JP4505772B2 - Coagulant injection control method for water purification plant - Google Patents
Coagulant injection control method for water purification plant Download PDFInfo
- Publication number
- JP4505772B2 JP4505772B2 JP2000357243A JP2000357243A JP4505772B2 JP 4505772 B2 JP4505772 B2 JP 4505772B2 JP 2000357243 A JP2000357243 A JP 2000357243A JP 2000357243 A JP2000357243 A JP 2000357243A JP 4505772 B2 JP4505772 B2 JP 4505772B2
- Authority
- JP
- Japan
- Prior art keywords
- turbidity
- value
- ppm
- basic
- raw water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- Separation Of Suspended Particles By Flocculating Agents (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、浄水場において原水中の不純物を沈澱、ろ過により分離するためにフロックとして凝集、集塊させる浄水場凝集プロセスの制御装置に関する。
【0002】
【従来の技術】
図11は従来の凝集プロセスの一例を示すものである。図において、浄水場の原水は着水井1を通った後、混和池2に流入する。混和池2では、凝集剤注入手段3から凝集剤が注入され、攪拌機(図示せず)により急速撹拌を行うことで微小フロックを形成し、このフロックに原水中の浮遊物質であるコロイド粒子、懸濁物質や微生物などを吸着させる。なお、凝集剤としてはアルミニウム塩である硫酸ばん土及びPAC(ポリ塩化アルミニウム …以下パックという)が用いられ、水道水原水中に含まれる懸濁物や不純物を、水に難溶性の水酸化アルミニウムのフロックにして沈降させる。
【0003】
次いで、フロック形成池5では攪拌機(図示せず)により緩速撹拌を行うことでフロックを成長させ、沈澱池6において固体成分を沈澱させて固液分離を行う。従って、フロック形成池5の出口(沈澱池6の入口)においては適切な大きさ、密度のフロックが形成されていることが必要であり、沈澱処理後(沈澱池6の出口)は処理水濁度が適切な値となるようにパックの注入量が調整される。
【0004】
なお、7は着水井1に流入する水の量を測定する流量計、8は濁度センサとしての濁度計9からの処理水濁度検出値と処理水濁度設定値とが入力され、両者を一致させるように調節動作して凝集剤注入率を出力する凝集剤注入率演算制御手段、4はパック注入制御手段である。ここで、パックの原水に対する注入率は混和池の撹拌機の強度や沈殿池の撹拌機の強度が影響するがこれらは固定して制御を行っているものとする。
【0005】
【発明が解決しようとする課題】
凝集剤注入は懸濁物の質や量に対応して、適正量の注入を行うことが重要であり、凝集剤注入量が不足しても、多過ぎても前記した懸濁粒子の荷電中和のバランスが崩れ凝集効果が悪くなる。特に、注入過剰である場合には、凝集が悪くなって浄水の品質低下を招くとともに経済的負担が増すことになる。
【0006】
上述のように凝集剤注入率演算制御手段8で注入率を演算し、パック注入制御手段4で着水井1で測定した濁度と流量計7の測定値に応じて混和池2にパックを注入し、沈殿池6の出口付近で濁度計9により測定した濁度に応じて注入量を調節するが、パックを注入してから沈殿池の出口付近に達するまでに(例えば4時間程度)時間がかかるので、降雨開始時のように原水濁度に急激な変動が生じた場合には安定で精度の良い制御は不可能である。
【0007】
本発明は上記問題点を解決するためになされたもので、その目的とするところは、原水濁度に急激な変動が生じた場合にも安定で精度の良い制御が行えるようにした浄水場の薬剤注入制御装置を提供することにある。
【0008】
【課題を解決するための手段】
このような問題点を解決するために、本発明の浄水場の凝集剤注入制御方法は、
請求項1においては、着水井を通って混和池に流入した原水に凝集剤を注入して撹拌することにより微小フロックを形成させ、後段のフロック形成池内で前記微小フロックを成長させて原水中の固体成分を凝集させると共に、後段の沈澱池内で固液分離する浄水場の凝集剤注入制御方法において、前記混和池に凝集剤を注入する凝集剤の注入率を、下記の式により算出することを特徴とする浄水場の凝集剤注入制御方法。
記
[{(注入率基本値−現時点での実注入率)+(a:着水井における原水のアルカリ度に対する補正量基本値、b:着水井における原水のPHに対する補正量基本値、c:着水井における原水の水温に対する補正量基本値、d:着水井における原水の濁度急変に対する補正量基本値、e:沈殿池の濁度と管理目標値の濁度との偏差に対する補正量基本値のa〜eのうちの少なくとも一つの補正量基本値)}×低,中,高濁度に応じて設けられた所定の定数×手動補正値]+現時点での実注入率。
但し、
注入率基本値:過去に実施した濁度に対するパック注入率実績を統計解析(相関)により算出して求めた値。
手動補正値:オペレータが凝集剤注入率演算手段の端末を介して手動で入力する値。(現時点でオペレータが沈澱池における固液分離の処理状況と管理目標値(沈殿池出口濁度設定値)との差に応じて設定する係数)
低,中,高濁度:濁度が上昇している場合と下降している場合で、浄水場個々の事情により異なる所定の上下限値の領域を定め、上昇している場合においては、濁度が前記下限値より低いときに低濁度、濁度が前記下限値と同じか高い領域にあり上限値より低い領域にあるときは中濁度、濁度が前記上限値と同じか高いときに高濁度と判断し、下降している場合においては、濁度が前記上限値と同じか高いときに高濁度、濁度が前記下限値と同じか高い領域にあり前記上限値より低い領域にあるときは中濁度、濁度が前記下限値より低いときに低濁度と判断する。
【0009】
請求項2においては、請求項1記載の浄水場の凝集剤注入制御方法において、
前記着水井における原水のアルカリ度に対する補正量基本値は、アルカリ度が26以下では基本量補正を行わず(ゼロppm)、40で6.0、50以上では8(ppm)となるような関係をグラフ化し、このグラフに基づいて求めることを特徴とする。
【0010】
請求項3においては、請求項1記載の浄水場の凝集剤注入制御方法において、
前記着水井における原水のPHに対する補正量基本値は、PHが7.3以下ではゼロ(ppm)、8.5以上では8(ppm)となるような関係をグラフ化し、このグラフに基づいて求めることを特徴とする。
【0011】
請求項4においては、請求項1記載の浄水場の凝集剤注入制御方法において、
前記着水井における原水の水温に対する補正量基本値は、水温が12.5℃以下では6(ppm)15℃以上ではゼロ(ppm)となるような関係をグラフ化し、このグラフに基づいて求めることを特徴とする。
【0012】
請求項5においては、請求項1記載の浄水場の凝集剤注入制御方法において、
前記着水井における原水の濁度急変に対する補正量基本値は、濁度急変前後の差分が1以下ではゼロ(ppm)、4.2以上では3(ppm)となるような関係をグラフ化し、このグラフに基づいて求めるようにしたことを特徴とする。
【0013】
請求項6においては、請求項1記載の浄水場の凝集剤注入制御方法において、
前記沈殿池の濁度と管理目標値の濁度との偏差に対する補正量基本値は、沈殿池の中間または出口濁度の少なくとも一方の値を用いて算出されることを特徴とする。
【0014】
請求項7においては、請求項1記載の浄水場の凝集剤注入制御方法において、
前記着水井における原水の濁度急変は分単位での移動平均と、時間単位での移動平均の差を求めその差から濁度の変化の方向を判断するようにしたことを特徴とする。
【0015】
請求項8においては、請求項1記載の浄水場の凝集剤注入制御方法において、
前記沈殿池の濁度と管理目標値の濁度との偏差に対する補正量基本値は、中間の濁度を用いる場合はオペレータが設定する管理目標値(沈殿池出口濁度設定値)との偏差が0.1以下のとき0(ppm)、1.0以上では5(ppm)となるような関係をグラフ化し、このグラフに基づいて求めることを特徴とする
【0016】
請求項9においては、請求項1記載の浄水場の凝集剤注入制御方法において、
前記沈殿池の濁度と管理目標値の濁度との偏差に対する補正量基本値は、出口の濁度を用いる場合はオペレータが設定する管理目標値(沈殿池出口濁度設定値)との偏差が0〜0.1のとき0(ppm)、1.0以上では3(ppm)となるような関係をグラフ化し、このグラフに基づいて求めることを特徴とする。
【0018】
請求項10においては、請求項1記載の浄水場の凝集剤注入制御方法において、
オペレータが判断する手動補正値は0.0〜1.0の範囲であることを特徴とする。
【0019】
【発明の実施の形態】
以下、図面を用いて本発明を詳細に説明する。
先にも述べたように、浄水処理では流入原水中の懸濁物質を凝集剤注入により凝集沈殿除去することが必須である。懸濁物質に凝集剤を混入した場合にフロックを生じる現象は以下の原理による。
【0020】
即ち、原水中には数μm程度の懸濁粒子が多数存在している。これらの微粒子は、ほとんどが負荷電を帯びており、相互の荷電によって反発し合って安定な分散系をなし、このままの状態では沈降しない。このような負荷電系に反対の正荷電をもつ凝集剤を添加して懸濁粒子の荷電中和を行うと、粒子間の電気的反発力を減じ、粒子相互の接触結合が可能となり、互いに凝集し沈降する。
【0021】
図1は本発明の実施形態の一実施例を示すもので、図11に示す従来例と同一要素には同一符号を付して重複する説明は省略するが、異なるところは、沈殿池の入口と出口の中程にも濁度計9aを設け、出口に設けられた従来の濁度計9の出力値の少なくとも一方の値を用いるようにしたこと及び水質の変化に応じて凝集剤の注入量を制御するようにしたものである。
【0022】
はじめに、本発明の凝集剤注入制御方法で用いる濁度に対するパックの基本注入率の関係について説明する。
図2は濁度とパックの基本注入率(ppm)の関係を示すもので、濁度が上昇するに従ってパックの注入率も上昇し濁度240においてはパックの注入率が80(ppm)となっている。なお、この関係は濁度に対するパックの注入率を過去の注入実績を統計解析(相関)により算出して求めたものである。
【0023】
図3(a)は図1に示す着水井1に設けた濁度計(図示省略)が示す経過時間に対する濁度変化を示すもので、点線は分単位(例えば5分)、実線は時間単位(例えば2時間)の間隔で測定した結果である。
図3(b)は(a)図に示す結果を合成して大きな値のみを残した状態を示すもので、図2に示す濁度の値としては濁度の急上昇、急下降による凝縮効果の違いを補正するために、この合成した濁度をもとにパック注入率を決定する。
【0024】
図4は図1で示す着水井1で測定したアルカリ度と補正量基本値の関係を示すもので、本実施例ではアルカリ度26程度を補正量基本値0(ppm)とし、アルカリ度30で2.0(ppm)、アルカリ度40で6.0(ppm)、アルカリ度50以上は8(ppm)となるような関係をグラフ化し、このグラフに基づいてそれぞれのアルカリ度に応じた補正量基本値とする。
【0025】
そして、この補正量基本値に原水水質または浄水場によって定められた基準によって低,中,高濁度に応じて設けられた所定の定数を乗じ、更にオペレータが沈殿池6における固形分離の処理状況に応じて設定する係数A(0.00〜3.00ppm)を加えて補正値が決定される。
なお、この係数Aは初期のチューニングやその後の運転結果或いは定期的なラボ分析などによって決まる値である。
図5は着水井1に流入する原水の濁度(TU)が上がり方向に向う場合と下り方向に向う場合における低,中,高濁度を選択するための概念を示す図であり、予め定めた上下限値の濁度に応じて定数が選択される。なお、具体的な数値は浄水場個々の事情により異なるものとなる。
【0026】
図6は図1で示す着水井1で測定したPHと補正量基本値の関係を示す図である。この実施例ではPH7.3以下は補正量0(ppm)とされ、PH8のときに4.5(ppm)、PH8.5のときに8.0(ppm)となる関係をグラフ化し、このグラフに基づいて各PHに対する補正量基本値が決められる。この場合も、原水水質または浄水場によって定められた基準によって低,中,高濁度に応じて設けられた所定の定数を乗じ、更にオペレータが処理状況に応じて設定する係数B(0.00〜3.00ppm)を加えて補正値が決定される。
【0027】
図7は図1で示す着水井1で測定した水温と補正量基本値の関係を示す図である。この実施例では水温が12.5℃以下は補正量基本値が6(ppm)、水温15℃以上では0(ppm)となる関係をグラフ化し、このグラフに基づいて各水温に対する補正量基本値が決められる。この場合も、原水水質または浄水場によって定められた基準によって低,中,高濁度に応じて設けられた所定の定数を乗じ、更にオペレータが処理状況に応じて設定する係数C(0.00〜3.00ppm)を加えて補正値が決定される。
【0028】
図8は図1で示す着水井1で濁度が急変したときの濁度変化(濁度の差分)と補正量基本値の関係を示す図である。
図9(a,b)は濁度の差分の概念を示す図である。この図では原水濁度の急な上昇を捕らえるために、濁度の5分間移動平均(点線)とN時間移動平均(実線)の差分を求める。図において、(a)図は5分間移動平均とN時間移動平均を重ねたもの、(b)図は各時刻における濁度の差を示すものであり、その差から濁度の変化の方向を判断する。
【0029】
図8に戻り、この実施例では濁度の差が1.0以下は補正量基本値を0(ppm)とし、差が4.2以上では3.0(ppm)となる関係をグラフ化し、このグラフに基づいて各差分に対する補正量基本値が決められる。
この場合も、原水水質または浄水場によって定められた基準によって低,中,高濁度に応じて設けられた所定の定数を乗じ、更にオペレータが沈殿池6における固形分離の処理状況に応じて設定する係数D(0.00〜3.00ppm)を加えて補正値が決定される。
【0030】
図10は図1に示す沈殿池6の中間と出口で測定した濁度と過去に作成した濁度に対するパックの注入実績を統計解析により算出した注入率基本値に基づく管理目標値(設定値)との偏差と補正量基本値の関係を示すもので、この実施例では沈殿池の中間に設けた濁度計で測定した場合の管理目標値(設定値)との偏差が0.1以下は補正量基本値が0(ppm)とされ、偏差が1.0以上では5(ppm)となる関係をグラフ化し、また、沈殿池の出口に設けた濁度計で測定した場合の管理目標値(設定値)との偏差が0.1以下は補正量基本値が0(ppm)とされ、偏差が1.0以上では3(ppm)となるような関係をグラフ化し、このグラフに基づいて、各偏差に対する補正量基本値が決められる。
この場合も、原水水質または浄水場によって定められた基準によって低,中,高濁度に応じて設けられた所定の定数を乗じ、更にオペレータが処理状況に応じて設定する係数E(0.00〜3.00ppm)を加えて補正値が決定される。なお、沈殿池濁度補正は中間,出口の少なくとも一方を用いて行なえばよい。
【0031】
以上のことを纏めると、パック注入率(ppm)は、
[{(注入率基本値−現時点での実注入率)+(a:着水井における原水のアルカリ度に対する補正量基本値、b:着水井における原水のPHに対する補正量基本値、c:着水井における原水の水温に対する補正量基本値、d:着水井における原水の濁度急変に対する補正量基本値、e:沈殿池の濁度と管理目標値の濁度との偏差に対する補正量基本値のa〜eのうちの少なくとも一つの補正量基本値)}×低,中,高濁度に応じて設けられた所定の定数×手動補正値]+現時点での実注入率。
但し、
注入率基本値:過去に実施した濁度に対するパック注入率実績を統計解析(相関)により算出して求めた値。
手動補正値:オペレータが凝集剤注入率演算手段の端末を介して手動で入力する値。(現時点でオペレータが沈澱池における固液分離の処理状況と管理目標値(沈殿池出口濁度設定値)との差に応じて設定する係数)
低,中,高濁度:濁度が上昇している場合と下降している場合で、浄水場個々の事情により異なる所定の上下限値の領域を定め、上昇している場合においては、濁度が前記下限値より低いときに低濁度、濁度が前記下限値と同じか高い領域にあり上限値より低い領域にあるときは中濁度、濁度が前記上限値と同じか高いときに高濁度と判断し、下降している場合においては、濁度が前記上限値と同じか高いときに高濁度、濁度が前記下限値と同じか高い領域にあり前記上限値より低い領域にあるときは中濁度、濁度が前記下限値より低いときに低濁度と判断する。
となる。
【0032】
なお、パック注入率の演算は凝集剤注入演算制御装置8により行い、ここで演算されたパック注入量がパック注入制御手段4へ出力され、ここから発信される信号に基づいてパックが注入される。
【発明の効果】
以上説明したことから明らかなように、本発明によれば、次の効果が期待できる。請求項1〜12記載の発明によれば、降雨開始時のように原水濁度に急激な変動が生じた場合にも速く安定した制御が可能となった。
【図面の簡単な説明】
【図1】 本発明浄水場の凝集剤注入制御方法に用いる装置の実施形態の一例を示す構成図である。
【図2】 濁度とパックの基本注入率(ppm)の関係を示す図である。
【図3】 着水井に設けた濁度計の経過時間に対する濁度変化を示す図である。
【図4】 着水井で測定したアルカリ度と補正量基本値の関係を示す図である。
【図5】 着水井に流入する濁度(TU)が上がり方向に向う場合と下り方向に向う場合における低,中,高濁度を選択するための概念を示す図である。
【図6】 着水井で測定したPHと補正量基本値の関係を示す図である。
【図7】 着水井で測定した水温と補正量基本値の関係を示す図である。
【図8】 着水井で濁度が急変したときの濁度変化(濁度の差分)と補正量基本値の関係を示す図である。
【図9】 濁度の差の概念を示す図である。
【図10】 沈殿池6の中間と出口で測定した濁度と過去に実施した濁度に対するパックの注入実績を統計解析により算出した注入率基本値に基づく目標値との偏差と補正量基本値の関係を示す図である。
【図11】 従来の浄水場の凝集剤注入方法の制御装置を示す構成図である。
【符号の説明】
1 着水井
2 混和池
3 凝集剤(パック)注入手段
4 パック注入制御手段
5 フロック形成池
6 沈殿池
7 流量計
8 凝集剤注入制御手段
9 濁度計[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a control apparatus for a water purification plant coagulation process in which impurities in raw water are aggregated and agglomerated as floc in order to separate impurities in raw water by precipitation and filtration.
[0002]
[Prior art]
FIG. 11 shows an example of a conventional agglomeration process. In the figure, the raw water of the water purification plant flows into the mixing basin 2 after passing through the
[0003]
Next, flocs are grown in the
[0004]
In addition, 7 is a flow meter that measures the amount of water flowing into the
[0005]
[Problems to be solved by the invention]
It is important that the flocculant is injected in an appropriate amount according to the quality and quantity of the suspension. The balance of the sum is lost and the agglomeration effect becomes worse. In particular, when the amount of injection is excessive, the aggregation is worsened and the quality of the purified water is lowered, and the economic burden is increased.
[0006]
As described above, the injection rate is calculated by the flocculant injection rate calculation control means 8, and the pack is injected into the mixing basin 2 according to the turbidity measured at the
[0007]
The present invention has been made to solve the above-mentioned problems, and the object of the present invention is to provide a water purification plant that can perform stable and accurate control even when a sudden fluctuation occurs in the raw water turbidity. The object is to provide a drug injection control device.
[0008]
[Means for Solving the Problems]
In order to solve such problems, the flocculant injection control method of the water purification plant of the present invention,
In
[{(Basic value of injection rate−actual injection rate at present) + (a: basic amount of correction for alkalinity of raw water in landing well, b: basic value of correction amount for pH of raw water in landing well, c: basic amount of correction for PH of raw water in landing well] Basic correction value for raw water temperature in water well, d: Basic correction value for sudden change in raw water turbidity in landing well, e: Basic correction value for deviation between turbidity of sedimentation basin and management target value a correction amount basic value of at least one of a to e)} × predetermined constant × manual correction value provided according to low , medium, and high turbidity] + actual injection rate at the present time.
However,
Injection rate basic value: A value obtained by calculating the pack injection rate results for turbidity conducted in the past by statistical analysis (correlation).
Manual correction value: A value manually input by the operator via the terminal of the coagulant injection rate calculation means. (The coefficient currently set by the operator according to the difference between the solid-liquid separation process in the sedimentation basin and the control target value (the sedimentation basin outlet turbidity setting value))
Low, medium, high turbidity: When the turbidity is rising and falling, a predetermined upper and lower limit area that varies depending on the individual circumstances of the water treatment plant is defined and rising. When the turbidity is lower than the lower limit value, low turbidity, when the turbidity is in the same or higher range as the lower limit value, and when lower than the upper limit value, medium turbidity, when the turbidity is equal to or higher than the upper limit value When the turbidity is lower than the upper limit value, the turbidity is in the region where the turbidity is the same as or higher than the upper limit value. When in the region, the medium turbidity is determined as low turbidity when the turbidity is lower than the lower limit.
[0009]
In Claim 2, in the flocculant injection control method of the water purification plant of
The correction amount basic value for alkalinity of the raw water in the reservoir well is alkalinity without basic amount correction at 26 or less (zero ppm), such that 8 (ppm) in 40 6.0,50 above relationship Is graphed and obtained based on this graph .
[0010]
In
The basic value of the correction amount for the raw water pH at the receiving well is graphed based on a relationship such that the pH is zero (ppm) when the pH is 7.3 or less and 8 (ppm) when the pH is 8.5 or more. It is characterized by that.
[0011]
In
Correction amount basic value for the water temperature of the raw water in the reservoir well has water temperature graph the relationship such that zero (ppm) in 6 (ppm) 15 ° C. or higher at 12.5 ° C. or less, Ru determined based on the graph It is characterized by that.
[0012]
In
Correction amount basic value for the turbidity sudden change of the raw water in the reservoir well is turbidity sudden change before and after the difference is zero at 1 or less (ppm), graphed such that 3 (ppm) relationship is 4.2 or more, this characterized in that the so that calculated based on the graph.
[0013]
In Claim 6, in the flocculant injection control method of the water purification plant of
The correction amount basic value for the deviation between the turbidity of the settling basin and the turbidity of the management target value is calculated using at least one of the intermediate turbidity of the settling basin and the outlet turbidity.
[0014]
In claim 7, in the flocculant injection control method of the water purification plant according to
The sudden change in turbidity of the raw water in the landing well is characterized in that a difference between a moving average in minutes and a moving average in hours is obtained and the direction of change in turbidity is judged from the difference .
[0015]
In claim 8, in the flocculant injection control method of the water purification plant according to
The correction amount basic value for the deviation between the turbidity of the settling basin and the turbidity of the management target value is the deviation from the management target value (settling basin outlet turbidity setting value) set by the operator when using intermediate turbidity The relationship is such that 0 (ppm) when the value is 0.1 or less and 5 (ppm) when the value is 1.0 or more is graphed and obtained based on this graph.
In Claim 9, in the flocculant injection control method of the water purification plant according to
The correction amount basic value for the deviation between the turbidity of the settling basin and the turbidity of the management target value is the deviation from the management target value (settling basin outlet turbidity setting value) set by the operator when the turbidity at the outlet is used. The relationship is such that 0 (ppm) is 0 to 0.1 and 3 (ppm) is 1.0 or more, and the relationship is obtained based on this graph .
[0018]
In claim 10 , in the flocculant injection control method of the water purification plant according to
The manual correction value determined by the operator is in the range of 0.0 to 1.0 .
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail with reference to the drawings.
As described above, in the water purification treatment, it is essential to remove the suspended matter in the inflow raw water by coagulating and precipitating by injecting the flocculant. The phenomenon in which flocs are generated when a flocculant is mixed in the suspended substance is based on the following principle.
[0020]
That is, there are many suspended particles of about several μm in the raw water. Most of these fine particles are negatively charged and repel each other due to mutual charge to form a stable dispersion system. In this state, they do not settle. When a negatively charged flocculant is added to such a negatively charged system to neutralize the suspended particles, the electric repulsive force between the particles is reduced and the particles can be contacted with each other. Aggregates and settles.
[0021]
FIG. 1 shows an example of the embodiment of the present invention. The same elements as those in the conventional example shown in FIG. A turbidimeter 9a is also provided in the middle of the outlet, and at least one of the output values of the conventional turbidimeter 9 provided at the outlet is used, and the flocculant is injected according to the change in water quality. The amount is controlled.
[0022]
First, the relationship between the basic injection rate of the pack and the turbidity used in the flocculant injection control method of the present invention will be described.
FIG. 2 shows the relationship between turbidity and the basic injection rate (ppm) of the pack. As the turbidity increases, the injection rate of the pack also increases, and at the turbidity 240, the injection rate of the pack reaches 80 (ppm). ing. This relationship is obtained by calculating the injection rate of the pack with respect to the turbidity by calculating the past injection result by statistical analysis (correlation).
[0023]
FIG. 3 (a) shows the turbidity change with respect to the elapsed time indicated by the turbidimeter (not shown) provided in the landing well 1 shown in FIG. 1, the dotted line is in minutes (for example, 5 minutes), and the solid line is in time. It is the result measured at intervals (for example, 2 hours).
FIG. 3B shows a state in which only the large value is left by combining the results shown in FIG. 3A, and the turbidity values shown in FIG. In order to correct the difference, the pack injection rate is determined based on the synthesized turbidity.
[0024]
FIG. 4 shows the relationship between the alkalinity measured in the landing well 1 shown in FIG. 1 and the basic value of the correction amount. In this embodiment, the alkalinity of about 26 is set to the basic value of correction amount 0 (ppm), and the alkalinity is 30. The relationship is 2.0 (ppm), 6.0 (ppm) when the alkalinity is 40, and 8 (ppm) when the alkalinity is 50 or more. Based on this graph, the correction amount corresponding to each alkalinity Use basic value.
[0025]
And this correction amount basic value is multiplied by a predetermined constant provided according to low, medium, and high turbidity according to the standard determined by the raw water quality or the water purification plant, and the operator further processes the solid separation in the settling tank 6 A correction value is determined by adding a coefficient A (0.00 to 3.00 ppm) set according to the above.
The coefficient A is a value determined by initial tuning, subsequent operation results, periodic laboratory analysis, or the like.
FIG. 5 is a diagram showing a concept for selecting low, medium and high turbidity when the turbidity (TU) of raw water flowing into the
[0026]
FIG. 6 is a diagram showing the relationship between the PH measured in the landing well 1 shown in FIG. 1 and the correction amount basic value. In this embodiment, PH 7.3 or less is a correction amount of 0 (ppm), and the relationship of 4.5 (ppm) at PH8 and 8.0 (ppm) at PH 8.5 is graphed. Based on the above, a correction amount basic value for each PH is determined. In this case as well, a factor B (0.00 to 3.00) set by the operator according to the treatment status is further multiplied by a predetermined constant set according to the low, medium and high turbidity according to the standard determined by the raw water quality or the water purification plant. ppm) is added to determine the correction value.
[0027]
FIG. 7 is a diagram showing the relationship between the water temperature measured at the landing well 1 shown in FIG. 1 and the correction amount basic value. In this embodiment, the relationship is such that the basic value of correction amount is 6 (ppm) when the water temperature is 12.5 ° C. or lower, and 0 (ppm) when the water temperature is 15 ° C. or higher. Based on this graph, the basic value of correction amount for each water temperature is plotted. Is decided. In this case as well, the coefficient C (0.00 to 3.00) set by the operator according to the treatment status is further multiplied by a predetermined constant set according to the low, medium and high turbidity according to the standard determined by the raw water quality or the water purification plant. ppm) is added to determine the correction value.
[0028]
FIG. 8 is a diagram showing the relationship between the turbidity change (turbidity difference) and the correction amount basic value when the turbidity changes suddenly in the landing well 1 shown in FIG.
FIGS. 9A and 9B are diagrams showing the concept of turbidity difference. In this figure, in order to catch a sudden increase in raw water turbidity, the difference between the 5-minute moving average (dotted line) and the N-hour moving average (solid line) of turbidity is obtained. In the figure, (a) the figure shows a 5-minute moving average and N-hour moving average superimposed, and (b) the figure shows the difference in turbidity at each time, and the direction of the change in turbidity is determined from the difference. to decide.
[0029]
Returning to FIG. 8, in this example, the relationship between the turbidity difference of 1.0 or less and the correction amount basic value of 0 (ppm), and the difference of 4.2 or more to 3.0 (ppm) is graphed. Based on this graph, a correction amount basic value for each difference is determined.
Also in this case, the operator multiplies predetermined constants set according to the low, medium and high turbidity according to the standards determined by the raw water quality or the water purification plant, and the operator sets the solid separation in the sedimentation basin 6 according to the processing status of solid separation. The correction value is determined by adding the coefficient D (0.00 to 3.00 ppm) to be performed.
[0030]
FIG. 10 is a management target value (set value) based on the basic value of the injection rate calculated by statistical analysis of the turbidity measured at the middle and outlet of the settling basin 6 shown in FIG. In this embodiment, the deviation from the control target value (set value) when measured with a turbidimeter provided in the middle of the settling basin is 0.1 or less. The relationship between the basic value of correction amount 0 (ppm) and 5 (ppm) when the deviation is 1.0 or more is graphed, and the control target value when measured with a turbidimeter installed at the outlet of the sedimentation tank When the deviation from (set value) is 0.1 or less, the correction amount basic value is 0 (ppm), and when the deviation is 1.0 or more, the relationship is 3 (ppm). A correction amount basic value for each deviation is determined.
In this case as well, a coefficient E (0.00 to 3.00) set by the operator according to the treatment situation is further multiplied by a predetermined constant set according to the low, medium and high turbidity according to the standards determined by the raw water quality or the water purification plant. ppm) is added to determine the correction value. The sedimentation tank turbidity correction may be performed using at least one of the middle and the outlet.
[0031]
In summary, the pack injection rate (ppm) is
[{(Basic value of injection rate−actual injection rate at present) + (a: basic amount of correction for alkalinity of raw water in landing well, b: basic value of correction amount for PH of raw water in landing well, c: basic amount of landing of well] Correction value basic value for raw water temperature in d, d: correction value basic value for sudden change in turbidity of raw water in landing well, e: correction value basic value for deviation between turbidity of sedimentation basin and management target value a ~ At least one correction amount basic value among e)} x predetermined constant provided according to low , medium, high turbidity x manual correction value] + actual injection rate at the present time.
However,
Injection rate basic value: A value obtained by calculating the pack injection rate results for turbidity conducted in the past by statistical analysis (correlation).
Manual correction value: A value manually input by the operator via the terminal of the coagulant injection rate calculation means. (The coefficient currently set by the operator according to the difference between the solid-liquid separation process in the sedimentation basin and the control target value (the sedimentation basin outlet turbidity setting value))
Low, medium, high turbidity: When the turbidity is rising and falling, a predetermined upper and lower limit area that varies depending on the individual circumstances of the water treatment plant is defined and rising. When the turbidity is lower than the lower limit value, low turbidity, when the turbidity is in the same or higher range as the lower limit value, and when lower than the upper limit value, medium turbidity, when the turbidity is equal to or higher than the upper limit value When the turbidity is lower than the upper limit value, the turbidity is in the region where the turbidity is the same as or higher than the upper limit value. When in the region, the medium turbidity is determined as low turbidity when the turbidity is lower than the lower limit.
It becomes.
[0032]
The calculation of the pack injection rate is performed by the coagulant injection calculation control device 8, and the pack injection amount calculated here is output to the pack injection control means 4, and the pack is injected based on the signal transmitted from here. .
【The invention's effect】
As is clear from the above description, the following effects can be expected according to the present invention. According to the invention of
[Brief description of the drawings]
FIG. 1 is a configuration diagram showing an example of an embodiment of an apparatus used in a flocculant injection control method for a water purification plant of the present invention.
FIG. 2 is a graph showing the relationship between turbidity and basic injection rate (ppm) of a pack.
FIG. 3 is a diagram showing a change in turbidity with respect to an elapsed time of a turbidimeter provided in a landing well.
FIG. 4 is a diagram showing a relationship between alkalinity measured at a landing well and a basic value of correction amount.
FIG. 5 is a diagram showing a concept for selecting low, medium, and high turbidity when turbidity (TU) flowing into a landing well is directed upward and downward.
FIG. 6 is a diagram showing a relationship between PH measured at a landing well and a basic value of correction amount.
FIG. 7 is a diagram showing a relationship between a water temperature measured at a landing well and a basic value of correction amount.
FIG. 8 is a diagram showing a relationship between a turbidity change (turbidity difference) and a correction amount basic value when the turbidity suddenly changes in a landing well.
FIG. 9 is a diagram showing the concept of turbidity difference.
FIG. 10 shows the deviation between the turbidity measured at the middle and outlet of the settling basin 6 and the target value based on the injection rate basic value calculated by statistical analysis of the past turbidity, and the basic value of the correction amount. It is a figure which shows the relationship.
FIG. 11 is a block diagram showing a control device of a conventional flocculant injection method for a water purification plant.
[Explanation of symbols]
DESCRIPTION OF
Claims (10)
記
[{(注入率基本値−現時点での実注入率)+(a:着水井における原水のアルカリ度に対する補正量基本値、b:着水井における原水のPHに対する補正量基本値、c:着水井における原水の水温に対する補正量基本値、d:着水井における原水の濁度急変に対する補正量基本値、e:沈殿池の濁度と管理目標値の濁度との偏差に対する補正量基本値のa〜eのうちの少なくとも一つの補正量基本値)}×低,中,高濁度に応じて設けられた所定の定数×手動補正値]+現時点での実注入率。
但し、
注入率基本値:過去に実施した濁度に対するパック注入率実績を統計解析(相関)により算出して求めた値。
手動補正値:オペレータが凝集剤注入率演算手段の端末を介して手動で入力する値。(現時点でオペレータが沈澱池における固液分離の処理状況と管理目標値(沈殿池出口濁度設定値)との差に応じて設定する係数)。
低,中,高濁度:濁度が上昇している場合と下降している場合で、浄水場個々の事情により異なる所定の上下限値の領域を定め、上昇している場合においては、濁度が前記下限値より低いときに低濁度、濁度が前記下限値と同じか高い領域にあり上限値より低い領域にあるときは中濁度、濁度が前記上限値と同じか高いときに高濁度と判断し、下降している場合においては、濁度が前記上限値と同じか高いときに高濁度、濁度が前記下限値と同じか高い領域にあり前記上限値より低い領域にあるときは中濁度、濁度が前記下限値より低いときに低濁度と判断する。 A micro floc is formed by injecting and stirring the flocculant into the raw water flowing into the mixing pond through the landing well, and the micro floc grows in the subsequent floc forming pond to agglomerate solid components in the raw water. In the flocculant injection control method of the water purification plant for solid-liquid separation in the subsequent settling pond, the injection rate of the flocculant for injecting the flocculant into the mixing pond is calculated by the following formula: Flocculant injection control method.
[{(Basic value of injection rate−actual injection rate at present) + (a: basic amount of correction for alkalinity of raw water in landing well, b: basic value of correction amount for pH of raw water in landing well, c: basic amount of correction for PH of raw water in landing well] Basic correction value for raw water temperature in water well, d: Basic correction value for sudden change in raw water turbidity in landing well, e: Basic correction value for deviation between turbidity of sedimentation basin and management target value a correction amount basic value of at least one of a to e)} × predetermined constant × manual correction value provided according to low, medium, and high turbidity] + actual injection rate at the present time.
However,
Injection rate basic value: Statistical analysis of the pack injection rate performance against turbidity was carried out in the past value determined by calculating Ri by the (correlation).
Manual correction value: A value manually input by the operator via the terminal of the coagulant injection rate calculation means. (The coefficient set by the operator according to the difference between the solid-liquid separation processing status in the sedimentation basin and the control target value (sedimentation basin outlet turbidity setting value)).
Low, medium, high turbidity: When the turbidity is rising and falling, a predetermined upper and lower limit area that varies depending on the individual circumstances of the water treatment plant is defined and rising. When the turbidity is lower than the lower limit value, low turbidity, when the turbidity is in the same or higher range as the lower limit value, and when lower than the upper limit value, medium turbidity, when the turbidity is equal to or higher than the upper limit value When the turbidity is lower than the upper limit value, the turbidity is in the region where the turbidity is the same as or higher than the upper limit value. When in the region, the medium turbidity is determined as low turbidity when the turbidity is lower than the lower limit.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000357243A JP4505772B2 (en) | 2000-11-24 | 2000-11-24 | Coagulant injection control method for water purification plant |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000357243A JP4505772B2 (en) | 2000-11-24 | 2000-11-24 | Coagulant injection control method for water purification plant |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002159805A JP2002159805A (en) | 2002-06-04 |
JP4505772B2 true JP4505772B2 (en) | 2010-07-21 |
Family
ID=18829340
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000357243A Expired - Lifetime JP4505772B2 (en) | 2000-11-24 | 2000-11-24 | Coagulant injection control method for water purification plant |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4505772B2 (en) |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4400721B2 (en) * | 2004-01-09 | 2010-01-20 | 栗田工業株式会社 | Water treatment system |
JP4780946B2 (en) * | 2004-10-26 | 2011-09-28 | 株式会社日立製作所 | Water treatment process operation support device, program and recording medium |
JP2007007601A (en) * | 2005-07-01 | 2007-01-18 | Chugoku Electric Power Co Inc:The | Purified water treatment method and system |
JP4492473B2 (en) * | 2005-07-27 | 2010-06-30 | 株式会社日立製作所 | Flocculant injection control device and method |
JP2007098287A (en) * | 2005-10-05 | 2007-04-19 | Hitachi Ltd | Method for controlling operation of water purifying process |
JP2010046627A (en) * | 2008-08-22 | 2010-03-04 | Toshiba Corp | Water-purifying pretreatment system |
JP5208061B2 (en) * | 2009-06-29 | 2013-06-12 | 株式会社日立製作所 | Flocculant injection control system |
JP5579404B2 (en) * | 2009-06-30 | 2014-08-27 | メタウォーター株式会社 | Apparatus and method for controlling flocculant injection rate |
JP4875128B2 (en) * | 2009-10-15 | 2012-02-15 | 株式会社東芝 | Solid matter separation system |
JP5145311B2 (en) * | 2009-11-10 | 2013-02-13 | 株式会社日立製作所 | Water purification chemical injection control system |
JP5807445B2 (en) * | 2011-08-25 | 2015-11-10 | 三菱レイヨンアクア・ソリューションズ株式会社 | Coagulation filtration method |
JP6358985B2 (en) * | 2015-06-01 | 2018-07-18 | 株式会社伊藤製作所 | Method for adjusting amount of flocculant added to raw water and raw water treatment apparatus |
JP6422901B2 (en) * | 2016-02-12 | 2018-11-14 | 株式会社東芝 | Management support system, management support method, and management support program |
JP6632498B2 (en) * | 2016-09-09 | 2020-01-22 | 株式会社日立プラントサービス | Water treatment system and water treatment method |
CN116947180B (en) * | 2023-06-26 | 2024-10-25 | 上海矾花科技有限公司 | Chemical precipitation water treatment system and control method of chemical precipitant addition amount |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07204412A (en) * | 1994-01-17 | 1995-08-08 | Fuji Electric Co Ltd | Apparatus for automatic determination of chemical injection ratio and method for automatic determination |
JPH08126802A (en) * | 1994-10-31 | 1996-05-21 | Nissin Electric Co Ltd | Control of injection of flocculant |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60161707A (en) * | 1984-02-03 | 1985-08-23 | Mitsubishi Electric Corp | Flocculant injection control of water purification plant |
JPS61125415A (en) * | 1984-11-21 | 1986-06-13 | Ebara Infilco Co Ltd | Flocculating sedimentation apparatus |
JPS61157387A (en) * | 1984-12-28 | 1986-07-17 | Toshiba Corp | Chemical injection apparatus |
JPS63200807A (en) * | 1987-02-16 | 1988-08-19 | Meidensha Electric Mfg Co Ltd | Injection controller for flocculant |
JPH01266813A (en) * | 1988-04-15 | 1989-10-24 | Hitachi Ltd | Device for controlling injector of flocculant |
JPH0483504A (en) * | 1990-07-27 | 1992-03-17 | Hitachi Ltd | Flocculant injection controlling apparatus |
JPH06327907A (en) * | 1993-05-20 | 1994-11-29 | Mitsubishi Electric Corp | Flocculation controller |
JP3231164B2 (en) * | 1993-10-19 | 2001-11-19 | 富士電機株式会社 | Control device for water purification plant coagulation process |
-
2000
- 2000-11-24 JP JP2000357243A patent/JP4505772B2/en not_active Expired - Lifetime
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07204412A (en) * | 1994-01-17 | 1995-08-08 | Fuji Electric Co Ltd | Apparatus for automatic determination of chemical injection ratio and method for automatic determination |
JPH08126802A (en) * | 1994-10-31 | 1996-05-21 | Nissin Electric Co Ltd | Control of injection of flocculant |
Also Published As
Publication number | Publication date |
---|---|
JP2002159805A (en) | 2002-06-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4505772B2 (en) | Coagulant injection control method for water purification plant | |
JP3205450B2 (en) | Automatic injection rate determination device and automatic determination method | |
KR101645540B1 (en) | Method for feeding coagulant for water-purification and apparatus for water-purification using the same | |
JP5401087B2 (en) | Flocculant injection control method | |
JP2003340208A (en) | Water cleaning method and apparatus therefor | |
JP2003200175A (en) | Flocculant injection control method and flocculant injection control system | |
JPH10202013A (en) | Method for controlling water purifying and flocculating treatment | |
JP5925005B2 (en) | Coagulation precipitation filtration system | |
JP4945461B2 (en) | Flocculant injection method during water purification treatment | |
KR20040067702A (en) | Automatic control method of investing amount of flocculant for treatment room of purity water to detect real time image of floc | |
EP3191411B1 (en) | Measurement and treatment of fluid streams | |
JPH06327907A (en) | Flocculation controller | |
KR20140059557A (en) | Water treating apparatus with means for adjusting injection amount of coagulant and method for adjusting injection amount of coagulant | |
JP3522650B2 (en) | Automatic coagulant injection device for water purification | |
JP7074406B2 (en) | Drug addition amount control device and drug addition amount control method | |
JP2005021742A (en) | Flocculation and sedimentation apparatus and controlling method therefor | |
JP4185348B2 (en) | Water quality management method | |
JP5210948B2 (en) | Chemical injection control method for water purification plant | |
JP2002066568A (en) | Water treating method and apparatus | |
JP2007098287A (en) | Method for controlling operation of water purifying process | |
JP3905663B2 (en) | Solid-liquid separator and flocculation condition determination method | |
JPH06226011A (en) | Flocculant injection control method in water treating flocculation process and flocculant injection control device | |
JP2011115738A (en) | Flocculant injection control method of purification plant | |
JP4784241B2 (en) | Flocculant injection method and apparatus for water purification process | |
KR100814011B1 (en) | Device and methode for water purification |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050408 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080714 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080717 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080911 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080911 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20091102 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20091222 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100204 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100302 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100316 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100402 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100415 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130514 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 4505772 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130514 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140514 Year of fee payment: 4 |
|
EXPY | Cancellation because of completion of term |