[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2008181708A - Manufacturing method of electrode for nonaqueous electrolyte secondary battery, electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery - Google Patents

Manufacturing method of electrode for nonaqueous electrolyte secondary battery, electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2008181708A
JP2008181708A JP2007012846A JP2007012846A JP2008181708A JP 2008181708 A JP2008181708 A JP 2008181708A JP 2007012846 A JP2007012846 A JP 2007012846A JP 2007012846 A JP2007012846 A JP 2007012846A JP 2008181708 A JP2008181708 A JP 2008181708A
Authority
JP
Japan
Prior art keywords
electrode
electrolyte secondary
active material
current collector
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007012846A
Other languages
Japanese (ja)
Inventor
Tatsuji Mino
辰治 美濃
Keiichi Takahashi
慶一 高橋
Masanori Yoshida
雅憲 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2007012846A priority Critical patent/JP2008181708A/en
Publication of JP2008181708A publication Critical patent/JP2008181708A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of an electrode for a nonaqueous electrolyte secondary battery that reduces damage to a current collector by dispersing impacts generating when active material particles strike against the current collector. <P>SOLUTION: The manufacturing method of the electrode for the nonaqueous electrolyte secondary battery includes a process obtaining aerosol by dispersing active material particles in gas, and a process forming an active material layer on the current collector by intermittently striking the aerosol against the current collector. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、集電体上に活物質層を形成するための非水電解質二次電池用電極の製造方法、非水電解質二次電池用電極、および非水電解質二次電池に関する。   The present invention relates to a method for producing a non-aqueous electrolyte secondary battery electrode for forming an active material layer on a current collector, a non-aqueous electrolyte secondary battery electrode, and a non-aqueous electrolyte secondary battery.

近年、非水電解質二次電池の高容量化を目的として、電極の製造方法として、活物質粒子を溶融または蒸発させずに気流中に分散させ、この気流を集電体に吹き付けて活物質粒子を集電体に衝突させ、この衝撃力で活物質粒子を集電体表面に接着させる方法が検討されている(例えば、特許文献1および2)。
特許文献1では、コールドスプレー法により電極を作製する方法が提案されている。粒子と集電体との結合を集電体金属の塑性変形を利用してアンカー効果を持たせることにより、粒子を集電体金属に直接的に結合させることができる。しかし、特許文献1のコールドスプレー法では、活物質粒子同士を強固に結合させることが困難である。すなわち、電極を厚膜化して高容量化を図ることが困難である。
In recent years, for the purpose of increasing the capacity of non-aqueous electrolyte secondary batteries, as an electrode manufacturing method, active material particles are dispersed in an air current without melting or evaporating, and the air current is sprayed onto a current collector to obtain active material particles. Has been studied to cause the active material particles to adhere to the current collector surface by this impact force (for example, Patent Documents 1 and 2).
Patent Document 1 proposes a method for producing an electrode by a cold spray method. The particles can be directly bonded to the current collector metal by providing the anchor effect by using the plastic deformation of the current collector metal to bond the particles to the current collector. However, in the cold spray method of Patent Document 1, it is difficult to firmly bond the active material particles to each other. That is, it is difficult to increase the capacity by increasing the thickness of the electrode.

また、特許文献2では、エアロゾルデポジション法(以下、AD法と表す。)により、活物質および固体電解質の混合粒子を気体に分散させたエアロゾルを集電体に噴射させ、活物質および固体電解質の混合粒子を集電体上に堆積させて集電体上に活物質層を形成して電極を得ることが提案されている。AD法では、電極を容易に厚膜化することができる。
しかし、AD法により電極を作製する場合、粒径が3μm以下、好ましくは1μm以下の超微粒子を用いる必要があり、粒径が3μmを超えると、活物質層が緻密に形成されず、粒子の破壊強度が低下して電池製造に適さない場合がある。
また、正極活物質には、一般に、平均粒径10μm程度のコバルト酸リチウムが用いられる。しかし、上記のAD法において、集電体に衝突させる微粒子を得るために、これをさらに粉砕して平均粒径1μm以下に微粉化することは難しく、得られる粉末の収率も低下する。
In Patent Document 2, an aerosol in which mixed particles of an active material and a solid electrolyte are dispersed in a gas is sprayed onto a current collector by an aerosol deposition method (hereinafter referred to as an AD method), and the active material and the solid electrolyte are injected. It has been proposed that an electrode is obtained by depositing the mixed particles on a current collector to form an active material layer on the current collector. In the AD method, the electrode can be easily thickened.
However, when an electrode is manufactured by the AD method, it is necessary to use ultrafine particles having a particle size of 3 μm or less, preferably 1 μm or less. If the particle size exceeds 3 μm, the active material layer is not formed densely, In some cases, the breaking strength is reduced, which is not suitable for battery production.
Further, as the positive electrode active material, lithium cobaltate having an average particle diameter of about 10 μm is generally used. However, in the above-described AD method, in order to obtain fine particles that collide with the current collector, it is difficult to further pulverize the fine particles to an average particle size of 1 μm or less, and the yield of the obtained powder is also reduced.

さらに、正極集電体には、一般に、厚み20μmのアルミニウム箔が用いられる。しかし、上記AD法により、一般に用いられる平均粒径10μm程度のコバルト酸リチウム粒子をこの集電体上に噴射させると、粒子の衝突による衝撃を受けて集電体が変形する場合がある。さらに集電体に貫通孔や皺が生じる場合がある。集電体に変形や皺を生じた正極を用いて電池を構成すると、正極のセパレータを介しての負極との密着性が悪くなる。また、集電体に貫通孔が生じると、集電体の貫通孔が存在する部分には活物質粒子が堆積しないため、正極容量が減少する。このような理由により、電池の充放電特性やサイクル特性が低下する場合がある。   Further, an aluminum foil having a thickness of 20 μm is generally used for the positive electrode current collector. However, when lithium cobaltate particles having an average particle size of about 10 μm, which are generally used, are jetted onto the current collector by the AD method, the current collector may be deformed due to impact caused by particle collision. In addition, through holes and wrinkles may occur in the current collector. If a battery is constituted by using a positive electrode in which a current collector is deformed or wrinkled, the adhesion with the negative electrode through the separator of the positive electrode is deteriorated. In addition, when a through hole is formed in the current collector, the active material particles are not deposited in the portion where the through hole of the current collector exists, so that the positive electrode capacity is reduced. For these reasons, the charge / discharge characteristics and cycle characteristics of the battery may deteriorate.

上記アルミニウム箔の変形等を抑制する方法としては、アルミニウム箔の厚みを大きくすることが考えられるが、電池体積が増大し、体積当たりの電池容量が低下する。
また、ノズルから噴射される粒子の噴射速度を低下させることが考えられるが、アルミニウム箔上に接着しながら堆積するために必要な運動エネルギーが活物質粒子に十分に与えられないため、アルミニウム箔上に活物質粒子が接着し難くなり、成膜速度が大幅に低下する。
特開2005−310502号公報 特開2005−78985号公報
As a method for suppressing the deformation of the aluminum foil, it is conceivable to increase the thickness of the aluminum foil, but the battery volume increases and the battery capacity per volume decreases.
In addition, although it is conceivable to reduce the injection speed of the particles injected from the nozzle, the kinetic energy necessary for deposition while adhering to the aluminum foil is not sufficiently given to the active material particles, In addition, the active material particles are difficult to adhere to each other, and the film forming speed is greatly reduced.
JP-A-2005-310502 JP 2005-78985 A

そこで、本発明は、上記従来の問題を解決するため、非水電解質二次電池用の活物質で一般的な平均粒径10μm程度の活物質粉末からなる、粒子サイズの比較的大きな粒子を、厚み20μm程度の金属箔からなる集電体に衝突させて、集電体上に均一な活物質層を形成することが可能な非水電解質二次電池用電極の製造方法を提供することを目的とする。また、バインダーを用いずに、活物質粒子同士の間、および活物質粒子と集電体との間が強固に接着され、かつ体積あたりの容量密度の高い非水電解質二次電池用電極を提供することを目的とする。さらに、上記電極を用いて、サイクル特性に優れた高容量の非水電解質二次電池を提供することを目的とする。   Therefore, in order to solve the above-described conventional problems, the present invention provides particles having a relatively large particle size made of an active material powder having an average particle size of about 10 μm, which is a general active material for nonaqueous electrolyte secondary batteries. An object of the present invention is to provide a method for producing an electrode for a non-aqueous electrolyte secondary battery capable of forming a uniform active material layer on a current collector by colliding with a current collector made of a metal foil having a thickness of about 20 μm. And In addition, a non-aqueous electrolyte secondary battery electrode is provided in which the active material particles and the active material particles and the current collector are firmly bonded without using a binder, and the capacity density per volume is high. The purpose is to do. Furthermore, it aims at providing the high capacity | capacitance nonaqueous electrolyte secondary battery excellent in cycling characteristics using the said electrode.

そこで、本発明の非水電解質二次電池用電極の製造方法は、気体中に活物質粒子を分散させてエアロゾルを得る工程と、前記エアロゾルを集電体に間欠的に衝突させて、前記集電体上に活物質層を形成する工程とを含む。
前記気体が、不活性ガス、酸素ガス、窒素ガス、水素ガス、炭酸ガス、および乾燥空気からなる群より選択される少なくとも1つであるのが好ましい。
前記活物質粒子が、リチウム含有複合酸化物、またはケイ素単体、ケイ素合金、ケイ素と酸素とを含む化合物、ケイ素と窒素とを含む化合物、スズ単体、スズ合金、スズと酸素とを含む化合物、スズと窒素とを含む化合物、および炭素材料からなる群より選択される少なくとも1つであるのが好ましい。
前記集電体が、アルミニウム箔、銅箔、またはニッケル箔であるのが好ましい。
また、本発明は、上記の製造方法により得られた非水電解質二次電池用電極に関する。
さらに、本発明は、上記の電極を用いた非水電解質二次電池に関する。
Therefore, the method for producing an electrode for a non-aqueous electrolyte secondary battery according to the present invention includes a step of dispersing active material particles in a gas to obtain an aerosol, and intermittently colliding the aerosol with a current collector, thereby collecting the current collector. Forming an active material layer on the electric body.
The gas is preferably at least one selected from the group consisting of inert gas, oxygen gas, nitrogen gas, hydrogen gas, carbon dioxide gas, and dry air.
The active material particle is a lithium-containing composite oxide, or a silicon simple substance, a silicon alloy, a compound containing silicon and oxygen, a compound containing silicon and nitrogen, a simple substance of tin, a tin alloy, a compound containing tin and oxygen, tin And at least one selected from the group consisting of a compound containing carbon and nitrogen, and a carbon material.
The current collector is preferably an aluminum foil, a copper foil, or a nickel foil.
Moreover, this invention relates to the electrode for nonaqueous electrolyte secondary batteries obtained by said manufacturing method.
Furthermore, this invention relates to the nonaqueous electrolyte secondary battery using said electrode.

本発明の非水電解質二次電池用電極の製造方法によれば、活物質粒子が集電体上に衝突する際の衝撃を時系列的に分散させることができるので、集電体が受けるダメージを軽減することができる。これにより、活物質層形成時に集電体に皺または貫通孔が発生するのを抑制することができる。このため、平均粒径が10μm程度の比較的大きな粒径を有する活物質粒子を集電体に衝突させた場合でも、集電体がダメージを受けることなく、厚み20μm程度の集電体上に活物質層を形成することができる。
また、本発明の非水電解質二次電池用電極の製造方法により、バインダや導電材を用いずに、活物質粒子同士の間および活物質粒子と集電体との間が強固に接着され、かつ単位体積あたりの容量密度が高い非水電解質二次電池用電極が得られる。
さらに、本発明の非水電解質二次電池は、上記電極を用いることにより、サイクル特性に優れた高容量の非水電解質二次電池が得られる。
According to the method for manufacturing an electrode for a non-aqueous electrolyte secondary battery of the present invention, it is possible to disperse the impact when the active material particles collide with the current collector in time series, and therefore the damage to the current collector Can be reduced. Thereby, it can suppress that a wrinkle or a through-hole generate | occur | produces in a collector at the time of active material layer formation. For this reason, even when active material particles having a relatively large particle size having an average particle size of about 10 μm are collided with the current collector, the current collector is not damaged, and the current collector has a thickness of about 20 μm. An active material layer can be formed.
Further, according to the method for producing an electrode for a nonaqueous electrolyte secondary battery of the present invention, without using a binder or a conductive material, the active material particles are firmly bonded to each other and between the active material particles and the current collector, And the electrode for nonaqueous electrolyte secondary batteries with a high capacity | capacitance density per unit volume is obtained.
Furthermore, the non-aqueous electrolyte secondary battery of the present invention can provide a high-capacity non-aqueous electrolyte secondary battery having excellent cycle characteristics by using the electrode.

本発明は、エアロゾルデポジション法による非水電解質二次電池用電極の作製方法に関する。すなわち、本発明の非水電解質二次電池用電極の製造方法は、気体中に活物質粒子を分散させてエアロゾルを得る工程と、前記エアロゾルを集電体に間欠的に衝突させて、前記活物質粒子を前記集電体に間欠的に衝突させ、前記集電体上に前記活物質粒子を堆積かつ接着させて、前記集電体上に活物質層を形成する工程とを含む点に特徴を有する。
これにより、活物質粒子が集電体上に衝突する際の衝撃を時系列的に分散させることができるので、集電体が受けるダメージを軽減することができる。また、活物質層形成時に集電体に皺または貫通孔が発生するのを抑制することができる。このため、例えば、平均粒径が10μm程度の比較的大きな粒径を有する活物質粒子を、厚み20μm程度の集電体に衝突させた場合でも、集電体がダメージを受けることなく、集電体上に活物質層を形成することができる。
また、本発明の非水電解質二次電池用電極の製造方法により、バインダや導電材を用いずに、活物質粒子同士の間および活物質粒子と集電体との間が強固に接着され、かつ体積あたりの容量密度が高い非水電解質二次電池用電極が得られる。
さらに、本発明の非水電解質二次電池は、上記電極を用いることにより、サイクル特性に優れた高容量の非水電解質二次電池が得られる。
The present invention relates to a method for producing an electrode for a nonaqueous electrolyte secondary battery by an aerosol deposition method. That is, the method for producing an electrode for a non-aqueous electrolyte secondary battery according to the present invention includes a step of dispersing active material particles in a gas to obtain an aerosol, and intermittently colliding the aerosol with a current collector, thereby A step of intermittently colliding material particles with the current collector, depositing and adhering the active material particles on the current collector, and forming an active material layer on the current collector. Have
Thereby, since the impact when the active material particles collide with the current collector can be dispersed in time series, the damage to the current collector can be reduced. In addition, generation of wrinkles or through holes in the current collector during formation of the active material layer can be suppressed. For this reason, for example, even when active material particles having a relatively large particle size having an average particle size of about 10 μm are collided with a current collector having a thickness of about 20 μm, the current collector is not damaged. An active material layer can be formed on the body.
Further, according to the method for producing an electrode for a nonaqueous electrolyte secondary battery of the present invention, without using a binder or a conductive material, the active material particles are firmly bonded to each other and between the active material particles and the current collector, And the electrode for nonaqueous electrolyte secondary batteries with a high capacity density per volume is obtained.
Furthermore, the non-aqueous electrolyte secondary battery of the present invention can provide a high-capacity non-aqueous electrolyte secondary battery having excellent cycle characteristics by using the electrode.

以下、本発明の非水電解質二次電池用電極の製造方法の一実施の形態について、図面を参照しながら説明する。
ここで、本発明の非水電解質二次電池用電極の製造方法に用いられる製造装置の一例を図1に示す。図1は、AD法による製造装置の構成図である。図1に示すように、エアロゾルを発生させるための気体が貯蔵されているガスボンベ11は、配管12aを介してエアロゾル発生器13に連結されている。エアロゾル発生器13と成膜チャンバー14との間には、エアロゾルをノズル15に送り込むための配管12bが連結されている。配管12bの一方の端部はエアロゾル発生器13内に露出し、配管12bの他方の端部は成膜チャンバー14内に設置されたノズル15に接続されている。基板ホルダ17に基板(集電体)16がノズルに対向して配置されている。成膜チャンバー14内の真空度を調整するための排気ポンプ18は成膜チャンバー14に接続されている。エアロゾル発生器13内には、あらかじめ一定量の活物質粉体20が投入される。
電極を得るためには、一定の面積を有する活物質層を形成する必要があるが、基板16が設置された基板ホルダ17を横方向または縦方向に一定速度で移動させる機構(図示せず)を備えることにより、活物質層の面積を大きくすることができる。
Hereinafter, an embodiment of a method for producing a nonaqueous electrolyte secondary battery electrode of the present invention will be described with reference to the drawings.
Here, an example of the manufacturing apparatus used for the manufacturing method of the electrode for nonaqueous electrolyte secondary batteries of this invention is shown in FIG. FIG. 1 is a configuration diagram of a manufacturing apparatus based on the AD method. As shown in FIG. 1, a gas cylinder 11 in which a gas for generating aerosol is stored is connected to an aerosol generator 13 via a pipe 12a. A pipe 12 b for sending aerosol to the nozzle 15 is connected between the aerosol generator 13 and the film forming chamber 14. One end of the pipe 12 b is exposed in the aerosol generator 13, and the other end of the pipe 12 b is connected to a nozzle 15 installed in the film forming chamber 14. A substrate (current collector) 16 is disposed on the substrate holder 17 so as to face the nozzle. An exhaust pump 18 for adjusting the degree of vacuum in the film forming chamber 14 is connected to the film forming chamber 14. A predetermined amount of active material powder 20 is charged in the aerosol generator 13 in advance.
In order to obtain an electrode, it is necessary to form an active material layer having a certain area, but a mechanism (not shown) for moving the substrate holder 17 on which the substrate 16 is installed at a constant speed in the horizontal direction or the vertical direction. By providing this, the area of the active material layer can be increased.

ガスボンベ11とエアロゾル発生器13とを連結する配管12aの途中にバルブ19が設けられている。例えば、このバルブ19の開閉を交互に繰り返すことにより、気体中に粒子が分散された状態であるエアロゾルを間欠的に基板に衝突させることができる。バルブ19の開閉は、例えば、コンピュータなどの制御装置(図示せず)により制御することができる。このようにすることにより、エアロゾル発生器13へのガスの送り込み(間欠噴射)を自動的に制御することができる。   A valve 19 is provided in the middle of a pipe 12 a that connects the gas cylinder 11 and the aerosol generator 13. For example, by alternately opening and closing the valve 19, it is possible to cause the aerosol in a state where particles are dispersed in the gas to intermittently collide with the substrate. The opening and closing of the valve 19 can be controlled by a control device (not shown) such as a computer, for example. By doing in this way, the gas supply (intermittent injection) to the aerosol generator 13 can be controlled automatically.

次に、上記の成膜装置を用いた活物質層の形成プロセスを説明する。ガスボンベ11から気体を配管12aを通じてエアロゾル発生器13に導入し、活物質粉体20を容器内に撒き上げ、気体中に活物質粒子が分散した状態のエアロゾルを発生させる。発生したエアロゾルは、配管12bを通じてノズル15より基板16に向けて高速で噴射される。エアロゾルの噴射速度は、ノズル15の形状、配管12bの長さや内径、ガスボンベ11のガス内圧、排気ポンプ18の排気量(成膜チャンバー14の内圧)などにより制御される。例えば、エアロゾル発生器13の内圧を数万Paとし、成膜チャンバー14の内圧を数百Paとし、ノズルの開口部の形状を内径1mmの円形状とした場合、エアロゾル発生器13と成膜チャンバー14との内圧差により、エアロゾルの噴射速度を数百m/secとすることができる。
加速されて運動エネルギーを得たエアロゾル中の活物質粒子が基板16に衝突して、衝撃エネルギーで細かく破砕される。そして、これらの破砕粒子が基板16に接合されること、および破砕粒子同士が接合されることにより、緻密な活物質層が形成される。
Next, a process for forming an active material layer using the film forming apparatus will be described. A gas is introduced from the gas cylinder 11 into the aerosol generator 13 through the pipe 12a, and the active material powder 20 is sprinkled into the container to generate an aerosol in which active material particles are dispersed in the gas. The generated aerosol is jetted at high speed from the nozzle 15 toward the substrate 16 through the pipe 12b. The aerosol injection speed is controlled by the shape of the nozzle 15, the length and inner diameter of the pipe 12b, the gas internal pressure of the gas cylinder 11, the exhaust amount of the exhaust pump 18 (internal pressure of the film forming chamber 14), and the like. For example, when the internal pressure of the aerosol generator 13 is tens of thousands Pa, the internal pressure of the film forming chamber 14 is several hundred Pa, and the shape of the opening of the nozzle is a circular shape with an inner diameter of 1 mm, the aerosol generator 13 and the film forming chamber 14, the aerosol injection speed can be set to several hundreds m / sec.
The active material particles in the aerosol that have been accelerated to obtain kinetic energy collide with the substrate 16 and are finely crushed by the impact energy. A dense active material layer is formed by joining the crushed particles to the substrate 16 and joining the crushed particles.

バルブ19が開の状態では、気体がエアロゾル発生器13へ導入され、活物質粉体がエアロゾル発生器13内に撒き上げられて、気体中に活物質粒子が分散された状態のエアロゾルが発生し、ノズル15から基板16に向けてエアロゾルが噴射される。バルブ19が閉の状態では、上記の動作が停止する。このバルブ19の開閉によりエアロゾルが間欠的に噴射される。このバルブ19の開閉の繰り返し回数と、バルブ19を開の状態とする時間、およびバルブ19を閉の状態とする時間は、制御機構により制御することができる。   When the valve 19 is open, the gas is introduced into the aerosol generator 13 and the active material powder is sprinkled into the aerosol generator 13 to generate an aerosol in which active material particles are dispersed in the gas. The aerosol is sprayed from the nozzle 15 toward the substrate 16. When the valve 19 is closed, the above operation is stopped. Aerosol is intermittently injected by opening and closing the valve 19. The number of times the valve 19 is repeatedly opened and closed, the time during which the valve 19 is opened, and the time during which the valve 19 is closed can be controlled by a control mechanism.

バルブ19が開の状態である時間が長いほど、ノズルから基板へ向かって噴射される活物質粉体の量が多くなり、基板に与えるダメージが大きくなり、本発明の効果が小さくなる。バルブ19の開閉時間は、活物質や基板の材質、および製膜条件に応じて適宜設定すればよいが、上記の観点から、おおむね数秒以下のオーダーで設定すればよい。
エアロゾルの発生量を一定に制御するために、さらにエアロゾル発生器13に機械的振動機や撹拌羽を取り付けてもよい。
The longer the time that the valve 19 is in the open state, the more active material powder is sprayed from the nozzle toward the substrate, the more damage is given to the substrate, and the effect of the present invention is reduced. The opening / closing time of the valve 19 may be set as appropriate according to the active material, the material of the substrate, and the film forming conditions. From the above viewpoint, it may be set on the order of several seconds or less.
In order to control the generation amount of aerosol uniformly, a mechanical vibrator or a stirring blade may be further attached to the aerosol generator 13.

非水電解質二次電池用電極で一般的に使用されている厚さ20μm程度の金属箔からなる集電体上に、平均粒径が10μm程度の活物質粉体からなる活物質粒子が気体中に分散したエアロゾルを連続的に噴射させる従来の活物質層の形成方法では、金属箔に与えるダメージが大きく、集電体が変形する場合、または集電体に皺や貫通孔が生じる場合がある。
これに対して、本発明の非水電解質二次電池用電極の製造方法では、AD法において、ノズルから集電体へのエアロゾルの噴射が間欠的に行われる。この方法では、連続噴射の場合のように、一気に粉体原料を集電体に衝突させないため、集電体に与える衝撃が緩和され、集電体に薄い金属箔を用いた場合でも、集電体に変形または皺や貫通孔が生じない。
On a current collector made of a metal foil having a thickness of about 20 μm that is generally used for an electrode for a nonaqueous electrolyte secondary battery, active material particles made of an active material powder having an average particle size of about 10 μm are contained in a gas. In the conventional method of forming an active material layer in which aerosol dispersed in the resin is continuously sprayed, damage to the metal foil is large, and the current collector may be deformed, or the current collector may have wrinkles or through holes. .
On the other hand, in the method for manufacturing an electrode for a nonaqueous electrolyte secondary battery according to the present invention, aerosol is intermittently injected from the nozzle to the current collector in the AD method. In this method, unlike the case of continuous injection, since the powder raw material does not collide with the current collector at once, the impact applied to the current collector is mitigated, and even when a thin metal foil is used for the current collector, the current collector No deformation or wrinkles or through holes in the body.

従って、本発明のAD法を利用した電極の製造方法では、従来よりも薄い基板を用いることが可能であり、一般的に用いられる粒径の活物質粉体を用いることが可能である。例えば、正極活物質に平均粒径が10μmのリチウム含有複合酸化物の粉体を用い、基板16にアルミニウム箔を用いて、上記方法により正極を作製する場合、アルミニウム箔として、5μm程度まで薄いものを用いることができる。
さらに、集電体への衝撃を緩和するために活物質粉体を粉砕して微粉化する必要がないため、容易に体積あたりのエネルギー密度の高い電極を製造することができる。そして、この電極を用いることにより、体積あたりの容量密度が大きく、かつサイクル特性に優れた非水電解質二次電池が得られる。
集電体のダメージを低減して、集電体の変形等を抑制する方法としては、図1の製造装置において、ボンベ11からエアロゾル発生器13に導入されるガス量を減らして、エアロゾルの発生量を減少させ、ノズル15から基板16へ噴射される活物質粒子の量を減少させる方法が考えられるが、本発明のエアロゾルの間欠噴射の場合と比べて、活物質層の形成に長時間を要する。
Therefore, in the electrode manufacturing method using the AD method of the present invention, it is possible to use a thinner substrate than before, and it is possible to use an active material powder having a generally used particle size. For example, when a positive electrode is produced by the above method using a lithium-containing composite oxide powder having an average particle diameter of 10 μm as the positive electrode active material and an aluminum foil as the substrate 16, the aluminum foil is as thin as about 5 μm. Can be used.
Further, since it is not necessary to pulverize the active material powder to reduce the impact on the current collector, an electrode having a high energy density per volume can be easily manufactured. By using this electrode, a nonaqueous electrolyte secondary battery having a large capacity density per volume and excellent cycle characteristics can be obtained.
As a method of reducing the current collector damage and suppressing the deformation of the current collector, the amount of gas introduced from the cylinder 11 to the aerosol generator 13 is reduced in the manufacturing apparatus of FIG. A method of reducing the amount of active material particles injected from the nozzle 15 to the substrate 16 can be considered, but it takes a longer time to form the active material layer than in the case of intermittent injection of the aerosol of the present invention. Cost.

正極集電体に厚み20μm程度の金属箔を用い、正極活物質に平均粒径が10μm程度のリチウム含有複合酸化物の粉体を用いて正極を作製する場合の成膜条件としては、例えば、成膜チャンバー14の内圧5〜5000Pa、バルブ19が開状態の時間0.5〜5秒、およびバルブ19が閉状態の時間0.5〜60秒である。
そして、上記において、例えば、バルブの開状態の時間および閉状態の時間を一定とし、バルブの開閉を一定時間で交互に繰り返す方法が挙げられる。このとき、開状態の時間および閉状態の時間は同じでもよく、開状態の時間が閉状態の時間より長くてもよく、短くてもよい。
また、集電体上に、ある程度の厚みの活物質層が形成されれば、活物質粒子が集電体に直接衝突しなくなり、活物質粒子の衝突による集電体へのダメージが小さくなるので、活物質層の形成に伴い、すなわち成膜時間の経過に伴い、集電体にエアロゾルを噴射させる頻度を増大させてもよい。例えば、成膜時間の経過に伴い、一定の割合でバルブの開状態の時間を長くし、一定の割合でバルブの閉状態の時間を短くしてもよい。また、例えば、成膜開始から所定時間経過するまではバルブの開閉時間を一定とし、所定時間経過後、一定の割合で開状態の時間を長くし、一定の割合で閉状態の時間を短くしてもよい。この場合、成膜効率が向上し、成膜時間を短縮することができる。
Examples of film formation conditions when a positive electrode is made using a metal foil having a thickness of about 20 μm for the positive electrode current collector and a lithium-containing composite oxide powder having an average particle diameter of about 10 μm for the positive electrode active material include: The internal pressure of the film forming chamber 14 is 5 to 5000 Pa, the valve 19 is open for 0.5 to 5 seconds, and the valve 19 is closed for 0.5 to 60 seconds.
In the above, for example, there is a method in which the valve open time and the valve closed time are made constant, and the valve opening and closing are alternately repeated for a fixed time. At this time, the time of the open state and the time of the closed state may be the same, and the time of the open state may be longer or shorter than the time of the closed state.
In addition, if an active material layer having a certain thickness is formed on the current collector, the active material particles do not directly collide with the current collector, and damage to the current collector due to the collision of the active material particles is reduced. As the active material layer is formed, that is, as the film formation time elapses, the frequency of spraying the aerosol onto the current collector may be increased. For example, as the film formation time elapses, the valve open state time may be increased at a constant rate and the valve closed state time may be decreased at a constant rate. Also, for example, the valve opening and closing time is constant until a predetermined time elapses from the start of film formation. May be. In this case, the deposition efficiency can be improved and the deposition time can be shortened.

エアロゾル中の活物質粒子は、一次粒子(例えば、粒径0.1〜10μm)でもよく、一次粒子が凝集した二次粒子(例えば、粒径1〜50μm)でもよい。
上記方法により形成される活物質層の空孔率は、例えば60〜10%である。
また、上記方法により形成される活物質層の厚みは、例えば、1〜100μmである。
エアロゾルの発生に用いられる気体としては、例えば、アルゴンやヘリウムのような不活性ガス、酸素ガス、窒素ガス、炭酸ガス、乾燥空気、またはそれらの混合ガスが用いられる。また、活物質の材料に応じて、水素ガスのような還元性ガスを用いてもよい。
The active material particles in the aerosol may be primary particles (for example, a particle size of 0.1 to 10 μm) or secondary particles (for example, a particle size of 1 to 50 μm) in which the primary particles are aggregated.
The porosity of the active material layer formed by the above method is, for example, 60 to 10%.
Moreover, the thickness of the active material layer formed by the above method is, for example, 1 to 100 μm.
As the gas used for generating the aerosol, for example, an inert gas such as argon or helium, oxygen gas, nitrogen gas, carbon dioxide gas, dry air, or a mixed gas thereof is used. A reducing gas such as hydrogen gas may be used depending on the material of the active material.

正極活物質としては、リチウムイオンの挿入脱離が可能な公知のリチウム含有複合酸化物が用いられる。リチウム含有複合酸化物としては、例えば、コバルト酸リチウム、ニッケル酸リチウム、マンガン酸リチウム、またはこれらの化合物にアルミニウムを添加したものが用いられる。また、これらを単独で用いてもよく、2種以上を組み合わせて用いてもよい。
正極集電体として用いられる基板としては、例えば、アルミニウム箔が挙げられる。非水電解質二次電池の体積容量密度や得られる活物質層の厚みに応じて基板の厚みを適宜変えればよいが、概ね市販で入手可能な5〜20μmの範囲のアルミニウム箔を用いればよい。アルミニウム箔の厚みが5μm未満であると、箔の強度が弱いため成膜時に破損等の問題が生じ、作業効率が低下する。また、アルミニウム箔の厚みが20μmを超えると、非水電解質二次電池の体積容量密度が低下するため、本発明の製造方法を用いることの優位性が薄れる。
As the positive electrode active material, a known lithium-containing composite oxide capable of inserting and releasing lithium ions is used. As a lithium containing complex oxide, what added aluminum to lithium cobaltate, lithium nickelate, lithium manganate, or these compounds is used, for example. Moreover, these may be used independently and may be used in combination of 2 or more type.
As a board | substrate used as a positive electrode electrical power collector, aluminum foil is mentioned, for example. The thickness of the substrate may be appropriately changed according to the volume capacity density of the non-aqueous electrolyte secondary battery and the thickness of the active material layer to be obtained, but an aluminum foil in the range of 5 to 20 μm that is generally commercially available may be used. If the thickness of the aluminum foil is less than 5 μm, the strength of the foil is so weak that problems such as breakage occur during film formation, and work efficiency is reduced. Moreover, since the volume capacity density of a nonaqueous electrolyte secondary battery will fall when the thickness of aluminum foil exceeds 20 micrometers, the predominance of using the manufacturing method of this invention will fade.

負極活物質としては、リチウムと電気化学的に反応するものであればよく、特に限定されない。リチウムとの反応性が比較的高く、高容量が得られるため、負極活物質は、ケイ素単体、ケイ素合金、ケイ素と酸素とを含む化合物、ケイ素と窒素とを含む化合物、スズ単体、スズ合金、スズと酸素とを含む化合物、およびスズと窒素とを含む化合物よりなる群から選択される少なくとも1種であるのが好ましい。
ケイ素合金としては、例えば、SiB4、SiB6、Mg2Si、Ni2Si、TiSi2、MoSi2、CoSi2、NiSi2、CaSi2、CrSi2、Cu5Si、FeSi2、MnSi2、NbSi2、TaSi2、VSi2、WSi2、ZnSi2、またはSiCが挙げられる。
ケイ素と酸素とを含む化合物としては、例えば、Si22O、SiOx(0<x≦2)、SnSiO3、またはLiSiOが挙げられる。
ケイ素と窒素とを含む化合物としては、例えば、Si34やSi22Oが挙げられる。
スズ合金としては、例えば、Mg2Snが挙げられる。
スズと酸素とを含む化合物としては、例えば、SnOx(0<x≦2)やSnSiO3が挙げられる。
スズと窒素とを含む化合物としては、例えば、Sn34やSn22Oが挙げられる。
炭素材料としては、例えば、黒鉛が挙げられる。
負極集電体として用いられる基板としては、例えば、厚みが5〜50μmの銅箔やニッケル箔が挙げられる。
The negative electrode active material is not particularly limited as long as it can electrochemically react with lithium. Since the reactivity with lithium is relatively high and a high capacity is obtained, the negative electrode active material is composed of silicon alone, a silicon alloy, a compound containing silicon and oxygen, a compound containing silicon and nitrogen, a tin simple substance, a tin alloy, It is preferably at least one selected from the group consisting of a compound containing tin and oxygen and a compound containing tin and nitrogen.
Examples of the silicon alloy include SiB 4 , SiB 6 , Mg 2 Si, Ni 2 Si, TiSi 2 , MoSi 2 , CoSi 2 , NiSi 2 , CaSi 2 , CrSi 2 , Cu 5 Si, FeSi 2 , MnSi 2 , NbSi. 2 , TaSi 2 , VSi 2 , WSi 2 , ZnSi 2 , or SiC.
Examples of the compound containing silicon and oxygen include Si 2 N 2 O, SiOx (0 <x ≦ 2), SnSiO 3 , and LiSiO.
Examples of the compound containing silicon and nitrogen include Si 3 N 4 and Si 2 N 2 O.
An example of the tin alloy is Mg 2 Sn.
Examples of the compound containing tin and oxygen include SnOx (0 <x ≦ 2) and SnSiO 3 .
Examples of the compound containing tin and nitrogen include Sn 3 N 4 and Sn 2 N 2 O.
An example of the carbon material is graphite.
As a board | substrate used as a negative electrode collector, copper foil and nickel foil with a thickness of 5-50 micrometers are mentioned, for example.

また、本発明は、正極、負極、および非水電解質を備えた非水電解質二次電池に関し、前記正極および前記負極のうち少なくとも一方に、上記の本発明の非水電解質二次電池用電極の製造方法により得られた電極を用いた点に特徴を有します。正極と負極の間には、例えば微多孔性フィルムからなるセパレータが配されます。
非水電解質は、一般的に非水電解質二次電池で使用可能なものであればよく、特に限定されない。非水電解質は、例えば、非水溶媒および前記非水溶媒中に溶解する支持塩からなる。非水溶媒には、例えば、エチレンカーボネートやプロピレンカーボネートのような環状カーボネートが用いられる。支持塩には、例えば、6フッ化リン酸リチウムが用いられる。
The present invention also relates to a non-aqueous electrolyte secondary battery comprising a positive electrode, a negative electrode, and a non-aqueous electrolyte, wherein at least one of the positive electrode and the negative electrode has the electrode for a non-aqueous electrolyte secondary battery of the present invention described above. It is characterized by the use of electrodes obtained by the manufacturing method. For example, a separator made of a microporous film is placed between the positive and negative electrodes.
The nonaqueous electrolyte is not particularly limited as long as it can be generally used in a nonaqueous electrolyte secondary battery. The nonaqueous electrolyte includes, for example, a nonaqueous solvent and a supporting salt that dissolves in the nonaqueous solvent. As the non-aqueous solvent, for example, a cyclic carbonate such as ethylene carbonate or propylene carbonate is used. For example, lithium hexafluorophosphate is used as the supporting salt.

以下、本発明の実施例を詳細に説明するが、本発明はこれらの実施例に限定されない。 《実施例1》
図1と同じ装置を用いて、以下の方法により電極を作製した。
成膜チャンバー14には市販の蒸着装置(ULVAC社製、VPC−400)を改造したものを用いた。エアロゾル発生器13には、市販の容積1リットル圧送ボトル(KSK社製、RBN−S)を超音波洗浄器((株)島津製作所製、SUS−103)中に設置したものを用いた。エアロゾル濃度、すなわちアルゴン中の活物質粒子の飛散量が増えるように、超音波洗浄器の発信周波数は45kHzとした。なお、超音波洗浄器の代わりに、振動子や超音波式ホモジナイザーを用いてもよい。
Examples of the present invention will be described in detail below, but the present invention is not limited to these examples. Example 1
Using the same apparatus as in FIG. 1, an electrode was produced by the following method.
The film forming chamber 14 used was a modified commercial vapor deposition apparatus (VPC-400, manufactured by ULVAC). As the aerosol generator 13, a commercially available 1-liter pressure-feed bottle (manufactured by KSK, RBN-S) installed in an ultrasonic cleaner (manufactured by Shimadzu Corporation, SUS-103) was used. The transmission frequency of the ultrasonic cleaner was set to 45 kHz so that the aerosol concentration, that is, the scattering amount of the active material particles in argon increased. Note that a vibrator or an ultrasonic homogenizer may be used instead of the ultrasonic cleaner.

次に、エアロゾル発生器13から内径1mmの配管12bを成膜チャンバー14内に引き込み、その先端を噴射ノズル15とした。噴射ノズル15から5mm離れた位置に、基板16として厚み15μmのアルミニウム箔を設置した。一方で、圧送ボトルとアルゴンボンベ11を内径3mmの配管12aでつなぎ、その間に圧空バルブ19を設けた。   Next, a pipe 12b having an inner diameter of 1 mm was drawn into the film forming chamber 14 from the aerosol generator 13, and the tip of the pipe 12b was used as an injection nozzle 15. An aluminum foil having a thickness of 15 μm was installed as the substrate 16 at a position 5 mm away from the spray nozzle 15. On the other hand, the pressure-feed bottle and the argon cylinder 11 were connected by a pipe 12a having an inner diameter of 3 mm, and a compressed air valve 19 was provided therebetween.

上記装置を用いて、電極を以下のように作製した。
まず、平均粒径10μmのコバルト酸リチウム(日本化学工業(株)製)20gをエアロゾル発生器13内に仕込んだ。次に、バルブ19を閉じ、排気ポンプ18で成膜チャンバー14からエアロゾル発生器13までを真空引きした。そして、エアロゾル発生器13内にアルゴンガスを送り込んで、アルゴンガス中に活物質粒子が分散したエアロゾルを発生させ、配管12bを介して噴射ノズル15よりエアロゾルを基板16に向けて噴射した。このとき、アルゴンガスの流量は2リットル/分とし、圧空バルブ19が、2秒間のうち1秒間は開いた状態となり、残りの1秒間は閉じた状態となるように、コンピュータで圧空バルブ19の開閉状態を制御して、エアロゾルを間欠噴射させた。また、成膜時間は10分(5分間:噴射、5分間:休止)とし、活物質層形成時における成膜チャンバー14内の真空度は、圧空バルブ19が閉じている時に500Pa程度とし、圧空バルブ19が開いている時に5000Pa程度とした。ここでは短時間で電極が得られるように、基板ホルダー17を移動させず、一箇所に噴射して活物質層を形成し、面積の小さい電極を作製した。
Using the above apparatus, an electrode was produced as follows.
First, 20 g of lithium cobalt oxide having an average particle diameter of 10 μm (manufactured by Nippon Chemical Industry Co., Ltd.) was charged into the aerosol generator 13. Next, the valve 19 was closed and the exhaust pump 18 evacuated the film formation chamber 14 to the aerosol generator 13. Then, argon gas was sent into the aerosol generator 13 to generate an aerosol in which active material particles were dispersed in the argon gas, and the aerosol was sprayed from the spray nozzle 15 toward the substrate 16 through the pipe 12b. At this time, the flow rate of the argon gas is set to 2 liters / minute, and the compressed air valve 19 is opened by a computer so that the compressed air valve 19 is open for 1 second in 2 seconds and closed for the remaining 1 second. The aerosol was intermittently injected by controlling the open / close state. The film formation time is 10 minutes (5 minutes: jetting, 5 minutes: pause), and the degree of vacuum in the film formation chamber 14 at the time of forming the active material layer is about 500 Pa when the compressed air valve 19 is closed. When the valve 19 is open, the pressure is about 5000 Pa. Here, in order to obtain an electrode in a short time, the substrate holder 17 was not moved but sprayed to one place to form an active material layer, and an electrode having a small area was produced.

《比較例1》
上記電極作製時において、圧空バルブ19を取り除き、成膜チャンバー14内の気圧が500Pa程度となり、エアロゾル発生器13内の気圧が10000Pa程度になるように、アルゴンガスの流量を調整して、エアロゾルを基板に向けて連続的に5分間噴射した。これ以外は、実施例1と同様の方法により、電極を作製した。
<< Comparative Example 1 >>
At the time of electrode preparation, the pneumatic valve 19 is removed, the flow rate of argon gas is adjusted so that the atmospheric pressure in the film forming chamber 14 is about 500 Pa, and the atmospheric pressure in the aerosol generator 13 is about 10000 Pa. It sprayed continuously for 5 minutes toward the board | substrate. Except for this, an electrode was produced in the same manner as in Example 1.

実施例1の電極および比較例1の電極について、活物質層の厚みをマイクロメーターを用いて測定した結果、いずれの電極も活物質層の厚みは15μmであった。
上記で得られた実施例1および比較例1の電極を目視により観察した結果、比較例1の電極では、集電体に皺や貫通孔が見られた。これに対して、実施例1の電極では、集電体に皺や貫通孔は見られなかった。
As a result of measuring the thickness of the active material layer using the micrometer for the electrode of Example 1 and the electrode of Comparative Example 1, the thickness of the active material layer of each electrode was 15 μm.
As a result of visually observing the electrodes of Example 1 and Comparative Example 1 obtained above, in the electrode of Comparative Example 1, wrinkles and through holes were found in the current collector. On the other hand, in the electrode of Example 1, no wrinkles or through holes were found in the current collector.

本発明の電極は、リチウムイオン電池、ニッケルカドミウム電池、またはニッケル水素電池のような非水電解質二次電池に好適に用いられる。また、本発明の非水電解質二次電池は、携帯機器や情報機器のような電子機器の電源として好適に用いられる。   The electrode of the present invention is suitably used for a non-aqueous electrolyte secondary battery such as a lithium ion battery, a nickel cadmium battery, or a nickel metal hydride battery. The nonaqueous electrolyte secondary battery of the present invention is suitably used as a power source for electronic devices such as portable devices and information devices.

本発明の非水電解質二次電池用電極の製造方法に用いられる製造装置の一例を示す構成図である。It is a block diagram which shows an example of the manufacturing apparatus used for the manufacturing method of the electrode for nonaqueous electrolyte secondary batteries of this invention.

符号の説明Explanation of symbols

11 ガスボンベ
12a、12b 配管
13 エアロゾル発生器
14 成膜チャンバー
15 ノズル
16 基板
17 基板ホルダ
18 排気ポンプ
19 バルブ
20 活物質粉体
DESCRIPTION OF SYMBOLS 11 Gas cylinder 12a, 12b Piping 13 Aerosol generator 14 Deposition chamber 15 Nozzle 16 Substrate 17 Substrate holder 18 Exhaust pump 19 Valve 20 Active material powder

Claims (6)

気体中に活物質粒子を分散させてエアロゾルを得る工程と、
前記エアロゾルを集電体に間欠的に衝突させて、前記集電体上に活物質層を形成する工程とを含む非水電解質二次電池用電極の製造方法。
A step of dispersing active material particles in a gas to obtain an aerosol;
A method for producing an electrode for a non-aqueous electrolyte secondary battery, the method including intermittently colliding the aerosol with a current collector to form an active material layer on the current collector.
前記気体が、不活性ガス、酸素ガス、窒素ガス、水素ガス、炭酸ガス、および乾燥空気からなる群より選択される少なくとも1つであることを特徴とする請求項1記載の非水電解質二次電池用電極の製造方法。   2. The nonaqueous electrolyte secondary according to claim 1, wherein the gas is at least one selected from the group consisting of an inert gas, oxygen gas, nitrogen gas, hydrogen gas, carbon dioxide gas, and dry air. Manufacturing method of battery electrode. 前記活物質粒子が、リチウム含有複合酸化物、またはケイ素単体、ケイ素合金、ケイ素と酸素とを含む化合物、ケイ素と窒素とを含む化合物、スズ単体、スズ合金、スズと酸素とを含む化合物、スズと窒素とを含む化合物、および炭素材料からなる群より選択される少なくとも1つであることを特徴とする請求項1記載の非水電解質二次電池用電極の製造方法。   The active material particle is a lithium-containing composite oxide, or a silicon simple substance, a silicon alloy, a compound containing silicon and oxygen, a compound containing silicon and nitrogen, a simple substance of tin, a tin alloy, a compound containing tin and oxygen, tin The method for producing an electrode for a nonaqueous electrolyte secondary battery according to claim 1, wherein the electrode is at least one selected from the group consisting of a compound containing carbon and nitrogen, and a carbon material. 前記集電体が、アルミニウム箔、銅箔、またはニッケル箔であることを特徴とする請求項1記載の非水電解質二次電池用電極の製造方法。   The method for producing an electrode for a nonaqueous electrolyte secondary battery according to claim 1, wherein the current collector is an aluminum foil, a copper foil, or a nickel foil. 請求項1〜4のいずれかに記載の製造方法により得られた非水電解質二次電池用電極。   The electrode for nonaqueous electrolyte secondary batteries obtained by the manufacturing method in any one of Claims 1-4. 請求項5記載の電極を備える非水電解質二次電池。   A nonaqueous electrolyte secondary battery comprising the electrode according to claim 5.
JP2007012846A 2007-01-23 2007-01-23 Manufacturing method of electrode for nonaqueous electrolyte secondary battery, electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery Pending JP2008181708A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007012846A JP2008181708A (en) 2007-01-23 2007-01-23 Manufacturing method of electrode for nonaqueous electrolyte secondary battery, electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007012846A JP2008181708A (en) 2007-01-23 2007-01-23 Manufacturing method of electrode for nonaqueous electrolyte secondary battery, electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2008181708A true JP2008181708A (en) 2008-08-07

Family

ID=39725446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007012846A Pending JP2008181708A (en) 2007-01-23 2007-01-23 Manufacturing method of electrode for nonaqueous electrolyte secondary battery, electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2008181708A (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008305608A (en) * 2007-06-06 2008-12-18 Honjiyou Kinzoku Kk Electrode for lithium secondary battery and its manufacturing method
WO2011074431A1 (en) * 2009-12-18 2011-06-23 Jx日鉱日石金属株式会社 Positive electrode for lithium ion battery, method for producing said positive electrode, and lithium ion battery
JP2013026031A (en) * 2011-07-21 2013-02-04 National Institute Of Advanced Industrial & Technology Electrode body for all-solid secondary battery, all-solid secondary battery, method for manufacturing electrode body for all-solid secondary battery, and method for manufacturing all-solid secondary battery
US8623551B2 (en) 2010-03-05 2014-01-07 Jx Nippon Mining & Metals Corporation Positive-electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
US8748041B2 (en) 2009-03-31 2014-06-10 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion battery
US9090481B2 (en) 2010-03-04 2015-07-28 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium-ion battery, positive electrode for lithium-ion battery, and lithium-ion battery
US9118076B2 (en) 2010-02-05 2015-08-25 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery and lithium ion battery
US9214676B2 (en) 2011-03-31 2015-12-15 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US9216913B2 (en) 2010-03-04 2015-12-22 Jx Nippon Mining & Metals Corporation Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US9225020B2 (en) 2010-03-04 2015-12-29 Jx Nippon Mining & Metals Corporation Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US9224515B2 (en) 2012-01-26 2015-12-29 Jx Nippon Mining & Metals Coporation Cathode active material for lithium ion battery, cathode for lithium ion battery, and lithium ion battery
US9224514B2 (en) 2012-01-26 2015-12-29 Jx Nippon Mining & Metals Corporation Cathode active material for lithium ion battery, cathode for lithium ion battery, and lithium ion battery
US9221693B2 (en) 2011-03-29 2015-12-29 Jx Nippon Mining & Metals Corporation Method for producing positive electrode active material for lithium ion batteries and positive electrode active material for lithium ion batteries
US9231249B2 (en) 2010-02-05 2016-01-05 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
US9240594B2 (en) 2010-03-04 2016-01-19 Jx Nippon Mining & Metals Corporation Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US9263732B2 (en) 2009-12-22 2016-02-16 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium-ion battery, positive electrode for a lithium-ion battery, lithium-ion battery using same, and precursor to a positive electrode active material for a lithium-ion battery
US9327996B2 (en) 2011-01-21 2016-05-03 Jx Nippon Mining & Metals Corporation Method for producing positive electrode active material for lithium ion battery and positive electrode active material for lithium ion battery
US9911518B2 (en) 2012-09-28 2018-03-06 Jx Nippon Mining & Metals Corporation Cathode active material for lithium-ion battery, cathode for lithium-ion battery and lithium-ion battery
US10122012B2 (en) 2010-12-03 2018-11-06 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium-ion battery, a positive electrode for lithium-ion battery, and lithium-ion battery
JP2022086814A (en) * 2020-11-30 2022-06-09 Apb株式会社 Manufacturing apparatus for electrode for battery

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008305608A (en) * 2007-06-06 2008-12-18 Honjiyou Kinzoku Kk Electrode for lithium secondary battery and its manufacturing method
US8748041B2 (en) 2009-03-31 2014-06-10 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion battery
WO2011074431A1 (en) * 2009-12-18 2011-06-23 Jx日鉱日石金属株式会社 Positive electrode for lithium ion battery, method for producing said positive electrode, and lithium ion battery
CN102668184A (en) * 2009-12-18 2012-09-12 Jx日矿日石金属株式会社 Positive electrode for lithium ion battery, method for producing said positive electrode, and lithium ion battery
TWI466368B (en) * 2009-12-18 2014-12-21 Jx Nippon Mining & Metals Corp A positive electrode for lithium ion battery and a method for manufacturing the same, and a lithium ion battery
JP5661646B2 (en) * 2009-12-18 2015-01-28 Jx日鉱日石金属株式会社 Positive electrode for lithium ion battery, method for producing the same, and lithium ion battery
US8993160B2 (en) 2009-12-18 2015-03-31 Jx Nippon Mining & Metals Corporation Positive electrode for lithium ion battery, method for producing said positive electrode, and lithium ion battery
US9263732B2 (en) 2009-12-22 2016-02-16 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium-ion battery, positive electrode for a lithium-ion battery, lithium-ion battery using same, and precursor to a positive electrode active material for a lithium-ion battery
US9118076B2 (en) 2010-02-05 2015-08-25 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery and lithium ion battery
US9231249B2 (en) 2010-02-05 2016-01-05 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
US9216913B2 (en) 2010-03-04 2015-12-22 Jx Nippon Mining & Metals Corporation Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US9090481B2 (en) 2010-03-04 2015-07-28 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium-ion battery, positive electrode for lithium-ion battery, and lithium-ion battery
US9225020B2 (en) 2010-03-04 2015-12-29 Jx Nippon Mining & Metals Corporation Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US9240594B2 (en) 2010-03-04 2016-01-19 Jx Nippon Mining & Metals Corporation Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US8623551B2 (en) 2010-03-05 2014-01-07 Jx Nippon Mining & Metals Corporation Positive-electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
US10122012B2 (en) 2010-12-03 2018-11-06 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium-ion battery, a positive electrode for lithium-ion battery, and lithium-ion battery
US9327996B2 (en) 2011-01-21 2016-05-03 Jx Nippon Mining & Metals Corporation Method for producing positive electrode active material for lithium ion battery and positive electrode active material for lithium ion battery
US9221693B2 (en) 2011-03-29 2015-12-29 Jx Nippon Mining & Metals Corporation Method for producing positive electrode active material for lithium ion batteries and positive electrode active material for lithium ion batteries
US9214676B2 (en) 2011-03-31 2015-12-15 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
JP2013026031A (en) * 2011-07-21 2013-02-04 National Institute Of Advanced Industrial & Technology Electrode body for all-solid secondary battery, all-solid secondary battery, method for manufacturing electrode body for all-solid secondary battery, and method for manufacturing all-solid secondary battery
US9224514B2 (en) 2012-01-26 2015-12-29 Jx Nippon Mining & Metals Corporation Cathode active material for lithium ion battery, cathode for lithium ion battery, and lithium ion battery
US9224515B2 (en) 2012-01-26 2015-12-29 Jx Nippon Mining & Metals Coporation Cathode active material for lithium ion battery, cathode for lithium ion battery, and lithium ion battery
US9911518B2 (en) 2012-09-28 2018-03-06 Jx Nippon Mining & Metals Corporation Cathode active material for lithium-ion battery, cathode for lithium-ion battery and lithium-ion battery
JP2022086814A (en) * 2020-11-30 2022-06-09 Apb株式会社 Manufacturing apparatus for electrode for battery
JP7301809B2 (en) 2020-11-30 2023-07-03 Apb株式会社 Manufacturing equipment for battery electrodes

Similar Documents

Publication Publication Date Title
JP2008181708A (en) Manufacturing method of electrode for nonaqueous electrolyte secondary battery, electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP4563503B2 (en) Nonaqueous electrolyte secondary battery
JP2010073339A (en) Nonaqueous electrolyte secondary battery and its electrode
JP4078338B2 (en) Electrode for lithium secondary battery and lithium secondary battery
US20050233066A1 (en) Manufacturing method of chemical battery electrode and battery
TW201831053A (en) Plasma spraying device and method for manufacturing battery electrode
JP2016100069A (en) Method of manufacturing lithium solid battery
JP2008305608A (en) Electrode for lithium secondary battery and its manufacturing method
JP4521062B2 (en) Film forming method and film forming apparatus
JP2010244767A (en) Method for manufacturing anode for lithium secondary battery
JP2002042783A (en) Lithium secondary battery
JP2008300239A (en) Electrode for non-aqueous electrolyte secondary battery, lithium-ion secondary battery, and manufacturing method of electrode for non-aqueous electrolyte secondary battery
JP2017076466A (en) Negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP5598752B2 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP2008166142A (en) Electrode for lithium ion secondary battery, lithium ion secondary battery, and manufacturing method of electrode for lithium ion secondary battery
JP2009301825A (en) Nonaqueous electrolyte secondary battery and electrode used for the same, and method of manufacturing them
JP2008181802A (en) Manufacturing method of electrode for nonaqueous electrolyte secondary battery, electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2002216747A (en) Manufacturing method of electrode for lithium secondary battery
JP2010238410A (en) Electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and their manufacturing method
JP7145501B2 (en) METHOD FOR MANUFACTURING ELECTRODE FOR SECONDARY BATTERY
CN101378115B (en) Method for preparing lithium ion secondary battery cathode
JP5712474B2 (en) Aerosol deposition apparatus and aerosol deposition method
JP2008184647A (en) Composite structure manufacturing method
JP3869609B2 (en) Method for producing electrode for lithium secondary battery
JP2008053217A (en) Method of manufacturing electrode for lithium secondary battery

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20081107