JP2008024306A - 駆動制御装置、及びハイブリッド車両 - Google Patents
駆動制御装置、及びハイブリッド車両 Download PDFInfo
- Publication number
- JP2008024306A JP2008024306A JP2007234461A JP2007234461A JP2008024306A JP 2008024306 A JP2008024306 A JP 2008024306A JP 2007234461 A JP2007234461 A JP 2007234461A JP 2007234461 A JP2007234461 A JP 2007234461A JP 2008024306 A JP2008024306 A JP 2008024306A
- Authority
- JP
- Japan
- Prior art keywords
- soc
- section
- vehicle
- management width
- navigation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/7072—Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
Landscapes
- Hybrid Electric Vehicles (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
- Traffic Control Systems (AREA)
- Navigation (AREA)
Abstract
【解決手段】図2(b)に示すように、下り区間の回生で蓄電できる蓄電量Hが、バッテリ23の通常管理幅の中央値SOCm付近から回生を開始すると上限値SOCuを越えてしまうが、通常管理幅2h0の範囲内に納まる下り区間の場合(h0<H≦2h0の場合)、当該下り区間に到達する前にバッテリ23を放電して、中央値SOCmからα(=(1/2)H)だけ低下させ、下り区間では回生により蓄電する。これにより、通常管理幅2h0の中央値SOCmからのズレ幅を最小限αに抑えることができ、蓄電手段のダメージを抑えつつ下り区間を走行する際の回生エネルギをより多く蓄電することができる。
【選択図】図2
Description
これは元々摩擦ブレーキやエンジンブレーキにより熱エネルギーの形で消散していたエネルギーを電気エネルギーの形で回収するものであり、極めて合理的な方法である。
そのため、これらの制約条件の中で、一般的な通常走行時に消費エネルギーの効率が良くなるように設計を最適化し、バッテリの重量や貯蔵容量などを決定している。
そのため、降坂時には、このようにして決定された限られた容量の中で回生を行う必要がある。
そして、SOCに一定の管理幅を設けているのは、大きな充電率の変化を頻繁に繰り返すことによるバッテリの劣化の進行が早まることを防止するためである。
このように、各種制約条件の中で決定されたバッテリの容量内で回生を行わなければならないのみならず、更にその一部であるSOC管理幅の範囲内で回生を行っている。
そして、この範囲で回生できない分のエネルギーに関してはブレーキ装置やエンジンブレーキなどで熱エネルギーとして消費され、捨てられることになる。
このような提案の1つとして、例えば、次の特許文献1では、バッテリを効率よく利用するため、経路における登降坂の情報に基づいてバッテリの放電量に着目して制御する技術が開示されている。
(2)請求項2記載の発明では、前記蓄放電手段は、車両が前記下り区間を走行した後、前記蓄電手段の蓄電量が前記通常走行管理幅の中央値付近の値になるように制御する、ことを特徴とする駆動制御装置を提供する。
(3)請求項3記載の発明では、前記エンジンは、駆動力の一部又は全部が車両の駆動又は発電に使用され、前記走行経路に対して、前記下り区間での回生エネルギによる蓄電量が最大になるように、前記エンジンと前記モータの運転スケジュールを設定する運転スケジュール設定手段を具備し、前記設定した運転スケジュールを用いて前記エンジンと前記モータを制御することを特徴とする請求項1又は請求項2に記載の駆動制御装置を提供する。
(4)請求項4記載の発明では、請求項1から請求項3までのうちの何れか1の請求項に記載の駆動制御装置によって駆動系を制御することを特徴とするハイブリッド車両を提供する。
本実施形態では、バッテリを効率的に利用すべく、経路上の登降坂の情報に応じてSOC管理幅自体を制御するものである。SOC管理幅を拡大することによって、登降坂を含む経路を走行中にSOCが通常走行時のSOC管理幅を超える値となるとしても、登降坂の情報によってSOCが通常のSOC管理幅を超える頻度が予測できるため、バッテリの耐久性に支障のない範囲で、SOC管理幅拡大を実行することができる。
この第1実施形態では、山越えを行うときなど、経路上に大きな回生エネルギーを回収できる下り区間(標高差が閾値以上の下り区間)がある場合、一時的にSOC管理幅を拡大し、この拡大した管理幅内で回生エネルギーを回収する。
また、このSOC管理幅の拡大と、ナビ制御(走行する経路の状態や走行状態に基づいて、燃料効率が向上するようにエンジンとモータの駆動分担を決定する制御)とを組み合わせることにより、経路の先に標高差の大きな下り区間があることを予め予測し、下り区間走行前にSOC管理幅を広げ、更にモータを駆動してエンジンを補助し、管理幅の下限値付近までSOCを低下させておく。
SOCを予め低下させておくことにより、回生で蓄電できるエネルギーを増やすことができる。
一般の運転者にとって、大きな標高差の経路を走る機会は特殊な人を除いて少ないことを考えると、走行経路に、予め設定した閾値よりも大きい標高差の下り区間があるときは、そのときに限ってSOCの管理幅を拡大するのは、バッテリに大きなダメージを与えることなく、より多くの回生エネルギを回収するために極めて有効である。
これらハイブリッド車両としては、乗用車、バス、トラック、軌道上を走行する軌道車両などがある。
また、本実施形態はハイブリッド車両に限らず、電気自動車、燃料電池自動車などのバッテリ(蓄電手段)に蓄電された電力で駆動される車両に適用することができる。
図1は本発明の実施形態における駆動制御装置、及び車両が適用されるハイブリッド車両の駆動制御システム10の構成を示す概念図である。
駆動制御システム10は、車両の動力を発生する駆動装置20、発生した動力を伝達する駆動力伝達装置25、及び経路探索や現在位置の取得や経路の解析などのナビゲーション関係の情報処理を行うナビゲーション部11を備えている。
エンジン21は、ガソリン、軽油等の燃料によって駆動される内燃機関によるエンジンであり、図示しないECU等のエンジン制御装置を備え、車両の動力源として使用される。
なお、駆動力伝達装置25にはドラムブレーキ、ディスクブレーキ等の制動装置を配設することもできる。
また、モータ24は交流モータであることが望ましく、この場合、図示しないインバータを備える。
なお、本実施形態では、後述するように発電機22を用いて回生を行うように構成されているが、モータ24で回生することも可能である。この場合、モータ24は、発電装置として作用し、バッテリ23を充電する。
バッテリ23には、蓄電量(以下、SOC)を検出するためのSOCセンサ(蓄電量検出手段)が取り付けられており、メイン制御装置26がバッテリ23のSOCを監視できるようになっている。
バッテリ23としては、例えば、鉛蓄電池、ニッケルカドミウム電池、ニッケル水素電池などの2次電池が一般的であるが、電気自動車等に使用される高性能鉛蓄電池、リチウムイオン電池、ナトリウム硫黄電池などを用いることもできる。
更に、これらの中の何れかを単独で使用してもよいし、複数のものを組み合わせて使用してもよい。例えば、バッテリ23と電気二重層コンデンサとを組み合わせて、蓄電手段として使用することもできる。
発電機22は、交流発電機であることが望ましく、この場合、図示しないインバータを備える。
このように、駆動制御システム10では、従来の内燃機関による車両であれば、車両制動時にブレーキ装置にて摩擦熱として消散してしまう運動エネルギーを電気エネルギーとして回収することができるため、燃費を向上させることができる。
この場合、モータ24は、バッテリ23から電力が供給されるときは駆動力を発生して動力源として機能し、車両の制動時等のように駆動力伝達装置25によって回転させられるときは回生電流を発生する発電機22として機能する。
また、エンジン21の駆動力の一部を駆動用に出力し、駆動力の残りで発電機22の駆動に使用して発電する場合、例えば、プラネタリギヤを使用し、エンジン21、発電機22、モータ24の各軸を連結することで実現される。
このように、エンジン21とモータ24を相補的に動作させることにより燃費を向上させることができる。
このような制御は、記憶手段で記憶している所定の制御プログラムを演算手段で実行することにより実現することができる。
ここでSOC(充電率)は、蓄電手段の蓄電能力に対する蓄電量の割合を表したものであり、一般的にハイブリッド車両用の2次電池では、SOC管理幅の下限値は40%程度、上限値は60%程度に設定されている。
このように、メイン制御装置26は、蓄電手段の蓄放電を制御する蓄放電制御手段としての機能を有している。
ナビ制御は、例えば、これから走行する経路の状態や走行状態を予測し、SOC管理幅の範囲内で燃料効率が最大となるようにエンジン21とモータ24の運転スケジュールを設定し、これに基づいて駆動装置20を制御したり、あるいは、先に下り区間がある場合、下り区間に到達する前にSOCを低下させて回生による蓄電量を増やしたりなどする。
以後、ナビ制御を用いないでSOCを管理する制御を従来制御と呼び、ナビ制御を行うものの、SOC管理幅の拡大を行わない制御を通常ナビ制御と呼び、ナビ制御を行い、更にSOC管理幅を拡大して回生を行う制御を拡大ナビ制御と呼ぶことにする。
また、通常ナビ制御と拡大ナビ制御を特に区別しない場合は単にナビ制御と呼ぶことにする。
ナビゲーション部11は、これらの機能部を利用することにより、運転者に目的地までの経路を案内するナビゲーションサービスを提供するほか、メイン制御装置26が、ナビ制御により、エンジン21とモータ24の運転スケジュールを行ったり、SOCの管理幅を設定するのに用いるナビ情報を提供する。
ナビゲーションデータベース12の有するデータは、半導体メモリ、磁気ディスク等の記憶手段に格納されている。
より詳細には、この記憶手段は、磁気テープ、磁気ディスク、磁気ドラム、フラッシュメモリ、CD−ROM、MD、DVD−ROM、光ディスク、MO、ICカード、光カード、メモリカード等、あらゆる形態の記憶媒体を含むものであり、取り外し可能な外部記憶媒体を使用することもできる。
地図上の道路は、各地点の緯度経度が特定されると共に、道路データ、探索データと対応付けられている。
音声データは、道路案内や、ユーザに対する問いかけ(目的地の名前は何かなど)を行うためのデータであり、音声出力部によって再生出力される。
道路に関する情報としては、例えば、道路種別(国道、県道、主要地方道、一般道、高速道路等の行政道路属性)、道路の長さ、走行に要する時間、幅員、勾配、カント、標高、バンク、路面の状態、中央分離帯の有無、車線数、該車線数の減少する地点、幅員の狭くなる地点などがある。
本実施形態では、道路データに含まれる標高(メッシュ標高データと呼ばれることもある)を用いて経路上の標高差を取得することができる。
そして、経路上に標高差が所定の閾値を超える区間があった場合、この区間での回生エネルギーを回収するためにSOCの管理幅を拡大することができる。
例えば、探索データに含まれる交差点データには、データが格納されている交差点の数に加え、それぞれの交差点に関するデータが交差点データとして、識別するための交差点識別情報が付与されて格納されている。
ここで、所定間隔は、所定時間間隔(例えば、100[msec]、1[sec]等の所定時間毎)、又は、所定距離間隔(例えば、100[m]、500[m]等の所定距離毎)とすることができる。
このほかに走行データ取得部13は、車両の向いている方位を検出する方位センサ、アクセル開度を検出するアクセル開度センサ、運転者が操作するブレーキペダルの動きを検出するブレーキスイッチ、運転者が操作するステアリングの舵角を検出するステアリングセンサ、運転者が操作するウィンカスイッチの動きを検出するウィンカセンサ、運転者が操作する変速機のシフトレバーの動きを検出するシフトレバーセンサ、車両の走行速度、即ち、車速を検出する車速センサ、車両の加速度を検出する加速度センサ、車両の向いている方位の変化を示すヨーレイトを検出するヨーレイトセンサなどを備えている。
走行データ取得部13は、これらのセンサから得られる情報、即ち走行データをナビゲーション部11に提供する。
走行環境データ取得部14は、時計、カレンダーなどを備えており、これによって現在の時刻、日付、曜日、車両が出発した日時等の日時情報を取得する。
また、走行環境データ取得部14は、例えば、VICS(R)(Vehicle Information & Communication System)と称される道路交通情報通信システムを利用して、警察、日本道路公団等の交通管制システムの情報を収集して作成した道路の渋滞等に関する情報、交通規制情報、道路工事等に関する工事情報等の道路交通情報を取得する。
加えて、走行環境データ取得部14は、ワイパー、ヘッドライト、エアコン、デフロスタなどの車両搭載機器の作動状況のデータ、及び、雨滴センサ、気温センサ等の車両搭載センサのセンシングデータを取得する。車両搭載機器の作動状況のデータ及びセンシングデータは、走行パターン予測部11において、そのときの天候を推定するために利用することができる。
この場合、車両の1回の走行における走行データと走行環境データとは、相互に対応付けられて記憶される。
即ち、走行データにより走行状態の推移を把握することができ、その走行を行ったときの走行環境は走行環境データから把握することができる。
これらのデータは、ナビゲーション部11が解析して、例えば、運転者が日常よく利用する経路を推測するほか、頻発経路における気象状況や曜日、走行時間帯などによる走行データの差異を分析するのに利用することができる。
ナビゲーション部11は、ナビゲーションデータベース12、及び走行データ記憶部15に格納されているデータ、及び、走行データ取得部13、走行環境データ取得部14から取得する情報を用いて、各種の情報処理を行う。
また、ナビゲーション部11は、走行の際に、走行データ取得部13、走行環境データ取得部14から得られる走行データ、及び走行環境データを走行データ記憶部15に格納する。
ナビゲーションサービスの提供は、ユーザインターフェースを用いて現在地から目的地までの経路探索を行って運転者に提示し、現在位置を取得しながら運転者を目的地まで誘導する処理である。
目的地は、運転者に入力してもらってもよいし、あるいは、運転者の過去の運転パターンから予測するなどして自動的に設定してもよい。
また、メイン制御装置26が、運転スケジュールを実行するに際して、現在の走行位置を知る必要がある場合、ナビゲーション部11は、メイン制御装置26に走行データ取得部13から取得した現在の走行位置をメイン制御装置26に提供する。
メイン制御装置26は、ナビ情報から下り区間の標高差Hを取得し、その値によって何れの制御を行うか判断するものである。
図中の下限値SOCb、及び上限値SOCuは、SOCの通常の幅(以下、通常管理幅)で管理する場合の下限値と上限値を表し、本実施形態では、一例として満充電の状態を100%とし、下限値SOCbを40%、上限値SOCuを60%とする。
中央値SOCmは、SOC管理幅の中央を表し、本実施形態では、50%である。
また、通常管理幅の半分のSOC増加に相当する標高差、即ち、下り坂での回生エネルギー量がSOC管理幅の半分に相当する標高差を基準標高差h0とし、回生エネルギー量が拡大管理幅に相当する標高差を最大標高差Hmaxとする。
後述するように、最大標高差Hmaxは、SOC管理幅に拡大管理幅を適用するか否かを判断する際の閾値として使用される。
(1)H≦h0の場合(回生タイプ1−従来制御)
この場合は、特にSOCの制御は行わずに従来制御を行い下り坂で回生される電気エネルギーをバッテリ23に蓄電する。但し、下り坂開始時までに、SOCがSOCmを上回ることが予想されるならば、モータ走行としてSOCmになるようにしておくことが望ましい。
これは、通常の運転においてメイン制御装置26はSOCを中央値SOCm付近の値になるように制御しているので、標高差Hが基準標高差h0以下であるならば、回生後のSOCが上限値SOCuを越える可能性が低いためである。
即ち、標高差が基準標高差h0以内である場合、回生によるSOCの上昇量が通常管理幅の半分以下であるので、中央値SOCm付近から充電を開始した場合、充電後のSOCがSOCuを越える可能性は低いためである。
メイン制御装置26は、下り区間30に到達するまで、SOCが中央値SOCm付近に保たれるようにモータ24を駆動し、SOCを制御する。
メイン制御装置26は、車両が下り区間30を走行する際に回生を行い、矢線31に示したように下り区間30の始点から終点にかけてSOCが増加する。矢線31の始点は中央値SOCm付近となり、終点はSOCu以下となる。
このように、回生を行うことにより、ブレーキなどで熱エネルギーとして消散してしまうエネルギーをバッテリ23に電気エネルギーとして蓄えることができる。
なお、車両が下り区間30を走行した後、メイン制御装置26はモータ24を駆動してエンジン21を補助し、SOCが再び中央値SOCm付近の値になるように制御する。これにより、車両の燃費を向上させることができる。
これは、中央値SOCm付近から回生を開始した場合、回生後のSOCが上限値SOCuを越えてしまうが、回生で蓄電できる蓄電量が通常管理幅の範囲内に納まる場合である。
この場合は、下り区間に到達する前にバッテリ23を放電してモータ24を駆動し、SOCを通常管理幅内で低下させた後、後下り区間の回生エネルギーで蓄電する。この制御は、従来のナビ制御に相当する。
メイン制御装置26は、車両が下り区間33に到達する前にモータ24を駆動してエンジン21を補助し、矢線34aに示したように、SOCを中央値SOCmより低下させる。低下させる量は、回生後のSOCが上限値SOCuを超えない範囲とすることができる。
車両が下り区間30を走行した後、メイン制御装置26はモータ24を駆動してエンジン21を補助し、SOCが再び中央値SOCm付近の値になるように制御する。
なお、従来制御では、中央値SOCm付近から充電を開始し、上限値SOCuを越える分のエネルギーは捨てることになる。
また、本実施形態では、下り区間33到達時のSOCの値、即ち、SOC低減制御の目標となる値をSOCm−αとした。低下量を後述するように下り標高差に応じて定量化させることにより、SOCmからのズレ幅を最小限に抑えることができ、バッテリの耐久性低下を防止することができる。
ここで、αは、矢線34bの始点がSOCm−αとなり、終点がSOCm+αとなるような値であり、下り区間33で回収される回生エネルギーを予め見積もることにより計算することができる。計算方法については後述する。
なお、SOC低減制御の目標値は、これに限定するものではなく、例えば、低減値SOCbやそのほかの値に設定することもできる。
この場合は、下り区間での回生エネルギー量が通常管理幅では収まらないが、拡大管理幅内には収まる場合である。
この場合は、SOCEbを下限値、SOCEuを上限値としてこの範囲で管理幅を拡大する。拡大幅の決定方法としては、標高差Hに相当するSOC増分を2αとして下限値をSOCm−α、上限値をSOCm+αに拡大する。この制御は拡大ナビ制御に相当する制御である。
なお、車両が下り区間36を走行した後、メイン制御装置26はモータ24を駆動してエンジン21を補助し、SOCが再び中央値SOCm付近の値になるように制御する。
この場合は、下り区間での回生エネルギー量が拡大管理幅で回収できる量よりも大きい場合である。
この場合は、メイン制御装置26は、SOC管理幅を拡大管理幅に設定したうえ、モータ24を駆動して、下り区間に到達する前にSOCを拡大下限値SOCEbまで低下させる。そして、下り区間で回生エネルギーで蓄電してSOCを上昇させ、拡大上限値SOCEuを越える分については回生を行わない。
この制御は、拡大ナビ制御の最大限度の場合である。
メイン制御装置26は、SOC管理幅を拡大管理幅に設定する。
そして、車両が下り区間38に到達する前にモータ24を駆動してエンジン21を補助し、矢線39aに示したように、SOCを拡大下限値SOCEbまで低下させる。
次に、メイン制御装置26は、車両が下り区間38を走行する際に回生を行って回生エネルギーでバッテリ23に蓄電する。その結果、矢線39bに示したようにSOCは拡大上限値SOCEuまで上昇する。
なお、車両が下り区間38を走行した後、メイン制御装置26はモータ24を駆動してエンジン21を補助し、SOCが再び中央値SOCm付近の値になるように制御する。そして、メイン制御装置26は、SOC管理幅を速やかに通常管理幅に復帰させる。
このように、SOCの管理幅を一時的に拡大し、その範囲で回生エネルギーを回収することにより、従来ナビ制御を行った場合よりも多くの回生エネルギーを回収することができる。そのため、燃料の消費量を低減し、燃費を向上させることができる。
そして、タイプ4の回生方法が適用されるのは、Hmax≦Hの場合であり、このため、最大標高差Hmaxは拡大管理幅を適用するための閾値となっている。
これによって、普段は都会の平地で車両を利用し、年に数回程度旅行で標高の高い山を越えるような場合に限ってSOC管理幅を拡大するといった制御方法が可能となる。
なお、本実施形態では、車両の走行が初走行の場合(より詳細には、バッテリ23を初めて使用する場合)に拡張カウンタNをN=0と初期化して、以後SOC管理幅を拡張した回数を加算し、予め設定した制限回数Nmaxになったなら以後のSOC管理幅拡張を止め、バッテリの劣化を防止する。バッテリ23を新規のものに交換した場合も、拡張カウンタNを0にリセットする。
本実施形態では、処理を簡略化するために繰り返し期間にかかわらず、拡張回数を加算することとするが、例えば、以前の拡張時からの経過時間Tが所定の時間(又は期間)Td以上経過していた場合は加算時に1より小さな加算数nを加算するなど、繰り返し期間を考慮した加算も可能である。同様の効果は、以前の拡張時からの経過時間Tが所定の時間Td以上経過していた場合に、加算数nを1より小さな値にするかわりに制限回数Nmaxの値を増加することでも達成できる。
制限回数Nmax、加算数nの具体的な数値はバッテリ23やハイブリッドシステムの試験データなどに基づいて設定される。
経路の設定方法は種々考えられるが、例えば、ナビゲーション部11が提供するナビゲーション処理で運転者が目的地を入力し、経路の探索・選択を行うことにより行うことができる。
即ち、ナビゲーション処理のマップマッチング機能により現在走行中の道路を特定し、その道路の進行方向前方の道路をナビゲーションデータベース12を用いて調べる。
なお、拡大管理幅を適用するような標高差の大きな走行経路は選択肢が限られる。
初めての走行の場合は(ステップ10;Y)、拡張カウンタNを0に設定する(ステップ15)。
初めての走行でない場合(ステップ10;N)、又はステップ15で拡張カウンタを0に設定した場合、メイン制御装置26はナビゲーション部11から取得したナビ情報を用いて経路上の地点の各標高差を推測して下り区間を特定し、その下り区間の標高差Hを取得する(ステップ20)。
標高差Hが通常管理幅相当2h0以下である場合(ステップ25;Y)、メイン制御装置26は、更に標高差Hが基準標高差h0以下であるか否かを判断する(ステップ45)。
標高差Hが基準標高差h0以下である場合は(ステップ45;Y)、SOC管理幅を通常管理幅のまま、回生タイプ1(図2(a))の従来制御を行いながら下り区間を走行する(ステップ55)。
このように、ステップ45でH≦h0となる場合は、回生タイプ1に対応する。
この場合、所定のSOCとして、SOC−αや下限値SOCbとすることができる。
下り区間に到達する前に、SOCをこのように制御すると、下り区間通過後のSOCはSOCm+αとなる。
このように、メイン制御装置26は、管理幅を拡大した回数を計数する回数計数手段としての機能を有している。
このとき目標値SOCm−αの設定に際しては、下り区間での回生エネルギーにより蓄電可能な蓄電量を予め見積もり、これに対応してSOCの最低値と最大値が、通常管理幅から蓄電側、及び放電側に等量分だけ拡大するようにこの誘導する目標値を設定する。
メイン制御装置26は、SOCm−αを目標値として設定し、車両が下り区間に到達する前にSOCがSOCm−αとなるようにモータ24を駆動してバッテリ23に蓄電されているエネルギーを消費する。
なお、その時々の交通状況など様々な要因により、回生後のSOCの値はSOCm+αの付近でばらつくが、仮にSOCが拡大上限値SOCEuに達してしまった場合、メイン制御装置26は、SOCが拡大上限値SOCEuを越えないように回生を中断する。
そして、見積もった蓄電量を用いて、SOCが通常管理範囲を超えて変化する範囲を、中央値SOCmを中心に等量となるように制御することにより、バッテリ23の蓄電状態が、フル充電、あるいはフル放電の何れかの方向に偏ることを防ぐことができ、バッテリ23の劣化を低減することができる。
今、h0=SOC10%分相当の標高変化を80[m]、予測される経路の下り標高差を240[m]とした場合、下り区間到達前のSOCの目標値は、SOC=SOCm−10×H/2h0=50−10×240/(2×80)=35%となる。
このようにメイン制御装置26は、SOCの変化の幅を中央値SOCmを中心に等量分だけ拡大し、上下限値オーバー分を同じにすることができる。
これにより、実質的なSOCの拡大管理幅(SOCの変化する範囲)を、予測した下り標高差Hに応じて必要最小限に留めることができ、バッテリ23の劣化を抑制することができる。
そして、メイン制御装置26は、車両が下り区間を走行する間、拡大管理幅にて回生を行い、SOCが拡大上限値SOCEuに達したら回生を中止する。この場合は回生タイプ4に相当する。
下り区間を回生タイプ3又は4で走向した場合、メイン制御装置26は、下り区間走行後、SOCが通常の制御値(SOCm)付近に納まったか否かを判断する(ステップ60)。SOCが通常の制御値付近にない場合は(ステップ60;N)、走行を続けSOCが通常の制御値付近に納まったか否かを再度判断する。
このように、メイン制御装置26は、下り区間を走行後、SOCの管理幅を拡大管理幅から通常管理幅に復帰する管理幅復帰手段としての機能を有している。
図では、経路の標高41、車両の走行速度42、SOCの推移(SOC43、〜45)が示されている。
このうち、SOC43は、(1)経路の全行程を従来制御で走向した場合のSOCの推移であり、SOC44は、更に、(2)経路の下り区間で通常ナビ制御を行った場合のSOCの推移であり、SOC45は、更に(3)標高差の大きい下り区間で拡大ナビ制御を行った場合のSOCの推移を示している。
以下に、これら各SOCの制御についてシミュレーション結果を説明する。
標高41で示したこの経路は、地点AからLまで走行距離が約50[Km]、標高差880[m]であり、地点C、Gを2つのピークとする登降坂がある。
また、車両の進行方向は、地点Aから地点Lへ向かう方向とする。
SOC43に示したように、この場合は、SOCは通常管理幅の範囲内に納まるように制御される。
なお、SOC43のうち、SOC44と重なる部分についてはSOC44で示し、更にSOC45と重なる部分についてはSOC45で示してある。
図に示したように、最初のピークである地点Cに至るまでは、SOCは中央値SOCm付近の値となるように制御されている。
そして、ピーク地点Cを通過した後、区間C−Eから成る下り勾配になり回生が行われSOCが増加している
その後、区間E−Fから成る比較的平坦な経路を走行するときに、区間C−Eで蓄えた回生分の電力でモータ24を補助的に使って、SOCが中央値SOCmになるように走行している。
そして、地点HでSOCが上限値SOCuに達するため、回生を中断し以後、エンジンブレーキ、通常のブレーキで地点Kまで降下することになる。
この場合、地点Gから地点Kまでに至る間、標高差約800[m]降下しているが、回生は地点Gから地点Hまでの僅か降下量80[m]分のエネルギーしか回生されてない。
しかし、従来の回生制御では、この回生可能なエネルギーを有効利用するためには、この分の回生電力を蓄える大きなバッテリを備えることが必須条件となってくる。
しかも、標高差800[m]のような大きな標高差の経路は、一般のドライバーにとっては必ずしも頻繁に走るわけではないこともあり、通常時の走行を優先させてバッテリ容量が設定されている。
SOC44に示したように、この場合もSOC43と同様にSOCは通常管理幅の範囲内に納まるように制御される。
なお、SOC44のうち、SOC45と重なる部分についてはSOC45で示してある。
この場合、メイン制御装置26は、ナビゲーション部11からのナビ情報を用いて、ピーク地点Cの先に下り区間である区間C−Eが存在すること、及びその標高差を予測する。
そして、区間C−Dの手前にある区間B−Cでモータ24を駆動させてエンジン21の補助として登坂に使い、目標値(ここでは、管理幅の下限値SOCb)までSOCを低下させて、区間C−Eでの回生に備える。
このように、ナビ情報により予め下り区間C−Eが存在することを予測して、その手前でSOCを下げておくことにより、区間C−Eの全行程に渡って回生を行うことができ、通常ナビ制御を行わないときよりも多くのエネルギーを回生している。
そして、地点Gを通過後回生を開始し、地点IでSOCが上限値SOCuに達し、回生を中断する。
この通常ナビ制御により、従来制御の場合より2箇所の下りの回生量を増加させることができる。
以上のように通常ナビ制御による回生効率の改善効果が示されたが、地点Gから地点Kまでの標高差800[m]のうち、回生しているのは160[m]ほどであり、まだまだ改善の余地が残されている。
区間C−Eの標高差は、通常管理幅で回生できる値なので、地点Eまでの制御は(2)で説明した通常ナビ制御と同じである。
メイン制御装置26は、ナビゲーション部11から取得したナビ情報により、ピーク地点Gの先に拡大管理幅で回生エネルギーを回収できる下り区間G−Kが存在することを予測する。
即ち、区間E−Gでバッテリ23を拡大下限値SOCEbまで使い切り、残りをエンジン21にて走行する。
地点JでSOCが拡大上限値SOCEuに達した後は回生を中断する。回生できるエネルギーが増加したことにより、区間K−Jの約4.2[Km]をモータ24にて走行することができる。
なお、メイン制御装置26は、SOCが通常の制御値(ここではSOCm、地点L以降)に納まった後、SOC管理幅を通常管理幅に戻す。
このように、メイン制御装置26は、ナビ情報を用いて下り区間G−Kでの回生エネルギー量が最大となるようにエンジン21とモータ24の運転スケジュールを設定する運転スケジュール手段としての機能を備えている。
表から(1)従来制御(SOC43)、(2)通常ナビ制御(SOC44)、(3)拡大ナビ制御(SOC45)を行った場合の燃費改善率を読み取ることができる。
走行距離50.30[Km]、標高差880.8[m]の箱根経路において、従来制御では、燃料消費量が2987.27ccである。
これに対し、通常ナビ制御を行った場合、燃料消費量が2765.47ccであり、従来制御よりも221.8ccだけ燃料を節約している。
従来制御に対する改善率、即ち、従来制御による燃料消費量に対する燃料節約量の割合は7.43%であり、燃費が改善されていることがわかる。
従来制御に対する改善率は18.20%であり、通常ナビ制御を行った場合よりも更に燃費が改善されている。
例えば、同じ標高差であっても勾配の大きさ、路面の走りやすさ等で回生エネルギーは異なってくるので、その場合はその影響を評価して処理すればよい。
より一般的には、回収が期待できる回生エネルギーの大きさによって、拡大管理幅を適用するか否かを判断すればよい。
何れの構成を採用しても、基本となるコンセプト、即ち、下り区間でより多くの回生エネルギーを回収するためにSOCの管理幅を一時的に拡大するという思想は同じである。
(a)標高差など所定の条件を満たす下り区間を、従来のSOCの管理幅よりも拡大管理幅にて走行し、より多くの回生エネルギーを回収することができる。
(b)ナビ情報を用いて、先にある下り区間の位置、標高差、勾配などを検知することができ、その区間での回生エネルギー量を見積もりすることができる。そのため、下り区間に到達する前にSOCの管理幅を拡大し、拡大下限値SOCEb付近まで充電率を低めに管理することができる。
(d)SOCの変化の範囲(実質的なSOC管理幅)を、回収が見込める回生エネルギーに応じて必要最低限の範囲(SOCm−αからSOCm+αまで)に設定することができる。
(f)バッテリ23の耐久性を考慮してSOCの管理幅の拡大幅を予め設定することができる。
(g)比較的平坦な経路での普段の走行時の燃費効果を損ねることなく、大きな登降坂経路での燃費向上が図れる。
第1の実施形態では、管理幅を拡大する閾値として標高差を2h0とした(図3ステップ25)。すなわち通常の管理幅を超えることが予想される場合に管理幅の拡大を行うこととした。
第2の実施形態では、管理幅を拡大する処理を行うための閾値とする標高差の値(閾値標高差Hs)として、2h0以上、Hmax以下の間の値を設定する。
そして走行経路上に存在する下り区間の標高差がHsを超える場合に、管理幅を拡大するのである。
すなわち、第1の実施形態では下り区間の標高差が2h0を僅かに超える場合であっても拡大ナビ制御が実行されるため、良く利用する走行経路上に標高差が2h0を僅かに超える下り区間があると、走行のたびに拡大ナビ制御が実施されることとなり、拡大ナビ制御の実行回数の制限値にすぐに到達してしまうこととなる。
これは、下り区間到達前のSOC目標値(SOCm−αもしくはSOCEb)は、下り区間走行前後でSOCの値がSOCmを中心値として上下に均等に変化するように設けた値であるが、実際の走行時には、SOCの値が目標値とずれることも予想されるがそのような場合でも、SOCの管理幅としてはSOCEbからSOCEuまでの範囲とするということである。
また、下り区間において運転者が予想以上にブレーキを踏んだ場合には回生されるエネルギは予想値である2αを越えることが予想されるが、その場合でもSOCEuまでは回生エネルギをバッテリに蓄積するように制御する。
一方、閾値標高差Hsを高めに設定すると、逆に運転者が平坦な地域で日常的に車両を使用する場合、運転者がたまたま標高差の大きな下り区間を走行した際に、その標高差が閾値標高差Hsに達せず、回生エネルギーを回収できない可能性がある。
そこで、運転者が日常的に使用する経路に応じて閾値標高差Hsを設定するのが望ましいことになる。
そして、ナビゲーション部11は、ユーザが日常的に使用する経路にある下り区間の標高差を取得してメイン制御装置26に提供し、メイン制御装置26は、運転者が日常的に走行する下り区間の標高差よりも閾値標高差Hsを高く設定する。
その際に、起伏の多い山間地で車両を使用するユーザに対しては閾値標高差Hsを高めに設定し、平坦な都市部で車両を使用するユーザに対しては閾値標高をHsを低めに設定する。
(a) 駆動力の一部又は全部が発電に使用されるエンジンと、車両の駆動力を発生させるモータとを備え、前記エンジンとモータの少なくとも一方の駆動力により走行するハイブリッド車両の駆動制御装置であって、
前記モータに電力を供給すると共に、回生エネルギによる蓄電が行われる蓄電手段と、
通常走行時に前記蓄電手段の蓄電量を通常走行管理幅内となるように前記蓄電手段の蓄放電を制御する蓄放電制御手段と、
走行経路上に存在する所定標高差の下り区間を特定する区間特定手段と、を具備し、
前記蓄放電制御手段は、前記特定した下り区間を走行する際に、前記通常走行管理幅を拡大した拡大管理幅で回生エネルギによる蓄電を行うことを特徴とする駆動制御装置。
(b) 前記蓄放電手段は、前記蓄電手段の管理幅を蓄電側と放電側に等量だけ拡大して前記拡大管理幅を設定することを特徴とする(1)に記載の駆動制御装置。
(c) 前記特定した下り区間を走行する際に蓄電可能な蓄電量を見積もる見積もり手段を具備し、
前記蓄放電手段は、前記見積もった蓄電量に対応して前記拡大管理幅を設定し、前記車両が前記下り区間の走行を開始するまでに、前記蓄電手段の蓄電量を、前記拡大管理幅の下限まで消費するように蓄放電を制御することを特徴とする(b)に記載の駆動制御装置。
(d) 前記下り区間を通過した後、前記蓄電手段の管理幅を通常走行管理幅に復帰する管理幅復帰手段を具備したことを特徴とする(a)、(b)、又は(c)に記載の駆動制御装置。
(e) 前記管理幅を拡大した回数を計数する回数計数手段を具備し、
前記蓄放電制御手段は、前記計数した回数が所定回数以下であることを条件に、前記蓄電手段の管理幅を拡大管理幅に拡大することを特徴とする(a)から(d)のうちの何れかに記載の駆動制御装置。
(f) 前記回数計数手段は、前回計数したときから所定時間以上経過して新たに計数をした場合には、前記所定回数の値をより大きな値に変更、又は前記計数した回数をより小さな値にすることを特徴とする(e)に記載の駆動制御装置。
(g) 前記蓄放電制御手段は、前記下り区間を通過した後に電力を消費して、前記蓄電手段の蓄電量が通常走行時に管理されている値となるように蓄放電を制御することを特徴とする請求項(a)から(f)のうちの何れかに記載の駆動制御装置。
(h) 前記エンジンは、駆動力の一部又は全部が車両の駆動又は発電に使用され、
前記走行経路に対して、前記下り区間での回生エネルギによる蓄電量が最大になるように、前記エンジンと前記モータの運転スケジュールを設定する運転スケジュール設定手段を具備し、
前記設定した運転スケジュールを用いて前記エンジンと前記モータを制御することを特徴とする(a)から(g)のうちの何れかに記載の駆動制御装置。
(i) (a)から(h)のうちの何れかに記載の駆動制御装置によって駆動系を制御することを特徴とするハイブリッド車両。
11 ナビゲーション部
12 ナビゲーションデータベース
13 走行データ取得部
14 走行環境データ取得部
15 走行データ記憶部
20 駆動装置
21 エンジン
22 発電機
23 バッテリ
24 モータ
25 駆動力伝達装置
Claims (4)
- 駆動力の一部又は全部が発電に使用されるエンジンと、車両の駆動力を発生させるモータとを備え、前記エンジンとモータの少なくとも一方の駆動力により走行するハイブリッド車両の駆動制御装置であって、
前記モータに電力を供給すると共に、回生エネルギによる蓄電が行われる蓄電手段と、
通常走行時に前記蓄電手段の蓄電量を通常走行管理幅内となるように前記蓄電手段の蓄放電を制御する蓄放電制御手段と、
走行経路上に存在する所定標高差の下り区間を特定する区間特定手段と、
前記特定した下り区間を走行する際に蓄電可能な蓄電量を見積もる見積もり手段と、
を具備し、
前記蓄放電制御手段は、前記見積もった蓄電量が、前記通常走行管理幅の半分より大きく前記通常走行管理幅以である場合、車両が前記見積もった下り区間に到達する前に、前記蓄電手段の蓄電量を前記通常走行管理幅の中央値よりも前記見積もった蓄電量の1/2だけ低下させ、前記下り区間における回生エネルギーを蓄電する、
ことを特徴とする駆動制御装置。 - 前記蓄放電手段は、車両が前記下り区間を走行した後、前記蓄電手段の蓄電量が前記通常走行管理幅の中央値付近の値になるように制御する、
ことを特徴とする駆動制御装置。 - 前記エンジンは、駆動力の一部又は全部が車両の駆動又は発電に使用され、
前記走行経路に対して、前記下り区間での回生エネルギによる蓄電量が最大になるように、前記エンジンと前記モータの運転スケジュールを設定する運転スケジュール設定手段を具備し、
前記設定した運転スケジュールを用いて前記エンジンと前記モータを制御することを特徴とする請求項1又は請求項2に記載の駆動制御装置。 - 請求項1から請求項3までのうちの何れか1の請求項に記載の駆動制御装置によって駆動系を制御することを特徴とするハイブリッド車両。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007234461A JP4395799B2 (ja) | 2007-09-10 | 2007-09-10 | 駆動制御装置、及びハイブリッド車両 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007234461A JP4395799B2 (ja) | 2007-09-10 | 2007-09-10 | 駆動制御装置、及びハイブリッド車両 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003398745A Division JP4100335B2 (ja) | 2003-11-28 | 2003-11-28 | 駆動制御装置、及びハイブリッド車両 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008024306A true JP2008024306A (ja) | 2008-02-07 |
JP4395799B2 JP4395799B2 (ja) | 2010-01-13 |
Family
ID=39115361
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007234461A Expired - Fee Related JP4395799B2 (ja) | 2007-09-10 | 2007-09-10 | 駆動制御装置、及びハイブリッド車両 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4395799B2 (ja) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009296731A (ja) * | 2008-06-03 | 2009-12-17 | Hitachi Ltd | 間歇受電を行う車両用制御装置 |
JP2009298271A (ja) * | 2008-06-12 | 2009-12-24 | Aisin Aw Co Ltd | ハイブリッド車両の運転支援装置、運転支援方法及びプログラム |
JP2010234972A (ja) * | 2009-03-31 | 2010-10-21 | Toyota Motor Corp | ハイブリッド車両 |
JP2011220961A (ja) * | 2010-04-14 | 2011-11-04 | Sony Corp | 経路案内装置、経路案内方法及びコンピュータプログラム |
JP2013103546A (ja) * | 2011-11-11 | 2013-05-30 | Nippon Sharyo Seizo Kaisha Ltd | 電力授受システム、電力貯蔵装置、及び、鉄道車両 |
WO2013121541A1 (ja) * | 2012-02-15 | 2013-08-22 | トヨタ自動車株式会社 | ハイブリッド車両の制御装置 |
JP2014060884A (ja) * | 2012-09-19 | 2014-04-03 | Mazda Motor Corp | 車両用電源装置 |
JPWO2013121541A1 (ja) * | 2012-02-15 | 2015-05-11 | トヨタ自動車株式会社 | ハイブリッド車両の制御装置 |
JP2015155261A (ja) * | 2014-02-20 | 2015-08-27 | 日野自動車株式会社 | ハイブリッド自動車および充電状態の制御方法 |
JP2018504322A (ja) * | 2014-12-22 | 2018-02-15 | ルノー エス.ア.エス. | 再充電可能なハイブリッド車両のトラクション電池のエネルギー管理のための方法 |
CN112566810A (zh) * | 2018-08-27 | 2021-03-26 | 松下知识产权经营株式会社 | 车辆电源系统以及车辆调配系统 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000134719A (ja) * | 1998-10-29 | 2000-05-12 | Isuzu Motors Ltd | パラレル・ハイブリッド電気自動車のバッテリ充電制御装置 |
JP2001095105A (ja) * | 1999-09-24 | 2001-04-06 | Hitachi Ltd | ハイブリッド車両 |
JP2002051405A (ja) * | 2000-07-31 | 2002-02-15 | Sanyo Electric Co Ltd | ハイブリッド電気自動車 |
JP2002199509A (ja) * | 2000-12-25 | 2002-07-12 | Fuji Electric Co Ltd | ハイブリッド車両の駆動方法 |
JP2002354612A (ja) * | 2001-05-24 | 2002-12-06 | Isuzu Motors Ltd | ハイブリッド自動車の運行システム |
JP2003032807A (ja) * | 2001-07-18 | 2003-01-31 | Nissan Motor Co Ltd | ハイブリッド車両の制御装置 |
-
2007
- 2007-09-10 JP JP2007234461A patent/JP4395799B2/ja not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000134719A (ja) * | 1998-10-29 | 2000-05-12 | Isuzu Motors Ltd | パラレル・ハイブリッド電気自動車のバッテリ充電制御装置 |
JP2001095105A (ja) * | 1999-09-24 | 2001-04-06 | Hitachi Ltd | ハイブリッド車両 |
JP2002051405A (ja) * | 2000-07-31 | 2002-02-15 | Sanyo Electric Co Ltd | ハイブリッド電気自動車 |
JP2002199509A (ja) * | 2000-12-25 | 2002-07-12 | Fuji Electric Co Ltd | ハイブリッド車両の駆動方法 |
JP2002354612A (ja) * | 2001-05-24 | 2002-12-06 | Isuzu Motors Ltd | ハイブリッド自動車の運行システム |
JP2003032807A (ja) * | 2001-07-18 | 2003-01-31 | Nissan Motor Co Ltd | ハイブリッド車両の制御装置 |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009296731A (ja) * | 2008-06-03 | 2009-12-17 | Hitachi Ltd | 間歇受電を行う車両用制御装置 |
KR101254370B1 (ko) * | 2008-06-03 | 2013-04-15 | 가부시키가이샤 히타치세이사쿠쇼 | 간헐 수전을 행하는 차량용 제어 장치 |
JP2009298271A (ja) * | 2008-06-12 | 2009-12-24 | Aisin Aw Co Ltd | ハイブリッド車両の運転支援装置、運転支援方法及びプログラム |
US8725332B2 (en) | 2009-03-31 | 2014-05-13 | Denso Corporation | Hybrid vehicle |
JP2010234972A (ja) * | 2009-03-31 | 2010-10-21 | Toyota Motor Corp | ハイブリッド車両 |
CN102369127A (zh) * | 2009-03-31 | 2012-03-07 | 株式会社电装 | 混合动力车 |
JP2011220961A (ja) * | 2010-04-14 | 2011-11-04 | Sony Corp | 経路案内装置、経路案内方法及びコンピュータプログラム |
JP2013103546A (ja) * | 2011-11-11 | 2013-05-30 | Nippon Sharyo Seizo Kaisha Ltd | 電力授受システム、電力貯蔵装置、及び、鉄道車両 |
WO2013121541A1 (ja) * | 2012-02-15 | 2013-08-22 | トヨタ自動車株式会社 | ハイブリッド車両の制御装置 |
JPWO2013121541A1 (ja) * | 2012-02-15 | 2015-05-11 | トヨタ自動車株式会社 | ハイブリッド車両の制御装置 |
JP2014060884A (ja) * | 2012-09-19 | 2014-04-03 | Mazda Motor Corp | 車両用電源装置 |
JP2015155261A (ja) * | 2014-02-20 | 2015-08-27 | 日野自動車株式会社 | ハイブリッド自動車および充電状態の制御方法 |
JP2018504322A (ja) * | 2014-12-22 | 2018-02-15 | ルノー エス.ア.エス. | 再充電可能なハイブリッド車両のトラクション電池のエネルギー管理のための方法 |
CN112566810A (zh) * | 2018-08-27 | 2021-03-26 | 松下知识产权经营株式会社 | 车辆电源系统以及车辆调配系统 |
CN112566810B (zh) * | 2018-08-27 | 2024-05-24 | 松下知识产权经营株式会社 | 车辆电源系统以及车辆调配系统 |
Also Published As
Publication number | Publication date |
---|---|
JP4395799B2 (ja) | 2010-01-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4100335B2 (ja) | 駆動制御装置、及びハイブリッド車両 | |
JP4395799B2 (ja) | 駆動制御装置、及びハイブリッド車両 | |
JP4175923B2 (ja) | 走行速度パターン推定装置 | |
JP3933056B2 (ja) | ハイブリッド車両の駆動制御システム | |
EP3224102B1 (en) | Apparatus and method for vehicle economy improvement | |
JP2007050888A (ja) | ハイブリッド車両の駆動制御システム | |
JP6758025B2 (ja) | 高いハイブリッド化度を有するハイブリッド車両のための制御システム | |
JP4200863B2 (ja) | 走行速度パターン推定装置、及びハイブリッド車両の駆動制御装置 | |
US9758153B2 (en) | Hybrid vehicle control apparatus | |
JP5151619B2 (ja) | ハイブリッド車両用の走行計画作成装置および走行計画作成装置用のプログラム | |
JP3536703B2 (ja) | ハイブリッド車両の制御方法、ハイブリッド車両の制御装置およびハイブリッド車両 | |
KR101655609B1 (ko) | 하이브리드 자동차의 배터리 충전 상태 제어 장치 및 방법 | |
JP6058299B2 (ja) | 電気自動車用運転者エコドライブ支援方法 | |
US8073605B2 (en) | Method of managing power flow in a vehicle | |
US20150298680A1 (en) | System and method for control of a hybrid vehicle with regenerative braking using location awareness | |
CN110641448A (zh) | 混合动力车辆及其行驶控制方法 | |
JP4766398B2 (ja) | 情報処理装置、及びハイブリッド車両 | |
CN104973057A (zh) | 智能预测控制系统 | |
US20150061550A1 (en) | Method for electrically regenerating an energy store | |
JP2011102801A (ja) | 自動車の走行可能距離を推定する方法 | |
JP2017144801A (ja) | 電気自動車 | |
JP3981067B2 (ja) | 走行速度データ分類装置、走行速度パターン推定装置、及びハイブリッド車両の駆動制御装置 | |
JP4123143B2 (ja) | ハイブリッド車両の制御装置、及びハイブリッド車両 | |
JP2005184867A (ja) | 走行速度パターン推定装置、及びハイブリッド車両の駆動制御装置 | |
JP2005218178A (ja) | 車両エネルギー制御方法と装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080527 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080728 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090120 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090126 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090924 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20091007 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121030 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4395799 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121030 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131030 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |