched or when the phase returns to a lower phase. In other words, the characteristic of the thick dotted line shown in the graph with the air volume on the horizontal axis and the signal value of the current on the vertical axis in FIG. 7 is more stable when the slope is large (the change rate of the signal value is large). Can be switched. Therefore, the area where the power change rate is large, connecting the vicinity of the open state and the vicinity of the total conduction θp, is an area that has a small slope of the thick dotted line and is nearly unstable. In order to increase this inclination, the density of the phases (input lines) assigned to the area may be increased.

次に、AD1の変化による位相切り換えの動作を図10と図11を参照しながら説明する。図10は、風量の変化に対する位相の切り換えを示した図であり、図11はその動作のフローチャートを示す。   Next, the phase switching operation by changing AD1 will be described with reference to FIGS. FIG. 10 is a diagram showing the switching of the phase with respect to the change in the air volume, and FIG. 11 is a flowchart of the operation.

図10において、今、集塵室6に蓄積している塵埃の量が、位相θs3で風量Qs3となる状態であった所に、電動送風機2の更なる吸引により、蓄積される塵埃の量が増え、位相θs1で風量QS1となる状態に変化したとする。位相θs1で風量QS1となる塵埃の量では、位相θs3においては、QS1より小さな風量となるため、位相θs3における電流値が図10中の太点線で示すように低下する。すると、図11のフローチャートに示すように、I<Ijdjとなるため、位相をθs2に切り換えて、同時にAD1の入力に対する判定値もIs2に切り替わって、供給電力を上昇して電動送風機2が制御される。   In FIG. 10, the amount of dust accumulated in the dust collection chamber 6 is now in a state where the air flow rate Qs3 is obtained at the phase θs3, due to further suction of the electric blower 2. It is assumed that the flow rate increases and changes to a state where the air volume QS1 is obtained at the phase θs1. In the amount of dust that becomes the air volume QS1 in the phase θs1, the air volume in the phase θs3 is smaller than that in QS1, so the current value in the phase θs3 decreases as indicated by the thick dotted line in FIG. Then, as shown in the flowchart of FIG. 11, since I <Ijdj, the phase is switched to θs2, and at the same time, the determination value for the input of AD1 is also switched to Is2, and the supplied power is increased to control the electric blower 2. The

供給電力を上昇させるよう位相が切り換わると、吸い込み力も上昇するため、集塵室6に蓄積している塵埃の量が同じであれば、つまり、空気的な負荷が同じであれば、位相切り換わり直後の風量は、一旦、上昇方向に移行する。同様の原理で、位相θS1での風量Qs1となる塵埃量では、位相θS3では、風量Qs1未満となる。   When the phase is switched to increase the supply power, the suction force also increases. Therefore, if the amount of dust accumulated in the dust collection chamber 6 is the same, that is, if the air load is the same, the phase switching is performed. The air volume immediately after the change temporarily shifts in the upward direction. Based on the same principle, the dust amount that is the air volume Qs1 at the phase θS1 is less than the air volume Qs1 at the phase θS3.

しかし、位相切り換わり後、実線で示すようにIs2まで電流値が低下した後、位相θs2においても、風量はQs1より小さくなるため、電流値が太点線のように低下し、位相がθs1に切り換わる。ここでも、位相がθs1に切り換わった直後は、風量が、一旦回復するが、電流値が低下し、Is1で平衡するため、位相の切り換えは発生せず、以降、塵埃の蓄積量が変化するまで、電動送風機2への供給電力は、位相θs1で制御される。   However, after the phase is switched, the current value decreases to Is2 as indicated by the solid line, and the airflow is also smaller than Qs1 in phase θs2, so that the current value decreases as indicated by the thick dotted line, and the phase switches to θs1. Change. Also here, immediately after the phase is switched to θs1, the air volume is temporarily recovered, but the current value is reduced and balanced at Is1, so that phase switching does not occur, and thereafter the amount of accumulated dust changes. Until then, the electric power supplied to the electric blower 2 is controlled by the phase θs1.

図10に示すように、位相が切り換わる瞬間にΔWの電力変動が必ず発生する。しかし、隣あった位相の間隔を狭くすることによって、ΔWは小さくでき、計測器で検出できる位相切り換わり時の電力の変動を微小にしたり、聴感上は全く判別する事ができないレベルまでにする事が可能である。   As shown in FIG. 10, a power fluctuation of ΔW always occurs at the moment when the phase is switched. However, by reducing the interval between adjacent phases, ΔW can be reduced, and the fluctuation in power that can be detected by a measuring instrument can be reduced to a level that cannot be discriminated at all in terms of audibility. Things are possible.

本実施の形態においては、開放風量とは異なる風量で設定される、位相−電流判定値特性の終端となる所定の位相角としては、全導通θpを設定しており、また、位相(入力ライン)の数を11本に分割した例で説明したが、実際は、終端の位相は、任意の位相に設定してもよく、また、入力ラインの数も、多くしても良い。商用電源のゼロクロスを基点とした位相制御においては、双方向性サイリスタ12のトリガオンのタイミングは、商用電源周波数が50Hzで10ms未満であり、60Hzで8.33ms未満である。従って、位相の分割数、入力ラインの数を増やせば増やすほど、段階的に変化させる位相の間隔が狭くなり、位相を切り換えた時の電動送風機2の電力変動が抑えられ、動作音の変化がスムーズになり、違和感を感じなくなる。   In the present embodiment, the total conduction θp is set as the predetermined phase angle that is set at the air volume different from the open air volume and is the terminal of the phase-current determination value characteristic, and the phase (input line However, in practice, the end phase may be set to an arbitrary phase, and the number of input lines may be increased. In the phase control based on the zero cross of the commercial power supply, the trigger on timing of the bidirectional thyristor 12 is less than 10 ms at the commercial power supply frequency of 50 Hz and less than 8.33 ms at 60 Hz. Therefore, as the number of phase divisions and the number of input lines are increased, the phase interval to be changed in stages becomes narrower, the power fluctuation of the electric blower 2 when the phase is switched can be suppressed, and the change in operation sound can be reduced. It becomes smooth and you don't feel uncomfortable.

上記位相−電流判定値特性の作り方に基づいて、第1の位相−電流判定値特性と第2の位相−電流判定値特性と第3の位相−電流判定値特性を作成する、各特性は、位相−電流判定値特性による風量−電力特性が、図12に示す関係となるように作成する。   Based on the method of creating the phase-current determination value characteristic, the first phase-current determination value characteristic, the second phase-current determination value characteristic, and the third phase-current determination value characteristic are created. The air volume-power characteristic based on the phase-current determination value characteristic is created so as to have the relationship shown in FIG.

「接続されて回転ブラシ7が停止している」状態の第3の位相−電流判定値特性を、通常の清掃を行う基本の設定とすると、「接続されて回転ブラシ7が停止している」状態は、図12に示すように、風量−電力特性が、開放風量付近では、第3の位相−電流判定値特性による風量―電力特性より、電力が小さくなるように設定している。開放と反対側では、Wpが制限の電力となり、位相θpで電力Wpとなるこの風量Qp付近では、風量−電力特性が緩やかに、Wpへ到達するような位相−電流判定値特性としている。   When the third phase-current determination value characteristic in the state of “connected and rotating brush 7 is stopped” is a basic setting for performing normal cleaning, “connected and rotating brush 7 is stopped”. As shown in FIG. 12, the state is set such that the air volume-power characteristic is smaller in the vicinity of the open air volume than the air volume-power characteristic by the third phase-current determination value characteristic. On the side opposite to the open state, Wp is the limit power, and in the vicinity of the air volume Qp where the power Wp is the phase θp, the air volume-power characteristic is a phase-current determination value characteristic that gradually reaches Wp.

一般的に、フロアや畳の床面では、回転ブラシ7によるかきあげ力が無くても、床面の除塵はでき、また、比較的低めの吸い込み力でも除塵する事が出来る。一方、絨毯では、塵埃等が絨毯の目の奥に入り込んだり、植毛に絡みついたりするので、回転ブラシ7によるかきあげ力と、高い吸引力が必要となる。従って、回転ブラシ7を「動作」させる場合は、絨毯上を想定して、「停止」させる場合は、フロア、もしくは畳上を想定して、第2の位相−電流判定値特性と第3の位相−電流判定値特性に差をつけている。但し、これは、集塵室9に塵埃があまり溜まっておらず、風量の大きな場合であり、風量が低下して行くにつれて、電動送風機2への供給電力をWpへ向けて高めるようへんかさせ、フロアや畳であっても、最大の吸い込み力を確保することが出来ると共に、塵埃があまり溜まっていないときには、回転ブラシ7が回転しているかで、吸引力を確保しながら、無駄な電力を削減する事が出来る。   In general, on the floor or tatami floor, even if there is no scuffing force by the rotating brush 7, dust can be removed from the floor, and dust can be removed even with a relatively low suction force. On the other hand, in the carpet, dust or the like enters the back of the carpet eye or gets entangled with the flocked hair, so that a scraping force by the rotating brush 7 and a high suction force are required. Therefore, when the rotary brush 7 is “operated”, the second phase-current determination value characteristic and the third phase are assumed on the carpet, and when the rotary brush 7 is stopped, the floor or the tatami floor is assumed. The phase-current judgment value characteristics are different. However, this is a case where the dust collection chamber 9 does not collect much dust and the air volume is large. As the air volume decreases, the power supplied to the electric blower 2 is increased toward Wp. Even if it is a floor or a tatami mat, the maximum suction force can be secured, and when the dust does not accumulate so much, the rotating brush 7 is rotating to ensure that the suction power is secured and the wasteful power is consumed. It can be reduced.

吸い込み具6が「接続されていない」状態に対しての第1の位相―電流判定値特性は、延長管5やホース3などで、ピンポイントで高い吸引力が必要な状況時に、電動機7へ電力供給が無い分を、電動送風機2への供給電力として加算する事により、より吸い込み力を高めることができるようにしている。第1の位相−電流判定値特性も、Wpに向けて、電力が収束するように設定する事により、制限電力を越えることなく、集塵室9への塵埃の蓄積量に応じて、必要な電力を供給しながら、十分な吸い込み力を確保する事ができる。   The first phase-current judgment value characteristic for the state in which the suction tool 6 is “not connected” is that the extension pipe 5 and the hose 3 etc. require a high suction force at a pinpoint to the motor 7. By adding the amount of no power supply as the power supplied to the electric blower 2, the suction force can be further increased. The first phase-current determination value characteristic is also set according to the amount of dust accumulated in the dust collection chamber 9 without exceeding the limit power by setting the power to converge toward Wp. Sufficient suction power can be secured while supplying power.

また、本実施の形態においては、位相−電流判定値特性を、予め設定する構成を取ったが、所望の位相−電流判定値特性を得られれば、各特性を算出するためのパラメータを設定して、位相に対する電流判定値を演算により算出し、判断しても、同様の制御が実現可能であることは言うまでもない。   In this embodiment, the phase-current determination value characteristic is set in advance. However, if a desired phase-current determination value characteristic is obtained, parameters for calculating each characteristic are set. Needless to say, the same control can be realized even if the current determination value for the phase is calculated and determined.

また、本発明においては、電流検出手段13を用いて、電動送風機2の負荷状態を検出し、供給電力の制御を行ったが、図2にも示すように、電動送風機2の特性、もしくは、電動送風機2と本体1を組み合わせた特性が決まれば、吸引される風量と電流と電動送風機2の回転数と真空圧力は相関があり、いずれかが分かれば、同様の制御が可能であり、電流検出手段13を、風量検出手段や回転数検出手段や、圧力検出手段で構成しても良い事は言うまでもない。   Further, in the present invention, the current detection means 13 is used to detect the load state of the electric blower 2 and the supplied power is controlled, but as shown in FIG. 2, the characteristics of the electric blower 2 or If the characteristics of the combination of the electric blower 2 and the main body 1 are determined, the air volume to be sucked in, the current, the rotational speed of the electric blower 2 and the vacuum pressure are correlated, and if one of them is known, the same control can be performed. It goes without saying that the detection means 13 may be constituted by an air volume detection means, a rotation speed detection means, or a pressure detection means.

以上のように、本発明にかかる電気掃除機は、吸い込み具の状況に応じて、吸い込み力を確保しながら、無駄な電力を削減できるものであり、吸い込み具のようなアタッチメントの状態に応じて、電力を制御する機器にも適用できる。   As described above, the vacuum cleaner according to the present invention can reduce wasteful power while securing the suction force according to the state of the suction tool, and according to the state of the attachment such as the suction tool. It can also be applied to devices that control power.

本発明の実施の形態1における電気掃除機の回路ブロック図The circuit block diagram of the vacuum cleaner in Embodiment 1 of this invention 同、電気掃除機の電動送風機の特性を表す図The figure showing the characteristic of the electric blower of the vacuum cleaner 同、電気掃除機の位相制御の説明する図The figure explaining phase control of a vacuum cleaner 同、電気掃除機の電力と供給電力の関係を表す図The figure showing the relationship between the electric power of the vacuum cleaner and the supplied power 同、電気掃除機の塵埃量と風量の関係を表す特性図Characteristic diagram showing the relationship between dust volume and air volume of vacuum cleaner (a)同、電気掃除機の風量と電力の関係を表す特性図(b)同、電気掃除機の風量と電流検出手段出力の関係を表す特性図(A) The characteristic figure showing the relation between the air volume of the vacuum cleaner and the electric power (b) The characteristic chart showing the relation between the air quantity of the electric vacuum cleaner and the output of the current detection means (a)同、電気掃除機の表1に基づく風量と電力の関係を表す特性図(b)同、電気掃除機の表1に基づく風量と電流検出手段出力の関係を表す特性図(A) The characteristic figure showing the relationship between the air volume and power based on Table 1 of the vacuum cleaner, and (b) The characteristic chart showing the relation between the air volume and current detection means output based on Table 1 of the vacuum cleaner. (a)同、電気掃除機の開放状態付近の風量と電力の関係を表す特性図(b)同、電気掃除機の開放状態付近の風量と電流検出手段出力の関係を表す特性図(A) The characteristic diagram showing the relationship between the air volume near the open state of the vacuum cleaner and the power (b) The characteristic diagram showing the relationship between the air volume near the open state of the vacuum cleaner and the output of the current detection means (a)同、電気掃除機の他の風量と電力の関係を表す特性図(b)同、電気掃除機の他の風量と電流検出手段出力の関係を表す特性図(A) The characteristic figure showing the relationship between the other air volume and electric power of the vacuum cleaner (b) The characteristic diagram showing the relation between the other air volume of the electric vacuum cleaner and the current detection means output (a)同、電気掃除機の風量変化に対する位相の切り替えにおける風量と電力の関係を表す特性図(b)同、電気掃除機の風量変化に対する位相の切り替えにおける風量と電流検出手段出力の関係を表す特性図(A) The characteristic figure showing the relationship between the air volume and power in the phase switching with respect to the air volume change of the vacuum cleaner. (B) The same, the relationship between the air volume and the current detection means output in the phase switching with respect to the air volume change of the vacuum cleaner. Characteristic diagram 同、電気掃除機の位相切り換えフローチャートSame as above, vacuum cleaner phase switching flowchart 同、電気掃除機の狙いの風量−電力特性図Same as above, the target airflow vs. power characteristics of vacuum cleaners 従来の電気掃除機の回路構成図Circuit diagram of a conventional vacuum cleaner

符号の説明Explanation of symbols

2 電動送風機
12 第1の双方向性サイリスタ
13 電流検出手段
14 増幅手段
15 マイクロコンピュータ
18 接続検出部
19 第2の双方向性サイリスタ
DESCRIPTION OF SYMBOLS 2 Electric blower 12 1st bidirectional thyristor 13 Current detection means 14 Amplification means 15 Microcomputer 18 Connection detection part 19 2nd bidirectional thyristor

Claims (4)

吸引風を発生させる電動送風機と、回転ブラシと前記回転ブラシを駆動するための電動機を有する吸い込み具と、前記電動送風機に流れる電流を検出する電流検出手段と、複数の位相角と前記位相角の各々に1対1に対応した、前記電流検出手段の出力に対して位相角を切り換えるための電流判定値とで構成される位相−電流判定値特性を有して、前記電流検出手段の出力が前記位相−電流判定値特性上の電流値とほぼ一致するよう、前記位相角と、前記位相角と対になる前記電流判定値を段階的に切り換えて、前記電動送風機への供給電力を制御する制御手段と、前記吸い込み具の回転状態などの負荷状態や接続の状態などを検出する状態判別手段とを有する構成において、前記制御手段は、前記状態判別手段の判別する前記吸い込み具の状態に応じた複数の位相−電流判定値特性を有し、前記状態に応じて前記複数の位相−電流判定値特性を切り換える電気掃除機。 An electric blower for generating suction air, a rotary brush and a suction tool having an electric motor for driving the rotary brush, a current detection means for detecting a current flowing through the electric blower, a plurality of phase angles and the phase angle The output of the current detection means has a phase-current determination value characteristic that corresponds to each one-to-one and includes a current determination value for switching the phase angle with respect to the output of the current detection means. The electric power supplied to the electric blower is controlled by switching the phase angle and the current determination value paired with the phase angle in a stepwise manner so as to substantially match the current value on the phase-current determination value characteristic. In a configuration having control means and state determination means for detecting a load state such as a rotation state of the suction tool and a connection state, the control means is configured to detect the suction tool determined by the state determination means. A plurality of phase corresponding to state - has a current determination value characteristic, the plurality of phases in response to the state - vacuum cleaner for switching current determination value characteristic. 複数の位相−電流判定値特性の、電動送風機への供給電力が高くなる方の一端を、全て同じにした請求項1記載の電気掃除機。 The vacuum cleaner according to claim 1, wherein one end of the plurality of phase-current determination value characteristics where power supplied to the electric blower is increased is the same. 状態判別手段として、吸い込み具が吸気流路上に接続されているかどうかを判別する接続判別手段を設け、制御手段は、前記接続判別手段の判別する前記吸い込み具の接続状況に応じた複数の位相−電流判定値特性を有し、前記接続状況に応じて前記複数の位相−電流判定値特性を切り換える請求項1または2記載の電気掃除機。 As the state discriminating unit, a connection discriminating unit for discriminating whether or not the suction tool is connected to the intake flow path is provided, and the control unit has a plurality of phases according to the connection status of the suction tool discriminated by the connection discriminating unit. The vacuum cleaner according to claim 1, wherein the vacuum cleaner has a current determination value characteristic and switches the plurality of phase-current determination value characteristics according to the connection state. 状態判別手段として、回転ブラシが回転しているかどうかを検出する回転判別手段を設け、制御手段は、前記回転判別手段の判別する前記回転ブラシの回転状況に応じた複数の位相−電流判定値特性を有し、前記回転状況に応じて前記複数の位相−電流判定値特性を切り換える請求項1または2記載の電気掃除機。 As the state discriminating unit, a rotation discriminating unit for detecting whether or not the rotating brush is rotating is provided, and the control unit has a plurality of phase-current judgment value characteristics according to the rotation status of the rotating brush discriminated by the rotation discriminating unit. The vacuum cleaner according to claim 1, wherein the plurality of phase-current determination value characteristics are switched according to the rotation state.
JP2007180629A 2007-07-10 2007-07-10 Electric vacuum cleaner Expired - Fee Related JP4946681B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007180629A JP4946681B2 (en) 2007-07-10 2007-07-10 Electric vacuum cleaner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007180629A JP4946681B2 (en) 2007-07-10 2007-07-10 Electric vacuum cleaner

Publications (2)

Publication Number Publication Date
JP2009017909A true JP2009017909A (en) 2009-01-29
JP4946681B2 JP4946681B2 (en) 2012-06-06

Family

ID=40358080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007180629A Expired - Fee Related JP4946681B2 (en) 2007-07-10 2007-07-10 Electric vacuum cleaner

Country Status (1)

Country Link
JP (1) JP4946681B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013059259A (en) * 2009-04-04 2013-03-28 Dyson Technology Ltd Control of electric machine
US9742319B2 (en) 2009-04-04 2017-08-22 Dyson Technology Limited Current controller for an electric machine
AU2020316202B2 (en) * 2019-07-19 2023-04-13 Lg Electronics Inc. Vacuum cleaner control method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001087189A (en) * 1999-09-20 2001-04-03 Mitsubishi Electric Corp Input controller for vacuum cleaner
JP2004283215A (en) * 2003-03-19 2004-10-14 Matsushita Electric Ind Co Ltd Vacuum cleaner

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001087189A (en) * 1999-09-20 2001-04-03 Mitsubishi Electric Corp Input controller for vacuum cleaner
JP2004283215A (en) * 2003-03-19 2004-10-14 Matsushita Electric Ind Co Ltd Vacuum cleaner

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013059259A (en) * 2009-04-04 2013-03-28 Dyson Technology Ltd Control of electric machine
US9742318B2 (en) 2009-04-04 2017-08-22 Dyson Technology Limited Control of an electric machine
US9742319B2 (en) 2009-04-04 2017-08-22 Dyson Technology Limited Current controller for an electric machine
AU2020316202B2 (en) * 2019-07-19 2023-04-13 Lg Electronics Inc. Vacuum cleaner control method
US11805967B2 (en) 2019-07-19 2023-11-07 Lg Electronics Inc. Vacuum cleaner control method

Also Published As

Publication number Publication date
JP4946681B2 (en) 2012-06-06

Similar Documents

Publication Publication Date Title
US7698777B2 (en) Vacuum cleaner
EP1597995A2 (en) Motor control apparatus and electric appliance using the same
KR20010082640A (en) Vacuum cleaner
JP4946681B2 (en) Electric vacuum cleaner
KR20080107048A (en) Steam-vacuum cleaner with controlling electric power function and method thereof
JP5381412B2 (en) Method for determining surface to be cleaned of vacuum cleaner and vacuum cleaner using the same
JP2013233198A (en) Vacuum cleaner
JP2010088649A (en) Vacuum cleaner
JP2012217787A (en) Vacuum cleaner
JP5333000B2 (en) Electric vacuum cleaner
JP4128205B2 (en) Electric vacuum cleaner
JP5011948B2 (en) Electric vacuum cleaner
JP4853226B2 (en) Vacuum cleaner
JP2001008871A (en) Vacuum cleaner
JP2004229995A (en) Electric cleaner
JP2012090733A (en) Vacuum cleaner
JP4946924B2 (en) Electric vacuum cleaner
JP5326398B2 (en) Electric vacuum cleaner
JPH1147055A (en) Vacuum cleaner
JP2006034756A (en) Vacuum cleaner
JP2011110380A (en) Vacuum cleaner
JP2009247599A (en) Vacuum cleaner
JP2010094400A (en) Vacuum cleaner
JP2000325278A (en) Electric vacuum cleaner
JP2001016894A (en) Electrical apparatus and vacuum cleaner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100315

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20100413

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120220

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees