[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2022086814A - Manufacturing apparatus for electrode for battery - Google Patents

Manufacturing apparatus for electrode for battery Download PDF

Info

Publication number
JP2022086814A
JP2022086814A JP2020199039A JP2020199039A JP2022086814A JP 2022086814 A JP2022086814 A JP 2022086814A JP 2020199039 A JP2020199039 A JP 2020199039A JP 2020199039 A JP2020199039 A JP 2020199039A JP 2022086814 A JP2022086814 A JP 2022086814A
Authority
JP
Japan
Prior art keywords
active material
current collector
chamber
supplied
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020199039A
Other languages
Japanese (ja)
Other versions
JP7301809B2 (en
Inventor
英明 堀江
Hideaki Horie
健一郎 榎
Kenichiro Enoki
勇輔 中嶋
Yusuke Nakajima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Chemical Industries Ltd
APB Corp
Original Assignee
Sanyo Chemical Industries Ltd
APB Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Chemical Industries Ltd, APB Corp filed Critical Sanyo Chemical Industries Ltd
Priority to JP2020199039A priority Critical patent/JP7301809B2/en
Priority to PCT/JP2021/043728 priority patent/WO2022114204A1/en
Priority to US18/255,093 priority patent/US20240097106A1/en
Publication of JP2022086814A publication Critical patent/JP2022086814A/en
Application granted granted Critical
Publication of JP7301809B2 publication Critical patent/JP7301809B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0404Machines for assembling batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • H01M4/0435Rolling or calendering
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

To provide a manufacturing apparatus for an electrode for a battery, in which the uniformity of an active material layer formed on a current collector can be improved by suppressing the content of air in the active material.SOLUTION: A manufacturing apparatus 1000 for an electrode for a battery includes a first chamber 100 whose internal pressure is reduced to be lower than atmospheric pressure, an active material supply unit 700 that supplies a powder active material 32c onto a current collector 31B disposed in the first chamber 100, and a compression unit 800 that compresses the active material 32c supplied onto the current collector 31B. The active material supply unit 700 and the compression unit 800 are disposed in the first chamber 100.SELECTED DRAWING: Figure 3

Description

本発明は、電池用電極の製造装置およびその製造方法に関する。 The present invention relates to an apparatus for manufacturing a battery electrode and a method for manufacturing the same.

リチウムイオン電池は、一般に、正極集電体の表面に正極活物質層が形成された正極と、負極集電体の表面に負極活物質層が形成された負極とが、セパレータを介して積層されて構成される。このリチウムイオン電池用電極を製造する際には、例えば特許文献1に記載されたように、集電体上に活物質を供給した後、当該活物質を圧縮することが行われている。 In a lithium ion battery, generally, a positive electrode having a positive electrode active material layer formed on the surface of a positive electrode current collector and a negative electrode having a negative electrode active material layer formed on the surface of a negative electrode current collector are laminated via a separator. It is composed of. When manufacturing the electrode for a lithium ion battery, for example, as described in Patent Document 1, the active material is supplied onto the current collector and then the active material is compressed.

特許第6633866号公報Japanese Patent No. 6633866

しかしながら、特許文献1では、大気中において、集電体上に活物質を供給した後圧縮している。集電体上への活物質供給が大気中で行われると、空気が含まれた活物質層が集電体上に形成されることがある。そして、集電体上に形成された活物質層の圧縮が大気中で行われると、空気が残った状態のまま活物質層を圧縮することとなるので、圧縮後に空気が膨張し、活物質が弾け飛んだり、活物質の表面に凹凸が形成されたりする問題が生じることがある。リチウムイオン電池に用いる電極は、集電体上に供給された活物質を含む活物質層が均質に形成されることで、安定した電池の性能を発揮するが、従来の構成では、前述した問題を抑制することが困難であり、所望の電池の性能が得られない虞がある。 However, in Patent Document 1, the active material is supplied onto the current collector and then compressed in the atmosphere. When the active material is supplied to the current collector in the atmosphere, an active material layer containing air may be formed on the current collector. When the active material layer formed on the current collector is compressed in the atmosphere, the active material layer is compressed with the air remaining, so that the air expands after the compression and the active material is compressed. May pop up or cause problems such as the formation of irregularities on the surface of the active material. The electrodes used in a lithium-ion battery exhibit stable battery performance by uniformly forming an active material layer containing the active material supplied on the current collector, but in the conventional configuration, the above-mentioned problems are exhibited. It is difficult to suppress the above, and there is a possibility that the desired battery performance cannot be obtained.

本発明は、活物質層に空気が含まれることを抑制し、集電体上に形成される活物質層の均一性を向上させることができる電池用電極の製造装置およびその製造方法を提供することを目的とする。 The present invention provides an apparatus for manufacturing a battery electrode capable of suppressing the inclusion of air in the active material layer and improving the uniformity of the active material layer formed on the current collector, and a method for manufacturing the same. The purpose is.

本発明の一態様の電池用電極の製造装置は、内部が大気圧よりも減圧される第1チャンバと、前記第1チャンバ内に配置された集電体上に、粉体状の活物質を供給する活物質供給部と、前記集電体上に供給された前記活物質を圧縮する圧縮部と、を備え、前記活物質供給部及び前記圧縮部が前記第1チャンバ内に配置されている。 In the device for manufacturing a battery electrode according to an aspect of the present invention, a powdery active material is placed on a first chamber whose inside is depressurized more than atmospheric pressure and a current collector arranged in the first chamber. The active material supply unit for supplying and the compression unit for compressing the active material supplied on the current collector are provided, and the active material supply unit and the compression unit are arranged in the first chamber. ..

本発明の一態様の電池用電極の製造方法は、内部が大気圧よりも減圧された第1チャンバ内に配置された集電体上に、粉体状の活物質を供給する工程と、前記集電体上に供給された前記活物質を圧縮する工程と、を有し、前記集電体への前記活物質の供給、及び、前記活物質の圧縮は、前記第1チャンバ内で行われる。 The method for manufacturing a battery electrode according to one aspect of the present invention includes a step of supplying a powdery active material onto a current collector arranged in a first chamber whose inside is depressurized from atmospheric pressure, and the above-mentioned step. It has a step of compressing the active material supplied onto the current collector, and the supply of the active material to the current collector and the compression of the active material are performed in the first chamber. ..

本発明の電池用電極の製造装置およびその製造方法によれば、活物質を圧縮する際に、活物質に空気が含まれるのを抑制し、集電体上に形成される活物質層の均一性を向上させることができる。 According to the battery electrode manufacturing apparatus and the manufacturing method thereof of the present invention, when the active material is compressed, air is suppressed from being contained in the active material, and the active material layer formed on the current collector is uniform. It is possible to improve the sex.

一実施形態の電池用電極の製造装置を用いて製造される電池の断面模式図である。It is sectional drawing of the cross section of the battery manufactured by using the manufacturing apparatus of the electrode for a battery of one Embodiment. 同電池の単セルの断面模式図である。It is sectional drawing of the single cell of the said battery. 一実施形態の電池用電極の製造装置の一部を破断した斜視図である。It is a perspective view which cut off a part of the manufacturing apparatus of the electrode for a battery of one Embodiment. 同電池用電極の製造装置を構成する枠体供給装置の斜視図である。It is a perspective view of the frame body supply device which constitutes the manufacturing apparatus of the electrode for the battery. 同電池用電極の製造装置を構成する活物質供給装置および第2圧縮装置における一部を破断した斜視図である。It is a perspective view which partially cut through the active material supply apparatus and the 2nd compression apparatus which constitute the manufacturing apparatus of the electrode for the battery.

以下、図面を参照して本発明を適用した一実施形態について詳細に説明する。
なお、以下の説明で用いる図面は、特徴部分を強調する目的で、便宜上特徴となる部分を拡大して示している場合があり、各構成要素の寸法比率等が実際と同じであるとは限らない。また、同様の目的で、特徴とならない部分を省略して図示している場合がある。
Hereinafter, an embodiment to which the present invention is applied will be described in detail with reference to the drawings.
In addition, in the drawings used in the following description, for the purpose of emphasizing the characteristic parts, the characteristic parts may be enlarged for convenience, and the dimensional ratios of each component may not be the same as the actual ones. do not have. In addition, for the same purpose, there are cases where non-characteristic parts are omitted.

<電池(二次電池)>
図1は、一実施形態の電池用電極の製造装置(以下、製造装置と略して呼ぶ)を用いて製造される電池10の断面模式図である。
本実施形態の電池(二次電池)10は、非水電解質二次電池の1種であるリチウムイオン二次電池である。ここで、リチウムイオン二次電池とは、正極30aと負極30bとの間をリチウムイオンが移動することで充電や放電を行う二次電池である。以下では、正極30aおよび負極30bを区別無く呼ぶときには、電極(電池用電極)30と呼ぶ。
<Battery (secondary battery)>
FIG. 1 is a schematic cross-sectional view of a battery 10 manufactured by using the battery electrode manufacturing apparatus (hereinafter, abbreviated as manufacturing apparatus) of one embodiment.
The battery (secondary battery) 10 of the present embodiment is a lithium ion secondary battery which is a kind of non-aqueous electrolyte secondary battery. Here, the lithium ion secondary battery is a secondary battery that charges or discharges by moving lithium ions between the positive electrode 30a and the negative electrode 30b. Hereinafter, when the positive electrode 30a and the negative electrode 30b are referred to without distinction, they are referred to as electrodes (battery electrodes) 30.

電池10は、例えば、発電要素において電極が並列接続されてなる形式のいわゆる並列積層型電池などの従来公知の任意の二次電池にも適用可能である。なお、以下の説明では、リチウムイオン二次電池を単に「電池」と呼ぶ。 The battery 10 can also be applied to any conventionally known secondary battery such as a so-called parallel laminated battery in which electrodes are connected in parallel in a power generation element. In the following description, the lithium ion secondary battery is simply referred to as a "battery".

本実施形態の電池10は、発電要素11と、正極タブ34aと、負極タブ34bと、外装体12と、を有する。 The battery 10 of the present embodiment has a power generation element 11, a positive electrode tab 34a, a negative electrode tab 34b, and an exterior body 12.

正極タブ34aは、発電要素11の正極側の端面に接触する。同様に、負極タブ34bは、発電要素11の負極側の端面に接触する。正極タブ34aおよび負極タブ34bは、それぞれ外装体12の外側に引き出される。正極タブ34aおよび負極タブ34bは、アルミニウム合金、銅合金などの高導電性材料が用いられる。 The positive electrode tab 34a comes into contact with the end face of the power generation element 11 on the positive electrode side. Similarly, the negative electrode tab 34b contacts the end face of the power generation element 11 on the negative electrode side. The positive electrode tab 34a and the negative electrode tab 34b are each pulled out to the outside of the exterior body 12. Highly conductive materials such as aluminum alloys and copper alloys are used for the positive electrode tabs 34a and the negative electrode tabs 34b.

外装体12は、外部からの衝撃や環境劣化を防止するために、発電要素11を内部に封止する。外装体12は、例えば、ラミネートフィルムによって袋状に構成される。なお、外装体12としては、金属缶ケースなどを用いてもよい。 The exterior body 12 seals the power generation element 11 inside in order to prevent an impact from the outside and environmental deterioration. The exterior body 12 is formed in a bag shape by, for example, a laminated film. As the exterior body 12, a metal can case or the like may be used.

本実施形態の電池10の発電要素11は、複数の単セル(電池セル)20を有する。発電要素11において、複数の単セル20は、厚さ方向に積層される。単セル20の積層数は、所望する電圧に応じて調節される。 The power generation element 11 of the battery 10 of the present embodiment has a plurality of single cells (battery cells) 20. In the power generation element 11, the plurality of single cells 20 are stacked in the thickness direction. The number of stacked single cells 20 is adjusted according to a desired voltage.

<単セル(電池セル)>
図2は、単セル20の断面模式図である。
単セル20は、2つの電極(電池用電極)としての正極30aおよび負極30bと、セパレータ40と、を有する。
<Single cell (battery cell)>
FIG. 2 is a schematic cross-sectional view of the single cell 20.
The single cell 20 has a positive electrode 30a and a negative electrode 30b as two electrodes (battery electrodes), and a separator 40.

セパレータ40は、正極30aと負極30bとの間に配置される。発電要素11において、複数の単セル20は、正極30aと負極30bとを同方向に向けて積層される。発電要素11において、積層方向の正極側の端部に配置される単セル20の正極30aには、正極タブ34aが接触し、積層方向の負極側の端部に配置される単セル20の負極30bには、負極タブ34bが接触する。 The separator 40 is arranged between the positive electrode 30a and the negative electrode 30b. In the power generation element 11, the plurality of single cells 20 are laminated with the positive electrode 30a and the negative electrode 30b oriented in the same direction. In the power generation element 11, the positive electrode tab 34a comes into contact with the positive electrode 30a of the single cell 20 arranged at the end on the positive electrode side in the stacking direction, and the negative electrode of the single cell 20 arranged at the end on the negative electrode side in the stacking direction. The negative electrode tab 34b comes into contact with 30b.

セパレータ40には、電解質が保持される。これにより、セパレータ40は、電解質層として機能する。セパレータ40は、正極30aおよび負極30bの電極活物質層32の間に配置され、これらが互いに接触することを抑制する。これにより、セパレータ40は、正極30aと負極30bとの間の隔壁として機能する。 An electrolyte is held in the separator 40. As a result, the separator 40 functions as an electrolyte layer. The separator 40 is arranged between the electrode active material layer 32 of the positive electrode 30a and the negative electrode 30b, and prevents them from coming into contact with each other. As a result, the separator 40 functions as a partition wall between the positive electrode 30a and the negative electrode 30b.

セパレータ40に保持される電解質としては、例えば、電解液またはゲルポリマー電解質などが挙げられる。これらの電解質を用いることで、高いリチウムイオン伝導性が確保される。セパレータの形態としては、例えば、上記電解質を吸収保持するポリマーや繊維からなる多孔性シートのセパレータや不織布セパレータなどを挙げることができる。 Examples of the electrolyte held in the separator 40 include an electrolytic solution or a gel polymer electrolyte. By using these electrolytes, high lithium ion conductivity is ensured. Examples of the form of the separator include a separator of a porous sheet made of a polymer or fiber that absorbs and retains the electrolyte, a non-woven fabric separator, and the like.

正極30aおよび負極30bは、それぞれ、集電体31と、電極活物質層32と、枠体45と、を有する。電極活物質層32と集電体31とは、セパレータ40側からこの順に並ぶ。枠体45は、額縁状(環状)である。枠体45は、電極活物質層32の周囲を囲む。正極30aの枠体45と負極30bの枠体45とは、互いに溶着され一体化されている。 The positive electrode 30a and the negative electrode 30b each have a current collector 31, an electrode active material layer 32, and a frame body 45, respectively. The electrode active material layer 32 and the current collector 31 are arranged in this order from the separator 40 side. The frame body 45 has a frame shape (annular shape). The frame 45 surrounds the periphery of the electrode active material layer 32. The frame body 45 of the positive electrode 30a and the frame body 45 of the negative electrode 30b are welded to each other and integrated.

以下の説明において、正極30aおよび負極30bの電極活物質層32を互いに区別する場合、これらをそれぞれ正極活物質層32a、負極活物質層32bと呼ぶ。 In the following description, when the electrode active material layers 32 of the positive electrode 30a and the negative electrode 30b are distinguished from each other, they are referred to as a positive electrode active material layer 32a and a negative electrode active material layer 32b, respectively.

枠体45は、集電体31同士の接触や単セル20の端部における短絡を防止する。枠体45を構成する材料としては、絶縁性、シール性(液密性)、電池動作温度下での耐熱性などを有するものであればよく、樹脂材料が好適に採用される。 The frame body 45 prevents contact between the current collectors 31 and a short circuit at the end of the single cell 20. As the material constituting the frame body 45, any material having insulating property, sealing property (liquidtightness), heat resistance under the battery operating temperature and the like may be used, and a resin material is preferably adopted.

集電体31は、導電性のシート状の部材である。集電体31を構成する材料は、特に限定されないが、例えば、導電性を有する樹脂や、金属が用いられうる。軽量化の観点からは、集電体31は、導電性を有する樹脂によって形成された樹脂集電体であることが好ましい。なお、単セル20間のリチウムイオンの移動を遮断する観点からは、樹脂製の集電体31の一部に金属層を設けてもよい。 The current collector 31 is a conductive sheet-like member. The material constituting the current collector 31 is not particularly limited, and for example, a conductive resin or a metal can be used. From the viewpoint of weight reduction, the current collector 31 is preferably a resin current collector formed of a conductive resin. From the viewpoint of blocking the movement of lithium ions between the single cells 20, a metal layer may be provided on a part of the resin current collector 31.

樹脂製の集電体31を構成する導電性を有する樹脂としては、導電性高分子材料または非導電性高分子材料に必要に応じて導電性フィラーが添加された樹脂が挙げられる。導電性高分子材料としては、例えば、ポリアニリン、ポリピロール、ポリチオフェン、ポリアセチレン、ポリパラフェニレン、ポリフェニレンビニレン、およびポリオキサジアゾールなどが挙げられる。かような導電性高分子材料は、導電性フィラーを添加しなくても十分な導電性を有するため、製造工程の容易化または集電体の軽量化の点において有利である。 Examples of the conductive resin constituting the resin collector 31 include a conductive polymer material or a non-conductive polymer material to which a conductive filler is added as needed. Examples of the conductive polymer material include polyaniline, polypyrrole, polythiophene, polyacetylene, polyparaphenylene, polyphenylene vinylene, polyoxadiazole and the like. Since such a conductive polymer material has sufficient conductivity without adding a conductive filler, it is advantageous in terms of facilitating the manufacturing process or reducing the weight of the current collector.

非導電性高分子材料としては、例えば、ポリエチレン(PE;高密度ポリエチレン(H
DPE)、低密度ポリエチレン(LDPE)など)、ポリプロピレン(PP)、ポリエチレンテレフタレート(PET)、ポリエーテルニトリル(PEN)、ポリイミド(PI)、ポリアミドイミド(PAI)、ポリアミド(PA)、ポリテトラフルオロエチレン(PTFE)、スチレン-ブタジエンゴム(SBR)、ポリアクリロニトリル(PAN)、ポリメチルアクリレート(PMA)、ポリメチルメタクリレート(PMMA)、ポリ塩化ビニル(PVC)、ポリフッ化ビニリデン(PVdF)、またはポリスチレン(PS)などが挙げられる。かような非導電性高分子材料は、優れた耐電位性または耐溶媒性を有しうる。
Examples of the non-conductive polymer material include polyethylene (PE; high density polyethylene (H).
DPE), low density polyethylene (LDPE), etc.), polypropylene (PP), polyethylene terephthalate (PET), polyether nitrile (PEN), polyimide (PI), polyamideimide (PAI), polyamide (PA), polytetrafluoroethylene (PTFE), styrene-butadiene rubber (SBR), polyacrylonitrile (PAN), polymethylacrylate (PMA), polymethylmethacrylate (PMMA), polyvinyl chloride (PVC), polyvinylidene fluoride (PVdF), or polystyrene (PS). ) And so on. Such non-conductive polymer materials may have excellent potential or solvent resistance.

導電性フィラーは、導電性を有する物質であれば特に制限なく用いることができる。例えば、導電性、耐電位性、またはリチウムイオン遮断性に優れた材料として、金属および導電性カーボンなどが挙げられる。金属としては、特に制限はないが、ニッケル、チタン、アルミニウム、銅、白金、鉄、クロム、スズ、亜鉛、インジウム、アンチモン、およびカリウムからなる群から選択される少なくとも1種の金属もしくはこれらの金属を含む合金または金属酸化物を含むことが好ましい。また、導電性カーボンとしては、特に制限はない。好ましくは、アセチレンブラック、バルカン(登録商標)、ブラックパール(登録商標)、カーボンナノファイバー、ケッチェンブラック(登録商標)、カーボンナノチューブ(CNT)、カーボンナノホーン、カーボンナノバルーン、およびフラーレンからなる群より選択される少なくとも1種を含むことが好ましい。 The conductive filler can be used without particular limitation as long as it is a conductive substance. For example, materials having excellent conductivity, potential resistance, or lithium ion blocking property include metals and conductive carbon. The metal is not particularly limited, but at least one metal selected from the group consisting of nickel, titanium, aluminum, copper, platinum, iron, chromium, tin, zinc, indium, antimony, and potassium, or these metals. It is preferable to contain an alloy or a metal oxide containing. Further, the conductive carbon is not particularly limited. Preferably, from the group consisting of acetylene black, vulcan (registered trademark), black pearl (registered trademark), carbon nanofiber, Ketjen black (registered trademark), carbon nanotube (CNT), carbon nanohorn, carbon nanoballoon, and fullerene. It is preferable to include at least one selected.

導電性フィラーの添加量は、集電体31に十分な導電性を付与できる量であれば特に制限はなく、好ましくは、5~35質量%程度であり、より好ましくは10~30質量%であり、さらに好ましくは15~20質量%である。 The amount of the conductive filler added is not particularly limited as long as it can impart sufficient conductivity to the current collector 31, preferably about 5 to 35% by mass, and more preferably 10 to 30% by mass. Yes, more preferably 15 to 20% by mass.

また、集電体31が金属によって形成される場合は、金属としては、アルミニウム、ニッケル、鉄、ステンレス、チタン、銅などが挙げられる。これらのほか、ニッケルとアルミニウムとのクラッド材、銅とアルミニウムとのクラッド材、またはこれらの金属のめっき材などが好ましく用いられうる。また、金属表面にアルミニウムが被覆されてなる箔であってもよい。なかでも、電子伝導性や電池作動電位、集電体31へのスパッタリングによる負極活物質の密着性などの観点からは、アルミニウム、ステンレス、銅、ニッケルが好ましい。 When the current collector 31 is formed of a metal, examples of the metal include aluminum, nickel, iron, stainless steel, titanium, and copper. In addition to these, a clad material of nickel and aluminum, a clad material of copper and aluminum, or a plating material of these metals can be preferably used. Further, the foil may be a metal surface coated with aluminum. Of these, aluminum, stainless steel, copper, and nickel are preferable from the viewpoints of electron conductivity, battery operating potential, and adhesion of the negative electrode active material to the current collector 31 by sputtering.

電極活物質層32は、電極活物質(正極活物質または負極活物質)および導電助剤を含む電極用造粒粒子(以下、単に造粒粒子)を有する。また、電極活物質層32は、必要に応じて、電解液および粘着剤のうち何れか一方又は両方をさらに含んでいてもよい。また、電極活物質層32は、必要に応じて、イオン伝導性ポリマーなどを含んでもよい。
以下の説明において、正極活物質層32aおよび負極活物質層32bの電極活物質を互いに区別する場合、これらをそれぞれ正極活物質、負極活物質と呼ぶ。
The electrode active material layer 32 has electrode granulated particles (hereinafter, simply granulated particles) containing an electrode active material (positive electrode active material or negative electrode active material) and a conductive auxiliary agent. Further, the electrode active material layer 32 may further contain either one or both of the electrolytic solution and the pressure-sensitive adhesive, if necessary. Further, the electrode active material layer 32 may contain an ion conductive polymer or the like, if necessary.
In the following description, when the electrode active materials of the positive electrode active material layer 32a and the negative electrode active material layer 32b are distinguished from each other, they are referred to as a positive electrode active material and a negative electrode active material, respectively.

正極活物質としては、例えば、LiMn、LiCoO、LiNiO、Li(Ni-Mn-Co)Oおよびこれらの遷移金属の一部が他の元素により置換されたものなどのリチウム-遷移金属複合酸化物、リチウム-遷移金属リン酸化合物、リチウム-遷移金属硫酸化合物などが挙げられる。場合によっては、2種以上の正極活物質が併用されてもよい。好ましくは、容量、出力特性の観点から、リチウム-遷移金属複合酸化物が、正極活物質として用いられる。より好ましくはリチウムとニッケルとを含有する複合酸化物が用いられる。さらに好ましくはLi(Ni-Mn-Co)Oおよびこれらの遷移金属の一部が他の元素により置換されたもの(以下、「NMC複合酸化物」と呼ぶ)、またはリチウム-ニッケル-コバルト-アルミニウム複合酸化物などが用いられる。NMC複合酸化物は、リチウム原子層と遷移金属(Mn、NiおよびCoが秩序正しく配置)原子層とが酸素原子層を介して交互に積み重なった層状結晶構造を有する。そして、遷移金属1原子あたり1個のLi原子が含まれ、取り出せるLi量が、スピネル系リチウムマンガン酸化物の2倍、つまり供給能力が2倍になり、高い容量を持つことができる。 Examples of the positive electrode active material include LiMn 2 O 4 , LiCoO 2 , LiNiO 2 , Li (Ni—Mn—Co) O 2 , and lithium such as those in which some of these transition metals are replaced by other elements. Examples thereof include transition metal composite oxides, lithium-transition metal phosphate compounds, and lithium-transition metal sulfate compounds. In some cases, two or more kinds of positive electrode active materials may be used in combination. Preferably, a lithium-transition metal composite oxide is used as the positive electrode active material from the viewpoint of capacity and output characteristics. More preferably, a composite oxide containing lithium and nickel is used. More preferably, Li (Ni-Mn-Co) O 2 and a part of these transition metals are substituted with other elements (hereinafter referred to as "NMC composite oxide"), or lithium-nickel-cobalt-. Aluminum composite oxide or the like is used. The NMC composite oxide has a layered crystal structure in which a lithium atomic layer and a transition metal (Mn, Ni and Co are arranged in an orderly manner) atomic layer are alternately stacked via an oxygen atomic layer. Then, one Li atom is contained in each transition metal atom, and the amount of Li that can be taken out is twice that of the spinel-based lithium manganese oxide, that is, the supply capacity is doubled, and a high capacity can be obtained.

負極活物質としては、例えば、グラファイト(黒鉛)、ソフトカーボン、ハードカーボンなどの炭素材料、リチウム-遷移金属複合酸化物(例えば、LiTi12)、金属材料(スズ、シリコン)、リチウム合金系負極材料(例えばリチウム-スズ合金、リチウム-シリコン合金、リチウム-アルミニウム合金、リチウム-アルミニウム-マンガン合金など)などが挙げられる。場合によっては、2種以上の負極活物質が併用されてもよい。好ましくは、容量、出力特性の観点から、炭素材料、リチウム-遷移金属複合酸化物、リチウム合金系負極材料が、負極活物質として好ましく用いられる。なお、上記以外の負極活物質が用いられてもよいことは勿論である。また、(メタ)アクリレート系共重合体などの被覆用樹脂は特に炭素材料に対して付着しやすいという性質を有している。したがって、構造的に安定した電極材料を提供するという観点からは、負極活物質として炭素材料を用いることが好ましい。 Examples of the negative electrode active material include carbon materials such as graphite (graphite), soft carbon, and hard carbon, lithium-transition metal composite oxides (for example, Li 4 Ti 5 O 12 ), metal materials (tin, silicon), and lithium. Examples thereof include alloy-based negative electrode materials (for example, lithium-tin alloy, lithium-silicon alloy, lithium-aluminum alloy, lithium-aluminum-manganese alloy, etc.). In some cases, two or more kinds of negative electrode active materials may be used in combination. Preferably, from the viewpoint of capacity and output characteristics, a carbon material, a lithium-transition metal composite oxide, and a lithium alloy-based negative electrode material are preferably used as the negative electrode active material. Of course, a negative electrode active material other than the above may be used. Further, a coating resin such as a (meth) acrylate-based copolymer has a property of being particularly easy to adhere to a carbon material. Therefore, from the viewpoint of providing a structurally stable electrode material, it is preferable to use a carbon material as the negative electrode active material.

導電助剤は、電子伝導パスを形成し、電極活物質層32の電子移動抵抗を低減することで、電池の高レートでの出力特性向上に寄与し得る。導電助剤の形状は、粒子状または繊維状であることが好ましい。 The conductive auxiliary agent can contribute to the improvement of the output characteristics at a high rate of the battery by forming an electron conduction path and reducing the electron transfer resistance of the electrode active material layer 32. The shape of the conductive auxiliary agent is preferably particulate or fibrous.

導電助剤としては、例えば、アルミニウム、ステンレス、銀、金、銅、チタンなどの金属、これらの金属を含む合金または金属酸化物;炭素繊維(具体的には、気相成長炭素繊維(VGCF)など)、カーボンナノチューブ(CNT)、カーボンナノファイバー、カーボンブラック(具体的には、アセチレンブラック、ケッチェンブラック(登録商標)、ファーネスブラック、チャンネルブラック、サーマルランプブラックなど)などのカーボンが挙げられるが、これらに限定されない。また、粒子状のセラミック材料や樹脂材料の周りに上記金属材料をめっきなどでコーティングしたものも導電助剤として使用できる。これらの導電助剤のなかでも、電気的安定性の観点から、アルミニウム、ステンレス、銀、金、銅、チタン、およびカーボンからなる群より選択される少なくとも1種を含むことが好ましく、アルミニウム、ステンレス、銀、金、およびカーボンからなる群より選択される少なくとも1種を含むことがより好ましく、カーボンからなる群より選択される少なくとも1種を含むことがさらに好ましい。これらの導電助剤は、1種のみを単独で使用してもよいし、2種以上を併用しても構わない。 Conductive aids include, for example, metals such as aluminum, stainless steel, silver, gold, copper, titanium, alloys or metal oxides containing these metals; carbon fibers (specifically, vapor grown carbon fibers (VGCF)). , Carbon nanotubes (CNT), carbon nanofibers, carbon black (specifically, acetylene black, Ketjen black (registered trademark), furnace black, channel black, thermal lamp black, etc.). , Not limited to these. Further, a particulate ceramic material or a resin material coated with the above metal material by plating or the like can also be used as a conductive auxiliary agent. Among these conductive auxiliaries, from the viewpoint of electrical stability, it is preferable to contain at least one selected from the group consisting of aluminum, stainless steel, silver, gold, copper, titanium, and carbon, and aluminum, stainless steel. It is more preferable to contain at least one selected from the group consisting of silver, gold, and carbon, and even more preferably to contain at least one selected from the group consisting of carbon. Only one of these conductive aids may be used alone, or two or more thereof may be used in combination.

電解液(液体電解質)は、溶媒にリチウム塩が溶解した形態を有する。本発明の電解液を構成する溶媒としては、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネートなどのカーボネート類が挙げられる。リチウム塩としては、LiPF、LiBF、LiSbF、LiAsFLiClO、Li[(FSON](LiFSI)などの無機酸のリチウム塩、LiN(CFSO、LiN(CSO、およびLiC(CFSOなどの有機酸のリチウム塩などが挙げられる。なお、電解液におけるリチウム塩の濃度は、0.1~3.0Mであることが好ましく、0.8~2.2Mであることがより好ましい。また、添加剤を使用する場合の使用量は、添加剤を添加する前の電解液100質量%に対して、好ましくは0.5~10質量%、より好ましくは0.5~5質量%である。 The electrolytic solution (liquid electrolyte) has a form in which a lithium salt is dissolved in a solvent. Examples of the solvent constituting the electrolytic solution of the present invention include carbonates such as ethylene carbonate (EC), propylene carbonate (PC), dimethyl carbonate (DMC), diethyl carbonate (DEC), and ethyl methyl carbonate. Lithium salts include lithium salts of inorganic acids such as LiPF 6 , LiBF 4 , LiSbF 6 , LiAsF 6 LiClO 4 , Li [(FSO 2 ) 2 N] (LiFSI), LiN (CF 3 SO 2 ) 2 , LiN ( Examples thereof include lithium salts of organic acids such as C 2 F 5 SO 2 ) 2 and LiC (CF 3 SO 2 ) 3 . The concentration of the lithium salt in the electrolytic solution is preferably 0.1 to 3.0 M, more preferably 0.8 to 2.2 M. When the additive is used, the amount used is preferably 0.5 to 10% by mass, more preferably 0.5 to 5% by mass, based on 100% by mass of the electrolytic solution before the additive is added. be.

添加剤としては、例えば、ビニレンカーボネート、メチルビニレンカーボネート、ジメチルビニレンカーボネート、フェニルビニレンカーボネート、ジフェニルビニレンカーボネート、エチルビニレンカーボネート、ジエチルビニレンカーボネート、ビニルエチレンカーボネート、1,2-ジビニルエチレンカーボネート、1-メチル-1-ビニルエチレンカーボネート、1-メチル-2-ビニルエチレンカーボネート、1-エチル-1-ビニルエチレンカーボネート、1-エチル-2-ビニルエチレンカーボネート、ビニルビニレンカーボネート、アリルエチレンカーボネート、ビニルオキシメチルエチレンカーボネート、アリルオキシメチルエチレンカーボネート、アクリルオキシメチルエチレンカーボネート、メタクリルオキシメチルエチレンカーボネート、エチニルエチレンカーボネート、プロパルギルエチレンカーボネート、エチニルオキシメチルエチレンカーボネート、プロパルギルオキシエチレンカーボネート、メチレンエチレンカーボネート、1,1-ジメチル-2-メチレンエチレンカーボネートなどが挙げられる。なかでも、ビニレンカーボネート、メチルビニレンカーボネート、ビニルエチレンカーボネートが好ましく、ビニレンカーボネート、ビニルエチレンカーボネートがより好ましい。これらの環式炭酸エステルは、1種のみが単独で用いられてもよいし、2種以上が併用されてもよい。 Examples of the additive include vinylene carbonate, methylvinylene carbonate, dimethylvinylene carbonate, phenylvinylene carbonate, diphenylvinylene carbonate, ethylvinylene carbonate, diethylvinylene carbonate, vinylethylene carbonate, 1,2-divinylethylenecarbonate, 1-methyl-. 1-vinylethylene carbonate, 1-methyl-2-vinylethylene carbonate, 1-ethyl-1-vinylethylenecarbonate, 1-ethyl-2-vinylethylenecarbonate, vinylvinylene carbonate, allylethylenecarbonate, vinyloxymethylethylenecarbonate, Allyloxymethylethylene carbonate, acrylicoxymethylethylene carbonate, methacryloxymethylethylene carbonate, ethynylethylene carbonate, propargylethylene carbonate, ethynyloxymethylethylene carbonate, propargyloxyethylene carbonate, methyleneethylene carbonate, 1,1-dimethyl-2-methylene Examples include ethylene carbonate. Of these, vinylene carbonate, methylvinylene carbonate and vinylethylene carbonate are preferable, and vinylene carbonate and vinylethylene carbonate are more preferable. Only one of these cyclic carbonic acid esters may be used alone, or two or more thereof may be used in combination.

粘着剤としては、例えば、ポリシック(登録商標)シリーズなどの(メタ)アクリル酸エステル系感圧接着剤が挙げられる。造粒粒子中の前記粘着剤の含有量は、造粒粒子の固形分の合計質量に対して、0.01~10質量%であることが好ましく、より好ましくは0.01~8質量%であり、さらに好ましくは0.1~5質量%であり、特に好ましくは0.1~3質量%である。 Examples of the pressure-sensitive adhesive include (meth) acrylic acid ester-based pressure-sensitive adhesives such as Polythic (registered trademark) series. The content of the pressure-sensitive adhesive in the granulated particles is preferably 0.01 to 10% by mass, more preferably 0.01 to 8% by mass, based on the total mass of the solid content of the granulated particles. Yes, more preferably 0.1 to 5% by mass, and particularly preferably 0.1 to 3% by mass.

<製造装置および電池用電極の製造方法>
次に、本実施形態の製造装置および電池用電極の製造方法(以下、製造方法と略して呼ぶ)について説明する。製造装置および製造方法では、まず正極30aおよび負極30bが製造される。正極30aの製造方法と負極30bの製造方法とは、主に電極活物質層32に含まれる電極活物質が異なる。ここでは、電極30の製造方法として、正極30aおよび負極30bの製造方法をまとめて説明する。
<Manufacturing equipment and manufacturing method of battery electrodes>
Next, a manufacturing apparatus of the present embodiment and a manufacturing method of a battery electrode (hereinafter, abbreviated as a manufacturing method) will be described. In the manufacturing apparatus and manufacturing method, the positive electrode 30a and the negative electrode 30b are first manufactured. The method for manufacturing the positive electrode 30a and the method for manufacturing the negative electrode 30b differ mainly in the electrode active material contained in the electrode active material layer 32. Here, as a method for manufacturing the electrode 30, a method for manufacturing the positive electrode 30a and the negative electrode 30b will be collectively described.

図3は、製造装置1000の斜視図である。製造装置1000は、第1チャンバ(チャンバ)100と、第2チャンバ200と、集電体供給装置(集電体供給部)300と、搬送装置400と、枠体供給装置(枠体供給部)500と、第1ロールプレス600と、活物質供給装置(活物質供給部)700と、第2ロールプレス(圧縮部)800と、制御部900と、を備えている。 FIG. 3 is a perspective view of the manufacturing apparatus 1000. The manufacturing apparatus 1000 includes a first chamber (chamber) 100, a second chamber 200, a current collector supply device (current collector supply unit) 300, a transfer device 400, and a frame body supply device (frame body supply unit). It includes a 500, a first roll press 600, an active material supply device (active material supply unit) 700, a second roll press (compression unit) 800, and a control unit 900.

第1チャンバ100および第2チャンバ200は、それぞれ内部を大気圧よりも減圧された状態に保持できる部屋である。第1チャンバ100の側壁には、耐圧ガラスにより形成された窓である観察窓(ビューイングポート)101が設けられている。このため、第1チャンバ100の外部から、観察窓101を通して第1チャンバ100内を観察できる。
第1チャンバ100の内部は、図示しない第1減圧ポンプにより大気圧よりも減圧される。第1チャンバ100の内部の圧力は、大気圧よりも減圧されていれば任意の値でよいが、例えば、大気圧から1×10-1~1×10-2Paまでの低真空環境となるように調整されていてもよいし、1×10-6~1×10-7Paの高真空環境となるように調整されていてもよいし、それ以上の超高真空や10-8~10-9Paレベルの極高真空であってもよい。なお、標準大気圧は、約1013hPa(約10Pa)である。
第2チャンバ200の内部は、図示しない第2減圧ポンプにより大気圧よりも減圧される。第2チャンバ200の内部の圧力は、大気圧よりも減圧されていれば任意の値でよいが、例えば、大気圧から1×10-1~1×10-2Paまでの低真空環境となるように調整されていてもよいし、1×10-6~1×10-7Paの高真空環境となるように調整されていてもよいし、それ以上の超高真空や10-8~10-9Paレベルの極高真空であってもよい。第2チャンバ200の内部の圧力は、第1チャンバ100の内部の圧力よりも高くてもよい。
The first chamber 100 and the second chamber 200 are chambers in which the inside can be kept in a state where the pressure is lower than the atmospheric pressure. An observation window (viewing port) 101, which is a window formed of pressure-resistant glass, is provided on the side wall of the first chamber 100. Therefore, the inside of the first chamber 100 can be observed from the outside of the first chamber 100 through the observation window 101.
The inside of the first chamber 100 is depressurized more than the atmospheric pressure by a first decompression pump (not shown). The pressure inside the first chamber 100 may be any value as long as it is depressurized from the atmospheric pressure, but for example, it becomes a low vacuum environment from the atmospheric pressure to 1 × 10 -1 to 1 × 10 -2- Pa. It may be adjusted so as to have a high vacuum environment of 1 × 10 -6 to 1 × 10 -7 Pa, an ultra-high vacuum higher than that, or 10-8 to 10 It may be an extremely high vacuum of -9 Pa level. The standard atmospheric pressure is about 1013 hPa ( about 105 Pa).
The inside of the second chamber 200 is depressurized more than the atmospheric pressure by a second decompression pump (not shown). The pressure inside the second chamber 200 may be any value as long as it is depressurized from the atmospheric pressure, but for example, it becomes a low vacuum environment from the atmospheric pressure to 1 × 10 -1 to 1 × 10 -2 Pa. It may be adjusted so as to have a high vacuum environment of 1 × 10 -6 to 1 × 10 -7 Pa, an ultra-high vacuum higher than that, or 10-8 to 10 It may be an extremely high vacuum of -9 Pa level. The pressure inside the second chamber 200 may be higher than the pressure inside the first chamber 100.

第1チャンバ100および第2チャンバ200は、集電体供給装置300が、帯状の集電体31Bを搬送する搬送方向Dに並べて配置される。集電体31Bは、前記集電体31が所定の形状に切り出される前のものである。第1チャンバ100は、第2チャンバ200よりも搬送方向Dの下流側D1に配置される。
第2チャンバ200は、前室である。第2チャンバ200における下流側D1の側壁には、スリット201が形成される。第2チャンバ200における下流側D1とは反対の上流側D2の側壁には、図示しないスリットが形成される。このスリットは、第2チャンバ200のスリット201に対向するように形成される。
In the first chamber 100 and the second chamber 200, the current collector supply device 300 is arranged side by side in the transport direction D for transporting the band-shaped current collector 31B. The current collector 31B is the one before the current collector 31 is cut into a predetermined shape. The first chamber 100 is arranged on the downstream side D1 in the transport direction D from the second chamber 200.
The second chamber 200 is an anterior chamber. A slit 201 is formed on the side wall of the downstream side D1 in the second chamber 200. A slit (not shown) is formed on the side wall of the upstream side D2 opposite to the downstream side D1 in the second chamber 200. This slit is formed so as to face the slit 201 of the second chamber 200.

第2チャンバ200内には、集電体供給装置300が配置される。第1チャンバ100内には、搬送装置400、枠体供給装置500、第1ロールプレス600、活物質供給装置700、および第2ロールプレス800が配置される。 A current collector supply device 300 is arranged in the second chamber 200. In the first chamber 100, a transfer device 400, a frame supply device 500, a first roll press 600, an active material supply device 700, and a second roll press 800 are arranged.

集電体供給装置300は、第1チャンバ100内に、集電体31Bを供給する。集電体供給装置300は、図示しないロール保持部と、スプライサ310と、送りローラ320と、を備える。
ロール保持部には、一対の集電体ロール31Rが保持される。集電体ロール31Rは、集電体31Bをロール状にしたものである。集電体ロール31Rが適宜展開され、集電体ロール31Rから集電体31Bが供給される。ロール保持部は、一対の集電体ロール31Rのうちの一方が全て展開されたら、一対の集電体ロール31Rのうちの他方の供給を開始する。
The current collector supply device 300 supplies the current collector 31B into the first chamber 100. The current collector supply device 300 includes a roll holding unit (not shown), a splicer 310, and a feed roller 320.
A pair of current collector rolls 31R are held in the roll holding portion. The current collector roll 31R is a roll of the current collector 31B. The current collector roll 31R is appropriately deployed, and the current collector 31B is supplied from the current collector roll 31R. When one of the pair of current collector rolls 31R is fully deployed, the roll holding unit starts supplying the other of the pair of current collector rolls 31R.

スプライサ310は、集電体31Bの端部同士を接合する。一方の集電体ロール31Rが全て展開され、集電体31Bが全て供給されると、最終的には集電体31Bの終端が下流側D1に向けて移動する。この終端と、一方の集電体ロール31Rを展開した集電体31Bの始端とを、スプライサ310により接合する。これにより、複数の集電体31Bを途切れさせることなく連続的に第1チャンバ100内に供給する。 The splicer 310 joins the ends of the current collector 31B to each other. When one of the current collector rolls 31R is fully deployed and all the current collectors 31B are supplied, the end of the current collector 31B finally moves toward the downstream side D1. This end and the start end of the current collector 31B in which one of the current collector rolls 31R is deployed are joined by a splicer 310. As a result, the plurality of current collectors 31B are continuously supplied into the first chamber 100 without interruption.

送りローラ320は、ロール保持部よりも下流側D1に設けられる。送りローラ320は、複数の回転部材からなる。送りローラ320により搬送される集電体31Bは、前記複数の回転部材に沿って移動する。これにより、集電体31Bを送りローラ320の途中で緩ませることなく、安定して下流側D1の第1チャンバ100内に供給する。集電体供給装置300は、集電体31Bを所定の速度で供給する。
第2チャンバ200の内部には、予備の集電体ロール31Rが配置されていることが好ましい。
集電体供給装置300から下流側D1に供給された集電体31Bは、第2チャンバ200のスリット201、および第1チャンバ100のスリットを通して、第2チャンバ200の内部に供給される。
The feed roller 320 is provided on the downstream side D1 of the roll holding portion. The feed roller 320 is composed of a plurality of rotating members. The current collector 31B conveyed by the feed roller 320 moves along the plurality of rotating members. As a result, the current collector 31B is stably supplied into the first chamber 100 of the downstream side D1 without being loosened in the middle of the feed roller 320. The current collector supply device 300 supplies the current collector 31B at a predetermined speed.
It is preferable that a spare current collector roll 31R is arranged inside the second chamber 200.
The current collector 31B supplied from the current collector supply device 300 to the downstream side D1 is supplied to the inside of the second chamber 200 through the slit 201 of the second chamber 200 and the slit of the first chamber 100.

本実施形態では、集電体供給装置300の全てが、第2チャンバ200内に配置される。なお、集電体供給装置300におけるロール保持部などが、第2チャンバ200の外部に配置されてもよい。この場合、集電体供給装置300の一部が、第2チャンバ200内に配置される。 In this embodiment, all of the current collector supply devices 300 are arranged in the second chamber 200. The roll holding portion of the current collector supply device 300 may be arranged outside the second chamber 200. In this case, a part of the current collector supply device 300 is arranged in the second chamber 200.

例えば、搬送装置400は、公知のベルトコンベアである。搬送装置400は、搬送ローラ401を備える。搬送ローラ401は、その回転軸が、水平面に沿うとともに搬送方向Dに直交する幅方向Eに沿うように配置される。搬送装置400は、第1チャンバ100の内部において、集電体31Bを下流側D1に搬送する。
枠体供給装置500、第1ロールプレス600、活物質供給装置700、および第2ロールプレス800は、上流側D2から下流側D1に向かって、この順で搬送装置400に沿って並べて配置される。
For example, the transport device 400 is a known belt conveyor. The transfer device 400 includes a transfer roller 401. The transport roller 401 is arranged so that its rotation axis is along the horizontal plane and along the width direction E orthogonal to the transport direction D. The transfer device 400 transports the current collector 31B to the downstream side D1 inside the first chamber 100.
The frame supply device 500, the first roll press 600, the active material supply device 700, and the second roll press 800 are arranged side by side along the transfer device 400 from the upstream side D2 to the downstream side D1 in this order. ..

図4は、枠体供給装置500の斜視図である。枠体供給装置500は、活物質供給装置700よりも上流側D2に配設される。
枠体供給装置500は、第2チャンバ200の内部であって、搬送装置400の側方に積み重ねられた枠体45を、集電体31B上に供給する。枠体供給装置500は、ロボットアーム501と、保持具502と、脱気管503と、を有する。
ロボットアーム501は、複数のロッド506を関節507で接続した公知の構成のものである。ロボットアーム501の基端部は、第1チャンバ100の床などに固定されている。
FIG. 4 is a perspective view of the frame supply device 500. The frame supply device 500 is arranged on D2 on the upstream side of the active material supply device 700.
The frame body supply device 500 supplies the frame body 45 stacked on the side of the transfer device 400 inside the second chamber 200 onto the current collector 31B. The frame supply device 500 includes a robot arm 501, a holder 502, and a degassing tube 503.
The robot arm 501 has a known configuration in which a plurality of rods 506 are connected by joints 507. The base end portion of the robot arm 501 is fixed to the floor of the first chamber 100 or the like.

保持具502は、枠体45と同じ大きさの額縁状である。例えば、保持具502は、本体部510と、弾性部511と、吸盤部(不図示)と、を備えている。
本体部510は、下面側に開口を有する断面コの字型の部材である。また、本体部510の開口部は、枠体45の形状に合わせた額縁状である。
弾性部511は、本体部510の開口部を塞ぐように設けられる。弾性部511は、本体部510に設けられた、枠体45に接する部位である。ここで、枠体45を吸着部に吸着するために、弾性部511は、枠体45に隙間なく密着する必要がある。
吸盤部は、弾性部511における枠体45に接する面に間隔をあけて複数設けられた、弾性部511の肉厚が薄くなっている部位である。また本実施形態では、吸盤部は、弾性部511において、枠体45に接する側の面に面一となっており、本体部510の側の面に窪みがあるように設けられている。
The holder 502 has a frame shape having the same size as the frame body 45. For example, the holder 502 includes a main body portion 510, an elastic portion 511, and a suction cup portion (not shown).
The main body portion 510 is a member having a U-shaped cross section having an opening on the lower surface side. Further, the opening of the main body portion 510 has a frame shape that matches the shape of the frame body 45.
The elastic portion 511 is provided so as to close the opening of the main body portion 510. The elastic portion 511 is a portion provided on the main body portion 510 and in contact with the frame body 45. Here, in order to attract the frame body 45 to the suction portion, the elastic portion 511 needs to be in close contact with the frame body 45 without a gap.
The suction cup portion is a portion of the elastic portion 511 that is provided at intervals on the surface of the elastic portion 511 in contact with the frame body 45 and has a thin wall thickness. Further, in the present embodiment, the suction cup portion is provided so as to be flush with the surface of the elastic portion 511 on the side in contact with the frame body 45 and to have a recess on the surface on the side of the main body portion 510.

脱気管503の第1端部における内部空間は、本体部510の内部空間に連なっている。脱気管503における第1端部とは反対側の第2端部には、図示しない減圧ポンプが接続されている。減圧ポンプには、減圧ポンプに接続された脱気管503の内部空間の空気を排出するか否かを切り替えるバルブが設けられている。減圧ポンプは、第2チャンバ200の外部に配置されていることが好ましい。 The internal space at the first end of the degassing tube 503 is connected to the internal space of the main body 510. A decompression pump (not shown) is connected to the second end of the degassing tube 503 opposite to the first end. The decompression pump is provided with a valve for switching whether or not to exhaust the air in the internal space of the degassing pipe 503 connected to the decompression pump. The decompression pump is preferably located outside the second chamber 200.

このように構成された枠体供給装置500において、弾性部511が枠体45に密着した状態で減圧ポンプを駆動し、バルブを切り替えて脱気管503の内部空間の空気が排出されるようにする。すると、保持具502の内部の空気が、脱気管503、および減圧ポンプを通して第2チャンバ200の外部に排出される。保持具502内の気圧が低下する。これにより、弾性部511を本体部510の内側に吸い寄せる力が発生する。この力が発生すると、最初に吸盤部が本体部510の内側へ移動する。 In the frame body supply device 500 configured in this way, the decompression pump is driven in a state where the elastic portion 511 is in close contact with the frame body 45, and the valve is switched so that the air in the internal space of the degassing pipe 503 is discharged. .. Then, the air inside the holder 502 is discharged to the outside of the second chamber 200 through the degassing pipe 503 and the decompression pump. The air pressure in the holder 502 drops. As a result, a force is generated that attracts the elastic portion 511 to the inside of the main body portion 510. When this force is generated, the suction cup portion first moves to the inside of the main body portion 510.

すると、枠体45と吸盤部との間に隙間を生じさせるような力が作用する。それに対し、弾性部511は、枠体45に接した状態のままとなる。枠体45と吸盤部との間に生じた隙間は、負圧となる。これにより、枠体45を保持具502の吸盤部によって吸着し、これを維持することによって枠体45を把持する。保持具502に、積み重ねられた枠体45のうち、最も上方の枠体45が保持される。ロボットアーム501を動作させ、保持した枠体45を集電体31B上に置く。枠体45は、枠体45の厚さ方向が上下方向に沿うように集電体31B上に置かれる。バルブを切り替えて脱気管503の内部空間の空気が排出されないようにすると、集電体31B上に置かれた枠体45から保持具502が離脱する。
集電体31B上に置かれた枠体45は、集電体31Bとともに下流側D1に搬送される。例えば、枠体45は、集電体31B上に搬送方向Dに隙間なく配置される。
Then, a force that creates a gap between the frame body 45 and the suction cup portion acts. On the other hand, the elastic portion 511 remains in contact with the frame body 45. The gap generated between the frame body 45 and the suction cup portion becomes a negative pressure. As a result, the frame body 45 is attracted by the suction cup portion of the holder 502, and the frame body 45 is gripped by maintaining this. Of the stacked frame bodies 45, the uppermost frame body 45 is held by the holder 502. The robot arm 501 is operated, and the held frame body 45 is placed on the current collector 31B. The frame body 45 is placed on the current collector 31B so that the thickness direction of the frame body 45 is along the vertical direction. When the valve is switched so that the air in the internal space of the degassing tube 503 is not discharged, the holder 502 is separated from the frame body 45 placed on the current collector 31B.
The frame body 45 placed on the current collector 31B is conveyed to the downstream side D1 together with the current collector 31B. For example, the frame body 45 is arranged on the current collector 31B without a gap in the transport direction D.

図3に示すように、第1ロールプレス600は、一対の圧縮ローラ601と、駆動部602と、を有する。一対の圧縮ローラ601は、それぞれの軸線が水平面に沿うように配置されている。一対の圧縮ローラ601は、上下方向に対向するように配置されている。駆動部602は、一対の圧縮ローラ601をそれぞれの軸線回りに回転させる。一対の圧縮ローラ601の間には、集電体31Bおよび枠体45が挟まれる。駆動部602は、集電体31Bおよび枠体45が下流側D1に搬送されるように、一対の圧縮ローラ601を回転させる。 As shown in FIG. 3, the first roll press 600 has a pair of compression rollers 601 and a drive unit 602. The pair of compression rollers 601 are arranged so that their respective axes are along the horizontal plane. The pair of compression rollers 601 are arranged so as to face each other in the vertical direction. The drive unit 602 rotates a pair of compression rollers 601 around their respective axes. A current collector 31B and a frame body 45 are sandwiched between the pair of compression rollers 601. The drive unit 602 rotates a pair of compression rollers 601 so that the current collector 31B and the frame body 45 are conveyed to the downstream side D1.

活物質供給装置700は、第1チャンバ100内に配置された集電体31B上に粉体状の活物質32cを供給する。活物質32cは、電極活物質および導電助剤を含む、複数の電極用造粒粒子のことを意味する。
図5に示すように、活物質供給装置700は、スクリューコンベア710と、投入シュート720と、排出シュート730と、シャッタユニット740と、超音波振動機750と、ならしブラシ760と、を備える。なお、投入シュート720および排出シュート730で、ホッパ770を構成する。ホッパ770は、第1チャンバ100内に配置される。
スクリューコンベア710は、活物質32cを投入シュート720へ運搬する。スクリューコンベア710の一方の端部は、第1チャンバ100の外部に配置された、活物質32cの貯蔵部など(不図示)へ接続されている。また、スクリューコンベア710の他方の端部は、投入シュート720へ接続されている。
The active material supply device 700 supplies the powdery active material 32c onto the current collector 31B arranged in the first chamber 100. The active material 32c means a plurality of electrode granulated particles containing an electrode active material and a conductive auxiliary agent.
As shown in FIG. 5, the active material supply device 700 includes a screw conveyor 710, an input chute 720, a discharge chute 730, a shutter unit 740, an ultrasonic vibrator 750, and a break-in brush 760. The input chute 720 and the discharge chute 730 form a hopper 770. The hopper 770 is arranged in the first chamber 100.
The screw conveyor 710 transports the active material 32c to the charging chute 720. One end of the screw conveyor 710 is connected to a storage portion (not shown) for the active material 32c, which is arranged outside the first chamber 100. Further, the other end of the screw conveyor 710 is connected to the charging chute 720.

投入シュート720は、スクリューコンベア710から運搬された活物質32cを、排出シュート730内に落とす。
排出シュート730は、上下方向に延びる筒状である。排出シュート730の下端部には、開口731が形成されている。排出シュート730は、投入シュート720よりも下方に配置されている。すなわち、ホッパ770の下端部には、開口731が形成される。開口731は、水平面に沿うように形成される。
ホッパ770は、搬送装置400よりも上方に配置される。言い換えると、ホッパ770は、搬送装置400により搬送される集電体31Bおよび枠体45よりも上方に配置されている。開口731は、第1チャンバ100内に配置された集電体31B上に(集電体31Bに向けて)活物質32cを供給する。スクリューコンベア710から投入シュート720に運搬された活物質32cは、排出シュート730内に自由落下する。ホッパ770の内部には、活物質32cが収容される。
なお、スクリューコンベア710上で活物質32cが塊状となっている場合に、その塊状となっている活物質32cを粉砕する解砕機を、活物質供給装置700が備えてもよい。
The input chute 720 drops the active material 32c carried from the screw conveyor 710 into the discharge chute 730.
The discharge chute 730 has a cylindrical shape extending in the vertical direction. An opening 731 is formed at the lower end of the discharge chute 730. The discharge chute 730 is arranged below the input chute 720. That is, an opening 731 is formed at the lower end of the hopper 770. The opening 731 is formed along a horizontal plane.
The hopper 770 is arranged above the transport device 400. In other words, the hopper 770 is arranged above the current collector 31B and the frame 45 transported by the transport device 400. The opening 731 supplies the active material 32c (toward the current collector 31B) onto the current collector 31B arranged in the first chamber 100. The active material 32c carried from the screw conveyor 710 to the input chute 720 freely falls into the discharge chute 730. The active material 32c is housed inside the hopper 770.
When the active material 32c is in the form of a lump on the screw conveyor 710, the active material supply device 700 may include a crusher for crushing the agglomerated active material 32c.

シャッタユニット740は、第1シャッタ扉(シャッタ)741と、第2シャッタ扉(シャッタ)742と、第1開閉機構(開閉機構)743と、第2開閉機構(開閉機構、不図示)と、を有する。
シャッタ扉741,742は、それぞれ平板状である。シャッタ扉741,742は、それぞれ水平面に沿うように配置されている。第2シャッタ扉742は、第1シャッタ扉741よりも下流側D1に配置されている。シャッタ扉741,742は、排出シュート730の開口731を開閉する。ここでシャッタ扉741,742が開口731を開くとは、シャッタ扉741,742が開口731の少なくとも一部を覆わない状態にあることを意味する。シャッタ扉741,742が開口731を閉じるとは、シャッタ扉741,742が開口731を完全に塞ぐ状態にあることを意味する。
The shutter unit 740 includes a first shutter door (shutter) 741, a second shutter door (shutter) 742, a first opening / closing mechanism (opening / closing mechanism) 743, and a second opening / closing mechanism (opening / closing mechanism, not shown). Have.
The shutter doors 741 and 742 are flat plates, respectively. The shutter doors 741 and 742 are arranged along the horizontal plane, respectively. The second shutter door 742 is arranged on the downstream side D1 of the first shutter door 741. The shutter doors 741 and 742 open and close the opening 731 of the discharge chute 730. Here, the fact that the shutter doors 741 and 742 open the opening 731 means that the shutter doors 741 and 742 are in a state of not covering at least a part of the opening 731. When the shutter doors 741 and 742 close the opening 731, it means that the shutter doors 741 and 742 are in a state of completely closing the opening 731.

第1開閉機構743は、モータ745と、アーム746と、を有する。モータ745では、本体747に対して回転軸748が、回転軸748の軸線回りに回転する。回転軸748の外周面には、雄ネジが形成されている。モータ745は、回転軸748が搬送方向Dに延びるように配置されている。本体747は、第1チャンバ100の床などに固定されている。
アーム746の第1端部には、図示しない雌ネジが形成されている。この雌ネジは、モータ745の回転軸748の雄ネジに嵌め合っている。アーム746における第1端部とは反対の第2端部は、第1シャッタ扉741の上面に固定されている。
The first opening / closing mechanism 743 includes a motor 745 and an arm 746. In the motor 745, the rotating shaft 748 rotates about the axis of the rotating shaft 748 with respect to the main body 747. A male screw is formed on the outer peripheral surface of the rotating shaft 748. The motor 745 is arranged so that the rotating shaft 748 extends in the transport direction D. The main body 747 is fixed to the floor of the first chamber 100 or the like.
A female screw (not shown) is formed at the first end of the arm 746. This female screw is fitted to the male screw of the rotating shaft 748 of the motor 745. The second end of the arm 746, which is opposite to the first end, is fixed to the upper surface of the first shutter door 741.

以上のように構成された第1シャッタ扉741および第1開閉機構743では、例えば、モータ745に対して所定の向きに電圧を印加すると、回転軸748が所定の向きに回転する。回転軸748にアーム746を介して接続された第1シャッタ扉741は、下流側D1に移動する。同様に、モータ745に対して所定の向きは反対の向きに電圧を印加すると、回転軸748が所定の向きは反対の向きに回転する。第1シャッタ扉741は、上流側D2に移動する。このように、第1開閉機構743は、第1シャッタ扉741を搬送方向Dに搬送する。
第2開閉機構は、第1開閉機構743と同様に構成されている。第2開閉機構により、第2シャッタ扉742は第1シャッタ扉741とは独立して、下流側D1および上流側D2に移動できる。
In the first shutter door 741 and the first opening / closing mechanism 743 configured as described above, for example, when a voltage is applied to the motor 745 in a predetermined direction, the rotating shaft 748 rotates in a predetermined direction. The first shutter door 741 connected to the rotating shaft 748 via the arm 746 moves to the downstream side D1. Similarly, when a voltage is applied to the motor 745 in a direction opposite to the predetermined direction, the rotating shaft 748 rotates in the opposite direction in the predetermined direction. The first shutter door 741 moves to the upstream side D2. In this way, the first opening / closing mechanism 743 conveys the first shutter door 741 in the conveying direction D.
The second opening / closing mechanism is configured in the same manner as the first opening / closing mechanism 743. By the second opening / closing mechanism, the second shutter door 742 can move to the downstream side D1 and the upstream side D2 independently of the first shutter door 741.

超音波振動機750は、排出シュート730下部の外壁に設けられている。つまり、超音波振動機750は、排出シュート730における活物質32cが堆積する部位の外側に設けられている。超音波振動機750は、超音波を発生することで排出シュート730の下部に堆積した活物質32cを振動させる。超音波振動機750は、排出シュート730内に堆積した活物質32cを均一にならす役割を有する。 The ultrasonic vibrator 750 is provided on the outer wall below the discharge chute 730. That is, the ultrasonic vibrator 750 is provided outside the portion of the discharge chute 730 where the active material 32c is deposited. The ultrasonic vibrator 750 vibrates the active material 32c deposited on the lower part of the discharge chute 730 by generating ultrasonic waves. The ultrasonic vibrator 750 has a role of uniformly leveling the active material 32c deposited in the discharge chute 730.

ならしブラシ760は、図示しないモータにより水平面に沿って移動する。ならしブラシ760は、排出シュート730内に堆積した活物質32cの上面を平坦にならす役割を有する。
以上のように本実施形態では、開口731を有する活物質供給装置700の一部が、第1チャンバ100内に配置される。
なお、活物質供給装置700は、少なくとも開口731が第1チャンバ100内に配置されていればよい。活物質供給装置700の全体が、第1チャンバ100内に配置されてもよい。
The break-in brush 760 is moved along a horizontal plane by a motor (not shown). The break-in brush 760 has a role of flattening the upper surface of the active material 32c deposited in the discharge chute 730.
As described above, in the present embodiment, a part of the active material supply device 700 having the opening 731 is arranged in the first chamber 100.
The active material supply device 700 may have at least an opening 731 arranged in the first chamber 100. The entire active material supply device 700 may be arranged in the first chamber 100.

活物質供給装置700は、開口731の下方に枠体45の内部空間45aが位置するときに、シャッタ扉741,742が開くように制御される。これにより、開口731から供給された活物質32cは、集電体31B上であって枠体45の内部空間45a(枠体45内)に第1の厚さで配置される。このように、活物質供給装置700は、集電体31B上に設けられた枠体45内に活物質32cを供給する。例えば、第1の厚さは、枠体45の厚さよりも厚い。
シャッタ扉741,742が開くタイミングを、開口731の下方に枠体45の内部空間45aが位置するときに合わせるのには、搬送装置400の搬送速度、枠体45の搬送方向Dの長さなどを考慮した、公知の時間制御などが用いられる。なお、製造装置1000が枠体45の搬送方向Dの位置を検出する位置センサを備えてもよい。そして、位置センサが検出した枠体45の位置に基づいて、制御部900が第1開閉機構743および第2開閉機構によりシャッタ扉741,742が開くタイミングを合わせてもよい。
The active material supply device 700 is controlled so that the shutter doors 741 and 742 are opened when the internal space 45a of the frame body 45 is located below the opening 731. As a result, the active material 32c supplied from the opening 731 is arranged on the current collector 31B in the internal space 45a (inside the frame 45) of the frame 45 with a first thickness. In this way, the active material supply device 700 supplies the active material 32c into the frame body 45 provided on the current collector 31B. For example, the first thickness is thicker than the thickness of the frame body 45.
To match the opening timing of the shutter doors 741 and 742 when the internal space 45a of the frame body 45 is located below the opening 731, the transport speed of the transport device 400, the length of the transport direction D of the frame body 45, etc. A known time control or the like is used in consideration of the above. The manufacturing apparatus 1000 may include a position sensor that detects the position of the frame body 45 in the transport direction D. Then, based on the position of the frame body 45 detected by the position sensor, the control unit 900 may adjust the timing at which the shutter doors 741 and 742 are opened by the first opening / closing mechanism 743 and the second opening / closing mechanism.

第2ロールプレス800は、集電体31B上に供給された活物質32cを圧縮する。第2ロールプレス800は、第1ロールプレス600と同様に構成されている。第2ロールプレス800は、一対の圧縮ローラ801と、駆動部802と、を有する。一対の圧縮ローラ801の間には、集電体31B、枠体45、および活物質32cが挟まれる。
第2ロールプレス800は、第1の厚さの活物質32cを、第1の厚さよりも薄い第2の厚さに圧縮する。例えば、第2の厚さは、枠体45の厚さである。
なお、第1ロールプレス600および第2ロールプレス800の構成は、これらに限定されない。
The second roll press 800 compresses the active material 32c supplied onto the current collector 31B. The second roll press 800 is configured in the same manner as the first roll press 600. The second roll press 800 has a pair of compression rollers 801 and a drive unit 802. A current collector 31B, a frame body 45, and an active material 32c are sandwiched between the pair of compression rollers 801.
The second roll press 800 compresses the active material 32c of the first thickness to a second thickness thinner than the first thickness. For example, the second thickness is the thickness of the frame body 45.
The configurations of the first roll press 600 and the second roll press 800 are not limited to these.

制御部900は、図示しないCPU(Central Processing Unit)と、メモリと、を有する。メモリには、CPUを動作させるための制御プログラム、各種データなどが記憶される。制御部900は、第1開閉機構743、第2開閉機構などに接続されている。制御部900は、第1開閉機構743、第2開閉機構などを制御する。 The control unit 900 has a CPU (Central Processing Unit) (not shown) and a memory. A control program for operating the CPU, various data, and the like are stored in the memory. The control unit 900 is connected to a first opening / closing mechanism 743, a second opening / closing mechanism, and the like. The control unit 900 controls the first opening / closing mechanism 743, the second opening / closing mechanism, and the like.

本実施形態の製造方法では、まず、内部が大気圧よりも減圧された第1チャンバ100内に配置された集電体31B上に、枠体45を供給する。集電体31B上であって枠体45の内部空間(内部)45aに、活物質32cを供給する。すなわち、前記枠体45の供給は、集電体31Bへの活物質32cの供給よりも上流側D2で行う。そして、集電体31B上であって枠体45の内部空間45aに供給された活物質32cを圧縮する。
集電体31Bへの枠体45の供給、集電体31Bへの活物質32cの供給、及び、活物質32cの圧縮は、第1チャンバ100内で行われる。
In the manufacturing method of the present embodiment, first, the frame body 45 is supplied onto the current collector 31B arranged in the first chamber 100 whose inside is depressurized from the atmospheric pressure. The active material 32c is supplied to the internal space (inside) 45a of the frame body 45 on the current collector 31B. That is, the frame body 45 is supplied by D2 on the upstream side of the supply of the active material 32c to the current collector 31B. Then, the active material 32c supplied to the internal space 45a of the frame body 45 on the current collector 31B is compressed.
The supply of the frame 45 to the current collector 31B, the supply of the active material 32c to the current collector 31B, and the compression of the active material 32c are performed in the first chamber 100.

なお、帯状の集電体31Bから集電体31が適宜切り出されるなどして、電極30が製造される。一対の電極30(すなわち、正極30aおよび負極30b)を、セパレータ40を介して互いに向かい合わせに積層するなどして、単セル20が製造される。複数の単セル20を厚さ方向に積層し、複数の単セル20を外装体12でシーリングすることなどにより、電池10が製造される。
外装体12でシーリングする際にも、活物質32cに含まれる空気が膨張するのが抑制される。
The electrode 30 is manufactured by appropriately cutting out the current collector 31 from the band-shaped current collector 31B. A single cell 20 is manufactured by laminating a pair of electrodes 30 (that is, a positive electrode 30a and a negative electrode 30b) so as to face each other via a separator 40. The battery 10 is manufactured by stacking a plurality of single cells 20 in the thickness direction and sealing the plurality of single cells 20 with the exterior body 12.
Even when sealing with the exterior body 12, the expansion of the air contained in the active material 32c is suppressed.

以上説明したように、本実施形態の製造装置1000によれば、内部が大気圧よりも減圧される第1チャンバ100内に、活物質供給装置700および第2ロールプレス800が配置される。このため、集電体31B上に活物質32cを供給する際、および集電体31B上に供給された活物質32cを圧縮する際に、それぞれ活物質32cに空気が含まれ難い。従って、活物質32cを圧縮する際に、活物質32cに空気が含まれるのを抑制し、集電体31B上に形成される活物質32cの均一性を向上させることができる。
また、本実施形態の製造方法によれば、集電体31B上に活物質32cを供給する際、および集電体31B上に供給された活物質32cを圧縮する際に、それぞれ活物質32cに空気が含まれ難い。従って、活物質32cを圧縮する際に、活物質32cに空気が含まれるのを抑制し、集電体31B上に形成される活物質32cの均一性を向上させることができる。
本実施形態の製造装置1000および製造方法は、バインダを用いずに、集電体31B上供給された活物質32cをロールプレスしている。このため、第1チャンバ100内で粉が舞わないという長所がある。
As described above, according to the manufacturing apparatus 1000 of the present embodiment, the active material supply apparatus 700 and the second roll press 800 are arranged in the first chamber 100 whose inside is depressurized from the atmospheric pressure. Therefore, when the active material 32c is supplied onto the current collector 31B and when the active material 32c supplied on the current collector 31B is compressed, it is difficult for the active material 32c to contain air. Therefore, when the active material 32c is compressed, it is possible to suppress the inclusion of air in the active material 32c and improve the uniformity of the active material 32c formed on the current collector 31B.
Further, according to the manufacturing method of the present embodiment, when the active material 32c is supplied onto the current collector 31B and when the active material 32c supplied on the current collector 31B is compressed, the active material 32c is used. It is hard to contain air. Therefore, when the active material 32c is compressed, it is possible to suppress the inclusion of air in the active material 32c and improve the uniformity of the active material 32c formed on the current collector 31B.
In the manufacturing apparatus 1000 and the manufacturing method of the present embodiment, the active material 32c supplied on the current collector 31B is roll-pressed without using a binder. Therefore, there is an advantage that the powder does not fly in the first chamber 100.

製造装置1000は、第1チャンバ100内に配置された枠体供給装置500を備える。そして、製造方法では、第1チャンバ100内で集電体31B上に枠体45を供給する。これらにより、枠体45の内部空間45aに活物質32cを納め、集電体31B上から活物質32cがこぼれ落ちるのを防止することができる。
枠体供給装置500は活物質供給装置700よりも上流側D2に配設され、集電体31B上へ供給される活物質32cは枠体45の内部空間45aに供給される。そして、製造方法では、枠体45の供給は集電体31Bへの活物質32cの供給よりも上流側D2で行い、枠体45の内部空間45aに活物質32cを供給し、その活物質32cを圧縮する。これらにより、集電体31B上からこぼれ落ちるのを防止するために枠体45の内部空間45aに供給した活物質32cを、圧縮することができる。
The manufacturing device 1000 includes a frame supply device 500 arranged in the first chamber 100. Then, in the manufacturing method, the frame body 45 is supplied onto the current collector 31B in the first chamber 100. As a result, the active material 32c can be stored in the internal space 45a of the frame body 45, and the active material 32c can be prevented from spilling from the current collector 31B.
The frame supply device 500 is arranged on D2 on the upstream side of the active material supply device 700, and the active material 32c supplied onto the current collector 31B is supplied to the internal space 45a of the frame body 45. In the manufacturing method, the frame 45 is supplied on the upstream side D2 of the current collector 31B on the upstream side D2, the active material 32c is supplied to the internal space 45a of the frame 45, and the active material 32c is supplied. To compress. As a result, the active material 32c supplied to the internal space 45a of the frame body 45 in order to prevent it from spilling from the current collector 31B can be compressed.

集電体31B上に第1の厚さで配置された活物質32cを、第2ロールプレス800により、第1の厚さよりも薄い第2の厚さに圧縮することができる。
製造装置1000は、第2チャンバ200、および第2チャンバ200内に配置された集電体供給装置300を備える。このため、自身の上に活物質32cを配置する集電体31Bを、予め第2チャンバ200内で、大気圧よりも減圧された環境にさらし、集電体31Bを介して活物質32cに空気が含まれるのを抑制することができる。空気が、集電体供給装置300から第1チャンバ100内に入るのを抑制することができる。
The active material 32c arranged at the first thickness on the current collector 31B can be compressed to a second thickness thinner than the first thickness by the second roll press 800.
The manufacturing apparatus 1000 includes a second chamber 200 and a current collector supply device 300 arranged in the second chamber 200. Therefore, the current collector 31B in which the active material 32c is arranged on itself is previously exposed to an environment depressurized from the atmospheric pressure in the second chamber 200, and air is sent to the active material 32c via the current collector 31B. Can be suppressed from being included. It is possible to prevent air from entering the first chamber 100 from the current collector supply device 300.

集電体供給装置300は、帯状の集電体31Bの端部同士を接合することで、連続的に集電体31Bを第1チャンバ100内に供給する。従って、集電体31Bを第1チャンバ100内に連続的に供給することができる。
第2チャンバ200の内部の圧力は、第1チャンバ100の内部の圧力よりも高い。従って、第2チャンバ200の内部の圧力が第1チャンバ100の内部の圧力に等しい場合に比べて、第2チャンバ200内を減圧するのに要する電力などを低減させることができる。
The current collector supply device 300 continuously supplies the current collector 31B into the first chamber 100 by joining the ends of the band-shaped current collector 31B to each other. Therefore, the current collector 31B can be continuously supplied into the first chamber 100.
The pressure inside the second chamber 200 is higher than the pressure inside the first chamber 100. Therefore, the electric power required to reduce the pressure in the second chamber 200 can be reduced as compared with the case where the pressure inside the second chamber 200 is equal to the pressure inside the first chamber 100.

以上、本発明の一実施形態について図面を参照して詳述したが、具体的な構成はこの実施形態に限られるものではなく、本発明の要旨を逸脱しない範囲の構成の変更、組み合わせ、削除なども含まれる。
例えば、前記実施形態では、第2チャンバ200の内部の圧力は、第1チャンバ100の内部の圧力と同等でもよい。
集電体供給装置300は、スプライサ310を備えなくてもよい。この場合、集電体31Bの端部同士は接合されない。
活物質供給装置700よりも下流側D1に、枠体供給装置500を配置してもよい。この場合、集電体31B上に活物質32cを供給してから、集電体31B上に枠体45を供給することになる。
製造装置1000は、第2チャンバ200、集電体供給装置300、搬送装置400、枠体供給装置500、第1ロールプレス600、および制御部900を備えなくてもよい。この場合、製造方法では、集電体31B上に枠体45を供給する工程、および枠体45の内部空間45aに、活物質32cを供給する工程は、行われない。
Although one embodiment of the present invention has been described in detail with reference to the drawings, the specific configuration is not limited to this embodiment, and the configuration is changed, combined, or deleted without departing from the gist of the present invention. Etc. are also included.
For example, in the above embodiment, the pressure inside the second chamber 200 may be equal to the pressure inside the first chamber 100.
The current collector supply device 300 does not have to include the splicer 310. In this case, the ends of the current collectors 31B are not joined to each other.
The frame supply device 500 may be arranged on the downstream side D1 of the active material supply device 700. In this case, the active material 32c is supplied onto the current collector 31B, and then the frame body 45 is supplied onto the current collector 31B.
The manufacturing device 1000 may not include the second chamber 200, the current collector supply device 300, the transfer device 400, the frame body supply device 500, the first roll press 600, and the control unit 900. In this case, in the manufacturing method, the step of supplying the frame body 45 on the current collector 31B and the step of supplying the active material 32c to the internal space 45a of the frame body 45 are not performed.

31B 集電体
32c 活物質
45 枠体
100 第1チャンバ
200 第2チャンバ
300 集電体供給装置(集電体供給部)
500 枠体供給装置(枠体供給部)
700 活物質供給装置(活物質供給部)
800 第2ロールプレス(圧縮部)
1000 製造装置(電池用電極の製造装置)
D2 上流側
31B Current collector 32c Active material 45 Frame body 100 1st chamber 200 2nd chamber 300 Current collector supply device (current collector supply unit)
500 Frame supply device (frame supply unit)
700 Active material supply device (active material supply unit)
800 2nd roll press (compression part)
1000 Manufacturing equipment (Battery electrode manufacturing equipment)
D2 upstream side

スプライサ310は、集電体31Bの端部同士を接合する。一方の集電体ロール31Rが全て展開され、集電体31Bが全て供給されると、最終的には集電体31Bの終端が下流側D1に向けて移動する。この終端と、方の集電体ロール31Rを展開した集電体31Bの始端とを、スプライサ310により接合する。これにより、複数の集電体31Bを途切れさせることなく連続的に第1チャンバ100内に供給する。 The splicer 310 joins the ends of the current collector 31B to each other. When one of the current collector rolls 31R is fully deployed and all the current collectors 31B are supplied, the end of the current collector 31B finally moves toward the downstream side D1. This end and the start end of the current collector 31B in which the other current collector roll 31R is deployed are joined by a splicer 310. As a result, the plurality of current collectors 31B are continuously supplied into the first chamber 100 without interruption.

以上説明したように、本実施形態の製造装置1000によれば、内部が大気圧よりも減圧される第1チャンバ100内に、活物質供給装置700および第2ロールプレス800が配置される。このため、集電体31B上に活物質32cを供給する際、および集電体31B上に供給された活物質32cを圧縮する際に、それぞれ活物質32cに空気が含まれ難い。従って、活物質32cを圧縮する際に、活物質32cに空気が含まれるのを抑制し、集電体31B上に形成される活物質32cの均一性を向上させることができる。
また、本実施形態の製造方法によれば、集電体31B上に活物質32cを供給する際、および集電体31B上に供給された活物質32cを圧縮する際に、それぞれ活物質32cに空気が含まれ難い。従って、活物質32cを圧縮する際に、活物質32cに空気が含まれるのを抑制し、集電体31B上に形成される活物質32cの均一性を向上させることができる。
本実施形態の製造装置1000および製造方法は、バインダを用いずに、集電体31B上供給された活物質32cをロールプレスしている。このため、第1チャンバ100内で粉が舞わないという長所がある。
As described above, according to the manufacturing apparatus 1000 of the present embodiment, the active material supply apparatus 700 and the second roll press 800 are arranged in the first chamber 100 whose inside is depressurized from the atmospheric pressure. Therefore, when the active material 32c is supplied onto the current collector 31B and when the active material 32c supplied on the current collector 31B is compressed, it is difficult for the active material 32c to contain air. Therefore, when the active material 32c is compressed, it is possible to suppress the inclusion of air in the active material 32c and improve the uniformity of the active material 32c formed on the current collector 31B.
Further, according to the manufacturing method of the present embodiment, when the active material 32c is supplied onto the current collector 31B and when the active material 32c supplied on the current collector 31B is compressed, the active material 32c is used. It is hard to contain air. Therefore, when the active material 32c is compressed, it is possible to suppress the inclusion of air in the active material 32c and improve the uniformity of the active material 32c formed on the current collector 31B.
In the manufacturing apparatus 1000 and the manufacturing method of the present embodiment, the active material 32c supplied on the current collector 31B is roll-pressed without using a binder. Therefore, there is an advantage that the powder does not fly in the first chamber 100.

Claims (10)

内部が大気圧よりも減圧される第1チャンバと、
前記第1チャンバ内に配置された集電体上に、粉体状の活物質を供給する活物質供給部と、
前記集電体上に供給された前記活物質を圧縮する圧縮部と、を備え、
前記活物質供給部及び前記圧縮部が前記第1チャンバ内に配置されている、電池用電極の製造装置。
The first chamber, where the inside is decompressed more than atmospheric pressure,
An active material supply unit that supplies a powdery active material onto a current collector arranged in the first chamber, and an active material supply unit.
A compression unit for compressing the active material supplied onto the current collector is provided.
A battery electrode manufacturing apparatus in which the active material supply unit and the compression unit are arranged in the first chamber.
前記集電体上に、環状の枠体を供給する枠体供給部を備え、
前記枠体供給部は、前記第1チャンバ内に配置されている、請求項1に記載の電池用電極の製造装置。
A frame body supply unit for supplying an annular frame body is provided on the current collector.
The battery electrode manufacturing apparatus according to claim 1, wherein the frame supply unit is arranged in the first chamber.
前記枠体供給部は、前記活物質供給部よりも上流側に配設され、
前記集電体上へ供給される前記活物質は、前記枠体内に供給される、請求項2に記載の電池用電極の製造装置。
The frame supply unit is arranged on the upstream side of the active material supply unit.
The device for manufacturing a battery electrode according to claim 2, wherein the active material supplied onto the current collector is supplied into the frame.
前記集電体は、前記第1チャンバ内に所定の速度で供給され、
前記活物質供給部から供給された前記活物質は、前記集電体上に第1の厚さで配置され、
前記圧縮部は、前記第1の厚さの前記活物質を、前記第1の厚さよりも薄い第2の厚さに圧縮する、請求項1から3のいずれか一項に記載の電池用電極の製造装置。
The current collector is supplied into the first chamber at a predetermined speed.
The active material supplied from the active material supply unit is arranged on the current collector with a first thickness.
The battery electrode according to any one of claims 1 to 3, wherein the compression unit compresses the active material having the first thickness to a second thickness thinner than the first thickness. Manufacturing equipment.
内部が大気圧よりも減圧され、前記第1チャンバに並べて配置された第2チャンバと、
少なくとも一部が前記第2チャンバ内に配置され、前記集電体を前記第1チャンバ内に供給する集電体供給部と、
を備える、請求項1から4のいずれか一項に記載の電池用電極の製造装置。
The inside is decompressed more than the atmospheric pressure, and the second chamber arranged side by side in the first chamber and
A current collector supply unit, which is at least partially arranged in the second chamber and supplies the current collector into the first chamber,
The apparatus for manufacturing a battery electrode according to any one of claims 1 to 4.
前記集電体供給部は、帯状の前記集電体の端部同士を接合することで、連続的に前記集電体を前記第1チャンバ内に供給する、請求項5に記載の電池用電極の製造装置。 The battery electrode according to claim 5, wherein the current collector supply unit continuously supplies the current collector into the first chamber by joining the ends of the band-shaped current collectors to each other. Manufacturing equipment. 前記第2チャンバの内部の圧力は、前記第1チャンバの内部の圧力よりも高い、請求項5又は6に記載の電池用電極の製造装置。 The device for manufacturing a battery electrode according to claim 5 or 6, wherein the pressure inside the second chamber is higher than the pressure inside the first chamber. 内部が大気圧よりも減圧された第1チャンバ内に配置された集電体上に、粉体状の活物質を供給する工程と、
前記集電体上に供給された前記活物質を圧縮する工程と、を有し、
前記集電体への前記活物質の供給、及び、前記活物質の圧縮は、前記第1チャンバ内で行われる、電池用電極の製造方法。
A process of supplying a powdery active material onto a current collector arranged in a first chamber whose inside is depressurized from atmospheric pressure.
It has a step of compressing the active material supplied onto the current collector.
A method for manufacturing a battery electrode, wherein the supply of the active material to the current collector and the compression of the active material are performed in the first chamber.
前記集電体上に、環状の枠体を供給する工程を更に有し、
前記第1チャンバ内において前記枠体を供給する、請求項8に記載の電池用電極の製造方法。
Further, a step of supplying an annular frame body on the current collector is provided.
The method for manufacturing a battery electrode according to claim 8, wherein the frame is supplied in the first chamber.
前記枠体の供給は、前記集電体への前記活物質の供給よりも上流側で行い、
前記枠体の内部に、前記活物質を供給し、
前記枠体の内部に供給された前記活物質を圧縮する、請求項9に記載の電池用電極の製造方法。
The frame body is supplied on the upstream side of the supply of the active material to the current collector.
The active material is supplied to the inside of the frame, and the active material is supplied.
The method for manufacturing a battery electrode according to claim 9, wherein the active material supplied to the inside of the frame is compressed.
JP2020199039A 2020-11-30 2020-11-30 Manufacturing equipment for battery electrodes Active JP7301809B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020199039A JP7301809B2 (en) 2020-11-30 2020-11-30 Manufacturing equipment for battery electrodes
PCT/JP2021/043728 WO2022114204A1 (en) 2020-11-30 2021-11-30 Manufacturing device for battery electrode and manufacturing method therefor
US18/255,093 US20240097106A1 (en) 2020-11-30 2021-11-30 Battery electrode manufacturing device and method of manufacturing battery electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020199039A JP7301809B2 (en) 2020-11-30 2020-11-30 Manufacturing equipment for battery electrodes

Publications (2)

Publication Number Publication Date
JP2022086814A true JP2022086814A (en) 2022-06-09
JP7301809B2 JP7301809B2 (en) 2023-07-03

Family

ID=81754514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020199039A Active JP7301809B2 (en) 2020-11-30 2020-11-30 Manufacturing equipment for battery electrodes

Country Status (3)

Country Link
US (1) US20240097106A1 (en)
JP (1) JP7301809B2 (en)
WO (1) WO2022114204A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022211993A1 (en) 2022-11-11 2024-05-16 Volkswagen Aktiengesellschaft Method and device for producing a dry film

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1031998A (en) * 1996-07-16 1998-02-03 Sony Corp Method for taking up metal film
JP2007193987A (en) * 2006-01-17 2007-08-02 Toyota Motor Corp Battery and method of manufacturing electrode body
JP2008181708A (en) * 2007-01-23 2008-08-07 Matsushita Electric Ind Co Ltd Manufacturing method of electrode for nonaqueous electrolyte secondary battery, electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2009266526A (en) * 2008-04-24 2009-11-12 Panasonic Corp Method of forming inorganic thin-film pattern on metal base plate, and method of manufacturing electrode for lithium secondary battery
JP2011525292A (en) * 2008-06-20 2011-09-15 サクティ3 インコーポレイテッド Mass production of electrochemical cells using physical vapor deposition
CN102598368A (en) * 2009-10-23 2012-07-18 Sei株式会社 Methods for manufacturing lithium secondary battery and current-collecting foil for lithium secondary battery, and current-collecting foil for lithium secondary battery
JP2013065478A (en) * 2011-09-19 2013-04-11 Toyota Motor Corp Method for manufacturing lithium ion secondary battery
JP2013542555A (en) * 2010-09-13 2013-11-21 アプライド マテリアルズ インコーポレイテッド Spray deposition module for inline processing systems
JP2014107237A (en) * 2012-11-29 2014-06-09 Meiko Electronics Co Ltd Electrode sheet drying device and electrode sheet drying method
JP2014123663A (en) * 2012-12-21 2014-07-03 Tokyo Electron Ltd Apparatus and method of manufacturing electrode for lithium ion capacitor
KR20150117924A (en) * 2014-04-11 2015-10-21 한국기계연구원 Apparatus manufacturing conductive metal film electrode
DE102018211189A1 (en) * 2018-07-06 2020-01-09 Robert Bosch Gmbh Method and device for producing an electrode material strip
JP2020129448A (en) * 2019-02-07 2020-08-27 日産自動車株式会社 Manufacturing method of electrode for battery
JP2020129495A (en) * 2019-02-08 2020-08-27 エムテックスマート株式会社 Method for producing all-solid-state battery

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1031998A (en) * 1996-07-16 1998-02-03 Sony Corp Method for taking up metal film
JP2007193987A (en) * 2006-01-17 2007-08-02 Toyota Motor Corp Battery and method of manufacturing electrode body
JP2008181708A (en) * 2007-01-23 2008-08-07 Matsushita Electric Ind Co Ltd Manufacturing method of electrode for nonaqueous electrolyte secondary battery, electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2009266526A (en) * 2008-04-24 2009-11-12 Panasonic Corp Method of forming inorganic thin-film pattern on metal base plate, and method of manufacturing electrode for lithium secondary battery
JP2011525292A (en) * 2008-06-20 2011-09-15 サクティ3 インコーポレイテッド Mass production of electrochemical cells using physical vapor deposition
CN102598368A (en) * 2009-10-23 2012-07-18 Sei株式会社 Methods for manufacturing lithium secondary battery and current-collecting foil for lithium secondary battery, and current-collecting foil for lithium secondary battery
JP2013542555A (en) * 2010-09-13 2013-11-21 アプライド マテリアルズ インコーポレイテッド Spray deposition module for inline processing systems
JP2013065478A (en) * 2011-09-19 2013-04-11 Toyota Motor Corp Method for manufacturing lithium ion secondary battery
JP2014107237A (en) * 2012-11-29 2014-06-09 Meiko Electronics Co Ltd Electrode sheet drying device and electrode sheet drying method
JP2014123663A (en) * 2012-12-21 2014-07-03 Tokyo Electron Ltd Apparatus and method of manufacturing electrode for lithium ion capacitor
KR20150117924A (en) * 2014-04-11 2015-10-21 한국기계연구원 Apparatus manufacturing conductive metal film electrode
DE102018211189A1 (en) * 2018-07-06 2020-01-09 Robert Bosch Gmbh Method and device for producing an electrode material strip
JP2020129448A (en) * 2019-02-07 2020-08-27 日産自動車株式会社 Manufacturing method of electrode for battery
JP2020129495A (en) * 2019-02-08 2020-08-27 エムテックスマート株式会社 Method for producing all-solid-state battery

Also Published As

Publication number Publication date
WO2022114204A1 (en) 2022-06-02
JP7301809B2 (en) 2023-07-03
US20240097106A1 (en) 2024-03-21

Similar Documents

Publication Publication Date Title
US9859585B2 (en) Power storage device
US10998141B2 (en) Negative electrode of power storage device and power storage device
US9490472B2 (en) Method for manufacturing electrode for storage battery
WO2015045385A1 (en) Negative electrode for nonaqueous electrolyte secondary batteries, nonaqueous electrolyte secondary battery, and method for producing negative electrode for nonaqueous electrolyte secondary batteries
US20140057165A1 (en) Positive electrode for secondary battery, secondary battery, and method for fabricating positive electrode for secondary battery
JP2016001575A (en) Method for manufacturing electrode
WO2012127561A1 (en) Non-aqueous electrolyte battery
TWI466355B (en) A lithium ion secondary battery and a battery capacity recovery device, and a battery capacity recovery method
US20220123274A1 (en) Method of manufacturing battery electrode
WO2008072430A1 (en) Negative electrode for nonaqueous electrolyte secondary battery and method for producing the same and nonaqueous electrolyte secondary battery employing it
JP2023537922A (en) In-line contact prelithiation
JP2015069711A (en) Negative electrode for nonaqueous electrolyte secondary battery, method for manufacturing the same, and nonaqueous electrolyte secondary battery
WO2016063176A1 (en) Lithium-ion storage battery and fabricating method thereof
JP7301809B2 (en) Manufacturing equipment for battery electrodes
JP7409762B2 (en) Nonaqueous electrolyte secondary battery and method for manufacturing nonaqueous electrolyte secondary battery
KR20200033511A (en) Negative electrode for lithium secondary battery and lithium secondary battery comprising the same
KR20200042643A (en) Method of transferring and processing foil improving curl of foil and preventing foil folding
JP2007122992A (en) Negative electrode for lithium secondary battery and manufacturing method of lithium secondary battery
JP2015069712A (en) Negative electrode for nonaqueous electrolyte secondary battery, method for manufacturing the same, and nonaqueous electrolyte secondary battery
JP7121104B2 (en) Manufacturing equipment for battery electrodes
JP2015179575A (en) Negative electrode for nonaqueous electrolyte secondary batteries, method for manufacturing the same, and nonaqueous electrolyte secondary battery
JP7425716B2 (en) Current collector supply device
JP7220860B6 (en) Manufacturing equipment for battery electrodes
US11870039B2 (en) Electrode assembly and method for manufacturing the same
JP7121105B2 (en) Device for supplying active material and manufacturing device for battery electrode

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20210114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20210114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220415

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220415

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20220415

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20220426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220620

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221128

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20230113

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20230113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230523

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230621

R150 Certificate of patent or registration of utility model

Ref document number: 7301809

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150