[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2010088649A - Vacuum cleaner - Google Patents

Vacuum cleaner Download PDF

Info

Publication number
JP2010088649A
JP2010088649A JP2008261452A JP2008261452A JP2010088649A JP 2010088649 A JP2010088649 A JP 2010088649A JP 2008261452 A JP2008261452 A JP 2008261452A JP 2008261452 A JP2008261452 A JP 2008261452A JP 2010088649 A JP2010088649 A JP 2010088649A
Authority
JP
Japan
Prior art keywords
electric blower
detecting
vacuum cleaner
wave
bidirectional thyristor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008261452A
Other languages
Japanese (ja)
Other versions
JP5256981B2 (en
Inventor
Hiroshi Nakao
浩 中尾
Masakazu Fukushima
雅一 福嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2008261452A priority Critical patent/JP5256981B2/en
Priority to CN2009101777632A priority patent/CN101716065B/en
Publication of JP2010088649A publication Critical patent/JP2010088649A/en
Application granted granted Critical
Publication of JP5256981B2 publication Critical patent/JP5256981B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electric Vacuum Cleaner (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To achieve such control in a vacuum cleaner as to permit accurate detection of abnormal sparks and also prevention of false detection when the voltage is instantaneously lowered or at the time of power failure by using an inexpensive and simple structure. <P>SOLUTION: The vacuum cleaner includes a current detecting means 5 for detecting alternating currents distributed to an electric fan 2 and a voltage detecting means 15 for detecting the power supply voltage. When there is a period with an undistributed state at least in between half-waves in the alternating current waveforms distributed to the electric fan 2, and when the power supply voltage at the time is at least a prescribed value, the amount of electricity to be distributed to the electric fan 2 is lowered to a prescribed value or the power distribution is stopped. In this way, by detecting a so-called "half-wave missing", the abnormal sparks can be detected based on determination whether the currents are distributed or not, and the possibility of false detection is very low. Furthermore, by using the current detecting means mounted in most vacuum cleaners recently, the inexpensive structure can be achieved. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、ファンと整流子モータからなる電動送風機を用いた電気掃除機に関するものである。   The present invention relates to a vacuum cleaner using an electric blower composed of a fan and a commutator motor.

この種の電気掃除機の課題のひとつとして、整流子とカーボンブラシとの接触面から発生するモータースパークが挙げられる。特に電気掃除機に内蔵されるモータにおいては、その使用条件の過酷さ故に、モータースパークが発生し易く、更に一旦スパークが発生すると、次第に悪化していく傾向にある。このスパークが大きくなれば、大幅な寿命低下や振動、動作不良等、様々な不具合を引き起こすことは周知の事実であり、スパーク対策としてモータ自体の改良が進められてきたが、制御による対策も依然必要とされている。従来のこの種の対策としては、スパーク発生時に交流電流波形に重畳される高周波数成分を検出することで、スパークを検出する方法(例えば、特許文献1参照)や、光検出素子によって直接スパークを検出する方法(例えば、特許文献2参照)等がある。尚、これらの手段によってスパークの発生を検出した場合は、異常であることを報知すると共に、モータを停止することが一般的である。
特開2001−136780号公報 特開2006−204470号公報
One of the problems of this type of vacuum cleaner is motor spark generated from the contact surface between the commutator and the carbon brush. In particular, in motors built in vacuum cleaners, motor sparks are likely to occur due to the severe conditions of use, and once sparks occur, they tend to deteriorate gradually. It is a well-known fact that if this spark becomes large, it will cause various problems such as a significant decrease in life, vibration, malfunction, etc., and the motor itself has been improved as a countermeasure against sparks, but the countermeasures by control are still is needed. Conventional countermeasures of this type include a method of detecting a spark by detecting a high frequency component superimposed on an alternating current waveform when a spark occurs (for example, see Patent Document 1), or a direct detection of a spark by a photodetection element. There is a detection method (for example, see Patent Document 2). In addition, when the occurrence of a spark is detected by these means, it is common to notify the abnormality and stop the motor.
JP 2001-136780 A JP 2006-204470 A

しかしながら、上記特許文献1に記載されたスパーク判定方法によれば、複雑な演算処理が必要となり、電源自体にノイズが重畳している場合でもスパークであると誤検知する可能性もある。更に、無視してもよいレベルの軽いスパーク(3号〜4号程度)と、重度のスパーク(7号〜8号:以降、「異常スパーク」と呼ぶ)とで電流波形に重畳される高周波成分の差を検知するのはかなりの精度が必要であり、実際に不具合に繋がる異常スパークのみを検出することは非常に困難である。又、交流電流波形からスパークを検出しようとした場合、その電源波形自体の乱れ、例えば、瞬時電圧低下や、瞬時停電が発生した時に、誤検知しないよう考慮されたアルゴリズムが必要となる。   However, according to the spark determination method described in Patent Document 1, complicated calculation processing is required, and there is a possibility that a spark is erroneously detected even when noise is superimposed on the power supply itself. Furthermore, a high-frequency component superimposed on the current waveform by a light spark of a negligible level (about 3 to 4) and a severe spark (7 to 8: hereinafter referred to as “abnormal spark”). It is very difficult to detect only the abnormal spark that actually leads to a failure. In addition, when trying to detect a spark from an alternating current waveform, an algorithm is required in order to prevent erroneous detection when the power supply waveform itself is disturbed, for example, when an instantaneous voltage drop or an instantaneous power failure occurs.

また、上記特許文献2に記載されたスパーク判定方法によれば、確かに精度の高い検出は可能であるが、高価なものになるのは必至である上に、光検出素子の配置や、光検出素子の汚れによる感度低下等、実現には大きな課題を有している。   In addition, according to the spark determination method described in the above-mentioned Patent Document 2, it is possible to detect with high accuracy, but it is inevitable that the detection becomes expensive, and the arrangement of the light detection elements, the light There is a big problem in realization, such as sensitivity reduction due to contamination of the detection element.

本発明は前記従来の課題を解決するもので、安価でかつ単純な構成で異常スパークを検出し、且つ瞬時電圧低下や瞬時停電が発生した場合も考慮した、精度の高いスパーク検知制御を搭載した高品質の電気掃除機を提案するものである。   The present invention solves the above-described conventional problems, and is equipped with a highly accurate spark detection control that detects an abnormal spark with an inexpensive and simple configuration, and also takes into consideration when an instantaneous voltage drop or an instantaneous power failure occurs. A high-quality vacuum cleaner is proposed.

前記従来の課題を解決するために本発明は、ファンと整流子モータを有する電動送風機と、前記電動送風機を駆動するための双方向性サイリスタと、前記双方向性サイリスタのトリガ位相角を変えることによって前記電動送風機の通電量を制御する制御手段と、前記電動送風機に流れる交流電流を検出する電流検出手段と、電気掃除機に入力されている電源電圧を検出する電圧検知手段とを有し、前記電動送風機に流れる交流電流波形の内、少なくともその半波間が非通電となっている周期が存在しており且つ、そのときの電源電圧が所定値以上である場合に、前記電動送風機への通電量を所定量まで下げるか又は前記電動送風機を停止するようにした。   In order to solve the above-described conventional problems, the present invention changes an electric blower having a fan and a commutator motor, a bidirectional thyristor for driving the electric blower, and a trigger phase angle of the bidirectional thyristor. Control means for controlling the energization amount of the electric blower, current detection means for detecting an alternating current flowing through the electric blower, and voltage detection means for detecting a power supply voltage input to the vacuum cleaner, When there is a period in which at least half of the AC current waveform flowing through the electric blower is not energized and the power supply voltage at that time is equal to or higher than a predetermined value, energization of the electric blower is performed. The amount was reduced to a predetermined amount or the electric blower was stopped.

スパークの発生は、整流子とカーボンブラシとの電気的接触不良によって起こるものであるため、スパーク発生時には断続的に電動送風機に電流が流れない期間が発生する。電流が流れない期間の長さ及び周期は、スパークのレベルによって異なるが、基本的にスパークが大きいほど、電流が流れない期間と周期は長くなる。このため、スパークが小さい時は、周波数が高く、振幅の小さい高調波成分が交流電源波形に重畳され、逆にスパークが大きい時は周波数が低く、振幅の大きい高調波成分が重畳されることになる。一方、整流子モータの制御には双方向サイリスタを用いた位相制御が一般的であるが、この双方向性サイリスタのトリガパルス幅よりも、上記の電流が流れない期間の方が長い場合、双方向性サイリスタがオンしなくなり、その半波間は、電流が流れないことになる。本発明は、この「半波抜け」の検出によって、異常スパークを検知するもので、判断としては、「電流が流れている/流れていない」の判断で行なえ、誤検知の可能性が極めて少なく、且つ近年の電気掃除機の大半に搭載されている電流検知手段のみで検知できるために、新しく部品を追加することなく安価な構成で実現できるものである。   Since the occurrence of spark is caused by poor electrical contact between the commutator and the carbon brush, a period in which no current flows intermittently to the electric blower occurs when the spark occurs. The length and period of the period in which no current flows varies depending on the level of the spark. Basically, the larger the spark, the longer the period and period in which no current flows. For this reason, when the spark is small, the harmonic component having a high frequency and a small amplitude is superimposed on the AC power supply waveform, and conversely, when the spark is large, the harmonic component having a low frequency and a large amplitude is superimposed. Become. On the other hand, phase control using a bidirectional thyristor is generally used for the control of the commutator motor. However, when the above-described period in which the current does not flow is longer than the trigger pulse width of the bidirectional thyristor, The directional thyristor is not turned on, and no current flows during the half wave. The present invention detects an abnormal spark by detecting this “half-wave dropout”. The determination can be made based on the determination of “current is flowing / not flowing”, and the possibility of erroneous detection is extremely low. And since it can detect only with the electric current detection means mounted in most recent vacuum cleaners, it can implement | achieve with an inexpensive structure, without adding a new component.

又、「電流が流れている/流れていない」の判断閾値は、通常、部品(回路素子)ばらつきを含めて設定することもあり、ゼロに設定することはできないが、それ故、電源電圧が低い時には、電流が流れているにも関らず、電流値が判断閾値未満となるケースがあり、その場合、「電流が流れていない」と誤検知することになる。本発明によれば、電源電圧が所定値未満の時には、スパークの検知を行わないようになるため、瞬時電圧低下や瞬時停電時の誤検知も完全に防止できるものである。   In addition, the judgment threshold value of “current is not flowing / not flowing” is usually set including variations of components (circuit elements) and cannot be set to zero. When the current is low, there is a case where the current value is less than the determination threshold value even though the current is flowing. In this case, it is erroneously detected that “the current is not flowing”. According to the present invention, when the power supply voltage is less than a predetermined value, the detection of spark is not performed, so that it is possible to completely prevent erroneous detection at the time of instantaneous voltage drop or instantaneous power failure.

尚、第2〜第4の発明は、全て前述した電圧検知手段を用いずに、瞬時電圧低下や瞬時停電時にスパークの検知を行わないようにするものであり、基本の考え方は、前述したものと同様のものである。   The second to fourth inventions do not use the above-described voltage detection means, and do not detect a spark when an instantaneous voltage drop or an instantaneous power failure occurs. The basic idea is that described above. Is the same.

本発明の電気掃除機は、安価で単純な構成で誤検知の可能性が極めて低い異常スパーク検知が実現できるものであり、高品質の電気掃除機を提供できるものである。   The vacuum cleaner of the present invention can realize abnormal spark detection with an inexpensive and simple configuration and extremely low possibility of erroneous detection, and can provide a high-quality vacuum cleaner.

第1の発明は、ファンと整流子モータを有する電動送風機と、前記電動送風機を駆動するための双方向性サイリスタと、前記双方向性サイリスタのトリガ位相角を変えることによって前記電動送風機の通電量を制御する制御手段と、前記電動送風機に流れる交流電流を検出する電流検出手段と、電気掃除機に入力されている電源電圧を検出する電圧検知手段とを有し、前記電動送風機に流れる交流電流波形の内、少なくともその半波間が非通電となっている周期が存在し、且つ、そのときの電源電圧が所定値以上である場合に、前記電動送風機への通電量を所定量まで下げるか又は前記電動送風機を停止することを特徴とする電気掃除機としたものであり、「半波抜け」の検知であるので誤検知の可能性が極めて低い上に、電源電圧が所定値未満の時には、スパークの検知を行わないようになるため、瞬時電圧低下や瞬時停電時の誤検知も完全に防止できるものである。   The first invention is an electric blower having a fan and a commutator motor, a bidirectional thyristor for driving the electric blower, and an energization amount of the electric blower by changing a trigger phase angle of the bidirectional thyristor. AC current flowing through the electric blower, control means for controlling the current, current detection means for detecting an alternating current flowing through the electric blower, and voltage detection means for detecting a power supply voltage input to the vacuum cleaner If there is a period in which at least half of the waveform is not energized in the waveform and the power supply voltage at that time is equal to or higher than a predetermined value, the energization amount to the electric blower is reduced to a predetermined amount, or The electric blower is characterized in that the electric blower is stopped. Since it is a detection of “half-wave missing”, the possibility of erroneous detection is extremely low, and the power supply voltage is a predetermined value. When the full is to become not performed spark detection, erroneous detection when the instantaneous voltage drop and momentary power failure in which completely prevented.

第2の発明は、ファンと整流子モータを有する電動送風機と、前記電動送風機を駆動するための双方向性サイリスタと、前記双方向性サイリスタのトリガ位相角を変えることによって前記電動送風機の通電量を制御する制御手段と、前記電動送風機に流れる交流電流を検出する電流検出手段とを有し、前記電動送風機に流れる交流電流波形の内、少なくともその半波間が非通電となっている周期が存在し、且つ、その半波の連続発生数が所定回数未満である場合に、前記電動送風機への通電量を所定量まで下げるか又は前記電動送風機を停止することを特徴とする電気掃除機としたものである。   The second invention is an electric blower having a fan and a commutator motor, a bidirectional thyristor for driving the electric blower, and an energization amount of the electric blower by changing a trigger phase angle of the bidirectional thyristor. There is a period in which at least half of the alternating current waveform flowing in the electric blower is non-energized in the control means for controlling the electric current and the current detection means for detecting the alternating current flowing in the electric blower And when the number of continuous occurrences of the half-wave is less than a predetermined number of times, the electric blower is reduced to a predetermined amount or the electric blower is stopped. Is.

通常、瞬時電圧低下や瞬時停電が発生した場合も半波間が非通電となるため、これらの非通電となる半波の連続発生を、モータのスパークと誤検知しないようにするもので、上記非通電となる半波の連続発生数が所定回数以上となる場合は、瞬時電圧低下又は停電であると判断してスパーク検知は行わないものである。通常、瞬時電圧低下や瞬時停電が発生した場合には、その復電までには0.07秒以上かかる。即ち、半波にして約7回(50Hz地域)の間は電圧低下・停電状態が継続することになる。本発明では、例えば上記非通電となる半波の連続発生数の所定回数を7回と設定し、7回以上連続して非通電状態が継続した場合、瞬時電圧低下又は停電であると判断して、スパーク検知をおこなわないようにするものであり、第1の発明よりも精度は劣るものの、電圧検知手段を必要としないため、安価に構成できるものである。   Normally, even if an instantaneous voltage drop or an instantaneous power failure occurs, the half-wave is not energized.Therefore, the continuous generation of these half-waves that are de-energized is not erroneously detected as a motor spark. When the number of consecutive half-waves that are energized is greater than or equal to a predetermined number, it is determined that there is an instantaneous voltage drop or a power failure, and spark detection is not performed. Normally, when an instantaneous voltage drop or an instantaneous power failure occurs, it takes 0.07 seconds or more to recover. That is, the voltage drop / power failure state continues for about 7 times (50 Hz region) in half-wave. In the present invention, for example, when the predetermined number of continuous occurrences of the half-waves that are not energized is set to 7 and the de-energized state continues for 7 times or more, it is determined that there is an instantaneous voltage drop or a power failure. Thus, the spark detection is not performed, and although the accuracy is inferior to that of the first invention, the voltage detection means is not required, so that it can be configured at a low cost.

第3の発明は、ファンと整流子モータを有する電動送風機と、前記電動送風機を駆動するための双方向性サイリスタと、前記双方向性サイリスタのトリガ位相角を変えることによって前記電動送風機の通電量を制御する制御手段と、前記電動送風機に流れる交流電流を検出する電流検出手段とを有し、前記電動送風機に流れる交流電流波形の内、少なくともその半波間が非通電となっている周期が存在し、且つ、前記非通電状態となっている半波の発生分布に極端な偏りがなく更に、単位時間あたりの、その半波の発生数が所定数以下である場合に、前記電動送風機への通電量を所定量まで下げるか又は前記電動送風機を停止することを特徴とし、前記「所定数」を、前記単位時間の全半波数の50%以上〜100%未満に設定したことを特徴とする電気掃除機としたものである。   According to a third aspect of the present invention, there is provided an electric blower having a fan and a commutator motor, a bidirectional thyristor for driving the electric blower, and an energization amount of the electric blower by changing a trigger phase angle of the bidirectional thyristor. There is a period in which at least half of the alternating current waveform flowing in the electric blower is non-energized in the control means for controlling the electric current and the current detection means for detecting the alternating current flowing in the electric blower In addition, when the generation distribution of the half-waves in the non-energized state is not extremely biased, and the number of half-waves generated per unit time is equal to or less than a predetermined number, The energization amount is lowered to a predetermined amount or the electric blower is stopped, and the “predetermined number” is set to 50% or more to less than 100% of the full half wave number of the unit time. It is obtained by a vacuum cleaner to.

通常、瞬時電圧低下や停電等は、短期間に連続して発生することは非常に稀である。即ち、瞬時電圧低下や停電が発生した場合、非通電状態となる半波の発生は極端に偏った分布になる。本発明は、その分布によって、瞬時電圧低下や停電と、スパークとを見分けるものである。尚、分布とは別に、非通電状態となっている半波の数も見ているのは、非通電判定の電流閾値近辺へ電圧低下した場合の誤検知を防止するためであり、その値(50%〜100%)は、経験値であり、その機器の特性によって設定値を変更する必要があるが、第2の発明よりも検出精度は上である。   Usually, it is very rare that an instantaneous voltage drop or a power failure occurs continuously in a short time. That is, when an instantaneous voltage drop or a power failure occurs, the generation of half-waves in a non-energized state has an extremely biased distribution. The present invention distinguishes instantaneous voltage drop or power outage from sparks according to the distribution. In addition to the distribution, the number of half-waves in a non-energized state is also seen in order to prevent erroneous detection when the voltage drops to the vicinity of the current threshold for non-energization determination. 50% to 100%) is an empirical value, and it is necessary to change the set value depending on the characteristics of the device, but the detection accuracy is higher than that of the second invention.

第4の発明は、ファンと整流子モータを有する電動送風機と、前記電動送風機を駆動するための双方向性サイリスタと、前記双方向性サイリスタのトリガ位相角を変えることによって前記電動送風機の通電量を制御する制御手段と、前記電動送風機に流れる交流電流を検出する電流検出手段とを有し、前記電動送風機に流れる交流電流波形の内、少なくともその半波間の電流値が、第1の所定値以下となっている周期が存在し、且つ、第2の所定値以下となっている半波の発生分布に極端な偏りがなく更に、単位時間あたりの、その半波の発生数が所定数以下である場合に、前記電動送風機への通電量を所定量まで下げるか又は前記電動送風機を停止することを特徴とし、前記「第1の所定値」を非通電状態である略ゼロに、「第2の所定値」を前記「第1の所定値」よりも大きい値に、「所定数」を、前記単位時間の全半波数の50%以上〜100%未満に設定することを特徴とする電気掃除機としたものである。   A fourth invention is an electric blower having a fan and a commutator motor, a bidirectional thyristor for driving the electric blower, and an energization amount of the electric blower by changing a trigger phase angle of the bidirectional thyristor. A current detecting means for detecting an alternating current flowing through the electric blower, and a current value between at least half waves of the waveform of the alternating current flowing through the electric blower is a first predetermined value. There is a period below and there is no extreme deviation in the distribution of half-waves that is below the second predetermined value, and the number of half-waves generated per unit time is below the predetermined number. The electric blower is turned down to a predetermined amount or the electric blower is stopped, and the "first predetermined value" is set to substantially zero which is a non-energized state. A predetermined value of 2 Is set to a value larger than the “first predetermined value”, and the “predetermined number” is set to 50% to less than 100% of the full half wave number of the unit time. It is.

「第2の所定値」を「第1の所定値」よりも大きく設定することで、「非通電」の判断と「電圧低下」判断にヒステリをもたせることになり、第4の発明よりもアルゴリズムは複雑であるが、より精度の高い検出が行えるものである。   By setting the “second predetermined value” to be larger than the “first predetermined value”, the determination of “non-energization” and the determination of “voltage drop” are made more hysteretic. Is complex, but can be detected with higher accuracy.

第5の発明は、第1〜第4のいずれか1つの発明に加えて、瞬時停電を検出する瞬停検知手段を有し、瞬時停電を検出した時点から、復電して所定の時間経過するまでの間は、非通電である半波の個数をカウントせず、且つ、それまでにカウントした非通電である半波数のカウント値をリセットすることを特徴とする電気掃除機としたものである。   In addition to any one of the first to fourth inventions, the fifth invention has an instantaneous power failure detection means for detecting an instantaneous power failure, and a predetermined time elapses after the power failure is detected. Until then, the number of half-waves that are not energized is not counted, and the count value of the half-wave numbers that are de-energized so far is reset. is there.

電気掃除機の使用時においては、通常の停電以外にも、例えばコンセントと電源プラグとの接触不良等によって、瞬間的に電力供給が遮断されるケースがある。本発明は、瞬停検知手段によってこれらの瞬断を検出して、スパーク検知を行わないようにするものである。一般的に瞬停検知手段は、電圧検知手段よりも安価に構成できるため、第2〜第4の発明と組み合わせることによって、第1の発明とほぼ同精度の検出が安価に実現できるものである。   When a vacuum cleaner is used, there is a case where the power supply is instantaneously interrupted due to, for example, poor contact between the outlet and the power plug in addition to a normal power failure. In the present invention, these instantaneous interruptions are detected by the instantaneous power failure detection means so as not to perform the spark detection. In general, the instantaneous power failure detection means can be configured at a lower cost than the voltage detection means. Therefore, by combining with the second to fourth inventions, detection with substantially the same accuracy as the first invention can be realized at a low cost. .

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
本発明の第1の実施の形態における電気掃除機について、図1〜図4を用いて説明する。図2は、本実施の形態における電気掃除機の全体斜視図であり、図2において、掃除機本体21は、後部に電動送風機2を内蔵した電動送風機室22が配され、前部に、塵埃を捕集する集塵室23が配され、掃除機本体21の前部には、ホース24の一端に設けた接続パイプ25が着脱自在に接続される吸気口26が設けられている。ホース24の他端には、掃除の際に握ると共に掃除機本体21の運転を操作するための操作部9を有する把手27を備えた先端パイプ28が設けられている。29は伸縮自在の延長管で、下流側端部が前記先端パイプ28に着脱自在に接続され、他端は、塵埃掻き上げ用の回転ブラシ30とその回転ブラシ30を回転駆動するモータ10を内蔵した吸込み具31に着脱自在に接続される。又、掃除機本体21の後部には、コンセント(商用電源)に接続して、掃除機本体21に内蔵されている回路基板32(図示せず)に電源を供給するための電源コード13が設けられている。図3は前記操作部9の詳細図であり、「強」スイッチ9a、「中」スイッチ9b、「弱」スイッチ9c、「切」スイッチ9d及び異常表示ランプ9eより構成されている。
(Embodiment 1)
The vacuum cleaner in the 1st Embodiment of this invention is demonstrated using FIGS. 1-4. FIG. 2 is an overall perspective view of the electric vacuum cleaner according to the present embodiment. In FIG. 2, the vacuum cleaner main body 21 is provided with an electric blower chamber 22 incorporating the electric blower 2 at the rear, and dust at the front. A dust collection chamber 23 is disposed, and an intake port 26 is provided at the front of the cleaner body 21 to which a connection pipe 25 provided at one end of the hose 24 is detachably connected. The other end of the hose 24 is provided with a tip pipe 28 having a handle 27 having an operation part 9 for operating the cleaner body 21 while holding it during cleaning. Reference numeral 29 denotes a telescopic extension pipe, the downstream end of which is detachably connected to the tip pipe 28, and the other end incorporates a rotary brush 30 for scraping dust and a motor 10 for rotationally driving the rotary brush 30. The suction tool 31 is detachably connected. In addition, a power cord 13 for supplying power to a circuit board 32 (not shown) built in the cleaner body 21 is provided at the rear of the cleaner body 21 and connected to an outlet (commercial power supply). It has been. FIG. 3 is a detailed view of the operation unit 9, which includes a “strong” switch 9a, a “medium” switch 9b, a “weak” switch 9c, a “off” switch 9d, and an abnormality display lamp 9e.

次に、図1を用いて制御回路構成を説明する。商用電源1には、電源波形のゼロクロスを検出するためのゼロクロス検出回路8と、電源電圧を検出するための電圧検知手段15と、信号制御手段14に電源を供給するための電源回路7と、電動送風機2と、モータ10が接続されている。前記電動送風機2とモータ10はそれぞれ双方向性サイリスタA3と双方向性サイリスタB11をオンすることによって、前記商用電源1から電源が供給されるように構成されている。前記双方向性サイリスタA3及びB11は、それぞれ駆動手段A4と駆動手段B12を介して、前記信号制御手段14により位相制御されるように構成されている。この時の位相制御角は、信号制御手段14に接続された操作部9の各スイッチ9a〜9dからの入力信号に応じて決定されている。位相制御を行なうために必要となるゼロクロス検出回路8は、前記信号制御手段14に接続されている。前記電動送風機2の電源供給ライン上には電流検出手段5が設けられ、この電流検出手段5によって、電動送風機2の交流電流波形を全波整流した信号波形が前記信号制御手段14に入力されると共に、前記信号波形をピークホールド回路6により平滑した電流波形も前記信号制御手段14に入力されるように構成されている。異常表示ランプ9eは、前記信号制御手段14に接続されており、異常発生時に点灯するようになっている。   Next, the configuration of the control circuit will be described with reference to FIG. The commercial power supply 1 includes a zero-cross detection circuit 8 for detecting a zero-cross of a power supply waveform, a voltage detection means 15 for detecting a power supply voltage, a power supply circuit 7 for supplying power to the signal control means 14, The electric blower 2 and the motor 10 are connected. The electric blower 2 and the motor 10 are configured to be supplied with power from the commercial power source 1 by turning on the bidirectional thyristor A3 and the bidirectional thyristor B11, respectively. The bidirectional thyristors A3 and B11 are configured to be phase-controlled by the signal control means 14 via the drive means A4 and the drive means B12, respectively. The phase control angle at this time is determined in accordance with input signals from the switches 9 a to 9 d of the operation unit 9 connected to the signal control means 14. The zero cross detection circuit 8 required for performing phase control is connected to the signal control means 14. Current detection means 5 is provided on the power supply line of the electric blower 2, and a signal waveform obtained by full-wave rectification of the alternating current waveform of the electric blower 2 is input to the signal control means 14 by the current detection means 5. In addition, a current waveform obtained by smoothing the signal waveform by the peak hold circuit 6 is also input to the signal control means 14. The abnormality display lamp 9e is connected to the signal control means 14, and lights up when an abnormality occurs.

次に、上記のように構成された、本実施の形態における電気掃除機の動作、作用について、図4を参照しながら説明する。   Next, the operation and action of the electric vacuum cleaner configured as above will be described with reference to FIG.

図4の波形は、上から順に電源電圧波形、双方向性サイリスタA3に入力されるトリガパルス波形、正常時の電流波形、異常スパーク時の電流波形、双方向性サイリスタA3が半波導通モードで故障している時の電流波形であり、図5の波形は、前記図4のA部の詳細図であり、上から順に電源電圧波形、ゼロクロス検出回路8の出力波形、双方向サイリスタA3に入力されるトリガパルス波形、正常時の電流波形、電流検出手段5の出力波形である。電源投入時にはトリガパルスは常時オフ即ち電動送風機2は停止状態であるため、電流波形は0Vとなる。使用者の操作によって、操作部9の各スイッチ9a〜9cが押された場合、図のようなトリガパルスを信号制御手段14から駆動手段A4を介して双方向性サイリスタA3に入力することで、図5のように前記トリガパルス入力と同時に前記双方向サイリスタA3が導通して電動送風機2に電流が流れ、次のゼロクロスで電流が遮断されるようになる。即ち、トリガパルスの位相角t1(=ゼロクロス検出回路の出力波形によって、ゼロクロスを検出してからトリガパルスをオンするまでの時間)を変えることで、電動送風機2に流れる電流(入力)を制御している。信号制御手段14は、操作部9のどのスイッチが押されたかを判断し、押されたスイッチに応じて、電動送風機が狙いの入力で駆動するように、トリガパルスの位相角を決定し、駆動手段A3に信号を出力している。   The waveforms in FIG. 4 are the power supply voltage waveform, the trigger pulse waveform input to the bidirectional thyristor A3, the current waveform during normal operation, the current waveform during abnormal sparking, and the bidirectional thyristor A3 in the half-wave conduction mode. FIG. 5 is a detailed diagram of the A part of FIG. 4 and shows the power supply voltage waveform, the output waveform of the zero cross detection circuit 8, and the input to the bidirectional thyristor A3 in order from the top. The trigger pulse waveform, the normal current waveform, and the output waveform of the current detection means 5 are shown. When the power is turned on, the trigger pulse is always off, that is, since the electric blower 2 is in a stopped state, the current waveform becomes 0V. When the switches 9a to 9c of the operation unit 9 are pushed by the user's operation, a trigger pulse as shown in the figure is input from the signal control means 14 to the bidirectional thyristor A3 via the drive means A4. As shown in FIG. 5, simultaneously with the trigger pulse input, the bidirectional thyristor A3 is turned on, current flows through the electric blower 2, and the current is cut off at the next zero cross. That is, the current (input) flowing through the electric blower 2 is controlled by changing the phase angle t1 of the trigger pulse (= the time from when the zero cross is detected until the trigger pulse is turned on by the output waveform of the zero cross detection circuit). ing. The signal control unit 14 determines which switch of the operation unit 9 is pressed, determines the phase angle of the trigger pulse so that the electric blower is driven with the target input, and drives according to the pressed switch. A signal is output to the means A3.

又、電動送風機2が駆動している時に「切」スイッチ9dを押すと、信号制御手段14からのトリガパルス出力が常時オフになり、電動送風機2も停止する。   When the “OFF” switch 9d is pressed while the electric blower 2 is being driven, the trigger pulse output from the signal control means 14 is always turned off, and the electric blower 2 is also stopped.

以降、異常スパーク検知のアルゴリズムと異常スパーク検知後の制御について、図6を参照しながら説明する。   Hereinafter, an abnormal spark detection algorithm and control after abnormal spark detection will be described with reference to FIG.

電動送風機2を駆動している間、信号制御手段14は常に、トリガパルス出力の1ms後(図5の▲のタイミング・t3=1ms)の、電流検出手段5の出力値及び、90°位相の電圧検知手段15の出力値をモニターしている。信号制御手段14は、前記電流検出手段5の出力値が1V未満であったなら「半波抜け」と判断し、その時の前記電圧検知手段15の出力値が30V未満であれば、「半波抜け」と判断した回数を積算し、1秒毎にこの積算値を用いて異常スパークの判定と異常スパーク確定後の制御を行なっている。具体的には前記積算値が2回以下であれば「異常スパークではない」と判断し、3回以上であれば「異常スパークである」と判断して、電動送風機2の入力を下げるように制御する。図6においては、ステップ2で電動送風機2を駆動しているかどうかの判断を行い、駆動中であるならばステップ3で「半波抜け」かどうかの判断を行い、電源電圧が30V未満であれば、ステップ4で「半波抜け」の回数を積算している。更にステップ5で判定のタイミング(1秒毎)であるかを判断し、判定タイミングであれば、ステップ6で「半波抜け」回数積算値の判定を行なう。積算値が3回以上であれば「異常スパークである」と判断して、入力を下げて、異常表示ランプ9eを点灯させている。   While the electric blower 2 is being driven, the signal control means 14 always outputs the output value of the current detection means 5 and the 90 ° phase 1 ms after the trigger pulse output (timing ▲ 3 in FIG. 5 · t3 = 1 ms). The output value of the voltage detection means 15 is monitored. If the output value of the current detection means 5 is less than 1V, the signal control means 14 determines that “half-wave missing”. If the output value of the voltage detection means 15 at that time is less than 30V, “half-wave” The number of times determined to be “missing” is integrated, and this integrated value is used every second to determine abnormal spark and control after the abnormal spark is determined. Specifically, if the integrated value is 2 times or less, it is judged as “abnormal spark”, and if it is 3 times or more, it is judged as “abnormal spark” and the input of the electric blower 2 is lowered. Control. In FIG. 6, it is determined whether or not the electric blower 2 is being driven in step 2, and if it is being driven, it is determined whether or not “half-wave missing” is determined in step 3, and the power supply voltage is less than 30V. In step 4, the number of “half-wave missing” is integrated. Further, it is determined whether or not the determination timing (every second) is reached in step 5, and if it is the determination timing, in step 6, the “half-wave missing” number integrated value is determined. If the integrated value is 3 times or more, it is determined that “abnormal spark”, the input is lowered, and the abnormality display lamp 9e is turned on.

以上のように、本実施の形態によれば、安価に且つ単純な構成でスパーク検知が構成でき又、「半波抜け」の検知であるので誤検知の可能性を極めて低く抑えられ、且つ電源電圧が低い場合には、「半波抜け」の回数を積算しないため、電源電圧低下や瞬時停電等による誤検知も防止でき、精度良く「異常スパーク」を検知できるものである。   As described above, according to the present embodiment, it is possible to configure spark detection at a low cost and with a simple configuration, and since it is detection of “half-wave missing”, the possibility of erroneous detection can be suppressed to a very low level, and the power source When the voltage is low, the number of “half-wave breaks” is not integrated, so that erroneous detection due to power supply voltage drop or instantaneous power failure can be prevented, and “abnormal spark” can be detected with high accuracy.

(実施の形態2)
本発明の第2の実施の形態における電気掃除機の制御について、図7を用いて説明する。尚、本実施の形態における電気掃除機の全体構成は実施の形態1と同一、制御回路構成は、実施の形態1から電圧検知手段15を除いただけのものであるため、その詳細な説明は省略する。
(Embodiment 2)
Control of the vacuum cleaner in the 2nd Embodiment of this invention is demonstrated using FIG. The overall configuration of the vacuum cleaner in the present embodiment is the same as that of the first embodiment, and the control circuit configuration is the same as that of the first embodiment except that the voltage detection means 15 is omitted. To do.

電動送風機2を駆動している間、信号制御手段14は常に、トリガパルス出力の1ms後(図5の▲のタイミング・t3=1ms)の、電流検出手段5の出力値をモニターしている。信号制御手段14は、前記電流検出手段5の出力値が1V未満であったなら「半波抜け」と判断し、「半波抜け」と判断した回数を積算し、1秒毎にこの積算値を用いて異常スパークの判定と異常スパーク確定後の制御を行なっている。具体的には前記積算値が3回以上で且つ、連続して「半波抜け」と判断した回数が7回未満であれば「異常スパークである」と判断して、電動送風機2の入力を下げるように制御する。図6においては、ステップ2で電動送風機2を駆動しているかどうかの判断を行い、駆動中であるならばステップ3で「半波抜け」かどうかの判断を行い、「半波抜け」の回数を積算している。同時にステップ4で、前回も「半波抜け」であったならば、連続「半波抜け」カウンタを+1し、ステップ5で、その最大連続数を更新している。更にステップ6で判定のタイミング(1秒毎)であるかを判断し、判定タイミングであれば、ステップ7で「半波抜け」回数積算値の判定を行なう。加えてステップ8で連続「半波抜け」回数を判定し、最終的に積算値が3回以上で且つ連続「半波抜け」回数が7回未満であれば「異常スパークである」と判断して、入力を下げて、異常表示ランプ9eを点灯させている。   While the electric blower 2 is being driven, the signal control means 14 always monitors the output value of the current detection means 5 1 ms after the trigger pulse output (timing ▲ 3 in FIG. 5 · t3 = 1 ms). If the output value of the current detection means 5 is less than 1V, the signal control means 14 determines “half wave missing”, integrates the number of times determined as “half wave missing”, and adds this integrated value every second. Is used to determine the abnormal spark and control after the abnormal spark is determined. Specifically, if the integrated value is 3 times or more and the number of times of “half-wave missing” is continuously less than 7 times, it is determined as “abnormal spark” and the input of the electric blower 2 is Control to lower. In FIG. 6, it is determined whether or not the electric blower 2 is being driven in step 2, and if it is being driven, it is determined whether or not “half-wave missing” is determined in step 3, and the number of “half-wave missing” is determined. Is accumulated. At the same time, in step 4, if “half-wave missing” was also last time, the continuous “half-wave missing” counter is incremented by 1, and in step 5, the maximum number of continuous is updated. Further, in step 6, it is determined whether the determination timing (every second) is reached. If the determination timing is reached, in step 7, the "half-wave missing" number integrated value is determined. In addition, the number of consecutive “half-wave misses” is determined in step 8. If the integrated value is finally 3 times or more and the number of consecutive “half-wave misses” is less than 7, it is judged as “abnormal spark”. Thus, the input is lowered and the abnormality display lamp 9e is turned on.

通常、瞬時電圧低下や瞬時停電が発生した場合、その復電までには0.07秒以上かかる。即ち、半波にして7回(50Hz地域)の間は電圧低下・停電状態が継続することになる。本発明は、異常スパークの判定に、連続「半波抜け」回数が7回未満であるかどうかを用いているために、第1の発明よりも精度は劣るものの、電圧検知手段を用いずに瞬時電圧低下や停電による誤検知を防止できる異常スパーク検知回路を、安価に構成できるものである。   Normally, when an instantaneous voltage drop or instantaneous power failure occurs, it takes 0.07 seconds or more to recover. That is, the voltage drop / power failure state continues for 7 times (50 Hz region) in half-wave. Since the present invention uses whether or not the number of consecutive “half-wave misses” is less than 7 in the determination of the abnormal spark, the accuracy is inferior to that of the first invention, but without using the voltage detection means. An abnormal spark detection circuit that can prevent erroneous detection due to instantaneous voltage drop or power failure can be configured at low cost.

尚、本実施の形態において、積算値が3回以上で且つ、積算値が3回以上で且つ、連続して「半波抜け」と判断した回数が7回未満であれば「異常スパークである」と判断が7回未満であれば「異常スパークである」と判断するようにしたが、各回数は必ずしもこの回数に限られるものではない。   In the present embodiment, if the integrated value is 3 times or more, the integrated value is 3 times or more, and the number of times that “half-wave missing” is continuously determined is less than 7, “abnormal spark. "Is less than 7 times, it is judged as" abnormal spark ", but each number of times is not necessarily limited to this number.

但し、通常瞬時電圧低下や瞬時停電が発生した場合には、その復電までには0.07秒以上かかり、半波にして約7回(50Hz地域)の間は電圧低下・停電状態が継続することになるため、連続して「半波抜け」と判断する回数は、7回以上が望ましい。   However, if an instantaneous voltage drop or an instantaneous power failure occurs, it takes 0.07 seconds or more to recover, and the voltage drop / power failure state continues for about 7 times (50 Hz region) in half-wave. Therefore, it is desirable that the number of times that “half-wave missing” is continuously determined is 7 times or more.

(実施の形態3)
本発明の第3の実施の形態における電気掃除機の制御について、図8を用いて説明する。尚、本実施の形態における電気掃除機の全体構成は実施の形態1と同一、制御回路構成は、実施の形態1から電圧検知手段15を除いただけのものであるため、その詳細な説明は省略する。
(Embodiment 3)
Control of the vacuum cleaner in the third embodiment of the present invention will be described with reference to FIG. The overall configuration of the vacuum cleaner in the present embodiment is the same as that of the first embodiment, and the control circuit configuration is the same as that of the first embodiment except that the voltage detection means 15 is omitted. To do.

電動送風機2を駆動している間、信号制御手段14は常に、トリガパルス出力の1ms後(図5の▲のタイミング・t3=1ms)の、電流検出手段5の出力値をモニターしている。信号制御手段14は、前記電流検出手段5の出力値が1.3V未満であったなら「電圧低下」と判断し、その回数を積算する。又、前記電流検出手段5の出力値が1V未満であったなら「半波抜け」と判断し、「半波抜け」と判断した回数を積算し、0.3秒毎に、それぞれの判断回数の最大値、最小値を更新していく。更にそれを3回繰り返したあと即ち、0.9秒毎にこの積算値と、各判断回数の最大値、最小値を用いて異常スパークの判定と異常スパーク確定後の制御を行なっている。具体的には前記「半波抜け」積算値が3回以上で且つ、0.3秒毎の「半波抜け」最大値と最小値の差が7回未満すなわち、「半波抜けの」発生分布に極端な偏りがなく且つ、0.3秒毎の「低電圧」積算値の最大値が20回未満であれば「異常スパークである」と判断して、電動送風機2の入力を下げるように制御する。図6においては、ステップ2で電動送風機2を駆動しているかどうかの判断を行い、駆動中であるならばステップ3で「低電圧」かどうかの判断を行い、「低電圧」の回数を積算し、同時にステップ4で「半波抜け」かどうかの判断を行い、「半波抜け」の回数を積算している。ステップ5は、0.3秒毎に行われる、「低電圧」判断回数の最大値更新及び、「半波抜け」回数の最大値及び最小値の更新処理である。更にステップ6で判定のタイミング(0.9毎)であるかを判断し、判定タイミングであれば、ステップ7で「半波抜け」回数積算値の判定を行なう。加えてステップ8で「半波抜け」の発生分布に極端な偏りがないかを、0.3秒毎の「半波抜け」最大値と最小値との差で判定している。更にステップ9では、「低電圧」発生回数最大値が20回未満であるかを判定し、最終的に0.9秒間の「半波抜け」積算値が3回以上で且つ、0.3秒毎の「半波抜け」最大値と最小値の差が7回未満すなわち、「半波抜けの」発生分布に極端な偏りがなく且つ、0.3秒毎の「低電圧」積算値の最大値が20回未満であれば「異常スパークである」と判断して、入力を下げて、異常表示ランプ9eを点灯させている。   While the electric blower 2 is being driven, the signal control means 14 always monitors the output value of the current detection means 5 1 ms after the trigger pulse output (timing ▲ 3 in FIG. 5 · t3 = 1 ms). If the output value of the current detection means 5 is less than 1.3 V, the signal control means 14 determines that the voltage has dropped and adds up the number of times. Further, if the output value of the current detection means 5 is less than 1V, it is judged as “half-wave missing”, the number of times judged as “half-wave missing” is integrated, and the number of judgments is made every 0.3 seconds. The maximum and minimum values are updated. Furthermore, after this is repeated three times, that is, every 0.9 seconds, the abnormal spark is determined and the control after the abnormal spark is determined is performed using the integrated value and the maximum and minimum values of each determination count. Specifically, the “half-wave missing” integrated value is 3 times or more, and the difference between the maximum value and the minimum value of “half-wave missing” every 0.3 seconds is less than 7 times, that is, “half-wave missing” occurs. If the distribution is not extremely biased and the maximum value of the “low voltage” integrated value every 0.3 seconds is less than 20 times, it is judged as “abnormal spark” and the input of the electric blower 2 is lowered. To control. In FIG. 6, it is determined whether or not the electric blower 2 is being driven in step 2, and if it is being driven, it is determined whether or not it is “low voltage” in step 3 and the number of “low voltage” is integrated. At the same time, it is determined in step 4 whether or not “half-wave missing” has occurred, and the number of “half-wave missing” is integrated. Step 5 is a process of updating the maximum value of the “low voltage” determination count and updating the maximum value and minimum value of the “half-wave dropout” count every 0.3 seconds. Further, in step 6, it is determined whether or not the determination timing (every 0.9), and if it is the determination timing, in step 7, the "half-wave missing" number integrated value is determined. In addition, it is determined in step 8 whether the occurrence distribution of “half-wave missing” is extremely biased by the difference between the maximum value and the minimum value of “half-wave missing” every 0.3 seconds. Further, in step 9, it is determined whether or not the maximum number of occurrences of “low voltage” is less than 20, and finally the “half-wave missing” integrated value for 0.9 seconds is 3 times or more and 0.3 seconds. The difference between the maximum value and the minimum value of each “half-wave missing” is less than 7 times, that is, there is no extreme bias in the distribution of “half-wave missing”, and the maximum “low voltage” integrated value every 0.3 seconds If the value is less than 20 times, it is judged as “abnormal spark”, the input is lowered, and the abnormality display lamp 9e is turned on.

一方、瞬時停電の検出は、ゼロクロス検出回路8を用いて常時行っている。通常であれば、ゼロクロスは電源周波数に同期して出力されるため、50Hz地域では10ms毎に、60Hz地域では8.33ms毎に出力されるが、このゼロクロスの出力周期が、前述の10ms/8.33msよりも長くなった時に瞬時停電であると判断できる。このような瞬時停電の検知アルゴリズムは、ごく一般的なものであるため、本実施の形態のフローチャートには記載していないが、ステップ1の直前で、瞬時停電であると判断してから、復電後の100ms間は、全てのカウンタをリセットし続ける処理を行っている。   On the other hand, the detection of the instantaneous power failure is always performed using the zero cross detection circuit 8. Normally, since the zero cross is output in synchronism with the power supply frequency, the zero cross is output every 10 ms in the 50 Hz region and every 8.33 ms in the 60 Hz region. The output cycle of this zero cross is 10 ms / 8 described above. When it becomes longer than 33 ms, it can be determined that there is an instantaneous power failure. Since such an instantaneous power failure detection algorithm is very general, it is not described in the flowchart of the present embodiment. However, immediately after step 1, it is determined that there is an instantaneous power failure and During 100 ms after the power is supplied, a process of continuously resetting all the counters is performed.

通常、瞬時電圧低下や停電等は、短期間に連続して発生することは非常に稀である。即ち、瞬時電圧低下や停電が発生した場合、非通電状態となる半波の発生は極端に偏った分布になる。本実施の形態によれば、0.3秒毎の「半波抜け」最大値と最小値の差によって、「半波抜け」の発生分布の偏りを見ており、且つ「半波抜け」の判定値と、「低電圧」の判定値に0.3Vのヒステリを持たせ、更に「低電圧」の回数が多い場合には、「異常スパーク」としないため、「半波抜け」判定値近辺へ電圧低下した場合の誤検知も防止できる。又、瞬時停電を検出した場合、各カウンタをリセットすることで、通常の停電時はもちろん、例えばコンセントと電源プラグとの接触不良等によって、瞬間的に電力供給が遮断されるケースにおいても誤検知が防止でき、精度の高い「異常スパーク検知」を、安価な構成で実現できるものである。   Usually, it is very rare that an instantaneous voltage drop or a power failure occurs continuously in a short time. That is, when an instantaneous voltage drop or a power failure occurs, the generation of half-waves in a non-energized state has an extremely biased distribution. According to the present embodiment, the occurrence distribution of “half-wave missing” is observed by the difference between the maximum value and the minimum value of “half-wave missing” every 0.3 seconds, and “half-wave missing” If the judgment value and the judgment value of “low voltage” have a hysteresis of 0.3 V, and if the number of times of “low voltage” is large, “abnormal spark” is not set, so the “half-wave missing” judgment value is around It is also possible to prevent false detection when the voltage drops. In addition, when an instantaneous power failure is detected, resetting each counter enables false detection in cases where the power supply is instantaneously interrupted due to, for example, poor contact between the outlet and the power plug as well as a normal power failure. Can be prevented and high-precision “abnormal spark detection” can be realized with an inexpensive configuration.

尚、請求項3に記載の発明は、本実施の形態において、「低電圧」判定閾値(1.3V)を「半波抜け」判定値(1V)と同じ値に設定したものである。   According to the third aspect of the present invention, in the present embodiment, the “low voltage” determination threshold (1.3 V) is set to the same value as the “half-wave missing” determination value (1 V).

以上のように、本発明はモータースパークに対する対策が必要とされる機器、特に電気掃除機に対して効果を発揮するものであり、家庭用だけでなく、ビルトインタイプ(セントラルクリーナ)のような電気掃除機にも応用・展開できる。   As described above, the present invention is effective for devices that require countermeasures against motor sparks, particularly electric vacuum cleaners, and is not only for home use but also for built-in type (central cleaner). It can also be applied and deployed in vacuum cleaners.

本発明の実施の形態1における電気掃除機の回路ブロック図The circuit block diagram of the vacuum cleaner in Embodiment 1 of this invention 同、電気掃除機の全体斜視図Same perspective view of vacuum cleaner 同、電気掃除機の操作部詳細図Same as above, detail of the operation part of the vacuum cleaner 同、電気掃除機の電流波形図Same as above, current waveform of vacuum cleaner 同、電気掃除機の電流波形詳細図Same detail of current waveform of vacuum cleaner 同、電気掃除機の制御フローチャートSame as above, control flowchart of vacuum cleaner 本発明の実施の形態2における電気掃除機の制御フローチャートControl flowchart of electric vacuum cleaner in Embodiment 2 of the present invention 本発明の実施の形態3における電気掃除機の制御フローチャートControl flowchart of the electric vacuum cleaner in Embodiment 3 of the present invention

符号の説明Explanation of symbols

1 商用電源
2 電動送風機
3 双方向性サイリスタA
4 駆動手段A
5 電流検出手段
6 ピークホールド回路
7 電源回路
8 ゼロクロス検出回路(瞬停検知手段)
9 操作部
9a 「強」スイッチ
9b 「中」スイッチ
9c 「弱」スイッチ
9d 「切」スイッチ
9e 異常表示ランプ
10 モータ
11 双方向性サイリスタB
12 駆動手段B
13 電源コード
14 信号制御手段
15 電圧検知手段
21 掃除機本体
22 電動送風機室
23 集塵室
24 ホース
25 接続パイプ
26 吸気口
27 把手
28 先端パイプ
29 延長管
30 回転ブラシ
31 吸込み具
32 回路基板
1 Commercial Power Supply 2 Electric Blower 3 Bidirectional Thyristor A
4 Driving means A
5 Current detection means 6 Peak hold circuit 7 Power supply circuit 8 Zero cross detection circuit (instantaneous power failure detection means)
9 Operation section 9a “High” switch 9b “Medium” switch 9c “Weak” switch 9d “Off” switch 9e Abnormal indicator lamp 10 Motor 11 Bidirectional thyristor B
12 Driving means B
DESCRIPTION OF SYMBOLS 13 Power cord 14 Signal control means 15 Voltage detection means 21 Vacuum cleaner main body 22 Electric blower chamber 23 Dust collection chamber 24 Hose 25 Connection pipe 26 Intake port 27 Handle 28 End pipe 29 Extension pipe 30 Rotating brush 31 Suction tool 32 Circuit board

Claims (5)

ファンと整流子モータを有する電動送風機と、前記電動送風機を駆動するための双方向性サイリスタと、前記双方向性サイリスタのトリガ位相角を変えることによって前記電動送風機の通電量を制御する制御手段と、前記電動送風機に流れる交流電流を検出する電流検出手段と、電気掃除機に入力されている電源電圧を検出する電圧検知手段とを有し、前記電動送風機に流れる交流電流波形の内、少なくともその半波間が非通電となっている周期が存在し、且つ、そのときの電源電圧が所定値以上である場合に、前記電動送風機への通電量を所定量まで下げるか又は前記電動送風機を停止することを特徴とする電気掃除機。 An electric blower having a fan and a commutator motor; a bidirectional thyristor for driving the electric blower; and a control means for controlling an energization amount of the electric blower by changing a trigger phase angle of the bidirectional thyristor. A current detecting means for detecting an alternating current flowing through the electric blower, and a voltage detecting means for detecting a power supply voltage inputted to the electric vacuum cleaner, and at least of the alternating current waveform flowing through the electric blower. When there is a period in which the half-wave is not energized and the power supply voltage at that time is equal to or higher than a predetermined value, the energization amount to the electric blower is reduced to a predetermined amount or the electric blower is stopped. A vacuum cleaner characterized by that. ファンと整流子モータを有する電動送風機と、前記電動送風機を駆動するための双方向性サイリスタと、前記双方向性サイリスタのトリガ位相角を変えることによって前記電動送風機の通電量を制御する制御手段と、前記電動送風機に流れる交流電流を検出する電流検出手段とを有し、前記電動送風機に流れる交流電流波形の内、少なくともその半波間が非通電となっている周期が存在し、且つ、その半波の連続発生数が所定回数未満である場合に、前記電動送風機への通電量を所定量まで下げるか又は前記電動送風機を停止することを特徴とする電気掃除機。 An electric blower having a fan and a commutator motor; a bidirectional thyristor for driving the electric blower; and a control means for controlling an energization amount of the electric blower by changing a trigger phase angle of the bidirectional thyristor. Current detecting means for detecting an alternating current flowing in the electric blower, and there is a period in which at least half of the alternating current waveform flowing in the electric blower is not energized, and half A vacuum cleaner characterized in that, when the number of continuous generations of waves is less than a predetermined number of times, the energization amount to the electric blower is reduced to a predetermined amount or the electric blower is stopped. ファンと整流子モータを有する電動送風機と、前記電動送風機を駆動するための双方向性サイリスタと、前記双方向性サイリスタのトリガ位相角を変えることによって前記電動送風機の通電量を制御する制御手段と、前記電動送風機に流れる交流電流を検出する電流検出手段とを有し、前記電動送風機に流れる交流電流波形の内、少なくともその半波間が非通電となっている周期が存在し、且つ、前記非通電状態となっている半波の発生分布に極端な偏りがなく更に、単位時間あたりの、その半波の発生数が所定数値以下である場合に、前記電動送風機への通電量を所定量まで下げるか又は前記電動送風機を停止することを特徴とし、前記「所定数」を、前記単位時間の全半波数の50%以上〜100%未満に設定したことを特徴とする電気掃除機。 An electric blower having a fan and a commutator motor; a bidirectional thyristor for driving the electric blower; and a control means for controlling an energization amount of the electric blower by changing a trigger phase angle of the bidirectional thyristor. Current detecting means for detecting an alternating current flowing through the electric blower, wherein there is a period in which at least half of the alternating current waveform flowing through the electric blower is not energized, and the non-current When there is no extreme bias in the distribution of half-waves in the energized state and the number of half-waves generated per unit time is less than or equal to a predetermined value, the energization amount to the electric blower is reduced to a predetermined amount. The electric blower is lowered or the electric blower is stopped, and the “predetermined number” is set to 50% to less than 100% of the full half wave number of the unit time. Removal machine. ファンと整流子モータを有する電動送風機と、前記電動送風機を駆動するための双方向性サイリスタと、前記双方向性サイリスタのトリガ位相角を変えることによって前記電動送風機の通電量を制御する制御手段と、前記電動送風機に流れる交流電流を検出する電流検出手段とを有し、前記電動送風機に流れる交流電流波形の内、少なくともその半波間の電流値が、第1の所定値以下となっている周期が存在し、且つ、第2の所定値以下となっている半波の発生分布に極端な偏りがなく更に、単位時間あたりの、その半波の発生数が所定数以下である場合に、前記電動送風機への通電量を所定量まで下げるか又は前記電動送風機を停止することを特徴とし、前記「第1の所定値」を非通電状態である略ゼロに、「第2の所定値」を前記「第1の所定値」よりも大きい値に、「所定数」を、前記単位時間の全半波数の50%以上〜100%未満に設定したことを特徴とする電気掃除機。 An electric blower having a fan and a commutator motor; a bidirectional thyristor for driving the electric blower; and a control means for controlling an energization amount of the electric blower by changing a trigger phase angle of the bidirectional thyristor. Current detecting means for detecting an alternating current flowing through the electric blower, and a period in which at least a half-wave current value of the alternating current waveform flowing through the electric blower is equal to or less than a first predetermined value. And there is no extreme bias in the distribution of half-waves that is equal to or less than the second predetermined value, and the number of half-waves generated per unit time is equal to or less than the predetermined number, The amount of current supplied to the electric blower is reduced to a predetermined amount or the electric blower is stopped. The “first predetermined value” is set to substantially zero which is a non-energized state, and the “second predetermined value” is set to “First” To a value greater than the predetermined value ", vacuum cleaner, characterized in that the" predetermined number "is set to 50% or more and less than 100% of the total half-wave number of the unit time. 瞬時停電を検出する瞬停検知手段を有し、瞬時停電を検出した時点から、復電して所定の時間経過するまでの間は、非通電である半波の個数をカウントせず、且つ、それまでにカウントした非通電である半波数のカウント値をリセットすることを特徴とする請求項1〜4のいずれか1項に記載の電気掃除機。 There is an instantaneous power failure detection means for detecting an instantaneous power failure, and from the time when the instantaneous power failure is detected until the power is restored and a predetermined time elapses, the number of half waves that are not energized is not counted, and The vacuum cleaner according to any one of claims 1 to 4, wherein the half-wave count value that has been energized so far is reset.
JP2008261452A 2008-10-08 2008-10-08 Electric vacuum cleaner Active JP5256981B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008261452A JP5256981B2 (en) 2008-10-08 2008-10-08 Electric vacuum cleaner
CN2009101777632A CN101716065B (en) 2008-10-08 2009-09-25 Electric vacuum cleaner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008261452A JP5256981B2 (en) 2008-10-08 2008-10-08 Electric vacuum cleaner

Publications (2)

Publication Number Publication Date
JP2010088649A true JP2010088649A (en) 2010-04-22
JP5256981B2 JP5256981B2 (en) 2013-08-07

Family

ID=42251978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008261452A Active JP5256981B2 (en) 2008-10-08 2008-10-08 Electric vacuum cleaner

Country Status (2)

Country Link
JP (1) JP5256981B2 (en)
CN (1) CN101716065B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103986379A (en) * 2014-05-26 2014-08-13 北京经纬恒润科技有限公司 Driving circuiting, driving chip and driving method of single-chip microcomputer and stepping motor

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012090733A (en) * 2010-10-26 2012-05-17 Toshiba Corp Vacuum cleaner
AU2015413796B2 (en) * 2015-11-02 2019-03-21 Mitsubishi Electric Corporation Electric Vacuum cleaner
JP7186112B2 (en) * 2019-02-27 2022-12-08 東芝ライフスタイル株式会社 vacuum cleaner

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07313415A (en) * 1994-05-26 1995-12-05 Matsushita Electric Ind Co Ltd Vacuum cleaner
JP2001136780A (en) * 1999-11-10 2001-05-18 Matsushita Electric Ind Co Ltd Control circuit for motor-driven blower and vacuum cleaner
JP2006204470A (en) * 2005-01-27 2006-08-10 Toshiba Tec Corp Vacuum cleaner
JP2008086124A (en) * 2006-09-27 2008-04-10 Mitsubishi Electric Corp Motor control apparatus, vacuum cleaner and hand dryer
JP2008099937A (en) * 2006-10-20 2008-05-01 Matsushita Electric Ind Co Ltd Vacuum cleaner
JP2008173364A (en) * 2007-01-22 2008-07-31 Mitsubishi Electric Corp Vacuum cleaner

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07313415A (en) * 1994-05-26 1995-12-05 Matsushita Electric Ind Co Ltd Vacuum cleaner
JP2001136780A (en) * 1999-11-10 2001-05-18 Matsushita Electric Ind Co Ltd Control circuit for motor-driven blower and vacuum cleaner
JP2006204470A (en) * 2005-01-27 2006-08-10 Toshiba Tec Corp Vacuum cleaner
JP2008086124A (en) * 2006-09-27 2008-04-10 Mitsubishi Electric Corp Motor control apparatus, vacuum cleaner and hand dryer
JP2008099937A (en) * 2006-10-20 2008-05-01 Matsushita Electric Ind Co Ltd Vacuum cleaner
JP2008173364A (en) * 2007-01-22 2008-07-31 Mitsubishi Electric Corp Vacuum cleaner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103986379A (en) * 2014-05-26 2014-08-13 北京经纬恒润科技有限公司 Driving circuiting, driving chip and driving method of single-chip microcomputer and stepping motor

Also Published As

Publication number Publication date
CN101716065A (en) 2010-06-02
CN101716065B (en) 2012-04-25
JP5256981B2 (en) 2013-08-07

Similar Documents

Publication Publication Date Title
JP4937356B2 (en) Motor control device, vacuum cleaner and hand dryer
JP5256981B2 (en) Electric vacuum cleaner
JP2009236594A (en) Connection abnormality detection device and domestic electric instrument
JP6443655B2 (en) Motor drive device and electric tool
JP4912470B2 (en) Vacuum cleaner
TW201722335A (en) Cleaning appliance and operation method thereof for effectively performing cleaning task while being far away from cleaning surface
JP2007143818A (en) Vacuum cleaner
JP2003164399A (en) Electric vacuum cleaner
JP4561799B2 (en) Vacuum cleaner
JP5879473B2 (en) Electric vacuum cleaner
JP5029516B2 (en) Electric vacuum cleaner
JP4584941B2 (en) Electric vacuum cleaner
JP2012217787A (en) Vacuum cleaner
JP2006246666A (en) Air conditioner
JP2010011995A (en) Vacuum cleaner
JP5765247B2 (en) Electric vacuum cleaner
JP2010213797A (en) Vacuum cleaner
JP4039675B2 (en) Electric vacuum cleaner
JP2011183086A (en) Vacuum cleaner
JP2009017909A (en) Vacuum cleaner
JP2006204470A (en) Vacuum cleaner
JP6078791B2 (en) Electric vacuum cleaner
JP5098989B2 (en) Electric vacuum cleaner
JP5151860B2 (en) Electric vacuum cleaner
JP2007319581A (en) Control device of vacuum cleaner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110315

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20110413

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120911

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121025

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20121214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130326

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130408

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160502

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5256981

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151