[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2008257250A - 大きい実効面積を有する伝送用光ファイバ - Google Patents

大きい実効面積を有する伝送用光ファイバ Download PDF

Info

Publication number
JP2008257250A
JP2008257250A JP2008097826A JP2008097826A JP2008257250A JP 2008257250 A JP2008257250 A JP 2008257250A JP 2008097826 A JP2008097826 A JP 2008097826A JP 2008097826 A JP2008097826 A JP 2008097826A JP 2008257250 A JP2008257250 A JP 2008257250A
Authority
JP
Japan
Prior art keywords
optical fiber
cladding
refractive index
fiber according
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008097826A
Other languages
English (en)
Other versions
JP5379396B2 (ja
Inventor
Pierre Sillard
ピエール・シラール
Denis Molin
ドウニ・モラン
Montmorillon Louis-Anne De
ルイ−アンヌ・ドウ・モンモリオン
Marianne Bigot-Astruc
マリアンヌ・ビゴ−アストラツク
Simon Richard
シモン・リシヤール
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Draka Comteq BV
Original Assignee
Draka Comteq BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Draka Comteq BV filed Critical Draka Comteq BV
Publication of JP2008257250A publication Critical patent/JP2008257250A/ja
Application granted granted Critical
Publication of JP5379396B2 publication Critical patent/JP5379396B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03616Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
    • G02B6/03638Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 3 layers only
    • G02B6/0365Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 3 layers only arranged - - +
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02004Optical fibres with cladding with or without a coating characterised by the core effective area or mode field radius
    • G02B6/02009Large effective area or mode field radius, e.g. to reduce nonlinear effects in single mode fibres
    • G02B6/02014Effective area greater than 60 square microns in the C band, i.e. 1530-1565 nm
    • G02B6/02019Effective area greater than 90 square microns in the C band, i.e. 1530-1565 nm
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02214Optical fibres with cladding with or without a coating tailored to obtain the desired dispersion, e.g. dispersion shifted, dispersion flattened
    • G02B6/02219Characterised by the wavelength dispersion properties in the silica low loss window around 1550 nm, i.e. S, C, L and U bands from 1460-1675 nm
    • G02B6/02266Positive dispersion fibres at 1550 nm

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Communication System (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Glass Compositions (AREA)

Abstract

【課題】光ファイバの他の光学特性が劣化せずに、120μm以上の拡大された実効面積を有し、かつ1600nm未満の実効カットオフ波長を有する伝送用光ファイバを提供すること。
【解決手段】本発明は、5.5μmまたはそれ以上の半径r、および5.0×10−3またはそれ未満である屈折率の差△nを有する中心コアと、半径r、および屈折率の差△nを有し、幅r−rが5μmより大きい中間クラッドと、半径r、および−3.5×10−3またはそれ未満である屈折率の差△nを有し、幅r−rが5μm未満であるデプレストクラッドとを備える伝送用光ファイバに関する。この光ファイバは、特に損失および分散に関して、SSMFと比較して光ファイバの他の光学パラメータを劣化させずに、1600nmに制限されたカットオフ波長を伴う120μm以上の実効面積を有している。
【選択図】図1

Description

本発明は、光ファイバ伝送の分野に関し、特に曲げ損失およびマイクロベンド損失を増大せずに拡大された実効面積を有するラインファイバに関する。
光ファイバでは、屈折率分布は一般に、屈折率を光ファイバの半径と関連付ける関数を示すグラフに照らして適したものとされる。慣習的に、光ファイバの中心に対する距離rが横座標に沿って示され、半径rにおける屈折率の差、および光ファイバの外部光クラッドの屈折率が縦軸に沿って示される。外部光クラッドは一定の屈折率を有し、通常は純正シリカからなっている。しかし、外部光クラッドは1つまたは複数のドーパントをも含んでいてもよい。屈折率分布は、段形、台形、または三角形のそれぞれの形状を有するグラフについて「段形」、「台形」または「三角形」分布と呼ばれる。これらの曲線は一般に、光ファイバの理論上のまたは設定された分布の例であり、光ファイバの製造過程での応力によってやや異なる分布が生ずる可能性がある。
光ファイバは従来、光信号を伝送し、場合によっては光信号を増幅する機能を有する中心光コアと、光信号を中心コア内に閉じ込める機能を有する外部光クラッドとからなっている。この目的のため、中心コアの屈折率nおよび外部光クラッドの屈折率nはn>nとなるようにされる。よく知られているように、単一モード光ファイバ内での光信号の伝搬は、中心コア内に導かれる基本モード、およびある距離にわたって中心コア−クラッドアセンブリ内に導かれる二次モードへと分解され、これはクラッドモードと呼ばれる。
従来、光ファイバによる伝送システムでは、ラインファイバとして単一モードファイバ、またはSMFとも呼ばれるステップインデックスファイバが使用されている。これらの光ファイバは、特定の通信標準ならびに実効面積およびカットオフ波長の基準値に適合する波長分散(chromatic dispersion)および波長分散スロープを示す。地上波伝送システムの場合、典型的には正の分散(D)および正の分散スロープ(P)、約80μmの実効面積(Seff)および(1550nmの波長で測定して)約0.19dB/kmの減衰量(Att)を有する標準の単一モードファイバ(SSMF)が使用される。中継器を用いた海底伝送システムは典型的には、正の分散、大きい実効面積(約100から110μm)、および少ない減衰量(1550nmの波長で測定して0.17から0.19dB/km)を有する光ファイバと、負の分散を有する光ファイバとの複合型伝送路を使用する。中継器を使用しない海底伝送システムは典型的には、正の分散、および80から110μmの実効面積を有する光ファイバの組合せからなる伝送路を使用する。
それ自体が知られているように、伝送用光ファイバの実効面積の増大は光ファイバ内の非線形効果の低下をもたらす。拡大された実効面積を有する伝送用光ファイバは、より長距離にわたる伝送、および/または伝送システムの機能帯域の増大を可能にする。伝送用光ファイバの実効面積を増大させるため、SSMFと比較して拡大され、かつ平坦化された中心コアを有する光ファイバプロファイルが提案された。しかし、光ファイバの中心コアの形状をこのように変更すると、曲げ損失およびマイクロベンド損失が増大し、光ファイバの実効カットオフ波長の増大をまねいてしまう。IEC規格60793−1−44に基づく国際電気標準会議の分化委員会86Aによって定義されたとおり、実効カットオフ波長は慣習的に、光信号が2メートルにわたって光ファイバを伝搬した後に単一モードである波長として測定される。
US6,658,190は、実効面積が110μmより大きい拡大された伝送用光ファイバを記載している。この光ファイバは、SSMFの1.5から2倍の極めて広い中心コア(11.5から23.0μm)と、一定の、またはわずかにデプレスされたクラッドとを有する構造とを有している。実効面積の増大に起因する曲げ損失の増加を補償するため、この文献は光ファイバの直径を増大することを提案している(US6,658,190の図29を参照)。しかし、光ファイバの直径のこのような増大にはコストがかかり、加えて他の光ファイバとの非適合性に起因する配線の問題が生ずる。この文献はさらに、カットオフ波長が、当該の光ファイバの長さと共に縮小し(US6,658,190の図5を参照)、かつ特に光ファイバは1kmの伝送後に単一モードの特性に達することを指摘している。しかし、このようなカットオフ波長の測定は前述の標準化された測定には適合しない。
Masao Tsukitaniらの刊行物「Ultra Low Nonlinearity Pure−Silica−Core Fiber with an Effective Area of 211μm and Transmission Loss of 0.159dB/km(2002年9月9日、ECOC 2002、M3.3.2)」は、中心コアの近傍に広く、わずかにデプレスされたクラッドを有する屈折率分布構造を有する光ファイバを記載している。このような光ファイバは減衰量が少ない211μmの実効面積を有しているが、曲げ損失を制限するために光ファイバの直径は(SSMFの125μmに対して)170μmに増大され、それによって相当の製造コスト、および他の光ファイバとの非適合性の問題をまねいている。
Kazumasa Ohsonoらの刊行物「The Study of Ultra Large Effective Area Fiber & Mating Dispersion Slope Compensating Fiber for Dispersion Flattened Hybrid Optical Fiber DWDM Link(2002年11月18日、IWCS 2002、483から487ページ)」、およびKazuhiko Aikawaらの刊行物「Single−Mode Optical Fiber with Effective Core Area larger than 160μm(1999年9月26日、ECOC1999、1から302ページ)には、実効面積を増大するための光ファイバ構造が提案されている。
さらに、US6,665,482は、90μmより大きい実効面積を達成するための台座形の光ファイバ屈折率分布を提案しているが、提供された実施例の実効面積は110μm未満に留まっている。US5,781,684は、ノンゼロ分散シフトファイバ(NZDSF)とも呼ばれる、分散シフトファイバ用の大きい実効面積を有する同軸光ファイバを記載している。この光ファイバは、単一モードをC+帯域(1530nmから1570nm)内に留めるには大きすぎるカットオフ波長、および小さすぎるモードフィールド直径(1550nmで<11μm)を有している。
US2005/0244120は、大きい実効面積(>75μm)、および少ない減衰量(1550nmで<0.20dB/km)を有する光ファイバを記載している。この文献に記載されている光ファイバは、中心コア、中間クラッド、およびデプレストクラッドを有する屈折率分布を有している。しかしデプレストクラッドは十分に埋め込まれず(−0.1%)、本発明による所望の光学特性、特に大きい実効面積と小さい実効カットオフ波長との組合せを達成するには広すぎる(7から7.4μm)。
さらには、US6,483,975は、大きい実効面積(>100.0μm)、および正の分散(>20ps/(nm−km))を有する光ファイバを記載している。この文献には幾つかの光ファイバ屈折率分布、特に中心コア、中間クラッド、およびデプレストクラッドを有する分布が記載されている(US6,483,975の図5aおよび図5bを参照)。しかしデプレストクラッドは、本発明による所望の光学特性を達成するには広すぎ(幅r−rが15から19μm)、中心コアまでの距離が近すぎる(中間クラッドの幅r−rが2から4μm)。
US4,852,968は、デプレストクラッドを有する屈折率分布を有する光ファイバを記載している。この文献は、デプレストクラッドの存在により光ファイバのある光学パラメータ、特に分散、閉じ込め、および曲げ損失パラメータを向上させることを目的としている。この文献は、実効カットオフ波長への、または実効面積への影響については言及していない。モードフィールドの直径が9.38μmであることだけが述べられており、その結果、実効面積は80μm未満になるであろう。
EP1 477 831は、大きい実効面積(>80μm)、および1310nmに制限されたカットオフ波長を有する光ファイバを記載している。この文献には幾つかの光ファイバプロファイル、特に中心コア、中間クラッド、およびデプレストクラッドを有する屈折率分布が記載されている(EP1 477 831の図8を参照)。しかし、デプレストクラッドは本発明による所望の光学特性を達成するには幅が広すぎ(〜15μm)、デプレストクラッドの外径は極めて大きく(〜33μm)、相当の製造コストがかかる。
米国特許第6,658,190号明細書 Masao Tsukitani et al.「Ultra Low Nonlinearity Pure−Silica−Core Fiber with an Effective Area of 211μm2 and Transmission Loss of 0.159dB/km」(2002年9月9日、ECOC 2002、M3.3.2) Kazumasa Ohsono et al.「The Study of Ultra Large Effective Area Fiber & Mating Dispersion Slope Compensating Fiber for Dispersion Flattened Hybrid Optical Fiber DWDM Link」(2002年11月18日、IWCS 2002、483から487ページ) Kazuhiko Aikawa et al.「Single−Mode Optical Fiber with Effective Core Area larger than 160μm2(1999年9月26日、ECOC1999、1から302ページ) 米国特許第6,665,482号明細書 米国特許第5,781,684号明細書 米国特許出願公開第2005/0244120号明細書 米国特許第6,483,975号明細書 米国特許第4,852,968号明細書 欧州特許出願公開第1 477 831号明細書
したがって、特に損失および分散に関する光ファイバの他の光学パラメータがSSMFと比較して劣化せずに、120μmより大きい拡大された実効面積を有し、かつ1600nm未満の実効カットオフ波長を有する伝送用光ファイバが必要とされている。
この目的のため、本発明は、中心コアと、中間クラッドと、デプレストクラッドとを備える光ファイバプロファイルを提案する。実効面積を拡大するため、中心コアはSSMFと比較して拡大され、平坦化される。強すぎる基本モードの乱れを避けるため、デプレストクラッドは中間クラッドを介して中心コアから十分に離隔されるが、デプレストクラッドは、曲げ損失およびマイクロベンド損失を制限するため、特にカットオフ波長を制御するために十分に埋め込まれ、狭い。漏れモードの伝搬も制限され、または回避さえされる。したがって、本発明による光ファイバは、1550nmで120μmより大きい実効面積を有し、カットオフ波長がC帯域での光ファイバの単一モード特性と、SSMFと同等の曲げ損失またはマイクロベンド損失を保証する。
より具体的には、本発明は、
5.5μmまたはそれ以上の半径、および5.0×10−3またはそれ未満である外部光クラッドとの屈折率の差を有する中心コアと、
半径、および外部クラッドとの屈折率の差を有し、幅が5μmより大きい中間クラッドと、
半径、および−3.5×10−3またはそれ未満である外部クラッドとの屈折率の差を有し、幅が5μm未満であるデプレストクラッドと、を備え、
1550nmで120μmまたはそれ以上である実効面積と、1600nm未満である実効カットオフ波長とを有する伝送用光ファイバを提案する。
実施形態によれば、本発明による光ファイバはさらに、以下の特性の1つまたは複数のものを備えている。すなわち、
デプレストクラッドの半径が16μmまたはそれ未満である。
中間クラッドと外部クラッドの屈折率の差が−1.0×10−3から1.0×10−3の間である。
モードフィールド径が11.5μmより大きい。
1550nmの波長で、波長分散が21.5ps/nm−kmまたはそれ未満である。
1550nmの波長で、波長分散スロープが0.065ps/nm−kmまたはそれ未満である。
1550nmの波長で、減衰量が0.19dB/kmまたはそれ未満である。
1625nmの波長で、10mmの曲げ半径に対する曲げ損失が20dB/mまたはそれ未満である。
1550nmの波長で、マイクロベンド損失が、同一の応力を受ける標準の単一モードファイバ(SSMF)のマイクロベンド損失と実質的に同等である。
本発明のその他の特徴および利点は、例示的に示され、本発明の実施形態によるステップインデックス型ファイバの設定プロファイルの図解を示す単一の添付図面を参照する本発明の実施形態の説明を読むことで明らかになる。付加的な実施形態は請求項に示されている。
設定プロファイル、すなわち光ファイバの理論プロファイルを示す図1を参照して本発明の光ファイバを説明するが、プリフォームからファイバを線引きした後に実際に得られる光ファイバはやや異なるプロファイルを有することがある。
本発明による伝送用光ファイバは、光クラッドとして作用する外部クラッドとの屈折率の差△nを有する中心コアと、外部クラッドとの屈折率の差△nを有する中間(内部)クラッドと、外部クラッドとの屈折率の差△nを有する埋め込みまたはデプレスト(内部)クラッドとを備えている。中心コア、中間クラッド、およびデプレストクラッドの屈折率はそれらの幅全体にわたってほぼ一定である。中心コアの幅は半径rによって規定され、クラッドの幅はそれぞれの外径rおよびrによって規定される。中間クラッドの幅はr−rによって規定され、埋め込みクラッドの幅はr−rによって規定される。典型的には、中心コア、中間クラッド、およびデプレストクラッドは、シリカ管内でのCVD(化学気相蒸着法)によって得られ、外部クラッドは、一般にドープされてもされなくてもよい天然シリカまたは合成シリカでシリカ管をオーバークラッドすることによって形成される。しかし、外部光クラッドは、その他のいずれかの蒸着技術(VAD:軸付化学蒸着法、またはOVD:外付化学蒸着法)によっても得られる。
本発明による光ファイバは5.5μmまたはそれ以上の半径r、および(例えばシリカ内の)5×10−3またはそれ未満の外部光クラッドに対する屈折率の差△nを有する中心コアを備えている。したがって、本発明による光ファイバの中心コアは、半径rが4.35、屈折率の差△nが5.2であるSSMFの中心コアと比較して幅が広げられ、平坦化されている。それによってモードフィールドの直径を(11.5μm超まで)拡大することができ、光ファイバの実効面積を(120μm超まで)増大することができる。本発明による光ファイバはさらに、半径r、および外部クラッドとの屈折率の差△nを有する中間クラッドと、半径r、および外部クラッドとの屈折率の差△nを有するデプレストクラッドとを備えている。本発明による光ファイバのデプレストクラッドは入念に制御される。デプレストクラッドは(中間クラッドの幅によって)中心コアから十分に離隔されるので、基本モードの伝搬を過度に乱すことがなく、かつ光信号の伝搬特性に影響を及ぼすことがない。その上、曲げ損失およびマイクロベンド損失の軽減を保証し、かつ、すぐ高次のモード(LP11)の損失、ひいてはそれに起因するカットオフ波長を制御するため、デプレストクラッドは十分に深く、狭い。漏れモードの挙動も制限され、回避さえされる。中間クラッドの幅(r−r)が5μmより大きいことで、デプレストクラッドには中心コアからの十分な距離が保証されるので、中心コア内の基本モードが乱されない。デプレストクラッドの深さが−3.5×10−3またはそれ以上であり、デプレストクラッドの幅(r−r)が5μm未満であるため、カットオフ波長を制御すると共に、すなわち光ファイバ内のより高次モードの伝搬距離を制限すると共に、曲げ損失およびマイクロベンド損失を効果的に制限することができる。本発明による光ファイバのデプレストクラッドの幅と深さとを制御することによって、同等の損失で実効面積がSSMFと比較して大幅に拡大されると共に、本発明による光ファイバの実効カットオフ波長を1600nmに制限することができる。
以下の表Iは、標準のファイバSSMFと比較された、本発明による伝送用光ファイバの6つの可能な屈折率分布の例(例1、2、3、4、5および6)、および本発明の範囲外の2つの例(例1bおよび1c)を提示している。加えて、請求項1に記載の本発明による値、ならびに本発明の好ましい実施形態による値が記載されている。第1列には各プロファイルのレファレンスが割り当てられている。次の列は各セクション(rからr)の半径の値、ならびにそれらの差(r−r)および(r−r)を示し、次の列は各セクションと外部クラッドとの屈折率の差(△nから△n)の値を示している。屈折率の値は633nmの波長で測定されている。表Iの例の光ファイバは125μmの外径を有している。表Iの値は光ファイバの設定プロファイルに対応している。
Figure 2008257250
本発明による伝送用光ファイバは、上記の表の6つの例によって非限定的に示される。加えて、請求項1に記載の本発明による値、ならびに本発明の好ましい実施形態による値が記載されている。特に、本発明による光ファイバが、SSMFよりも幅広い中心コアと、SSMFと比較して小さい屈折率の差を有していること、すなわち、中心コアが5.5μmまたはそれ以上の半径△r、および5.0×10−3またはそれ未満である外部光クラッドに対する屈折率の差△nを有していることに留意されたい。さらに、本発明による光ファイバが、少なくとも5μmの幅を有する中間クラッド(r、△n)によって中心コアから離隔されたデプレストクラッド(r、△n)を有し、デプレストクラッドは5μm未満と狭く、外部クラッドに対して少なくとも−3.5×10−3だけ深く埋め込まれていることに留意されたい。中間クラッドはシリカでよく、すなわち外部クラッドと同じ屈折率を有していてもよく、またはわずかにドープされたシリカでもよい。特に△nは−1.0×10−3と1.0×10−3との間である。
本発明による光ファイバは上記のようなプロファイルを有し、以下の優先特性を伴っている。すなわち、中心コア(r、△n)は、5.5μmから7.5μmの間の半径r、および3.0×10−3と5.0×10−3の間の外部クラッドとの屈折率の差△n1を有し、中間クラッド(r、△n)は、幅(r−r)が5μmから8μmの間である場合、10.5μmから14.0μmの半径r、および−1.0×10−3と1.0×10−3との間の外部クラッドとの屈折率の差△nを有し、デプレストクラッド(r、△n)は、幅(r−r)が1μmから5μmの間である場合、11.5μmから16.0μmの半径r、および−15.0×10−3と−3.5×10−3との間の外部クラッドとの屈折率の差△nを有している。
さらに、デプレストクラッドは好ましくは、16μmに制限された外径rを有することに留意されたい。デプレストクラッドの半径がこのように小さいことによって、ドープされるシリカの蒸着セクションが大きすぎることに関連するプリフォームの製造コストを制限することができる。
前述の屈折率分布を有する本発明による伝送用光ファイバは、制限された実効カットオフ波長、および例えば1550nmの有効波長でSSMFと同等の曲げ損失およびマイクロベンド損失を有する拡大された実効面積を有している。本発明による光ファイバはさらに、SSMFよりも決して強くない制御された分散および分散スロープを伴って、SSMFと同等または、さらには少ない減衰量を有している。
以下の表IIは表Iの屈折率分布に対応する伝送用光ファイバのシミュレートされた光学特性を表示している。表IIでは、最初の列は表Iのレファレンスを踏襲している。次の列は、各光ファイバのプロファイルについて、実効カットオフ波長(現行の標準に従って2メートルの光ファイバにわたって測定されたλceff)、実効面積(1550nmの波長でのSeff)、モードフィールド直径(1550nmの波長での2W02)、波長分散(1550nmの波長でのD)、および分散スロープ(1550nmの波長でのP)の値を示している。次の列は、各光ファイバのプロファイルについて、減衰量(1550nmの波長でのAtt)、曲げ損失(1625nmの波長で10mmの半径にわたるPPC)、およびマイクロベンド損失(1550nmの波長でのSμc)値を示している。マイクロベンド損失(Sμc)の値は相対値であり、同じ応力を受けた場合、すなわち直径125μmの光ファイバの場合のSSMFの損失に対して相対的に表現されている。マイクロベンド損失は、例えばいわゆる固定径ドラム方式によって測定されてもよい。この方法は、IECのTR−62221基準のもと国際電気標準会議の分科委員会86Aの技術勧告に記載されており、本明細書ではこれ以上記載しない。
Figure 2008257250
本発明による光ファイバの場合、120μmまたはそれ以上の実効面積を有するSSMFと比較して実効面積が実際に増大したことが表IIから分かる。11.5μmから17μmの間のモードフィールドの直径で、前述の光ファイバプロファイルを有する最高240μmに及ぶ範囲の実効面積を達成できる。実効面積のこの増大が、それでも1600nmに制限されるに留まる実効カットオフ波長の増大に起因することは確実である。したがって、本発明による光ファイバはC帯域内の単一モード特性を保持する。特に、上記のプロファイルを有する本発明による光ファイバは、1350nmから1600nmの間の実効カットオフ波長を有することができる。
表IIからさらに、本発明による光ファイバの曲げ損失、およびマイクロベンド損失がSSMFの曲げ損失およびマイクロベンド損失と同等であるか、さらにはそれよりも良好であることも分かる。さらに、本発明による光ファイバはSSMFと比較して同等であるか、さらに良好な減衰量、すなわち1550nmの波長で0.19dB/kmまたはそれ未満の減衰量を有している。
その上、本発明による光ファイバの分散および分散スロープの値を、1550nmの波長で21.5ps/nm−kmおよび0.065ps/nm−kmに制限することも可能であろう。特に、前述のプロファイルを有する光ファイバで、16ps/nm−kmと21.5ps/nm−kmの間の波長分散、および0.050ps/nm−kmと0.065ps/nm−kmの間の分散スロープが得られる。波長分散のこの制限は、伝送システムにさらなる減衰をまねく分散補償ファイバの長さを制限するために重要である。
例1bおよび1cは本発明の範囲外にある。例1bは例1と同じ中心コアを有しているが、デプレストクラッドを有していない。内部クラッドは外部クラッド、すなわち純正シリカ内の外部クラッドの屈折率に対応している。これは一定のクラッド構造を有する前述のUS6,658,190に記載のプロファイルである。デプレストクラッドが存在しないことで、1550nmを超える実効カットオフ波長の増大が生ずる。さらに、例1bにデプレストクラッドが存在しないことで、曲げ損失およびマイクロベンド損失の増大が生ずる。
例1cも例1と同じ中心コアを有し、例1と同じデプレストクラッドを有しているが、デプレストクラッドが中心コアに近すぎる。デプレストクラッドを中心コアから隔離する中間クラッドは5μmよりも狭い。その場合は、中心コアを伝搬する基本モードがデプレストクラッドにより影響され、実効面積がより狭くなり(<120μm)、波長分散が増大する(>21.5ps/nm−km)。
本発明による伝送用光ファイバは、C帯域での長距離伝送システム用に特に適している。光ファイバのその他の光学パラメータをさほど劣化させることなく実効面積を増大することによって、非線形効果を高めずに伝送される光信号の出力を高めることが可能である。そこで伝送路の信号対ノイズ比が向上し、これは地上、または海底の長距離光伝送システムでは特に望ましい。
さらに、本発明による光ファイバは、1350nmと1600nmの間の実効カットオフ波長、および/または1530nm未満のケーブルカットオフ波長(λcc)、9.5μmと13μmの間のモードフィールド径、22ps/nm−km未満の波長分散および0.070ps/nm−km未満の分散スロープ、ならびに0.22dB/km未満のケーブル減衰量を特に推奨するITU−T G.654.B標準の勧告に適合している。したがって、本発明による光ファイバは、システムの他の光ファイバとの良好な適合性をもって多くの伝送システムに搭載できる。
本発明の実施形態によるステップインデックス型ファイバの設定プロファイルの図である。
符号の説明
1、2・・・n 屈折率の差
、r、r クラッドの外径
λceff 実効カットオフ波長
eff 実効面積
2W02 モードフィールド径
D 波長分散
P 分散スロープ
Att 減衰量

Claims (15)

  1. 伝送用光ファイバであって、中心から周辺に向かって、
    5.5μmまたはそれ以上の半径(r)、および5.0×10−3またはそれ未満である外部光クラッドとの屈折率の差(△n)を有する中心コアと、
    半径(r)、および外部光クラッドとの屈折率の差(△n)を有し、幅(r−r)が5μmより大きい中間クラッドと、
    半径(r)、および−3.5×10−3またはそれ未満である外部光クラッドとの屈折率の差(△n)を有し、幅(r−r)が5μm未満であるデプレストクラッドと、を備え、
    1550nmで120μmまたはそれ以上である実効面積(Seff)と、1600nm未満である実効カットオフ波長(λceff)とを有する、光ファイバ。
  2. 中心コアの半径(r)が5.5μmから7.5μmの間である、請求項1に記載の光ファイバ。
  3. 中間クラッドの半径(r)が10.5μmから14.0μmの間である、請求項1または2のいずれかに記載の光ファイバ。
  4. デプレストクラッドの半径(r)が11.5μmから16μmの間である、請求項1から3のいずれかに記載の光ファイバ。
  5. 中心コアの屈折率の差(△n)が3.0×10−3から5.0×10−3の間である、請求項1から4のいずれかに記載の光ファイバ。
  6. 中間クラッドの屈折率の差(△n)が−1.0×10−3から1.0×10−3の間である、請求項1から5のいずれかに記載の光ファイバ。
  7. デプレストクラッドの屈折率の差(△n)が−15.0×10−3から−3.5×10−3である、請求項1から6のいずれかに記載の光ファイバ。
  8. 中間クラッドの幅(r−r)が8μmまたはそれ未満である、請求項1から7のいずれかに記載の光ファイバ。
  9. デプレストクラッドの幅(r−r)が1μmまたはそれ以上である、請求項1から8のいずれかに記載の光ファイバ。
  10. 11.5μmより大きいモードフィールド径(2W02)を有する、請求項1から9のいずれかに記載の光ファイバ。
  11. 1550nmの波長で、21.5ps/nm−kmまたはそれ未満の波長分散を有する、請求項1から10のいずれかに記載の光ファイバ。
  12. 1550nmの波長で、0.065ps/nm−kmまたはそれ未満の波長分散スロープを有する、請求項1から11のいずれかに記載の光ファイバ。
  13. 1550nmの波長で、0.19dB/kmまたはそれ未満の減衰量を有する、請求項1から12のいずれかに記載の光ファイバ。
  14. 1625nmの波長で、10mmの曲げ半径に対して20dB/mまたはそれ未満の曲げ損失を有する、請求項1から13のいずれかに記載の光ファイバ。
  15. 1550nmの波長で、同一の応力を受ける標準の単一モードファイバ(SSMF)のマイクロベンド損失と実質的に同等のマイクロベンド損失を有する、請求項1から14のいずれかに記載の光ファイバ。
JP2008097826A 2007-04-06 2008-04-04 大きい実効面積を有する伝送用光ファイバ Active JP5379396B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0702545A FR2914751B1 (fr) 2007-04-06 2007-04-06 Fibre optique monomode
FR0702545 2007-04-06

Publications (2)

Publication Number Publication Date
JP2008257250A true JP2008257250A (ja) 2008-10-23
JP5379396B2 JP5379396B2 (ja) 2013-12-25

Family

ID=38776419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008097826A Active JP5379396B2 (ja) 2007-04-06 2008-04-04 大きい実効面積を有する伝送用光ファイバ

Country Status (7)

Country Link
US (1) US8041172B2 (ja)
EP (1) EP1978383B1 (ja)
JP (1) JP5379396B2 (ja)
CN (1) CN101281275B (ja)
DK (1) DK1978383T3 (ja)
ES (1) ES2492467T3 (ja)
FR (1) FR2914751B1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010176123A (ja) * 2009-01-27 2010-08-12 Draka Comteq Bv 実効面積が増大した単一モード光ファイバ
JP2011203552A (ja) * 2010-03-26 2011-10-13 Nippon Telegr & Teleph Corp <Ntt> 単一モード光ファイバ
WO2012108467A1 (ja) * 2011-02-09 2012-08-16 古河電気工業株式会社 光ファイバおよび光伝送システム
WO2013021697A1 (ja) * 2011-08-08 2013-02-14 古河電気工業株式会社 マルチコア光ファイバおよび光伝送システム
JP2014530378A (ja) * 2011-09-21 2014-11-17 オーエフエスファイテル,エルエルシー 最適化された超大面積光ファイバ
JP2014530379A (ja) * 2011-09-21 2014-11-17 オーエフエスファイテル,エルエルシー 最適化された超大面積光ファイバ
JP2014531620A (ja) * 2011-09-21 2014-11-27 オーエフエス ファイテル,エルエルシー 最適化された超大面積光ファイバ
JP2014222354A (ja) * 2007-05-07 2014-11-27 コーニング インコーポレイテッド 拡大実効面積ファイバ

Families Citing this family (82)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7450813B2 (en) * 2006-09-20 2008-11-11 Imra America, Inc. Rare earth doped and large effective area optical fibers for fiber lasers and amplifiers
FR2914751B1 (fr) 2007-04-06 2009-07-03 Draka Comteq France Fibre optique monomode
US8467650B2 (en) 2007-11-09 2013-06-18 Draka Comteq, B.V. High-fiber-density optical-fiber cable
FR2933779B1 (fr) 2008-07-08 2010-08-27 Draka Comteq France Fibres optiques multimodes
FR2938389B1 (fr) * 2008-11-07 2011-04-15 Draka Comteq France Systeme optique multimode
WO2010065788A1 (en) 2008-12-04 2010-06-10 Imra America, Inc. Highly rare-earth-doped optical fibers for fiber lasers and amplifiers
FR2939911B1 (fr) * 2008-12-12 2011-04-08 Draka Comteq France Fibre optique gainee, cable de telecommunication comportant plusieurs fibres optiques et procede de fabrication d'une telle fibre
NL1036343C2 (nl) * 2008-12-19 2010-06-22 Draka Comteq Bv Werkwijze en inrichting voor het vervaardigen van een optische voorvorm.
DK2209029T3 (en) 2009-01-19 2015-04-13 Sumitomo Electric Industries optical fiber
US8447156B2 (en) 2009-01-19 2013-05-21 Sumitomo Electric Industries, Ltd. Multi-core optical fiber
FR2941541B1 (fr) 2009-01-27 2011-02-25 Draka Comteq France Fibre optique monomode
US8489219B1 (en) 2009-01-30 2013-07-16 Draka Comteq B.V. Process for making loose buffer tubes having controlled excess fiber length and reduced post-extrusion shrinkage
US8315495B2 (en) 2009-01-30 2012-11-20 Corning Incorporated Large effective area fiber with Ge-free core
FR2942571B1 (fr) * 2009-02-20 2011-02-25 Draka Comteq France Fibre optique amplificatrice comprenant des nanostructures
FR2942551B1 (fr) 2009-02-23 2011-07-15 Draka Comteq France Cable comportant des elements a extraire, procede d'extraction desdits elements et procede de fabrication associe
US8218929B2 (en) 2009-02-26 2012-07-10 Corning Incorporated Large effective area low attenuation optical fiber
JP2011039109A (ja) * 2009-08-06 2011-02-24 Sumitomo Electric Ind Ltd 光通信システム
FR2953605B1 (fr) 2009-12-03 2011-12-16 Draka Comteq France Fibre optique multimode a large bande passante et a faibles pertes par courbure
FR2953029B1 (fr) 2009-11-25 2011-11-18 Draka Comteq France Fibre optique multimode a tres large bande passante avec une interface coeur-gaine optimisee
FR2957153B1 (fr) 2010-03-02 2012-08-10 Draka Comteq France Fibre optique multimode a large bande passante et a faibles pertes par courbure
FR2953030B1 (fr) 2009-11-25 2011-11-18 Draka Comteq France Fibre optique multimode a tres large bande passante avec une interface coeur-gaine optimisee
FR2953606B1 (fr) 2009-12-03 2012-04-27 Draka Comteq France Fibre optique multimode a large bande passante et a faibles pertes par courbure
FR2949870B1 (fr) 2009-09-09 2011-12-16 Draka Compteq France Fibre optique multimode presentant des pertes en courbure ameliorees
US9014525B2 (en) 2009-09-09 2015-04-21 Draka Comteq, B.V. Trench-assisted multimode optical fiber
US8306380B2 (en) * 2009-09-14 2012-11-06 Draka Comteq, B.V. Methods and devices for cable insertion into latched-duct conduit
FR2950156B1 (fr) 2009-09-17 2011-11-18 Draka Comteq France Fibre optique multimode
FR2950443B1 (fr) * 2009-09-22 2011-11-18 Draka Comteq France Fibre optique pour la generation de frequence somme et son procede de fabrication
FR2951282B1 (fr) * 2009-10-13 2012-06-15 Draka Comteq France Fibre optique monomode a tranchee enterree
US8805143B2 (en) 2009-10-19 2014-08-12 Draka Comteq, B.V. Optical-fiber cable having high fiber count and high fiber density
FR2952634B1 (fr) * 2009-11-13 2011-12-16 Draka Comteq France Fibre en silice dopee en terre rare a faible ouverture numerique
ES2684474T3 (es) 2010-02-01 2018-10-03 Draka Comteq B.V. Fibra óptica con dispersión desplazada no nula que tiene una longitud de onda pequeña
DK2352047T3 (da) 2010-02-01 2019-11-11 Draka Comteq Bv Ikke-nul dispersionsskiftet optisk fiber med et stort effektivt areal
ES2539824T3 (es) 2010-03-17 2015-07-06 Draka Comteq B.V. Fibra óptica de modo único con reducidas pérdidas por curvatura
US8693830B2 (en) 2010-04-28 2014-04-08 Draka Comteq, B.V. Data-center cable
EP2390700B1 (en) 2010-05-03 2016-07-06 Draka Comteq B.V. Bundled fiber optic cables
DK2388239T3 (da) 2010-05-20 2017-04-24 Draka Comteq Bv Hærdningsapparat, der anvender vinklede UV-LED'er
US8625947B1 (en) 2010-05-28 2014-01-07 Draka Comteq, B.V. Low-smoke and flame-retardant fiber optic cables
US8871311B2 (en) 2010-06-03 2014-10-28 Draka Comteq, B.V. Curing method employing UV sources that emit differing ranges of UV radiation
FR2962230B1 (fr) 2010-07-02 2012-07-27 Draka Comteq France Fibre optique monomode
CN101891380B (zh) 2010-07-13 2012-07-04 长飞光纤光缆有限公司 一种大尺寸光纤预制棒及其光纤的制造方法
US8682123B2 (en) 2010-07-15 2014-03-25 Draka Comteq, B.V. Adhesively coupled optical fibers and enclosing tape
DK2418183T3 (en) 2010-08-10 2018-11-12 Draka Comteq Bv Method of curing coated glass fibers which provides increased UVLED intensity
US8571369B2 (en) 2010-09-03 2013-10-29 Draka Comteq B.V. Optical-fiber module having improved accessibility
FR2966256B1 (fr) 2010-10-18 2012-11-16 Draka Comteq France Fibre optique multimode insensible aux pertes par
US8538219B2 (en) 2010-10-29 2013-09-17 Corning Incorporated Large effective area optical fiber with low bend loss
JP5855351B2 (ja) * 2010-11-08 2016-02-09 株式会社フジクラ マルチコアファイバ
US8824845B1 (en) 2010-12-03 2014-09-02 Draka Comteq, B.V. Buffer tubes having reduced stress whitening
ES2494640T3 (es) 2011-01-31 2014-09-15 Draka Comteq B.V. Fibra multimodo
FR2971061B1 (fr) 2011-01-31 2013-02-08 Draka Comteq France Fibre optique a large bande passante et a faibles pertes par courbure
ES2674887T3 (es) 2011-02-21 2018-07-04 Draka Comteq B.V. Cable de interconexión para fibras ópticas
EP2495589A1 (en) 2011-03-04 2012-09-05 Draka Comteq B.V. Rare earth doped amplifying optical fiber for compact devices and method of manufacturing thereof
EP2503368A1 (en) 2011-03-24 2012-09-26 Draka Comteq B.V. Multimode optical fiber with improved bend resistance
EP2506044A1 (en) 2011-03-29 2012-10-03 Draka Comteq B.V. Multimode optical fiber
EP2518546B1 (en) 2011-04-27 2018-06-20 Draka Comteq B.V. High-bandwidth, radiation-resistant multimode optical fiber
CN102156323B (zh) 2011-05-05 2012-06-06 长飞光纤光缆有限公司 一种单模光纤
EP2527893B1 (en) 2011-05-27 2013-09-04 Draka Comteq BV Single mode optical fiber
ES2451369T3 (es) 2011-06-09 2014-03-26 Draka Comteq Bv Fibra óptica de modo único
DK2541292T3 (en) 2011-07-01 2014-12-01 Draka Comteq Bv A multimode optical fiber
WO2013006868A2 (en) * 2011-07-07 2013-01-10 Ofs Fitel, Llc Non-linear fiber resistant to perturbations
JP6035780B2 (ja) * 2011-08-25 2016-11-30 住友電気工業株式会社 光ファイバ
EP2584340A1 (en) 2011-10-20 2013-04-24 Draka Comteq BV Hydrogen sensing fiber and hydrogen sensor
NL2007831C2 (en) 2011-11-21 2013-05-23 Draka Comteq Bv Apparatus and method for carrying out a pcvd deposition process.
US8929701B2 (en) * 2012-02-15 2015-01-06 Draka Comteq, B.V. Loose-tube optical-fiber cable
DK2821824T3 (da) * 2012-02-29 2021-05-17 Sumitomo Electric Industries Optisk multikernefiber
WO2013160714A1 (en) 2012-04-27 2013-10-31 Draka Comteq Bv Hybrid single and multimode optical fiber for a home network
CN102768383A (zh) * 2012-08-01 2012-11-07 长飞光纤光缆有限公司 一种具有大有效面积的单模光纤
CN102998742B (zh) * 2012-12-13 2014-04-09 长飞光纤光缆股份有限公司 一种小模场抗弯曲单模光纤
EP2754524B1 (de) 2013-01-15 2015-11-25 Corning Laser Technologies GmbH Verfahren und Vorrichtung zum laserbasierten Bearbeiten von flächigen Substraten, d.h. Wafer oder Glaselement, unter Verwendung einer Laserstrahlbrennlinie
US20160004025A1 (en) * 2013-02-11 2016-01-07 Ofs Fitel, Llc Optical fiber seismic sensing cable
US9002164B2 (en) 2013-02-28 2015-04-07 Fujikura Ltd. Optical fiber and method of manufacturing the same
US9188754B1 (en) 2013-03-15 2015-11-17 Draka Comteq, B.V. Method for manufacturing an optical-fiber buffer tube
NL2011075C2 (en) 2013-07-01 2015-01-05 Draka Comteq Bv Pcvd process with removal of substrate tube.
US9517963B2 (en) 2013-12-17 2016-12-13 Corning Incorporated Method for rapid laser drilling of holes in glass and products made therefrom
EP3084490B1 (en) * 2013-12-20 2020-12-02 Draka Comteq BV Single mode fibre with a trapezoid core, showing reduced losses
CN104261670A (zh) * 2014-09-22 2015-01-07 江苏亨通光电股份有限公司 一种光纤的制造方法
CN104991307A (zh) * 2015-07-31 2015-10-21 长飞光纤光缆股份有限公司 一种超低衰减大有效面积的单模光纤
JP6923284B2 (ja) 2016-09-30 2021-08-18 コーニング インコーポレイテッド 非軸対称ビームスポットを用いて透明被加工物をレーザ加工するための装置及び方法
JP7066701B2 (ja) 2016-10-24 2022-05-13 コーニング インコーポレイテッド シート状ガラス基体のレーザに基づく加工のための基体処理ステーション
EP3627197B1 (en) 2017-07-03 2022-11-09 Nippon Telegraph and Telephone Corporation Optical fiber and optical transmission system
CN107678088A (zh) * 2017-11-09 2018-02-09 长飞光纤光缆股份有限公司 低衰减大有效面积的单模光纤
EP3729151B1 (en) 2017-12-21 2022-04-06 Draka Comteq France Bending-loss insensitive single mode fibre, with a shallow trench, and corresponding optical system
CN112904474B (zh) * 2021-01-27 2022-03-18 长飞光纤光缆股份有限公司 一种小外径低衰减弯曲不敏感单模光纤

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004092794A1 (ja) * 2003-04-11 2004-10-28 Fujikura Ltd. 光ファイバ
EP1477831A1 (en) * 2003-05-12 2004-11-17 FITEL USA CORPORATION (a Delaware Corporation) Super-large-effective-area (SLA) optical fiber and communication system incorporating the same
JP2005202440A (ja) * 1999-04-13 2005-07-28 Sumitomo Electric Ind Ltd 光ファイバ及びそれを含む光通信システム
US20050244120A1 (en) * 2004-04-29 2005-11-03 Mishra Snigdharaj K Low attenuation large effective area optical fiber

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4852968A (en) * 1986-08-08 1989-08-01 American Telephone And Telegraph Company, At&T Bell Laboratories Optical fiber comprising a refractive index trench
US5781684A (en) 1996-12-20 1998-07-14 Corning Incorporated Single mode optical waveguide having large effective area
EP1107027B1 (en) 1999-04-13 2011-10-12 Sumitomo Electric Industries, Ltd. Optical fiber and optical communication system comprising the same
JP3845260B2 (ja) 2001-02-16 2006-11-15 古河電気工業株式会社 光ファイバおよび光伝送路
US6483975B1 (en) 2001-04-27 2002-11-19 Fitel Usa Corp. Positive dispersion optical fiber having large effective area
FR2914751B1 (fr) 2007-04-06 2009-07-03 Draka Comteq France Fibre optique monomode
US7978949B2 (en) * 2007-11-13 2011-07-12 The Furukawa Electric Co., Ltd. Optical fibers and optical transmission systems
JP2009122277A (ja) * 2007-11-13 2009-06-04 Furukawa Electric Co Ltd:The 光ファイバおよび光伝送システム
FR2941541B1 (fr) * 2009-01-27 2011-02-25 Draka Comteq France Fibre optique monomode

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005202440A (ja) * 1999-04-13 2005-07-28 Sumitomo Electric Ind Ltd 光ファイバ及びそれを含む光通信システム
WO2004092794A1 (ja) * 2003-04-11 2004-10-28 Fujikura Ltd. 光ファイバ
EP1477831A1 (en) * 2003-05-12 2004-11-17 FITEL USA CORPORATION (a Delaware Corporation) Super-large-effective-area (SLA) optical fiber and communication system incorporating the same
US20050244120A1 (en) * 2004-04-29 2005-11-03 Mishra Snigdharaj K Low attenuation large effective area optical fiber

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014222354A (ja) * 2007-05-07 2014-11-27 コーニング インコーポレイテッド 拡大実効面積ファイバ
JP2010176123A (ja) * 2009-01-27 2010-08-12 Draka Comteq Bv 実効面積が増大した単一モード光ファイバ
JP2011203552A (ja) * 2010-03-26 2011-10-13 Nippon Telegr & Teleph Corp <Ntt> 単一モード光ファイバ
WO2012108467A1 (ja) * 2011-02-09 2012-08-16 古河電気工業株式会社 光ファイバおよび光伝送システム
JP5193398B2 (ja) * 2011-02-09 2013-05-08 古河電気工業株式会社 光ファイバおよび光伝送システム
US9128237B2 (en) 2011-02-09 2015-09-08 Furukawa Electric Co., Ltd. Optical fiber and optical transmission system
WO2013021697A1 (ja) * 2011-08-08 2013-02-14 古河電気工業株式会社 マルチコア光ファイバおよび光伝送システム
JP5324012B2 (ja) * 2011-08-08 2013-10-23 古河電気工業株式会社 マルチコア光ファイバおよび光伝送システム
US9128234B2 (en) 2011-08-08 2015-09-08 Furukawa Electric Co., Ltd. Multi-core optical fiber and optical transmission system
JP2014530378A (ja) * 2011-09-21 2014-11-17 オーエフエスファイテル,エルエルシー 最適化された超大面積光ファイバ
JP2014530379A (ja) * 2011-09-21 2014-11-17 オーエフエスファイテル,エルエルシー 最適化された超大面積光ファイバ
JP2014531620A (ja) * 2011-09-21 2014-11-27 オーエフエス ファイテル,エルエルシー 最適化された超大面積光ファイバ

Also Published As

Publication number Publication date
CN101281275A (zh) 2008-10-08
FR2914751B1 (fr) 2009-07-03
US8041172B2 (en) 2011-10-18
FR2914751A1 (fr) 2008-10-10
CN101281275B (zh) 2011-07-06
ES2492467T3 (es) 2014-09-09
EP1978383B1 (en) 2014-05-28
JP5379396B2 (ja) 2013-12-25
US20110044595A1 (en) 2011-02-24
DK1978383T3 (da) 2014-08-25
EP1978383A1 (en) 2008-10-08

Similar Documents

Publication Publication Date Title
JP5379396B2 (ja) 大きい実効面積を有する伝送用光ファイバ
JP5606742B2 (ja) シングルモード光ファイバ
JP5426411B2 (ja) 実効面積が増大した単一モード光ファイバ
JP5804793B2 (ja) 単一モード光ファイバおよび光システム
US6263138B1 (en) Optical fiber for compensating chromatic dispersion of a positive chromatic dispersion optical fiber
EP2352047B1 (en) Non-zero dispersion shifted optical fiber having a large effective area
JP5606942B2 (ja) 短いカットオフ波長を有するノンゼロ分散シフト光ファイバ
CN101551488B (zh) 色散位移光纤
EP2894498B1 (en) Optical fiber
JP6298893B2 (ja) 損失低下を示す、台形コアを有するシングルモードファイバ
JP2009122277A (ja) 光ファイバおよび光伝送システム
JP2007298987A (ja) 波長分散補償ファイバ
JP2002365464A (ja) 有効面積の広い正分散光ファイバ
CN111512200B (zh) 具有浅槽的弯曲损耗不敏感单模光纤和相应的光学系统
US6510268B1 (en) Optical fiber for compensating the chromatic dispersion of an optical fiber having positive chromatic dispersion
JP5048278B2 (ja) 波長分散補償および波長分散勾配補償ファイバ
WO2016129367A1 (ja) 分散シフト光ファイバ
US7978949B2 (en) Optical fibers and optical transmission systems
WO2001065287A1 (en) Optical fiber for wdm transmission
JP2002182056A (ja) 分散補償光ファイバ、並びに、それを含む光伝送路及び分散補償モジュール

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130121

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20130306

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20130524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130528

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130812

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130927

R150 Certificate of patent or registration of utility model

Ref document number: 5379396

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250