[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2006193807A - 銅合金導体及びそれを用いたトロリー線・ケーブル並びに銅合金導体の製造方法 - Google Patents

銅合金導体及びそれを用いたトロリー線・ケーブル並びに銅合金導体の製造方法 Download PDF

Info

Publication number
JP2006193807A
JP2006193807A JP2005009025A JP2005009025A JP2006193807A JP 2006193807 A JP2006193807 A JP 2006193807A JP 2005009025 A JP2005009025 A JP 2005009025A JP 2005009025 A JP2005009025 A JP 2005009025A JP 2006193807 A JP2006193807 A JP 2006193807A
Authority
JP
Japan
Prior art keywords
copper alloy
alloy conductor
weight
less
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005009025A
Other languages
English (en)
Other versions
JP4479510B2 (ja
JP2006193807A5 (ja
Inventor
Hiromitsu Kuroda
洋光 黒田
Kazuma Kuroki
一真 黒木
Masayoshi Aoyama
正義 青山
Hiroyoshi Hiruta
浩義 蛭田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2005009025A priority Critical patent/JP4479510B2/ja
Priority to US11/328,072 priority patent/US9255311B2/en
Priority to CN2006100021145A priority patent/CN1808632B/zh
Publication of JP2006193807A publication Critical patent/JP2006193807A/ja
Publication of JP2006193807A5 publication Critical patent/JP2006193807A5/ja
Application granted granted Critical
Publication of JP4479510B2 publication Critical patent/JP4479510B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/02Alloys based on copper with tin as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • H01B1/026Alloys based on copper

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Conductive Materials (AREA)
  • Insulated Conductors (AREA)

Abstract

【課題】 高強度、かつ、高導電率の銅合金導体及びそれを用いたトロリー線・ケーブル並びに銅合金導体の製造方法を提供するものである。
【解決手段】 本発明に係る銅合金導体18は、酸素を0.001〜0.1重量%(10〜1000重量ppm)含む銅母材11に、Sn12を0.15〜0.70重量%(0.15重量%は除く)の割合で含有させた銅合金材で構成され、結晶組織を構成する結晶粒の平均粒径が100μm以下で、かつ、結晶組織のマトリックスに、Sn12の酸化物の80%以上が平均粒径1μm以下の微小酸化物として分散されたものである。
【選択図】 図1

Description

本発明は、高導電性、高強度の銅合金材で構成され、パンタグラフ等を介して電車に給電を行う電車線用銅合金導体(トロリー線)、各種機器のケーブルに用いられる機器用ケーブル導体、及び一般の産業用ケーブル(耐熱電線、ロボット用ケーブル、キャブタイヤケーブル)に用いられる産業用ケーブル導体に関するものである。
電車線用銅合金導体(トロリー線)、或いは各種機器のケーブルなどに用いられる機器用ケーブル導体には、導電率が高い硬銅線又は耐摩耗性、耐熱性を有する銅合金材(銅合金線)が使用されている。銅合金材としては、銅母材にSnを0.25〜0.35重量%含有させたものが知られており(特許文献1参照)、新幹線及び在来線のトロリー線や、機器用ケーブル導体として使用されている。
近年、電車の高速化が進められている。この高速化に対応すべく、トロリー線の架線張力を高めることが求められており、電車線の架線張力は、1.5tから2.0t以上に高められる傾向にある。また、電車通過密度(単位長さ当たりの線路を走行する電車の数)が高い線路では、トロリー線の大電流容量化が求められている。
また、機器用ケーブル導体では、使用環境を考慮すると、耐屈曲性が良好な導体、つまり、導体の高強度化が求められている。また、機器用ケーブル導体では、軽量化、小型化の要求を満足するために、高い導電性が求められている。
さらに、産業用ケーブル導体においても、導電性の低下を極力抑制しつつ、強度及び耐熱性を向上させ、かつ、使用環境を考慮して耐屈曲性も良好な導体が求められている。
そこで、これらの要求を満足する導体として、高強度、かつ、高導電率の銅合金導体が求められてきている。
高強度の銅合金導体としては、主に、固溶強化型合金及び析出強化型合金の2つが挙げられる。固溶強化型合金としては、Cu-Ag合金(高濃度銀)、Cu-Sn合金、Cu-Sn-In合金、Cu-Mg合金、Cu-Sn-Mg合金などが挙げられる。また、析出強化型合金としては、Cu-Zr合金、Cu-Cr合金、Cu-Cr-Zr合金などが挙げられる。
固溶強化型合金は、いずれも酸素含有量が10重量ppm(0.001重量%)以下であり、強度と共に伸び特性に優れていることから、トロリー線の母材となる銅合金荒引線を、連続鋳造圧延により、銅合金溶湯から直接製造することができる。
固溶強化型合金を使用した従来のトロリー線の製造方法としては、例えば、Snを0.4〜0.7重量%含有する銅合金の鋳造材を、700℃以上の温度で熱間圧延して圧延材とする。この圧延材を再度500℃以下の温度で加熱すると共に仕上げ圧延して荒引線とし、この荒引線を伸線加工してトロリー線を製造する方法がある(特許文献2参照)。
また、他の連続鋳造圧延可能な銅合金として、Cu-O-Sn合金がある。この合金は、マトリックス内部にSnが2〜3μm以上のサイズの晶出物(SnO2)として存在しており、強度と伸び特性は、酸素含有量が10重量ppm以下のCu-Sn合金と同等であることが知られている。この合金も、析出強化作用や分散強化作用よりも、固溶強化作用の方が強い合金である。
特公昭59−43332号公報 特開平6−240426号公報
ところで、固溶強化型合金は、固溶強化元素の含有量を多くするほど強度向上を図ることができる。しかし、それに伴って極端に導電率が低下してしまうので電流容量を大きくすることができず、電車線として適さなくなってしまう。例えば、特許文献2記載の製造方法は、Snの含有量が0.4〜0.7重量%と多いので、導電率が低くなってしまう。よって、現状のCu-Sn系合金では、高張力架線として必要な強度を有し、かつ、良好な導電率を有する銅合金導体を製造することは困難である。
ここで、高強度かつ高導電率の電車線を得るためには、Snと共にさらに別の元素を添加することが考えられる。この場合、仕上げ圧延(最終圧延)の温度が低すぎると、圧延時に圧延材の割れが多くなるので、荒引線の外観品質が極端に低下してしまい、延いては電車線の強度が極端に低下するという問題があった。
一方、析出強化型合金は、硬度及び引張強度は非常に高いものの、硬度が高い分、連続鋳造圧延時において、圧延ロールに過大な負荷がかかってしまい、連続鋳造圧延による製造ができない。このため、析出強化型合金は、押出しなどの方法によるバッチ式でしか製造できない。加えて、析出強化型合金は、中間工程において析出強化物を析出させるための熱処理が必要である。よって、析出強化型合金は、連続鋳造圧延で製造可能な固溶強化型合金と比較して、生産性が低く、製造コストが高くなるという問題があった。
つまり、高強度かつ高導電率の銅合金導体を、生産性に優れた連続鋳造圧延法を用いて製造するには、制約と限界があった。
以上の事情を考慮して創案された本発明の目的は、高強度、かつ、高導電率の銅合金導体及びそれを用いたトロリー線・ケーブル並びに銅合金導体の製造方法を提供することにある。
上記目的を達成すべく本発明に係る銅合金導体は、酸素を0.001〜0.1重量%(10〜1000重量ppm)含む銅母材に、Snを0.15〜0.70重量%(0.15重量%は除く)の割合で含有させた銅合金材で構成され、結晶組織を構成する結晶粒の平均粒径が100μm以下で、かつ、結晶組織のマトリックスに、Snの酸化物の80%以上が平均粒径1μm以下の微小酸化物として分散されたものである。
また、本発明に係る銅合金導体は、酸素を0.001〜0.1重量%(10〜1000重量ppm)含む銅母材に、Snを0.05〜0.15重量%の割合で含有させた銅合金材で構成され、結晶組織を構成する結晶粒の平均粒径が100μm以下で、かつ、結晶組織のマトリックスに、Snの酸化物の80%以上が平均粒径1μm以下の微小酸化物として分散されたものである。
ここで、Snの他に、P又はBを0.01重量%(100重量ppm)以下の割合で含有させてもよい。また、Snの他に、P及びBを合計0.02重量%(200重量ppm)以下の割合で含有させてもよい。
引張強度は420MPa以上、かつ、導電率は60%IACS以上である。また、引張強度は420MPa以上、かつ、導電率は75〜94%IACS未満が好ましい。
引張強度は200〜420MPa未満、かつ、導電率は94%IACS以上である。
一方、本発明に係るトロリー線は、酸素を0.001〜0.1重量%(10〜1000重量ppm)含む銅母材に、Snを0.15〜0.70重量%(0.15重量%は除く)の割合で含有させた銅合金材で構成され、結晶組織を構成する結晶粒の平均粒径が100μm以下で、かつ、結晶組織のマトリックスに、Snの酸化物の80%以上が平均粒径1μm以下の微小酸化物として分散された銅合金導体で構成したものである。
また、本発明に係るケーブルは、酸素を0.001〜0.1重量%(10〜1000重量ppm)含む銅母材に、Snを0.05〜0.15重量%の割合で含有させた銅合金材で構成され、結晶組織を構成する結晶粒の平均粒径が100μm以下で、かつ、結晶組織のマトリックスに、Snの酸化物の80%以上が平均粒径1μm以下の微小酸化物として分散された銅合金導体で構成される単線材又は撚線材の周りに、絶縁層を設けたものである。
他方、本発明に係る銅合金導体の製造方法は、銅合金溶湯を用いて連続鋳造圧延を行って圧延材を形成し、その圧延材を用いて銅合金導体を製造する方法において、
酸素を0.001〜0.1重量%(10〜1000重量ppm)含む銅母材に、Snを0.15〜0.70重量%(0.15重量%は除く)の割合で添加して溶解を行い、銅合金溶湯を形成し、
その銅合金溶湯を用いて連続鋳造を行うと共に、鋳造材の温度を銅合金溶湯の融点より少なくとも15℃以上低い温度まで急速冷却し、
その鋳造材の温度を900℃以下に調整した状態で、鋳造材に、最終圧延温度が500〜600℃となるように調整した複数段の熱間圧延加工を行い、圧延材を形成するものである。
また、本発明に係る銅合金導体の製造方法は、銅合金溶湯を用いて連続鋳造圧延を行って圧延材を形成し、その圧延材を用いて銅合金導体を製造する方法において、
酸素を0.001〜0.1重量%(10〜1000重量ppm)含む銅母材に、Snを0.05〜0.15重量%の割合で添加して溶解を行い、銅合金溶湯を形成し、
その銅合金溶湯を用いて連続鋳造を行うと共に、鋳造材の温度を銅合金溶湯の融点より少なくとも15℃以上低い温度まで急速冷却し、
その鋳造材の温度を900℃以下に調整した状態で、鋳造材に、最終圧延温度が500〜600℃となるように調整した複数段の熱間圧延加工を行い、圧延材を形成するものである。
ここで、圧延材に、−193〜100℃の温度で、加工度50%以上の冷間加工を行い、銅合金導体を形成することが好ましい。
本発明によれば、高強度、かつ、高導電率の銅合金導体を、良好な生産性で得ることができるという優れた効果を発揮する。
以下、本発明の好適一実施の形態を添付図面に基づいて説明する。
本発明の好適一実施の形態に係る銅合金導体は、酸素を0.001〜0.1重量%(10〜1000重量ppm)含む銅母材に、Snを0.15〜0.70重量%(0.15重量%は除く)の割合で含有させた銅合金材で構成されるものである。この銅合金導体は、結晶組織を構成する結晶粒の平均粒径が100μm以下で、かつ、結晶組織のマトリックスに、Snの酸化物の80%以上が平均粒径1μm以下の微小酸化物として分散されたものであり、引張強度が420MPa以上、好ましくは420〜460MPa、かつ、導電率が60%IACS以上、好ましくは60〜94%IACS未満、より好ましくは75〜94%IACS未満のものである。
銅母材の酸素含有量が0.001〜0.1重量%(10〜1000重量ppm)の範囲で、酸素含有量が多い程、引張強度及び導電率は共に高くなる。
本実施の形態に係る銅合金導体の製造工程を示すフローチャートを図1に示す。
図1に示すように、本実施の形態に係る銅合金導体18の製造方法は、
銅母材11にSn12を添加して溶解し、銅合金溶湯14を形成する溶解工程(F1)と、
その銅合金溶湯14を鋳造して鋳造材15を形成する鋳造工程(F2)と、
その鋳造材15に複数段(多段)の熱間圧延加工を施して圧延材16を形成する熱間圧延工程(F3)と、
その圧延材16を洗浄し、巻取って荒引線17とする洗浄・巻取り工程(F4)と、
その巻取った荒引線17を送り出し、その荒引線17に冷間加工を施して銅合金導体18を形成する冷間(伸線)加工工程(F5)を、
含むものである。
銅合金導体18は、その後用途に応じた所望形状の線材、条材(板材)などに加工される。溶解工程(F1)から洗浄・巻取り工程(F4)までは、既存又は慣用の連続鋳造圧延設備(SCR連続鋳造機)を適用することができる。また、冷間加工工程(F5)は、既存又は慣用の冷間加工装置を適用することができる。
銅合金導体18の製造方法をより詳細に説明すると、先ず、溶解工程(F1)において、酸素を0.001〜0.1重量%(10〜1000重量ppm)含む銅母材11に、Sn12を0.15〜0.70重量%(0.15重量%は除く)、好ましくは0.20〜0.70重量%、より好ましくは0.25〜0.65重量%の割合で添加して溶解を行うことで、銅合金溶湯14が形成される。Sn12は酸化され、最終的に得られる銅合金導体18の結晶組織内にSn酸化物(SnO2)として生成、分散される。Sn酸化物の大半(80%以上)は、平均粒径が1μm以下の微小酸化物である。銅母材11は、不可避的不純物を含んでいてもよい。
ここで、Sn12の含有量が0.15重量%未満では、本実施の形態に係る製造方法を適用しても、銅合金導体18の強度を420MPa以上に向上させる効果が得られない。また、Sn12の含有量が0.70重量%を超えると、鋳造材15の硬度が高くなり、圧延加工時の変形抵抗が高くなるので、圧延ロールに対する負荷が極端に大きくなってしまい、製品化が困難となってしまう。さらに、Sn12の含有量が0.15〜0.70重量%の範囲において、Sn12の含有量が多くなるに従って、導電率は徐々に低下する。
したがって、本実施の形態では、Sn12の含有量を0.15〜0.70重量%(0.15重量%は除く)の範囲で適切に調整することにより、例えば[実施例]において後述するように、銅合金導体18の引張強度を420MPa以上に向上させると共に導電率を60〜94%IACS未満、好ましくは75〜94%IACS未満、より好ましくは80〜94%IACS未満の範囲で自在に調整することが可能である。
Sn12の含有量が多くなると、熱間圧延工程(F3)における熱間圧延加工時に、圧延材16の表面傷が多くなる傾向にある。よって、Sn12の含有量が多い場合(例えば0.5重量%以上の場合)には、圧延材16の表面傷を減少させるべく、銅母材11に、Sn12と共に、さらにPを添加してもよい。Pは0.01重量%(100重量ppm)以下の割合で含有させる。Pの含有量が2重量ppm未満だと、銅線表面傷を低減させる効果はあまり認められず、Pの含有量が100重量ppmを超えると、銅合金導体18の導電率が低下してしまう。
また、Sn12の含有量が多くなると、鋳造工程(F2)後における鋳造材15の結晶粒がやや大きくなる傾向(延いては銅合金導体18の強度がやや低下する傾向)にある。よって、Sn12の含有量が多い場合(例えば0.5重量%以上の場合)には、鋳造材15の結晶粒を微細にするべく、銅母材11に、Sn12と共に、さらにBを添加してもよい。Bは0.01重量%(100重量ppm)以下の割合で含有させる。Bの含有量が2重量ppm未満だと、結晶粒を微細にする効果(延いては銅合金導体18の強度向上効果)はあまり認められず、Bの含有量が100重量ppmを超えると、銅合金導体18の導電率が低下してしまう。
さらに、P及びBの両方を、合計0.02重量%(200重量ppm)以下の割合で含ませてもよい。
次に、鋳造工程(F2)において、前工程で得られた銅合金溶湯14は、SCR方式の連続鋳造圧延に供される。具体的には、SCR連続鋳造の通常の鋳造温度(1120〜1200℃)よりも低い温度(1100〜1150℃)で鋳造を行うと共に、鋳型(銅鋳型)を強制水冷する。これにより、鋳造材15が、銅合金溶湯14の凝固温度より少なくとも15℃以上低い温度まで急速冷却される。
これらの鋳造処理及び急冷処理によって、鋳造材15中に晶出(又は析出)する酸化物のサイズ、及び鋳造材15の結晶粒サイズが、通常の鋳造温度で鋳造を行う場合又は鋳造材15を[銅合金溶湯14の凝固温度−15℃]を超える温度までしか冷却しない場合と比較して、それぞれ小さくなる。
次に、熱間圧延工程(F3)において、連続鋳造圧延における通常の熱間圧延温度よりも50〜100℃低い温度、すなわち鋳造材15の温度を900℃以下、好ましくは750〜900℃に調整した状態で、鋳造材15に、熱間圧延が多段に施される。最終圧延時において、500〜600℃の圧延温度で熱間圧延加工を施し、圧延材16が形成される。最終圧延温度が、500℃未満だと、圧延加工時に表面傷が多く発生してしまい、表面品質の低下を招き、また、600℃を超えると、結晶組織が従来と同レベルの粗大組織となってしまう。ここで、最終圧延温度が500〜600℃の範囲において、最終圧延温度が高くなるに従って、引張強度は徐々に低下するが、導電率は徐々に向上する。
この熱間圧延により、前工程で晶出(又は析出)した比較的小サイズの酸化物が分断され、酸化物のサイズがさらに小さくなる。また、本実施の形態に係る製造方法における熱間圧延は、通常の熱間圧延よりも低温で行うものであるため、圧延時に導入された転位が再配列し、結晶粒内に微小な亜粒界が形成される。亜粒界は、結晶粒内に存在する方位が少し異なる複数の結晶間の境界である。
次に、洗浄・巻取り工程(F4)において、圧延材16を洗浄し、巻取りを行い、荒引線17が得られる。巻取った荒引線17の線径は、例えば、8〜40mm、好ましくは30mm以下とされる。例えば、トロリー線における荒引線17の線径は、22〜30mmとされる。
最後に、冷間加工工程(F5)において、巻取った荒引線17を送り出し、その荒引線17に、−193℃(液体窒素温度)〜100℃、好ましくは−193〜25℃以下の温度で冷間加工(伸線加工)を行う。これによって、銅合金導体18が得られる。ここで、連続伸線時の加工熱が銅合金導体18に及ぼす影響(強度低下など)を少なくするため、引抜きダイスなどの冷間加工装置の冷却を行い、線材温度が100℃以下、好ましくは25℃以下となるように調整を行う。また、銅合金導体18の強度を向上させるためには、熱間圧延加工における加工度を高めて圧延材16、つまり荒引線17の強度を十分に向上させておくことが必要である他に、冷間加工における加工度を50%以上とすることが必要である。ここで、加工度が50%未満だと420MPaを超える引張強度が得られない。
得られた銅合金導体18は、その後用途に応じた所望形状、例えば、電車線(トロリー線)、機器用ケーブル導体、産業用ケーブル導体などに形成される。電車線の断面積は、例えば、110〜170mm2とされる。
次に、本実施の形態の作用を説明する。
従来の銅合金導体は、結晶組織が粗大であった。また、Snなどの酸化物は、平均粒径(又は長さ)が1μmを超える粗大酸化物であった。これらの結果、従来の銅合金導体は、引張強度があまり十分ではなかった。
これに対して、本実施の形態に係る銅合金導体18の製造方法においては、銅母材11に、Sn12を0.15〜0.70重量%(0.15重量%は除く)の割合で添加して銅合金溶湯14を形成し、その銅合金溶湯14を用い、低温で連続鋳造(鋳造温度が1100〜1150℃)、低温圧延加工(最終圧延温度が500〜600℃)、及び加工熱が作用しないように100℃以下に温度調節した冷間加工を行い、銅合金導体18を製造している。
これらによって、本実施の形態に係る銅合金導体18は、従来の銅合金導体と比較して結晶組織が微細となる。つまり、銅合金導体18の結晶粒の平均粒径は、従来の銅合金導体の結晶粒の平均粒径と比較して小さくなり、100μm以下となる。また、銅合金導体18のマトリックスには、Sn12の酸化物が分散しており、その酸化物の80%以上は平均粒径が1μm以下の微小酸化物である。
このマトリックスに分散した微小酸化物によって、鋳造材15が有する熱(顕熱)により、結晶や結晶粒界が移動するのが抑制される。その結果、熱間圧延時における各結晶粒の成長が抑制されるため、圧延材16の結晶組織が微細となる。
以上より、本実施の形態に係る銅合金導体18の強化は、結晶粒の微細化による銅合金導体マトリックスの強度向上と、マトリックスに微小酸化物を分散させたことによる分散強化とによるものであり、特開平6-240426号公報などに記載されたSnの固溶強化だけによる強化と比較して、導電率低下の割合も低く抑えることができる。よって、本実施の形態に係る製造方法によれば、導電率の大幅な低下を招くことなく、高い引張強度を有する銅合金導体18を得ることができる。つまり、例えば後述の[実施例]で述べるように、75〜94%IACS未満の高い導電率を有し、かつ、高張力架線で必要とされる420MPa以上の高い強度(引張強度)を有する銅合金導体18を得ることができる。
また、本実施の形態に係る製造方法は、既存或いは慣用の連続鋳造圧延設備や冷間加工装置を使用することができるので、新規の設備投資を必要とせず、高導電率、高強度の銅合金導体18を低コストで製造することができる。
次に、本発明の他の実施の形態を説明する。
前実施の形態に係る銅合金導体18は、酸素を0.001〜0.1重量%(10〜1000重量ppm)含む銅母材11に、Sn12を0.15〜0.70重量%(0.15重量%は除く)、好ましくは0.20〜0.70重量%、より好ましくは0.30〜0.60重量%の割合で含有させた銅合金材で構成されるものであった。この銅合金導体18は、引張強度が420MPa以上、かつ、その導電率が60〜94%IACS未満のものであった。
これに対して、本発明の他の好適一実施の形態に係る銅合金導体は、導電率をより高めたものである。具体的には、本実施の形態に係る銅合金導体は、酸素を0.001〜0.1重量%(10〜1000重量ppm)含む銅母材に、Snを0.05〜0.15重量%、好ましくは0.07〜0.13重量%、より好ましくは0.08〜0.12重量%の割合で含有させた銅合金材で構成されるものである。この銅合金導体は、結晶組織を構成する結晶粒の平均粒径が100μm以下で、かつ、結晶組織のマトリックスに、Snの酸化物の80%以上が平均粒径1μm以下の微小酸化物として分散されたものであり、引張強度が200〜420MPa未満、好ましくは220〜420MPa未満、より好ましくは300〜420MPa未満、特に好ましくは370〜420MPa未満、かつ、導電率が94%IACS以上のものである。
ここで、Snの含有量が0.05重量%未満では、本実施の形態に係る製造方法を適用しても、銅合金導体18の引張強度を、純銅の引張強度(例えば、タフピッチ銅の場合で約220MPa)よりも高くすることができないためである。また、Snの含有量が0.15重量%を超えると、銅合金導体の導電率を94%IACS以上に向上させる効果が得られないためである。さらに、Snの含有量が0.05〜0.15重量%の範囲において、Snの含有量が多くなるに従って、導電率は徐々に低下する。本実施の形態に係る銅合金導体では、Snの含有量を0.05〜0.15重量%の範囲に調整することにより、例えば[実施例]において後述するように、銅合金導体の引張強度を370〜420MPa未満と高く保持したまま、導電率を94%IACS以上に調整することが可能となる。
本実施の形態に係る銅合金導体においても、94%IACS以上の導電率を阻害しない範囲であれば、銅母材に、Snと共に、さらにP及び/又はBを添加してもよい。Pは0.01重量%(100重量ppm)以下の割合で含有させる。Bは0.01重量%(100重量ppm)以下の割合で含有させる。P及びBの両方を含有させる場合、含有割合は合計で0.02重量%(200重量ppm)以下とされる。
また、銅母材の酸素含有量が0.001〜0.1重量%(10〜1000重量ppm)の範囲で、酸素含有量が多い程、引張強度及び導電率は共に高くなる。
本実施の形態に係る銅合金導体の製造方法は、製造に用いる銅合金溶湯の成分組成が前実施の形態に係る銅合金導体の製造に用いた銅合金溶湯14(図1参照)と異なることを除いて、前実施の形態に係る銅合金導体の製造方法と同じとされる。
本実施の形態に係る銅合金導体は、純銅とほとんど変わらない高い導電率(94%IACS以上)を有しつつ、高い引張強度を得ることができる。つまり、例えば後述の[実施例]で述べるように、94%IACS以上の高い導電率を有し、かつ、各種機器用のケーブル導体に必要とされる約400MPa(例えば、370〜420MPa未満)の高い強度(引張強度)を有する銅合金導体が得られる。本実施の形態に係る銅合金導体は、各種機器用ケーブル導体や産業用ケーブル導体に好適であるが、電車線用銅合金導体(トロリー線)としても適用可能である。
本実施の形態に係る製造方法により得られた銅合金導体を用いて、単線材又は撚線材を形成し、その単線材又は撚線材の周りに、絶縁層を設けることで、例えば、各種機器用ケーブルや産業用ケーブルなどの高導電率、高強度のケーブル(配線材、給電材)を得ることができる。
以上、本発明は、上述した実施の形態に限定されるものではなく、他にも種々のものが想定されることは言うまでもない。
次に、本発明を実施例に基づいて説明するが、本発明はこの実施例に限定されるものではない。
銅母材に添加する添加元素の種類及び量、熱間圧延加工の最終圧延温度などを変え、直径がφ23mmの銅合金導体(電車線用銅合金荒引線)を作製した。銅合金導体は、本発明に係る銅合金導体の製造方法を用いて製造した。
具体的には、銅合金溶湯を用い、SCR連続鋳造の通常の鋳造温度(1120〜1200℃)よりも低い温度(1100〜1150℃)で鋳造を行うと共に、鋳型(銅鋳型)を強制水冷した。これにより、鋳造材を、銅合金溶湯の凝固温度より100℃低い温度まで急速冷却した。次に、連続鋳造圧延における通常の熱間圧延温度よりも50〜100℃低い温度、すなわち鋳造材の温度を500〜600℃に調整した状態で、鋳造材に、熱間圧延を多段に施した。次に、その圧延材を洗浄し、巻取りを行い、荒引線17を形成した。巻取った荒引線の線径は23mm以下であった。最後に、巻取った荒引線を送り出し、その荒引線に約30℃の温度で冷間加工(伸線加工)を行い、銅合金導体を作製した。
(実施例1〜3)
酸素を10重量ppm含む各銅母材に、Snをそれぞれ0.3,0.4,0.6重量%の割合で含有させた銅合金材を用い、銅合金導体を作製した。最終圧延温度はいずれも560℃とした。
(実施例4〜6)
酸素の含有量が350重量ppmである以外は、実施例1〜3と同様にして銅合金導体を作製した。最終圧延温度はいずれも560℃とした。
(実施例7〜9)
酸素の含有量が500重量ppmである以外は、実施例1〜3と同様にして銅合金導体を作製した。最終圧延温度はいずれも560℃とした。
(実施例10)
酸素を350重量ppm含む銅母材に、Snを0.6重量%、かつ、Pを0.0050重量%の割合で含有させた銅合金材を用い、銅合金導体を作製した。最終圧延温度は560℃とした。
(実施例11)
酸素を350重量ppm含む銅母材に、Snを0.6重量%、かつ、Bを0.0050重量%の割合で含有させた銅合金材を用い、銅合金導体を作製した。最終圧延温度は560℃とした。
(実施例12)
Snの含有量が0.1重量%である以外は、実施例1〜3と同様にして銅合金導体を作製した。最終圧延温度は560℃とした。
(実施例13)
Snの含有量が0.1重量%である以外は、実施例4〜6と同様にして銅合金導体を作製した。最終圧延温度は560℃とした。
(実施例14)
Snの含有量が0.1重量%である以外は、実施例7〜9と同様にして銅合金導体を作製した。最終圧延温度は560℃とした。
(比較例1)
最終圧延温度が650℃である以外は、実施例4と同様にして銅合金導体を作製した。
(比較例2)
最終圧延温度が620℃である以外は、実施例4と同様にして銅合金導体を作製した。
(比較例3)
最終圧延温度が650℃である以外は、実施例1と同様にして銅合金導体を作製した。
(比較例4)
最終圧延温度が650℃である以外は、実施例7と同様にして銅合金導体を作製した。
実施例1〜14及び比較例1〜4の銅合金導体の製造条件(酸素含有量、添加元素の種類及び含有量、最終圧延温度)を表1に示す。
Figure 2006193807
次に、実施例1〜14及び比較例1〜4の各銅合金導体を用い、断面積が170mm2のトロリー線をそれぞれ作製した。各トロリー線の引張強度(MPa)、導電率(%IACS)、酸化物の割合、結晶粒サイズ、表面品質、及び熱間圧延性を表2に示す。
ここで、酸化物の割合については、平均粒径が1μm以下の酸化物の割合が80%以上のものを○、80%未満のものを×とした。
結晶粒サイズについては、比較例1の銅合金導体を用いたトロリー線における結晶粒の平均粒径を1.0とした時、結晶粒のサイズが0.5未満のものを○、0.5〜1.0のものを×とした。
表面品質については、熱間圧延後の表面傷が、少ないものを○、多いものを×とした。
熱間圧延性については、熱間圧延性が良好なものを○、悪いものを×とした。
Figure 2006193807
表2に示すように、実施例1〜11の各銅合金導体を用いて作製した各トロリー線は、いずれも420MPa以上(421〜450MPa)の引張強度及び94%IACS未満(78〜94%IACS)の導電率を有していた。
一方、実施例12〜14の各銅合金導体を用いて作製した各トロリー線は、いずれも420MPa未満(388〜390MPa)の引張強度及び94%IACS以上(94〜99%IACS)の導電率を有していた。
ここで、各トロリー線は、平均粒径1μm以下の酸化物の割合がいずれも80%以上であり、結晶粒内には亜粒界が観察され、結晶粒のサイズは0.5未満であった。さらに、各トロリー線は、いずれも、表面傷が少なく、表面品質は良好であり、熱間圧延性も良好であった。
また、実施例1〜3,4〜6,7〜9の各銅合金導体を用いて作製した各トロリー線を比較した結果、Snの含有量が多くなるに従って、引張強度は向上するが、導電率は低下することがわかった。実施例6,10の各銅合金導体を用いて作製した各トロリー線を比較した結果、Pを添加した実施例10の方が、表面品質がより良好であった。実施例6,11の各銅合金導体を用いて作製した各トロリー線を比較した結果、Bを添加した実施例11の方が、若干ではあるが引張強度が高くなった。
これに対して、比較例1,3,4の各銅合金導体を用いて作製した各トロリー線は、銅母材の酸素含有量及びSn含有量がいずれも規定範囲内であった。しかし、最終圧延温度が規定範囲(500〜600℃)を外れていたため、これらのトロリー線においては、微小酸化物の割合が少なく、かつ、結晶粒サイズが大きかった。つまり、導電率は80〜92%IACSで、いずれも規定範囲(75%IACS以上)を満足していたが、引張強度は410〜417MPaといずれも420MPa未満であり、規定範囲(420MPa以上)を満足できなかった。
また、比較例2の銅合金導体を用いて作製したトロリー線は、銅母材の酸素含有量、及びSn含有量がいずれも規定範囲内であった。しかし、最終圧延温度が規定範囲(500〜600℃)を外れていたため、これらのトロリー線においては、微小酸化物の割合が少なく、かつ、結晶粒サイズが大きかった。つまり、導電率は89%IACSで、規定範囲(75%IACS以上)を満足していたが、引張強度は415MPaであり、規定範囲(420MPa以上)を満足できなかった。
本発明の好適一実施の形態に係る銅合金導体の製造工程を示すフローチャートである。
符号の説明
11 銅母材
12 Sn
18 銅合金導体

Claims (12)

  1. 酸素を0.001〜0.1重量%(10〜1000重量ppm)含む銅母材に、Snを0.15〜0.70重量%(0.15重量%は除く)の割合で含有させた銅合金材で構成され、結晶組織を構成する結晶粒の平均粒径が100μm以下で、かつ、結晶組織のマトリックスに、上記Snの酸化物の80%以上が平均粒径1μm以下の微小酸化物として分散されたことを特徴とする銅合金導体。
  2. 酸素を0.001〜0.1重量%(10〜1000重量ppm)含む銅母材に、Snを0.05〜0.15重量%の割合で含有させた銅合金材で構成され、結晶組織を構成する結晶粒の平均粒径が100μm以下で、かつ、結晶組織のマトリックスに、上記Snの酸化物の80%以上が平均粒径1μm以下の微小酸化物として分散されたことを特徴とする銅合金導体。
  3. 上記Snの他に、P又はBを0.01重量%(100重量ppm)以下の割合で含有させた請求項1又は2記載の銅合金材。
  4. 上記Snの他に、P及びBを合計0.02重量%(200重量ppm)以下の割合で含有させた請求項1又は2記載の銅合金材。
  5. 引張強度が420MPa以上、かつ、導電率が60%IACS以上である請求項1,3,4いずれかに記載の銅合金導体。
  6. 引張強度が420MPa以上、かつ、導電率が75〜94%IACS未満である請求項1,3,4いずれかに記載の銅合金導体。
  7. 引張強度が200〜420MPa未満、かつ、導電率が94%IACS以上である請求項2から4いずれかに記載の銅合金導体。
  8. 請求項1,3から6いずれかに記載の銅合金導体で構成したことを特徴とするトロリー線。
  9. 請求項2から4,7いずれかに記載の銅合金導体で構成される単線材又は撚線材の周りに、絶縁層を設けたことを特徴とするケーブル。
  10. 銅合金溶湯を用いて連続鋳造圧延を行って圧延材を形成し、その圧延材を用いて銅合金導体を製造する方法において、
    酸素を0.001〜0.1重量%(10〜1000重量ppm)含む銅母材に、Snを0.15〜0.70重量%(0.15重量%は除く)の割合で添加して溶解を行い、銅合金溶湯を形成し、
    その銅合金溶湯を用いて連続鋳造を行うと共に、鋳造材の温度を銅合金溶湯の融点より少なくとも15℃以上低い温度まで急速冷却し、
    その鋳造材の温度を900℃以下に調整した状態で、鋳造材に、最終圧延温度が500〜600℃となるように調整した複数段の熱間圧延加工を行い、圧延材を形成することを特徴とする銅合金導体の製造方法。
  11. 銅合金溶湯を用いて連続鋳造圧延を行って圧延材を形成し、その圧延材を用いて銅合金導体を製造する方法において、
    酸素を0.001〜0.1重量%(10〜1000重量ppm)含む銅母材に、Snを0.05〜0.15重量%の割合で添加して溶解を行い、銅合金溶湯を形成し、
    その銅合金溶湯を用いて連続鋳造を行うと共に、鋳造材の温度を銅合金溶湯の融点より少なくとも15℃以上低い温度まで急速冷却し、
    その鋳造材の温度を900℃以下に調整した状態で、鋳造材に、最終圧延温度が500〜600℃となるように調整した複数段の熱間圧延加工を行い、圧延材を形成することを特徴とする銅合金導体の製造方法。
  12. 上記圧延材に、−193〜100℃の温度で、加工度50%以上の冷間加工を行い、銅合金導体を形成する請求項10又は11記載の銅合金導体の製造方法。
JP2005009025A 2005-01-17 2005-01-17 銅合金導体及びそれを用いたトロリー線・ケーブル並びに銅合金導体の製造方法 Active JP4479510B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005009025A JP4479510B2 (ja) 2005-01-17 2005-01-17 銅合金導体及びそれを用いたトロリー線・ケーブル並びに銅合金導体の製造方法
US11/328,072 US9255311B2 (en) 2005-01-17 2006-01-10 Copper alloy conductor, and trolley wire and cable using same, and copper alloy conductor fabrication method
CN2006100021145A CN1808632B (zh) 2005-01-17 2006-01-16 铜合金导体及其架空导线、电缆以及铜合金导体的制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005009025A JP4479510B2 (ja) 2005-01-17 2005-01-17 銅合金導体及びそれを用いたトロリー線・ケーブル並びに銅合金導体の製造方法

Publications (3)

Publication Number Publication Date
JP2006193807A true JP2006193807A (ja) 2006-07-27
JP2006193807A5 JP2006193807A5 (ja) 2009-06-04
JP4479510B2 JP4479510B2 (ja) 2010-06-09

Family

ID=36682654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005009025A Active JP4479510B2 (ja) 2005-01-17 2005-01-17 銅合金導体及びそれを用いたトロリー線・ケーブル並びに銅合金導体の製造方法

Country Status (3)

Country Link
US (1) US9255311B2 (ja)
JP (1) JP4479510B2 (ja)
CN (1) CN1808632B (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009057697A1 (ja) * 2007-11-01 2009-05-07 The Furukawa Electric Co., Ltd. 電子機器用導体線材およびそれを用いた配線用電線
JP2009167461A (ja) * 2008-01-15 2009-07-30 Hitachi Cable Ltd 銅合金導体およびそれを用いたケーブルならびにトロリー線ならびに銅合金導体の製造方法
CN104700941A (zh) * 2015-03-16 2015-06-10 江阴新华宏铜业有限公司 铁路贯通地线及其制备装置和制备方法
CN105164289A (zh) * 2013-05-10 2015-12-16 国立大学法人东北大学 显示稳定的超弹性的Cu-Al-Mn系棒材和板材、其制造方法、使用该棒材和板材的减震部件、以及使用减震部件的减震结构体
JP2019510887A (ja) * 2016-03-25 2019-04-18 ジュリオ・プロペルツィGiulio PROPERZI 非鉄金属およびその合金の線材を高い伸びを有するワイヤに焼鈍状態で変形させる方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100437839C (zh) * 2006-08-14 2008-11-26 上海市电力公司 铝合金芯铝绞交联聚乙烯绝缘阻水架空电缆的制造方法
FR2937459B1 (fr) * 2008-10-16 2010-11-12 Nexans Cable electrique composite comportant des brins de cuivre et d'alliage de cuivre/etain.
FR2937460A1 (fr) * 2008-10-16 2010-04-23 Nexans Toron a effet ressort limite.
JP4709296B2 (ja) * 2009-04-17 2011-06-22 日立電線株式会社 希薄銅合金材料の製造方法
ES2360718B1 (es) * 2009-11-24 2012-07-02 La Farga Lacambra, S.A.U. Aleación de cobre de altas prestaciones.
JP5077416B2 (ja) 2010-02-08 2012-11-21 日立電線株式会社 軟質希薄銅合金材料、軟質希薄銅合金線、軟質希薄銅合金板、軟質希薄銅合金撚線およびこれらを用いたケーブル、同軸ケーブルおよび複合ケーブル
JP5589756B2 (ja) * 2010-10-20 2014-09-17 日立金属株式会社 フレキシブルフラットケーブル及びその製造方法
JP5589754B2 (ja) * 2010-10-20 2014-09-17 日立金属株式会社 希薄銅合金材料、及び耐水素脆化特性に優れた希薄銅合金材料の製造方法
CN102383078B (zh) * 2011-11-10 2013-07-24 中色(宁夏)东方集团有限公司 一种高强度高导电率铍铜合金的制备方法
CN102941238B (zh) * 2012-11-01 2014-12-10 上海智溢金属材料有限公司 一种铜质h型滑触线的制造模具及其方法
CN105499302A (zh) * 2016-01-11 2016-04-20 赣州江钨拉法格高铁铜材有限公司 一种纯铜绞线的生产方法
CN109003743A (zh) * 2018-07-25 2018-12-14 王文芳 一种连续铜合金极细导体的制作方法
CN114959351B (zh) * 2022-05-31 2024-01-23 沈阳宏远电磁线股份有限公司 一种铜银合金线材及其制备方法与应用

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3649254A (en) * 1969-03-06 1972-03-14 Italo S Servi Article of manufacture and process of making it
US4822560A (en) * 1985-10-10 1989-04-18 The Furukawa Electric Co., Ltd. Copper alloy and method of manufacturing the same
JPH0324241A (ja) * 1989-06-21 1991-02-01 Furukawa Electric Co Ltd:The 耐熱性と耐摩耗性に優れた摺動通電用銅合金
JPH04180531A (ja) * 1990-11-14 1992-06-26 Nikko Kyodo Co Ltd 通電材料
JPH06240426A (ja) 1993-02-18 1994-08-30 Fujikura Ltd 高強度銅合金トロリー線の製造方法
JPH10102165A (ja) * 1996-09-30 1998-04-21 Nikko Kinzoku Kk 電子材料用銅合金
JP4329967B2 (ja) * 2000-04-28 2009-09-09 古河電気工業株式会社 プラスチック基板に設けられるピングリッドアレイ用icリードピンに適した銅合金線材
JP4734695B2 (ja) * 2000-07-07 2011-07-27 日立電線株式会社 耐屈曲フラットケーブル
JP3794971B2 (ja) 2002-03-18 2006-07-12 株式会社コベルコ マテリアル銅管 熱交換器用銅合金管
DE10237052A1 (de) * 2002-08-09 2004-02-19 Km Europa Metal Ag Verwendung einer niedriglegierten Kupferlegierung und hieraus hergestelltes Hohlprofilbauteil
TWI291994B (en) * 2002-11-13 2008-01-01 Sumitomo Electric Industries Copper alloy conductor and the manufacturing method
JP4355912B2 (ja) 2002-11-13 2009-11-04 住友電気工業株式会社 銅合金導体とその製造方法
JP4171907B2 (ja) 2003-10-28 2008-10-29 住友電気工業株式会社 トロリー線とその製造方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009057697A1 (ja) * 2007-11-01 2009-05-07 The Furukawa Electric Co., Ltd. 電子機器用導体線材およびそれを用いた配線用電線
JP5006405B2 (ja) * 2007-11-01 2012-08-22 古河電気工業株式会社 電子機器用導体線材およびそれを用いた配線用電線
JP2009167461A (ja) * 2008-01-15 2009-07-30 Hitachi Cable Ltd 銅合金導体およびそれを用いたケーブルならびにトロリー線ならびに銅合金導体の製造方法
CN105164289A (zh) * 2013-05-10 2015-12-16 国立大学法人东北大学 显示稳定的超弹性的Cu-Al-Mn系棒材和板材、其制造方法、使用该棒材和板材的减震部件、以及使用减震部件的减震结构体
CN104700941A (zh) * 2015-03-16 2015-06-10 江阴新华宏铜业有限公司 铁路贯通地线及其制备装置和制备方法
JP2019510887A (ja) * 2016-03-25 2019-04-18 ジュリオ・プロペルツィGiulio PROPERZI 非鉄金属およびその合金の線材を高い伸びを有するワイヤに焼鈍状態で変形させる方法
US11400500B2 (en) 2016-03-25 2022-08-02 Giulio Properzi Method for converting wire rod of nonferrous metals and alloys thereof to wire with high elongation and in the annealed state

Also Published As

Publication number Publication date
JP4479510B2 (ja) 2010-06-09
CN1808632B (zh) 2010-11-03
CN1808632A (zh) 2006-07-26
US9255311B2 (en) 2016-02-09
US20060157167A1 (en) 2006-07-20

Similar Documents

Publication Publication Date Title
JP5147040B2 (ja) 銅合金導体の製造方法
US9255311B2 (en) Copper alloy conductor, and trolley wire and cable using same, and copper alloy conductor fabrication method
JP4311277B2 (ja) 極細銅合金線の製造方法
JP2006193807A5 (ja)
US9997276B2 (en) Aluminum alloy wire rod, aluminum alloy stranded wire, covered wire, and wire harness, and method of manufacturing aluminum alloy wire rod
JP4380441B2 (ja) トロリー線の製造方法
JP4497164B2 (ja) 銅合金導体及びそれを用いたケーブル
JP3948451B2 (ja) 銅合金材及びそれを用いた銅合金導体の製造方法並びにその方法により得られた銅合金導体及びそれを用いたケーブル
JP2018003154A (ja) 銅合金、銅合金鋳塊及び銅合金溶体化材
CN111809079B (zh) 一种高强高导铜合金导线材料及其制备方法
JP3903899B2 (ja) 電車線用銅合金導体の製造方法及び電車線用銅合金導体
JP6027807B2 (ja) 銅合金トロリ線及び銅合金トロリ線の製造方法
JP2006307307A (ja) ロボット可動部用配線ケーブル
WO2014020707A1 (ja) 銅合金トロリ線及び銅合金トロリ線の製造方法
JP6635732B2 (ja) アルミニウム合金導電線の製造方法、アルミニウム合金導電線、これを用いた電線及びワイヤハーネス
JP4214394B2 (ja) 耐摩耗性トロリー線とその製造方法
JP3768899B2 (ja) 析出強化型銅合金トロリ線およびその製造方法
JP2006283181A (ja) 耐摩耗性銅合金トロリ線およびその製造方法
JP4171907B2 (ja) トロリー線とその製造方法
JP6853872B2 (ja) アルミニウム合金導電線の製造方法、アルミニウム合金導電線、これを用いた電線及びワイヤハーネス
JP2008264823A (ja) 銅荒引線の製造方法及び銅線
JP2010095777A (ja) 銅合金導体及びそれを用いたトロリー線、ケーブル、並びに銅合金導体の製造方法
JP4525653B2 (ja) 電車線用銅合金導体の製造方法及び電車線用銅合金導体
WO2017222041A1 (ja) 銅合金、銅合金鋳塊、銅合金溶体化材、及び、銅合金トロリ線、銅合金トロリ線の製造方法
JP2003237426A (ja) 析出強化型銅合金トロリ線およびその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090512

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090605

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100223

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100308

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4479510

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140326

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350