JP2007098287A - Method for controlling operation of water purifying process - Google Patents
Method for controlling operation of water purifying process Download PDFInfo
- Publication number
- JP2007098287A JP2007098287A JP2005291865A JP2005291865A JP2007098287A JP 2007098287 A JP2007098287 A JP 2007098287A JP 2005291865 A JP2005291865 A JP 2005291865A JP 2005291865 A JP2005291865 A JP 2005291865A JP 2007098287 A JP2007098287 A JP 2007098287A
- Authority
- JP
- Japan
- Prior art keywords
- turbidity
- flocculant
- concentration
- raw water
- coagulant
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Separation Of Suspended Particles By Flocculating Agents (AREA)
Abstract
Description
本発明は、取水原水の濁質に対応して凝集剤を適正に注入し、安定した水質の浄水を得る浄水プロセスの運転管理方法に関する。 The present invention relates to an operation management method of a water purification process in which a flocculant is appropriately injected in response to the turbidity of raw water taken to obtain purified water with stable water quality.
浄水場では、凝集剤を注入して原水中の懸濁物質(以下、濁質という)を結合凝集させて沈殿除去する凝集沈殿処理や砂,膜を用いたろ過処理などにより、浄水を得ている。浄水場では、国内外を問わず濁度を指標に用いた濁質管理が広く採用されている。河川や湖沼などの表流水を原水とする場合、原水の濁質性状、すなわち濁質の種類やその粒径は、流域の地形や地質,気候や気象条件,土地利用形態、及び季節などの要因の影響で変動する。濁度もこれらの要因で大きく変動するため、設定された濁度以下の浄水を得るには凝集剤の注入量を適正に管理する必要があり、凝集剤の注入量の適正な管理が浄水場の重要な日常業務の1つとなっている。 At the water purification plant, purified water is obtained by coagulating and injecting a flocculant to bind and agglomerate suspended solids in the raw water (hereinafter referred to as turbidity) and aggregating and precipitating to remove the precipitate. Yes. In water treatment plants, turbidity management using turbidity as an index is widely adopted regardless of domestic and overseas. When surface water such as rivers and lakes is used as raw water, the turbidity of the raw water, that is, the type and particle size of the turbidity, are factors such as terrain and geology of the basin, climate and weather conditions, land use form, and season. Fluctuates due to Because turbidity also varies greatly due to these factors, in order to obtain purified water below the set turbidity, it is necessary to properly control the amount of flocculant injected, and proper control of the amount of flocculant injected is required for water treatment plants. Has become one of the important daily tasks.
凝集剤の注入量が不足した場合は、濁質との結合凝集塊(以下、フロックという)が成長しないため十分に沈殿せず、後段のろ過処理工程の負担が増大し、捕捉されない微小な濁質が浄水に混入するので、水質が悪化する。凝集剤の注入量が過剰となった場合は、膨潤なフロックが形成され、電気的な反発によって凝集阻害が惹き起され、沈降しにくくなるため、凝集剤の注入量が不足した場合と同様の問題が生じる。このような理由から、原水の濁質が変化した場合に対応した種々の凝集剤の注入方法が提案されている。 When the injection amount of the flocculant is insufficient, the combined aggregates (hereinafter referred to as floc) with turbidity do not grow, so that they do not settle sufficiently, increasing the burden of the subsequent filtration process, and not being trapped. Water quality deteriorates because the quality is mixed with purified water. When the injection amount of the flocculant becomes excessive, a swollen floc is formed, the aggregation is inhibited by electrical repulsion, and it becomes difficult to settle. Problems arise. For these reasons, various flocculant injection methods corresponding to changes in the turbidity of raw water have been proposed.
例えば、〔非特許文献1〕に記載のように、原水の濁度に、アルカリ度やpH,水温などのフロックが形成される要因を考慮して作成した凝集剤注入式に基づいて、凝集剤の注入量を操作する方法がある。 For example, as described in [Non-Patent Document 1], based on a flocculant injection formula created in consideration of factors that cause floc formation such as alkalinity, pH, and water temperature in the turbidity of raw water, the flocculant There is a way to manipulate the amount of injection.
〔特許文献1〕には、原水濁度に対する高分子凝集剤の注入率を算出する式を、高分子凝集剤の注入率を無機凝集剤の注入率に比例させるとともに予め定めた上限注入率で頭打ちとする算出式Aと、無機凝集剤の注入率が最大注入率のときに高分子凝集剤の注入率が上限注入率となるように高分子凝集剤の注入率を無機凝集剤の注入率に比例させる算出式Bの2つの算出式を設定し、原水濁度の変動の大きさと現在の原水濁度とに応じて、2つの算出式のいずれかを選択して高分子凝集剤の注入率を制御する凝集剤の注入制御方法が開示されている。 In [Patent Document 1], the formula for calculating the injection rate of the polymer flocculant with respect to the raw water turbidity is set such that the injection rate of the polymer flocculant is proportional to the injection rate of the inorganic flocculant and at a predetermined upper limit injection rate. The calculation formula A is set to the peak, and the injection rate of the polymer flocculant is set so that the injection rate of the polymer flocculant becomes the upper limit injection rate when the injection rate of the inorganic flocculant is the maximum injection rate. Two formulas are set up to be proportional to the calculation formula B, and either one of the two formulas is selected according to the magnitude of the fluctuation of the raw water turbidity and the current raw water turbidity, and the polymer flocculant is injected. A flocculant injection control method for controlling the rate is disclosed.
〔特許文献2〕には、採取した試料の濁度又は色度を測定し、この測定値に基づいて凝集剤最適添加量を演算し、凝集剤注入ポンプを制御することにより、凝集剤の注入量を最適にコントロールする凝集剤の注入制御方法が開示されている。 [Patent Document 2] measures the turbidity or chromaticity of a collected sample, calculates the optimum addition amount of the flocculant based on the measured value, and controls the flocculant injection pump to inject the flocculant. A flocculant injection control method that optimally controls the amount is disclosed.
〔特許文献3〕には、フロック形成池の出口側のフロックを撮像し、得られた画像認識手段で画像を2値化してフロックの認識を行い、認識されたデータからフロック個数を演算し、得られたフロック個数が目標値以上のとき、注入制御手段により凝集剤注入量を現在の注入量より小さくするようにポンプを制御する凝集剤の注入制御装置が開示されている。 In [Patent Document 3], the floc on the outlet side of the floc formation pond is imaged, the image is binarized by the obtained image recognition means, the floc is recognized, the number of flocs is calculated from the recognized data, A flocculant injection control device is disclosed in which when the number of flocs obtained is equal to or greater than a target value, the pump is controlled by the injection control means so that the flocculant injection amount is smaller than the current injection amount.
〔特許文献4〕には、取水手段からの原水を送る給送ラインに1次凝集剤注入手段が接続され、1次凝集剤を注入された原水を沈砂池で100〜150度以下の濁度までに沈殿処理し、その2次原水を送る給送ラインに2次凝集剤注入手段を接続し、2次凝集剤を注入された2次原水を移動床砂濾過装置により処理して数度以下の濁度の処理水を得る原水処理装置が開示されている。 In [Patent Document 4], primary flocculant injection means is connected to a feed line that feeds raw water from water intake means, and the raw water into which the primary flocculant has been injected is turbidity of 100 to 150 degrees or less in a sand basin. The secondary flocculant injecting means is connected to the feed line that feeds the secondary raw water, and the secondary raw water into which the secondary flocculant has been injected is treated with a moving bed sand filtration device. A raw water treatment apparatus for obtaining treated water having a turbidity of 5 is disclosed.
〔特許文献5〕には、水中の微粒子の径とその径に対応した個数を測定するパーティクルカウンタと、このパーティクルカウンタにより得られたデータを入力して最適な凝集剤注入量を決定するデータ解析部と、このデータ解析部で得られた凝集剤注入量に応じて凝集剤の注入量を制御する凝集剤注入制御方法が開示されている。 In [Patent Document 5], a particle counter that measures the diameter of the fine particles in water and the number corresponding to the diameter, and data analysis that determines the optimum flocculant injection amount by inputting data obtained by the particle counter And a coagulant injection control method for controlling the injection amount of the coagulant according to the coagulant injection amount obtained by the data analysis unit.
〔特許文献6〕には、流入原水の流入量を測定する流量計と、流入原水の濁度を測定する濁度計と、流入原水に凝集剤を注入する薬注ポンプと、薬注ポンプによる凝集剤注入後の凝集剤注入混和水のpH値を測定するpH計と、流量計と濁度計と導電率計及び流動電流計とpH計のそれぞれの測定値信号を入力し、その入力信号に基づいて流入原水の性状変動に応じた凝集剤注入量となるように制御するポンプ手段を備えた浄水用凝集剤自動注入装置が開示されている。 [Patent Document 6] includes a flow meter for measuring the inflow of raw inflow water, a turbidimeter for measuring the turbidity of inflow raw water, a chemical injection pump for injecting a flocculant into the inflow raw water, and a chemical injection pump. Input the measurement signals of pH meter, flow meter, turbidity meter, conductivity meter, flow current meter and pH meter to measure the pH value of coagulant injection mixed water after flocculant injection, and input signal Based on the above, there is disclosed a water purifying flocculant automatic injection device provided with pump means for controlling the amount of flocculant to be injected in accordance with fluctuations in the properties of inflow raw water.
〔特許文献7〕には、河川流量や水量等の被処理水の取水源の季節変動パラメータと、季節変動パラメータに対応する最適凝集時の荷電状況の測定値との関係式に基づき、季節に応じた荷電状況の目標値を設定し、荷電状況の測定値が目標値に保持されるように凝集剤の注入量を調整する凝集剤注入制御システムが開示されている。 According to [Patent Document 7], the seasonal variation parameter of the intake source of the treated water such as the river flow rate and the amount of water and the measured value of the charge state at the time of the optimal aggregation corresponding to the seasonal variation parameter are There is disclosed a flocculant injection control system that sets a target value of a corresponding charge state and adjusts the amount of flocculant injected so that the measured value of the charge state is maintained at the target value.
原水中には粘土性物質,有機性物質,各種微生物や動植物プランクトン,金属性イオンや無機イオン等の物理化学変化によって不溶性化した物質を含め、様々な物質が懸濁している。これらを総称して濁質と呼んでいる。濁質は、透過光,散乱光,表面散乱光、或いはこれらを組合せにより光学的に測定される。濁質の主成分である粘土性物質は負に荷電しており、正に帯電している金属を含む凝集剤を注入することにより、結合・凝集して重力による沈降が可能となるため、沈殿除去できる。 Various substances are suspended in the raw water, including clay substances, organic substances, various microorganisms, animal and plant plankton, and substances insolubilized by physical and chemical changes such as metallic ions and inorganic ions. These are collectively called turbidity. The suspended matter is optically measured by transmitted light, scattered light, surface scattered light, or a combination thereof. The clayey substance, which is the main component of the turbidity, is negatively charged. By injecting a flocculant containing a positively charged metal, it becomes possible to settle due to gravity by binding and agglomeration. Can be removed.
凝集剤を注入することにより生じる反応は、粘土性物質だけでなく、他の濁質成分や溶解性の金属,無機イオン,水温等、多種多様の要因が影響する複雑な反応で、定量化されていない。 The reaction caused by injecting the flocculant is not only a clay-like substance, but also a complex reaction that is affected by a variety of factors such as other turbid components, soluble metals, inorganic ions, and water temperature. Not.
〔非特許文献1〕に記載の方法は、フィードフォワード制御で原水の水質の変動に対処しているが、濁質の性状を普遍的なものとして取り扱っているため、特に、降雨時などの性状変化に対応できないなど、適正な注入率を継続的に維持することが困難であるという問題がある。 Although the method described in [Non-Patent Document 1] deals with fluctuations in the quality of raw water by feedforward control, it treats the nature of turbidity as universal, so it is particularly characterized during rainy days. There is a problem that it is difficult to continuously maintain an appropriate injection rate, such as being unable to cope with changes.
又、〔特許文献1〕の技術は、例えば、晴天時などの低濁度(〜数十度)と降雨時などの高濁度(数十度〜数百度)で異なる注入式を用意して操作することができるが、低濁度と高濁度の境界付近で不連続な注入率となるため、境界付近では適正な凝集沈殿が行われないという問題があり、また、降雨時と雨が止んだ後で相違する濁質性状の変化に対応できない、さらには、豪雨時や流域条件で数万度になる原水の濁度に対しては対応できないという問題がある。 In addition, the technique of [Patent Document 1] prepares different injection formulas depending on, for example, low turbidity (up to several tens of degrees) during fine weather and high turbidity (several tens to several hundred degrees) during rainfall. Although it can be operated, the discontinuous injection rate is near the boundary between low turbidity and high turbidity, so there is a problem that proper coagulation sedimentation does not occur near the boundary, and during rain and rain There is a problem that it cannot respond to the change in turbidity that is different after stopping, and it cannot cope with the turbidity of raw water that reaches tens of thousands of degrees in heavy rain or basin conditions.
〔特許文献2〕や〔特許文献3〕の技術では、凝集沈殿処理水の濁度や、凝集剤注入後のフロック形状特徴量を計測し、目標値との偏差をフィードバックして注入率を操作することにより、濁質性状の変化によるフロック形成状態や凝集沈殿特性の相違を反映させることができるが、凝集沈殿された処理水の濁度とフロック形状の特徴量との定量的関係が解明されていないため、すなわち、凝集剤が過剰の場合、或いは不足の場合でも処理水の濁度が増加するため、処理水の濁度計測値では、凝集剤の注入率を増加するか減少するかの判断をすることができないという問題がある。 In the techniques of [Patent Document 2] and [Patent Document 3], the turbidity of coagulated sediment treated water and the floc shape feature amount after injecting the flocculant are measured, and the injection rate is manipulated by feeding back the deviation from the target value. By doing so, it is possible to reflect the difference in floc formation state and coagulation sedimentation characteristics due to changes in turbid properties, but the quantitative relationship between the turbidity of coagulated sediment treated water and the feature quantity of floc shape has been elucidated. In other words, the turbidity of the treated water increases even when the flocculant is excessive or insufficient, so the turbidity measurement value of the treated water increases or decreases the injection rate of the flocculant. There is a problem that judgment cannot be made.
〔特許文献4〕の技術では、超高濁度(数百度〜数千度)の原水に対応して、浄水場への原水の給送ラインに凝集剤を事前に注入して、場内での注入対象水の濁度を所定範囲内に減少させることができるが、濁質の性状については配慮されていなく、適正な注入率を継続的に維持することが困難である。 In the technology of [Patent Document 4], coagulant is injected into the raw water supply line to the water purification plant in advance in response to the raw water of ultra high turbidity (several hundred to several thousand degrees) Although the turbidity of the injection target water can be reduced within a predetermined range, the nature of the turbidity is not considered, and it is difficult to continuously maintain an appropriate injection rate.
〔特許文献5〕の技術では、粒子数を正確に計測できることを前提としているが、数千度以上となる高濁度原水の粒子数を正確に計測することは困難であるという問題がある。又、原水を一時貯留させた後に凝集剤を注入して高濁度の原水を沈澱処理する場合についての本発明者らの実験によれば、単位濁質量を凝集沈殿させるための凝集剤量は、粒径範囲が同じでも変化することが示された。このため、〔特許文献5〕の技術では、高濁度の原水のプロセスに適用困難であるという問題がある。 The technique of [Patent Document 5] is based on the premise that the number of particles can be accurately measured. However, there is a problem that it is difficult to accurately measure the number of particles of high turbidity raw water that is several thousand degrees or more. In addition, according to the experiments of the present inventors about the case where the raw water having a high turbidity is precipitated by injecting the flocculant after temporarily storing the raw water, the amount of the flocculant for coagulating and precipitating the unit turbid mass is It was shown that even if the particle size range is the same, it changes. For this reason, the technique of [Patent Document 5] has a problem that it is difficult to apply to the process of raw water with high turbidity.
〔特許文献6〕の技術では、凝集剤注入後の凝集剤注入混和水のpH値等により流入原水の性状変動に応じた凝集剤注入量となるように制御するものであるが、濁質の性状について配慮されていなく適切な注入率を継続的に維持することが困難である。 In the technique of [Patent Document 6], the flocculant injection mixed water after the flocculant injection is controlled so that the amount of the flocculant injected according to the change in the properties of the influent raw water is controlled. It is difficult to maintain an appropriate injection rate continuously without considering the properties.
〔特許文献7〕の技術は、季節変動パラメータに対応して、季節に応じた荷電状況の目標を設定するものであるが、濁質の性状について配慮されていなく適切な注入率を継続的に維持することが困難である。 The technique of [Patent Document 7] sets the target of the charging state according to the season corresponding to the seasonal variation parameter, but does not consider the properties of the turbidity and continuously provides an appropriate injection rate. It is difficult to maintain.
ところで、浄水場は年中無休で連続運転されており、原水の濁質,水質は様々な要因で大きく変化する。このように、浄水場では連続運転、刻々変化する濁質性状を考慮した運転管理が必要であり、このためには、実用化され、簡易でメンテナンス性もよく、信頼性の高い計測器で濁質性状を把握し、数度の低濁度から数千度の超高濁度にも対応できる凝集剤の注入管理が望まれている。 By the way, the water purification plant is operated continuously throughout the year, and the turbidity and water quality of the raw water vary greatly due to various factors. In this way, water treatment plants require continuous operation and operation management that takes into account the ever-changing turbidity properties.To this end, it is practical, simple, easy to maintain, and highly reliable with a highly reliable measuring instrument. It is desired to control the injection of a flocculant that can grasp the property and can cope with low turbidity of several degrees to ultra high turbidity of several thousand degrees.
本発明の第1の目的は、原水の濁質性状も反映した低濁度から超高濁度まで適正に凝集剤量を注入できる浄水プロセスの運転管理方法を提供することにある。 A first object of the present invention is to provide an operation management method for a water purification process that can inject a coagulant amount appropriately from low turbidity to ultra-high turbidity reflecting the turbidity of raw water.
本発明の第2の目的は、突発的濁質変化や雨天後の濁質変化にも適正な凝集剤量を注入でき、安定した良質の凝集沈殿処理水を供給できる浄水プロセスの運転管理方法を提供することにある。 The second object of the present invention is to provide a water purification process operation management method capable of injecting an appropriate amount of coagulant into sudden turbidity change and turbidity change after rain, and supplying stable and high quality coagulation sedimentation water. It is to provide.
本発明は、上記目的を達成するために、薬品混和池に接続された原水取入管に設置された濁質濃度計により濁質濃度を計測し、演算器に予め記憶された濁質濃度と単位容積当りの凝集剤注入率との関係式により前記濁質濃度に対応する単位容積当りの凝集剤注入率を演算し、原水取入管に設置された流量計により計測された原水流量及び演算された単位容積当りの凝集剤注入率により凝集剤注入量を算出し、制御器により注入設備を制御して前記薬品混和池に注入する凝集剤が前記算出された凝集剤注入量となるように調整するものである。 In order to achieve the above object, the present invention measures the turbidity concentration with a turbidity concentration meter installed in the raw water intake pipe connected to the chemical mixing pond, and stores the turbidity concentration and unit stored in advance in the calculator. The flocculant injection rate per unit volume corresponding to the turbidity concentration was calculated from the relational expression with the flocculant injection rate per volume, and the raw water flow rate measured by the flow meter installed in the raw water intake pipe was calculated. Calculate the coagulant injection amount based on the coagulant injection rate per unit volume, and control the injection equipment with the controller so that the coagulant injected into the chemical mixing basin is adjusted to the calculated coagulant injection amount. Is.
又、計測された濁度或いは濁質濃度が濁度の設定値或いは濁質濃度の設定値の比較により、濁質濃度と単位容積当りの凝集剤注入率との関係式と、濁度と単位容積当りの凝集剤注入率との関係式とを切替えるものである。 Also, the measured turbidity or turbidity concentration is compared with the set value of turbidity or the set value of turbidity concentration, the relational expression between turbidity concentration and the flocculant injection rate per unit volume, turbidity and unit The relational expression with the flocculant injection rate per volume is switched.
濁度及び濁質濃度から濁度係数を演算し、濁度係数と補正注入係数との関係式により演算された濁度係数に対応する補正注入係数を演算して補正された凝集剤注入率を求めるものである。 Calculate the turbidity coefficient from the turbidity and turbidity concentration, calculate the corrected injection coefficient corresponding to the turbidity coefficient calculated by the relational expression between the turbidity coefficient and the corrected injection coefficient, and calculate the corrected flocculant injection rate. It is what you want.
又、濁度と濁度目標値の偏差偏差に基づいて凝集剤注入率を補正するものである。 Further, the flocculant injection rate is corrected based on the deviation deviation between the turbidity and the turbidity target value.
本発明によれば、高・超高濁度において、原水の濁質性状が変化しても適正な凝集剤量を注入でき、安定した良質の凝集沈殿処理水を提供できる効果がある。 ADVANTAGE OF THE INVENTION According to this invention, even if the turbidity property of raw | natural water changes in high and ultra-high turbidity, there exists an effect which can inject | pour an appropriate amount of coagulant | flocculants and can provide the stable high quality coagulation sedimentation treated water.
濁質濃度に基づいて凝集剤注入量を求めることにより、低濁度から超高濁度まで凝集剤を適正に注入できる浄水プロセスの運転管理方法を提供する。以下、本発明の実施形態を図面により説明する。 Provided is a water purification process operation management method capable of appropriately injecting a flocculant from a low turbidity to an ultra-high turbidity by determining the amount of the flocculant injected based on the turbidity concentration. Embodiments of the present invention will be described below with reference to the drawings.
本発明の実施例1を図1〜図3により説明する。図1は、浄水プロセスの構成図である。 A first embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a configuration diagram of a water purification process.
図1に示すように、薬品混和池2に接続された原水取入管1には、流量計21,濁質濃度計23が順次接続されている。流量計21は演算器33に直接接続され、濁質濃度計
23は凝集剤注入率を演算する演算器32と接続され、演算器32は演算器33と接続されている。ここで、流量計や濁度計,濁質濃度計は実用化されているものを用いることができるので、信頼性の高い凝集剤注入管理を実現できる。
As shown in FIG. 1, a
凝集剤の貯槽7は凝集剤の注入設備8と接続され、さらに流量計24を介して薬品混和池2に設けられた凝集剤の注入管9が接続されている。演算器33は制御器34と接続され、制御器34は、流量計24での計測値をフィードバックするように信号線が接続されるとともに、注入設備8に接続されている。注入設備8は弁、或いは流量可変型ポンプで構成される。
The flocculant storage tank 7 is connected to a
薬品混和池2には攪拌機201が設置され、薬品混和池2は、攪拌機301が設置されたフロック形成池3に接続されている。フロック形成池3は沈殿池4に接続され、沈殿池4の下部には廃泥液を排出するための排出管6が設けられ、沈殿池4の上部には、濁質が除去された処理水(沈殿上澄液ともいう)を取出すための取水管5が設けられている。
A
濁質を含有した原水は、原水取入管1から薬品混和池2に流入する際に、流量計21により流量が計測され、濁質濃度計23で濁質濃度SSiが計測される。計測された濁質濃度SSiは演算器32に入力され、数1により濁質濃度SSiに対する凝集剤注入率Cpを演算する。ここで、a,kは定数である。
(数1)
Cp=a・SSik (1)
図2及び図3は、本発明者らが初期濁度を200から5000度(濁質濃度で1000から25000mg/L)の範囲で変化させて凝集沈殿上澄濁度が1度となる凝集剤注入率を求めた実験結果である。図2は、濁質濃度SSを横軸に、凝集剤注入率Cpを縦軸にとって整理したものであり、図3は、横軸に濁度を横軸に、凝集剤注入率Cpを縦軸にとって整理したものである。
When the raw water containing turbidity flows from the raw
(Equation 1)
Cp = a · SSi k (1 )
2 and 3 show that the present inventors changed the initial turbidity in the range of 200 to 5000 degrees (turbidity concentration of 1000 to 25000 mg / L), and the flocculating agent has a flocculation precipitate supernatant turbidity of 1 degree. It is the experimental result which calculated | required the injection rate. FIG. 2 shows the turbidity concentration SS on the horizontal axis and the flocculant injection rate Cp on the vertical axis. FIG. 3 shows the turbidity on the horizontal axis and the flocculant injection rate Cp on the vertical axis. It is organized for.
図2,図3から分るように、濁質濃度SSを横軸にとって整理した場合は、各実験点が1つの曲線で近似され、濁質性状の影響がなく、数1で表すことができるが、濁度を横軸にとって整理した場合は、実験点は1つの曲線で近似できなく、濁質性状が変化すると係数の異なる指数式となる。すなわち、高濁度及び超高濁度の場合、濁質性状が同じであれば特定の指数式で表現できるが、濁度を指標とした近似式では濁質性状により凝集剤の過不足が生じる場合がある。このため、本実施例では、濁質濃度SSを指標とした図2に示す数1を適用しており、適正な凝集剤を注入できる。
As can be seen from FIGS. 2 and 3, when the turbidity concentration SS is arranged on the horizontal axis, each experimental point is approximated by one curve and is not affected by the turbidity property, and can be expressed by the following equation (1). However, when the turbidity is arranged on the horizontal axis, the experimental point cannot be approximated by one curve, and when the turbidity property changes, an exponential expression with different coefficients is obtained. That is, in the case of high turbidity and ultra-high turbidity, if the turbidity properties are the same, it can be expressed by a specific exponential expression, but in the approximate expression using turbidity as an index, the turbidity properties cause excess and deficiency of the flocculant. There is a case. For this reason, in this embodiment,
演算器33では、演算器32で求められた単位容積量当りの凝集剤注入率Cpと、流量計21で計測された原水流量Qと、凝集剤注入率Cpと原水流量Qとを乗算して凝集剤注入量Qpを演算する。制御器34は、演算された凝集剤注入量Qpと流量計24で計測された凝集剤の注入操作量Qp′の偏差に基づいて凝集剤の注入設備8を調節する。
The
凝集剤の注入設備8から注入される凝集剤には、アルミニウム系や鉄系などの無機系や高分子系が用いられる。薬品混和池2では、攪拌機201により凝集剤が原水に均質に混合され、濁質と凝集剤が結合してフロックの核となるマイクロフロックを形成する。マイクロフロックは、フロック形成池3で攪拌機201より緩速で運転される攪拌機301によって攪拌されて成長し、粗大なフロックとなる。粗大となったフロックは沈殿池4で沈降し、濁質が除去された上澄液、すなわち凝集沈殿池の処理水として取水管5からさらに後段の処理設備に送られ、ろ過や殺菌処理を受けた後、浄水として配水される。沈殿池4で沈降分離したフロックは排泥液として系外に排出される。
As the flocculant injected from the
このように、原水の濁質性状に対応した凝集剤注入係数を設定することができ、凝集剤注入量が適正に操作されるので、良好な沈殿池処理水を提供できる。 As described above, the flocculant injection coefficient corresponding to the turbidity of the raw water can be set, and the amount of flocculant injected is appropriately controlled, so that it is possible to provide good sedimentation basin treated water.
本発明の実施例2を図4により説明する。本実施例は実施例1と同様に構成されているが、本実施例では、原水取入管1に濁度計22を設け、濁度計22と濁質濃度計23を判定器31に接続し、判定器31を演算器32に接続している。
A second embodiment of the present invention will be described with reference to FIG. The present embodiment is configured in the same manner as in the first embodiment, but in this embodiment, the raw
濃度計22で計測された原水の濁度Tuiと、濁質濃度計23で計測された濁質濃度
SSiが判定器31に入力される。
The turbidity Tui of the raw water measured by the
判定器31には、予め濁度の設定値Mt、或いは濁質濃度の設定値Msが入力されており、計測された濁度Tui<濁度の設定値Mt、或いは濁質濃度SSi<濁質濃度の設定値Msの場合は、濁度を指標として凝集剤注入率を演算する信号を演算器32に出力する。計測された濁度Tui≧濁度の設定値Mt、或いは濁質濃度SSi≧濁質濃度の設定値Msの場合は、濁質濃度を指標として凝集剤注入率を演算する信号を演算器32に出力する。ここで、濁度の設定値Mt、或いは濁質濃度の設定値Msは、水源状態に合わせて設定でき、例えば200度,1000mg/Lに設定する。
A turbidity setting value Mt or a turbidity concentration setting value Ms is input to the
演算器32では、濁度を指標として凝集剤注入率を演算する信号が入力された場合は、予め入力されている濁度を変数とした数式により凝集剤注入率Cpを演算し、濁質濃度指標として凝集剤注入率を演算する信号が入力された場合は、数1により凝集剤注入率Cpを演算して演算器33に出力する。演算器33及び制御器34は、実施例1と同様の演算を行い、凝集剤の注入設備8の制御を行う。
In the
濁りの状態、すなわち濁質を形成する物質は、低濁度と高濁度及び超高濁度で変化する。低濁度の場合、粘土性物質に比べてそれ以外の物質の比率が高く、種々の物質が濁りに影響するので、濁度を指標としている。高濁度や超高濁度になるのは降雨や水流によって流域の土砂が流出する影響で、濁質の大半を粘土性物質が占める。粘土性物質が主として濁りとなる高濁度や超高濁度では、粒径などの影響を受けない濁質濃度を指標にして凝集剤を注入する。 The turbid state, that is, the substance forming the turbidity, changes with low turbidity, high turbidity, and extremely high turbidity. In the case of low turbidity, the ratio of other substances is higher than that of clay-like substances, and various substances affect turbidity, so turbidity is used as an index. High turbidity and ultra-high turbidity are due to the influence of sediment and sediment in the basin due to rainfall and water flow, and most of the turbidity is occupied by clayey substances. In the case of high turbidity or ultra-high turbidity in which clayey substances are mainly turbid, the flocculant is injected using the turbidity concentration not affected by the particle size as an index.
このように、低濁度は濁度で、高濁度や超高濁度は濁質濃度を指標とすることで、適正な凝集沈殿を維持できる。 Thus, low turbidity is turbidity, and high turbidity and ultra-high turbidity can maintain appropriate coagulation sedimentation by using turbidity concentration as an index.
本発明の実施例3を図5,図6により説明する。本実施例は、実施例2と同様に構成されているが、本実施例では、濁質性状を演算する演算器35を設け、演算器35は判定器31と演算器32とを接続している。
A third embodiment of the present invention will be described with reference to FIGS. The present embodiment is configured in the same manner as in the second embodiment, but in this embodiment, a
濁度計22で計測された濁度Tuiと、濁質濃度計23で計測された濁質濃度SSiとは、判定器31に入力され、判定器31を介して演算器35に入力される。演算器35では、濁度係数D=濁質濃度SSi/濁度Tuiを演算し、演算器32に出力する。
The turbidity Tui measured by the
判定器31では、実施例2と同様にして凝集剤注入率Cpを演算して演算器32に出力する。演算器32では、演算器35で演算された濁度係数Dに基づいて凝集剤注入率Cpの補正を行う。
In the
図6は、濁度係数Dと補正注入係数fの関係を示す図で、濁度係数Dの基準値からの偏差により補正注入係数fを設定し、補正された凝集剤注入率Cp* を凝集剤注入率Cp+補正注入係数f+濁質濃度SSiで算出して演算器33に出力する。演算器33及び制御器34は、実施例1と同様の演算を行い、凝集剤の注入設備8の制御を行う。
FIG. 6 is a diagram showing the relationship between the turbidity coefficient D and the corrected injection coefficient f. The corrected injection coefficient f is set based on the deviation from the reference value of the turbidity coefficient D, and the corrected flocculant injection rate Cp * is agglomerated. It is calculated by the agent injection rate Cp + corrected injection coefficient f + turbidity concentration SSi and output to the
濁度係数Dは濁質の粒径と正の相関があり、濁度係数Dが小さくなれば粒径も小さく、沈殿し難い濁質が多いことになる。この補正よって、粒径が小さい場合に注入率を増加させて凝集沈殿効果を高め、逆に粒径が大きい場合に沈降し易い濁質と判断し、凝集剤を低減できる。 The turbidity coefficient D has a positive correlation with the particle size of the turbidity, and if the turbidity coefficient D is small, the particle size is small and there are many turbidities that are difficult to precipitate. By this correction, when the particle size is small, the injection rate is increased to enhance the coagulation precipitation effect, and conversely, when the particle size is large, it is determined that the turbidity tends to settle, and the coagulant can be reduced.
実験によれば、補正注入係数fは濁質濃度SSiの影響を受けるので、濁質濃度SSiの関数としてもよい。また、濁度係数Dによる補正は、濁度を指標とする場合も同様に実施できる。 According to experiments, the correction injection coefficient f is affected by the turbid concentration SSi, and may be a function of the turbid concentration SSi. Further, the correction using the turbidity coefficient D can be similarly performed when turbidity is used as an index.
本発明の実施例4を図7により説明する。本実施例は、実施例1と同様に構成されているが、本実施例では、沈殿池4に接続された取水管5に濁度計22Bを設置し、濁度計
22Bの計測値をフィードバックする注入率補正器36を設け、注入率補正器36を演算器32及び演算器33に接続している。
A fourth embodiment of the present invention will be described with reference to FIG. The present embodiment is configured in the same manner as in the first embodiment, but in this embodiment, a turbidimeter 22B is installed in the
濁度計22Bにより取水管5を流れる処理水の濁度Tuoを計測し、濁度Tuoを注入率補正器36に入力して演算器32で演算された凝集剤注入率Cpを補正する。演算器
32には処理水の濁度目標値Tuo* が入力されており、濁度偏差ΔTu=濁度Tuo−濁度目標値Tuo* を求め、補正係数θを乗じて補正注入率ΔCp=θ・ΔTuを演算し、凝集剤注入率Cpと加算して凝集剤注入率Cp* を求め、演算器33に出力する。
The turbidity Tuo of the treated water flowing through the
この補正により、濁質性状や原水液質が変化して凝集沈殿特性に影響を与えた場合も凝集沈殿処理水の濁度を目標値に維持できる。 With this correction, the turbidity of the coagulation sedimentation treated water can be maintained at the target value even when the turbidity property or the raw water liquid quality changes to affect the coagulation sedimentation characteristics.
以上の説明では、濁質濃度あるいは濁度と凝集剤注入率の関係を、凝集沈殿処理水の濁度を1度として説明したが、この濁度に限定されるものでなく、プロセス構成や製造水の用途に応じた設定できる。 In the above description, the relationship between the turbidity concentration or the turbidity and the coagulant injection rate has been described assuming that the turbidity of the coagulated sediment treated water is 1 degree. Can be set according to the intended use of water.
本発明は、凝集剤混和池,フロック形成池及び沈殿池から構成される一般的な浄水プロセスの他に工業用水を製造するプロセス、沈殿池の後段に砂ろ過や膜利用のろ過設備を有する浄水プロセス、後段にオゾン処理などの高度処理設備を付加した浄水プロセスにも適用できる。 The present invention is a process for producing industrial water in addition to a general water purification process composed of a flocculant-mixing basin, a flock formation pond and a sedimentation basin, and a water purification system having sand filtration or membrane-based filtration equipment at the subsequent stage of the sedimentation basin. It can also be applied to water purification processes that are equipped with advanced treatment equipment such as ozone treatment in the latter part of the process.
又、濁質濃度あるいは濁度と凝集剤注入率を入力し、特性式を演算する機能を凝集剤注入率演算器に持たせることでジャーテスト結果を反映した運転管理ができる。 In addition, by inputting the turbidity concentration or turbidity and the coagulant injection rate, and having the function of calculating the characteristic formula in the coagulant injection rate calculator, the operation management reflecting the jar test result can be performed.
1…原水取入管、2…薬品混和池、3…フロック形成池、4…沈殿池、5…取水管、6…排出管、7…貯槽、8…注入設備、9…注入管、21,24…流量計、22,22B…濁度計、23…濁質濃度計、31…判定器、32,33,35…演算器、34…制御器、36…注入率補正器。
DESCRIPTION OF
Claims (5)
A sedimentation basin is connected to the chemical mixing pond via a flock formation pond, and the deviation between the turbidity measured by the turbidimeter installed in the intake pipe of the sedimentation basin and the turbidity target value is calculated. And the operation management method of the water purification process of Claim 1 which correct | amends the said coagulant | flocculant injection rate based on this calculated deviation.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005291865A JP2007098287A (en) | 2005-10-05 | 2005-10-05 | Method for controlling operation of water purifying process |
CN 200610142123 CN1944278A (en) | 2005-10-05 | 2006-10-08 | Running management method for pure water processing |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005291865A JP2007098287A (en) | 2005-10-05 | 2005-10-05 | Method for controlling operation of water purifying process |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007098287A true JP2007098287A (en) | 2007-04-19 |
Family
ID=38025746
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005291865A Pending JP2007098287A (en) | 2005-10-05 | 2005-10-05 | Method for controlling operation of water purifying process |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2007098287A (en) |
CN (1) | CN1944278A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101080635B1 (en) | 2009-04-29 | 2011-11-08 | 대림산업 주식회사 | Advanced sewage wastewater treatment system combined with SBR and chemical sedimentation |
CN110330085A (en) * | 2019-07-18 | 2019-10-15 | 成都市自来水有限责任公司 | Coagulating sedimentation system and technique based on zeta current potential and SS control dosing returned sludge |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5349435B2 (en) * | 2010-09-16 | 2013-11-20 | 株式会社東芝 | Seawater desalination equipment and chemical injection equipment |
JP2014124593A (en) * | 2012-12-27 | 2014-07-07 | Hitachi Ltd | Water supply management support system |
CN107777736B (en) * | 2016-08-25 | 2021-05-11 | 武汉澜溪谷科技发展有限公司 | Water circulation treatment device for automobile cleaning |
FR3106131B1 (en) * | 2020-01-10 | 2022-07-01 | Suez Groupe | Method for defining and regulating a dose of coagulant for coagulation treatment of raw water |
CN113252852B (en) * | 2021-06-04 | 2021-10-22 | 金科环境股份有限公司 | Flocculant performance evaluation and inspection equipment and method |
Citations (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63107709A (en) * | 1986-10-25 | 1988-05-12 | Sumitomo Metal Ind Ltd | Water treatment method |
JPS63119813A (en) * | 1986-11-07 | 1988-05-24 | Mitsubishi Electric Corp | Waste water treating equipment provided with automatic flocculant injecting function |
JPS63252512A (en) * | 1987-04-10 | 1988-10-19 | Hitachi Ltd | Injection controlling device for flocculating agent |
JPH02218408A (en) * | 1989-02-21 | 1990-08-31 | Meidensha Corp | Method for regulating injection rate of flocculant by means of floc measuring device |
JPH05240767A (en) * | 1992-02-28 | 1993-09-17 | Meidensha Corp | Floc measuring/controlling device |
JPH06289007A (en) * | 1993-04-02 | 1994-10-18 | Kurita Water Ind Ltd | Agglomeration flocculation property grasping device |
JPH07112103A (en) * | 1993-10-19 | 1995-05-02 | Fuji Electric Co Ltd | Controller for water purification plant coagulation process |
JPH07294429A (en) * | 1994-04-27 | 1995-11-10 | Aretsuku Denshi Kk | Turbidity meter and turbid chromaticity meter |
JPH09290273A (en) * | 1996-04-26 | 1997-11-11 | Kurita Water Ind Ltd | Method and apparatus for adjusting coagulant addition amount |
JPH10118411A (en) * | 1996-10-25 | 1998-05-12 | Hitachi Ltd | Method and device for controlling injection of flocculant in water purification plant |
JPH10311784A (en) * | 1997-03-10 | 1998-11-24 | Fuji Electric Co Ltd | Turbidity measuring method and device |
JP2002159805A (en) * | 2000-11-24 | 2002-06-04 | Yokogawa Electric Corp | Flocculant injection control method of water purification plant |
JP2003057230A (en) * | 2001-08-10 | 2003-02-26 | Yokogawa Electric Corp | Water quality measuring instrument |
JP2003200175A (en) * | 2002-01-08 | 2003-07-15 | Toshiba Corp | Flocculant injection control method and flocculant injection control system |
JP2003284904A (en) * | 2002-03-27 | 2003-10-07 | Toshiba Corp | Control device for injection of flocculant of water purification plant |
JP2004008901A (en) * | 2002-06-05 | 2004-01-15 | Kurita Water Ind Ltd | Drug injection control device |
JP2004177122A (en) * | 2002-11-22 | 2004-06-24 | Kurita Water Ind Ltd | Water quality detection method and operation method of water purification device |
JP2005034712A (en) * | 2003-07-17 | 2005-02-10 | Ebara Corp | Method and apparatus for treating rainwater mixed water |
JP2006122749A (en) * | 2004-10-26 | 2006-05-18 | Hitachi Ltd | Water treatment process operation support apparatus, program, and recording medium |
JP2007029851A (en) * | 2005-07-27 | 2007-02-08 | Hitachi Ltd | Coagulant injection control device and method |
JP2007098236A (en) * | 2005-10-03 | 2007-04-19 | Hitachi Ltd | Method and apparatus for injecting flocculant in water clarifying process |
-
2005
- 2005-10-05 JP JP2005291865A patent/JP2007098287A/en active Pending
-
2006
- 2006-10-08 CN CN 200610142123 patent/CN1944278A/en active Pending
Patent Citations (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63107709A (en) * | 1986-10-25 | 1988-05-12 | Sumitomo Metal Ind Ltd | Water treatment method |
JPS63119813A (en) * | 1986-11-07 | 1988-05-24 | Mitsubishi Electric Corp | Waste water treating equipment provided with automatic flocculant injecting function |
JPS63252512A (en) * | 1987-04-10 | 1988-10-19 | Hitachi Ltd | Injection controlling device for flocculating agent |
JPH02218408A (en) * | 1989-02-21 | 1990-08-31 | Meidensha Corp | Method for regulating injection rate of flocculant by means of floc measuring device |
JPH05240767A (en) * | 1992-02-28 | 1993-09-17 | Meidensha Corp | Floc measuring/controlling device |
JPH06289007A (en) * | 1993-04-02 | 1994-10-18 | Kurita Water Ind Ltd | Agglomeration flocculation property grasping device |
JPH07112103A (en) * | 1993-10-19 | 1995-05-02 | Fuji Electric Co Ltd | Controller for water purification plant coagulation process |
JPH07294429A (en) * | 1994-04-27 | 1995-11-10 | Aretsuku Denshi Kk | Turbidity meter and turbid chromaticity meter |
JPH09290273A (en) * | 1996-04-26 | 1997-11-11 | Kurita Water Ind Ltd | Method and apparatus for adjusting coagulant addition amount |
JPH10118411A (en) * | 1996-10-25 | 1998-05-12 | Hitachi Ltd | Method and device for controlling injection of flocculant in water purification plant |
JPH10311784A (en) * | 1997-03-10 | 1998-11-24 | Fuji Electric Co Ltd | Turbidity measuring method and device |
JP2002159805A (en) * | 2000-11-24 | 2002-06-04 | Yokogawa Electric Corp | Flocculant injection control method of water purification plant |
JP2003057230A (en) * | 2001-08-10 | 2003-02-26 | Yokogawa Electric Corp | Water quality measuring instrument |
JP2003200175A (en) * | 2002-01-08 | 2003-07-15 | Toshiba Corp | Flocculant injection control method and flocculant injection control system |
JP2003284904A (en) * | 2002-03-27 | 2003-10-07 | Toshiba Corp | Control device for injection of flocculant of water purification plant |
JP2004008901A (en) * | 2002-06-05 | 2004-01-15 | Kurita Water Ind Ltd | Drug injection control device |
JP2004177122A (en) * | 2002-11-22 | 2004-06-24 | Kurita Water Ind Ltd | Water quality detection method and operation method of water purification device |
JP2005034712A (en) * | 2003-07-17 | 2005-02-10 | Ebara Corp | Method and apparatus for treating rainwater mixed water |
JP2006122749A (en) * | 2004-10-26 | 2006-05-18 | Hitachi Ltd | Water treatment process operation support apparatus, program, and recording medium |
JP2007029851A (en) * | 2005-07-27 | 2007-02-08 | Hitachi Ltd | Coagulant injection control device and method |
JP2007098236A (en) * | 2005-10-03 | 2007-04-19 | Hitachi Ltd | Method and apparatus for injecting flocculant in water clarifying process |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101080635B1 (en) | 2009-04-29 | 2011-11-08 | 대림산업 주식회사 | Advanced sewage wastewater treatment system combined with SBR and chemical sedimentation |
CN110330085A (en) * | 2019-07-18 | 2019-10-15 | 成都市自来水有限责任公司 | Coagulating sedimentation system and technique based on zeta current potential and SS control dosing returned sludge |
Also Published As
Publication number | Publication date |
---|---|
CN1944278A (en) | 2007-04-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5208061B2 (en) | Flocculant injection control system | |
JP3205450B2 (en) | Automatic injection rate determination device and automatic determination method | |
JP2008161809A (en) | Coagulant injection control system | |
KR101645540B1 (en) | Method for feeding coagulant for water-purification and apparatus for water-purification using the same | |
JP2014054603A (en) | Flocculant injection control method and flocculant injection control system | |
JP5420467B2 (en) | Flocculant injection amount determination device and flocculant injection amount control system | |
JP4505772B2 (en) | Coagulant injection control method for water purification plant | |
JP5401087B2 (en) | Flocculant injection control method | |
JP4492473B2 (en) | Flocculant injection control device and method | |
JP2008055299A (en) | Flocculating sedimentation treating equipment | |
JP2007098287A (en) | Method for controlling operation of water purifying process | |
JP5636263B2 (en) | Flocculant injection control system | |
JP4784241B2 (en) | Flocculant injection method and apparatus for water purification process | |
KR101197392B1 (en) | The phosphorus removal system regarding the automatic determination of coagulant dosing rate using artificial intelligence | |
JP2022174886A (en) | Flocculant injection control method and flocculant injection control device | |
JP3522650B2 (en) | Automatic coagulant injection device for water purification | |
JP5210948B2 (en) | Chemical injection control method for water purification plant | |
JP6599704B2 (en) | Flocculant injection rate determination method and flocculant injection rate determination device | |
JP5571424B2 (en) | Method and apparatus for controlling the injection rate of flocculant in real time | |
JP5579404B2 (en) | Apparatus and method for controlling flocculant injection rate | |
JP2002066568A (en) | Water treating method and apparatus | |
JP2011115738A (en) | Flocculant injection control method of purification plant | |
JP4493473B2 (en) | Water treatment process operation support equipment | |
JP2016030228A (en) | Method for controlling flocculation conditions of floc, device for controlling flocculation conditions of floc, water treatment method and water treatment equipment | |
JP2022126203A (en) | Flocculant injection control method and coagulant injection control device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080128 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100604 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100706 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20101102 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110325 |