JP2006096599A - Method of producing spherical molten silica powder - Google Patents
Method of producing spherical molten silica powder Download PDFInfo
- Publication number
- JP2006096599A JP2006096599A JP2004283502A JP2004283502A JP2006096599A JP 2006096599 A JP2006096599 A JP 2006096599A JP 2004283502 A JP2004283502 A JP 2004283502A JP 2004283502 A JP2004283502 A JP 2004283502A JP 2006096599 A JP2006096599 A JP 2006096599A
- Authority
- JP
- Japan
- Prior art keywords
- powder
- silicon dioxide
- gas
- raw material
- silica powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Silicon Compounds (AREA)
Abstract
Description
本発明は、球状溶融シリカ粉末の製造方法に関する。 The present invention relates to a method for producing spherical fused silica powder.
従来、半導体封止用樹脂組成物(以下、「封止材」ともいう。)としては、例えばエポキシ樹脂等の樹脂に溶融処理された無機質粒子、特に溶融シリカ粉末の充填されたものが用いられている。溶融シリカ粉末を構成している粒子が球状であると、樹脂に高充填をすることができ、しかも封止する際の流動性、耐金型摩耗性等も優れるので球状溶融シリカ粉末が好んで用いられている。 Conventionally, as a resin composition for semiconductor encapsulation (hereinafter, also referred to as “sealing material”), for example, inorganic particles that are melt-processed in a resin such as an epoxy resin, particularly those filled with fused silica powder are used. ing. If the particles constituting the fused silica powder are spherical, the resin can be highly filled, and the fluidity at the time of sealing, mold wear resistance, etc. are excellent, so the spherical fused silica powder is preferred. It is used.
球状溶融シリカ粉末は、例えば炉内の溶融ゾーンに形成させた火炎中に、二酸化ケイ素粉末原料(例えば珪石粉末)を粉末状態で空気等のキャリアガスに同伴させバーナーから噴射する工程を経て製造される。噴射された二酸化ケイ素粉末原料は、溶融・球状化処理を受け球状溶融シリカ粉末となり、溶融ゾーンに連続された冷却ゾーンを通過する間に冷却固化され、捕集系で捕集される。捕集系には重力沈降室、サイクロン、バグフィルター等の捕集機が適宜設置され、所望粒度の粉末が段階的に取得できるようになっている。 Spherical fused silica powder is produced, for example, through a process in which a silicon dioxide powder raw material (for example, silica powder) is entrained with a carrier gas such as air in a flame in a flame formed in a melting zone in a furnace and injected from a burner. The The injected silicon dioxide powder raw material is subjected to melting and spheroidizing treatment to become spherical fused silica powder, cooled and solidified while passing through a cooling zone continuous with the melting zone, and collected by a collection system. In the collection system, a collector such as a gravity settling chamber, a cyclone, a bag filter or the like is installed as appropriate so that powder of a desired particle size can be obtained stepwise.
このようにして製造された球状溶融シリカ粉末の粒子表面には、二酸化ケイ素粉末原料のSiO2成分が一旦SiO蒸気となりそれが酸化沈着して生成するシリカフュームと呼ばれる1μm以下の微粒子が付着している。このシリカフュームの粒子表面への付着量が適量であるときには、シリカ粒子同士の隙間でコロ作用を示し、封止材の流動性を向上させるので好ましいが、過剰量であると、封止材の粘度を増加させて流動性を阻害し、しかもシリカフュームの付着力によって粒子同士を凝集させる原因となる。 On the particle surface of the spherical fused silica powder produced in this way, fine particles of 1 μm or less called silica fume, which is generated when the SiO 2 component of the silicon dioxide powder raw material once becomes SiO vapor and is oxidized and deposited, are attached. . When the amount of silica fume adhering to the particle surface is an appropriate amount, it is preferable because it exhibits a roller action in the gaps between the silica particles and improves the fluidity of the sealing material. This increases the flow rate and inhibits fluidity, and also causes the particles to aggregate due to the adhesion of silica fume.
シリカフュームの付着量を調節することは通常困難であるので、助剤と共に湿式混合処理をしてシリカフューム成分を除去することが提案(特許文献1)されている。しかし、この方法では、乾燥工程、解砕工程が必要となるので工程が煩雑となる。また、シリカフュームの殆どが除去されてしまうので、折角の上記コロ作用を利用することができなかった。一方、シリカフュームは、二酸化ケイ素粉末原料のSiO2成分が一旦SiO蒸気となりそれが酸化沈着して生成することに着目し、燃焼炎フレームの温度を低めてSiO蒸気の生成を阻止するべく、二酸化ケイ素粉末原料を不活性ガスに同伴させてフレーム内に供給することが提案(特許文献2)されている。しかし、この方法では、回収粉に未溶融粒子を多く含むため、封止材の特に電気絶縁性、低熱膨張率等が悪化する恐れがあった。
本発明の目的は、上記に鑑み、高溶融率であり、しかもシリカフュームの付着量の調節が容易な、シリカフュームが付着した球状溶融シリカ粉末の製造方法を提供することである。本発明の目的は、二酸化ケイ素粉末原料を水分子で覆って火炎中に噴霧することによって達成することができる。 In view of the above, an object of the present invention is to provide a method for producing a spherical fused silica powder having a silica fume attached, which has a high melting rate and can easily adjust the amount of silica fume deposited. The object of the present invention can be achieved by covering a silicon dioxide powder raw material with water molecules and spraying it into a flame.
すなわち、本発明は、二酸化ケイ素粉末原料の濃度が20〜80質量%である水スラリーを、突出速度が少なくとも50m/s以上である気体で分散させながら、炉内に形成された火炎中に噴霧することを特徴とするシリカフュームが付着した球状溶融シリカ粉末の製造方法である。この場合において、水スラリーの二酸化ケイ素粉末原料濃度が50〜70質量%であること、突出速度が少なくとも50m/sである気体が炉内で旋回気流を形成するものであること、から選ばれた少なくとも一つの実施態様を有することが好ましい。 That is, the present invention sprays water slurry having a silicon dioxide powder raw material concentration of 20 to 80% by mass into a flame formed in the furnace while dispersing it in a gas having a protrusion speed of at least 50 m / s. It is a manufacturing method of the spherical fused silica powder to which the silica fume adhered was characterized. In this case, the concentration of the silicon dioxide powder in the water slurry was selected to be 50 to 70% by mass, and the gas having a protrusion speed of at least 50 m / s formed a swirling airflow in the furnace. It is preferred to have at least one embodiment.
さらには、球状溶融シリカ粉末の平均粒子径が二酸化ケイ素粉末原料の平均粒子径の1.5倍以下、比表面積が球状シリカ粉末の平均粒子径から算出した理論値の5倍以下、1μm以下の粒子の含有率が5質量%以下(0を含まず)、すなわちシリカフュームの付着量が5質量%以下(0を含まず)である球状溶融シリカ粉末が得られるように、水スラリーの二酸化ケイ素粉末原料の濃度及び気体の突出速度を調整することが好ましい。 Furthermore, the average particle diameter of the spherical fused silica powder is 1.5 times or less of the average particle diameter of the silicon dioxide powder raw material, and the specific surface area is 5 times or less of the theoretical value calculated from the average particle diameter of the spherical silica powder, and 1 μm or less. Silicon slurry powder of water slurry so that spherical fused silica powder having a particle content of 5% by mass or less (excluding 0), that is, silica fume adhesion amount of 5% by mass or less (excluding 0) is obtained. It is preferable to adjust the concentration of the raw material and the gas protruding speed.
本発明によれば、溶融率が例えば99%以上であり、しかも溶融シリカ粒子表面のシリカフュームの付着量が5質量%以下(0を含まず)の範囲で調節された、シリカフュームが付着した球状溶融シリカ粉末を製造することができる。さらには、このような特性を有する球状溶融シリカ粉末の量産化が可能となる。このような効果が達成できた理由としては、二酸化ケイ素粉末原料を水スラリーとすること、すなわち二酸化ケイ素粒子を水分子で覆わせたことによって、溶融ゾーンにおける二酸化ケイ素粒子への熱の伝わりがマイルドになること、また水滴中に閉じこめられた微細な二酸化ケイ素粒子が水の液滴径に応じた大きさの粒子として球状化すること、更に、水スラリーを突出速度が少なくとも50m/sの高速気体にて分散させることによって、その高速気体の速度に応じたSiO蒸気を発生させることができたこと、すなわち溶融シリカ粒子表面のシリカフュームの付着量を調節することができたこと、と関係していると考えている。 According to the present invention, the melting rate is, for example, 99% or more, and the fused amount of silica fume on the surface of the fused silica particles is adjusted within a range of 5% by mass or less (not including 0), and the spherical melting with silica fume adhered thereto Silica powder can be produced. Furthermore, mass production of spherical fused silica powder having such characteristics becomes possible. The reason why such an effect could be achieved is that the transfer of heat to the silicon dioxide particles in the melting zone is mild by making the silicon dioxide powder raw material into a water slurry, that is, by covering the silicon dioxide particles with water molecules. In addition, the fine silicon dioxide particles confined in the water droplets are spheroidized as particles having a size corresponding to the diameter of the water droplets, and the water slurry is a high-speed gas having a protrusion speed of at least 50 m / s. It is related to the fact that the SiO vapor corresponding to the speed of the high-speed gas could be generated by dispersing in the above, that is, the amount of silica fume adhered to the surface of the fused silica particles could be adjusted. I believe.
本発明で用いられる二酸化ケイ素粉末原料は、例えば珪石粉、特に天然高純度珪石を粉砕した珪石粉、珪酸アルカリと鉱酸との湿式反応により合成されたシリカゲル、アルコキシシランからゾルゲル法で得られたゲルの粉砕物などである。このうち、製造コストや原料粉末の粒度調整の容易さから、SiO2純度が99.5質量%以上の天然高純度珪石の粉砕粉が好ましい。二酸化ケイ素粉末原料の粒径は、所望する製品粒子径によって自由に変更することができる。一般的には平均粒径が例えば100μm以下であり、また粉末同士が凝集しやすい1μm以下の微粉末を多く含有したものであってもよい。火炎を形成するための燃料ガスとしては、例えばプロパン、ブタン、プロピレン、アセチレン、水素等が使用され、また助燃ガスとしては、例えば空気、酸素等が使用される。 The silicon dioxide powder raw material used in the present invention was obtained by a sol-gel method from, for example, silica powder, particularly silica powder obtained by pulverizing natural high-purity silica, silica gel synthesized by a wet reaction of alkali silicate and mineral acid, and alkoxysilane. For example, a crushed gel. Among these, natural high-purity quartzite pulverized powder having a SiO 2 purity of 99.5% by mass or more is preferable from the viewpoint of production cost and ease of adjusting the particle size of the raw material powder. The particle size of the silicon dioxide powder raw material can be freely changed according to the desired product particle size. In general, the average particle diameter may be, for example, 100 μm or less, and the powder may contain a large amount of fine powder of 1 μm or less in which the powders easily aggregate. For example, propane, butane, propylene, acetylene, hydrogen or the like is used as the fuel gas for forming the flame, and air, oxygen or the like is used as the auxiliary combustion gas.
本発明の特徴は、二酸化ケイ素粉末原料を火炎に噴射する際に、二酸化ケイ素粉末原料の濃度が20〜80質量%である水スラリーを噴霧すること、この水スラリーを突出速度が少なくとも50m/s以上である気体で分散させながら噴霧することである。 A feature of the present invention is that when a silicon dioxide powder raw material is injected into a flame, a water slurry having a concentration of the silicon dioxide powder raw material of 20 to 80% by mass is sprayed, and the protrusion speed of the water slurry is at least 50 m / s. It is spraying while being dispersed with the above gas.
水スラリーの二酸化ケイ素粉末原料濃度が、20質量%よりも著しく小さいと、水スラリーの粘度が低下し分散時の液滴化が容易となるが、水の蒸発に要する熱量が増大し、二酸化ケイ素粉末の溶融に必要な熱量が不足する恐れがある。一方、二酸化ケイ素粉末濃度が80質量%よりも著しく大きいと、水スラリー粘度が増加するので、火炎中に分散性良く噴霧するために別の手段が必要となるばかりでなく、粒径制御が容易でなくなる恐れがある。特に好ましい水スラリーの二酸化ケイ素粉末原料濃度は50〜70質量%である。 If the silicon dioxide powder raw material concentration in the water slurry is remarkably smaller than 20% by mass, the viscosity of the water slurry decreases and droplet formation at the time of dispersion becomes easy, but the amount of heat required for water evaporation increases, and silicon dioxide There is a risk that the amount of heat required to melt the powder will be insufficient. On the other hand, if the silicon dioxide powder concentration is significantly higher than 80% by mass, the water slurry viscosity increases, so that not only another means is required for spraying with good dispersibility in the flame, but also particle size control is easy. There is a risk of disappearing. The silicon dioxide powder raw material concentration of a particularly preferable water slurry is 50 to 70% by mass.
特開2000−247626号公報には、シリカ粉末原料に金属シリコン粉末を混合した混合粉末を水スラリーにして噴射することが記載されている。この先行技術は、金属シリコン粉末を還元剤として用いることで、シリカ粉末をSiOにガス化させ、1μm以下の超微粉シリカ粉末(シリカフューム)を製造する方法であり、回収粉全量を1μm以下の超微粉シリカ粉末とすることを目的としているのに対し、本発明は溶融シリカ粒子の表面に少量のシリカフュームが付着した球状溶融シリカ粉末を製造している点で両者は相違している。従って、本発明で用いる水スラリーには金属シリコン粉末は含まれていないことが望ましい。 Japanese Patent Application Laid-Open No. 2000-247626 describes that a mixed powder obtained by mixing a metal powder with a silica powder raw material is sprayed as a water slurry. This prior art is a method in which silica powder is gasified to SiO by using metal silicon powder as a reducing agent to produce ultrafine silica powder (silica fume) of 1 μm or less, and the total amount of recovered powder exceeds 1 μm or less. The present invention is different from the present invention in that a spherical fused silica powder in which a small amount of silica fume adheres to the surface of fused silica particles is produced, whereas the purpose is to obtain finely divided silica powder. Therefore, it is desirable that the water slurry used in the present invention does not contain metal silicon powder.
水スラリーの調整は、水と二酸化ケイ素粉末を容器に所定量投入し、攪拌機でスラリー化するバッチ式、ラインミキサーで連続的にスラリーを調整する連続式等によって行うことができる。水スラリー中の二酸化ケイ素粉末原料の分散性を向上させるために、少量の例えばポリカルボン酸、ポリアクリル酸又はそれらの酸の塩を成分とする分散剤、具体的には花王株式会社製商品名「ポイズ532A」、日本油脂株式会社製商品名「AKM−0531」、「HKM−50A」、「AKM−3011−60」から選ばれた1種又は2種以上を使用することは好ましい。 The water slurry can be adjusted by a batch method in which a predetermined amount of water and silicon dioxide powder are put into a container and slurried with a stirrer, or a continuous method in which the slurry is continuously adjusted with a line mixer. In order to improve the dispersibility of the silicon dioxide powder raw material in the water slurry, a dispersant containing a small amount of, for example, polycarboxylic acid, polyacrylic acid or a salt of those acids, specifically, trade name manufactured by Kao Corporation It is preferable to use 1 type (s) or 2 or more types selected from "Poise 532A", Nippon Oil & Fats Co., Ltd. trade names "AKM-0531", "HKM-50A", and "AKM-3011-60".
本発明において、水スラリーは突出速度が少なくとも50m/s以上、好ましくは100〜300m/sとした気体に分散させて火炎中に噴霧される。すなわち、水スラリーの突出速度は火炎内へのスラリー噴霧時に分散を与える気体速度で決定される。気体の突出速度が50m/s未満よりも著しく小さいと、水スラリーの液滴を十分に分散させることができないので、水流に近い状態で火炎内に供給されてしまい、未溶融粒子が多く含まれる恐れがある。分散させる気体としては、空気、酸素などの助燃気体、窒素、アルゴンなどの不活性気体が好適に使用されるが、プロパン、水素などの可燃性気体も使用することができる。 In the present invention, the water slurry is dispersed in a gas having a protruding speed of at least 50 m / s, preferably 100 to 300 m / s, and sprayed into the flame. That is, the protrusion speed of the water slurry is determined by the gas speed that gives dispersion when the slurry is sprayed into the flame. If the gas projection speed is significantly lower than less than 50 m / s, the water slurry droplets cannot be sufficiently dispersed, so that they are supplied into the flame in a state close to the water flow, and contain many unmelted particles. There is a fear. As the gas to be dispersed, an auxiliary combustion gas such as air or oxygen, or an inert gas such as nitrogen or argon is preferably used, but a flammable gas such as propane or hydrogen can also be used.
水スラリーを噴射口まで搬送する手段としては、チューブポンプ、ダイヤフラムポンプ、渦巻きポンプ等汎用のポンプを用いることができる。また、水スラリーの噴霧は、例えば二流体ノズル等のスプレー噴霧器が用いられる。その際、スラリーの液滴を微小化するため、高圧の気体が用いられ、水スラリーはその気体に同伴させて火炎中に噴霧される。 As a means for conveying the water slurry to the injection port, a general-purpose pump such as a tube pump, a diaphragm pump, or a vortex pump can be used. For spraying the water slurry, for example, a spray sprayer such as a two-fluid nozzle is used. At that time, in order to make the droplets of the slurry fine, a high-pressure gas is used, and the water slurry is sprayed into the flame accompanying the gas.
二流体ノズルには、水スラリーと共に噴射された気体が、炉内で旋回流を形成するものがある。本発明においては、スラリーの液滴を微粒子化する点から、旋回気流パターンを形成するもの、更には噴射口までの搬送には大きな負荷がかからずにこのような旋回気流パターンを形成するものの使用が好ましい。旋回流を形成する二流ノズルの市販品の一例をあげれば、例えばアトマックス社製商品名「BNH500S−IS」である。 In some two-fluid nozzles, a gas injected with water slurry forms a swirling flow in a furnace. In the present invention, a swirl airflow pattern is formed from the point that the droplets of the slurry are atomized, and further, such a swirl airflow pattern is formed without applying a large load to the transport to the injection port. Use is preferred. An example of a commercial product of a two-flow nozzle that forms a swirling flow is a trade name “BNH500S-IS” manufactured by Atmax Co., Ltd.
本発明で使用される装置は、二流体ノズルの設置された炉と、球状溶融シリカ粉末の捕集系とからなっている。炉は、火炎の形成及び二酸化ケイ素粉末原料の溶融・球状化が行われる溶融ゾーンと、自然に又は強制的に球状溶融シリカ粉末の冷却固化が行われる冷却ゾーンとから構成されている。冷却ゾーンでは、捕集系の操作が容易となるように例えば1000℃以下の温度までに球状溶融シリカ粉末が冷却される。強制冷却を行わない場合には、その温度に達する時間の間、球状溶融シリカ粉末が滞留するように冷却ゾーンの長さが設計されている。本発明の製造方法によって、平均粒径が10μm以下の微粒な球状溶融シリカ粉末を製造するには、溶融ゾーンで形成された球状溶融シリカ粒子を合着して粒子が変形又は粗粒化させないように速やかに強制冷却を行うことが好ましい。強制冷却は、溶融ゾーンと冷却ゾーンとの接続部近傍から空気等の冷却ガスを供給することによって行うことが望ましく、これによって球状溶融シリカ粒子を捕集系に気体輸送できる利点もある。 The apparatus used in the present invention comprises a furnace in which a two-fluid nozzle is installed and a collection system for spherical fused silica powder. The furnace is composed of a melting zone where a flame is formed and a silicon dioxide powder raw material is melted and spheroidized, and a cooling zone where the spherical fused silica powder is cooled and solidified naturally or forcibly. In the cooling zone, the spherical fused silica powder is cooled to a temperature of, for example, 1000 ° C. or less so that the operation of the collection system is facilitated. When forced cooling is not performed, the length of the cooling zone is designed so that the spherical fused silica powder stays for the time to reach that temperature. In order to produce fine spherical fused silica powder having an average particle size of 10 μm or less by the production method of the present invention, the spherical fused silica particles formed in the melting zone are coalesced so that the particles are not deformed or coarsened. It is preferable to perform forced cooling promptly. The forced cooling is desirably performed by supplying a cooling gas such as air from the vicinity of the connection portion between the melting zone and the cooling zone, which also has an advantage that the spherical fused silica particles can be transported by gas to the collection system.
本発明では、二酸化ケイ素粉末原料の各粒子は水分子で覆われて噴射されるので、溶融ゾーンにおける二酸化ケイ素粒子への熱伝達がマイルドになる。その結果、溶融中の粒子同士が衝突して粒子が肥大化することが極めて少なくなるので、球状溶融シリカ粉末の平均粒子径が二酸化ケイ素粉末原料の平均粒子径の1.5倍以下に、またその比表面積が球状シリカ粉末の平均粒子径から算出した理論値の5倍以下にすることも可能となる。また、水スラリーの突出速度を気体の突出速度として50m/s以上とすることによって、その速度に応じた量のSiO蒸気を発生させることができるので、気体の突出速度の調節によって溶融シリカ粒子の表面に付着するシリカフューム量を5質量%以下(0を含まず)の範囲内で自由に制御することが可能となる。 In the present invention, each particle of the silicon dioxide powder raw material is covered with water molecules and sprayed, so that heat transfer to the silicon dioxide particles in the melting zone becomes mild. As a result, the particles that are melted collide with each other and the size of the particles becomes extremely small, so that the average particle size of the spherical fused silica powder is 1.5 times or less than the average particle size of the silicon dioxide powder raw material, The specific surface area can be reduced to 5 times or less of the theoretical value calculated from the average particle diameter of the spherical silica powder. Moreover, since the amount of SiO vapor can be generated in accordance with the velocity of the water slurry by setting the gas slurry protruding speed to 50 m / s or more as the gas protruding speed, The amount of silica fume adhering to the surface can be freely controlled within a range of 5% by mass or less (excluding 0).
炉頂に二流体ノズルの設置された竪型炉と、その下部が捕集系に直結された装置を用いて球状溶融シリカ粉末を製造した。水スラリーは、二流体ノズルの中心部からポンプ搬送されて火炎中に噴霧され、その周囲からは燃焼ガスと助燃ガスが噴射されて火炎が形成されており、燃焼ガス量と助燃ガス量の制御により火炎長さと火炎温度が調整される。炉で生成した球状溶融シリカ粉末は、ブロワーで吸引されて捕集系に導かれ、バグフィルターで捕集される。 Spherical fused silica powder was produced using a vertical furnace in which a two-fluid nozzle was installed at the top of the furnace and an apparatus in which the lower part was directly connected to a collection system. The water slurry is pumped from the center of the two-fluid nozzle and sprayed into the flame. Combustion gas and auxiliary combustion gas are injected from its surroundings to form a flame. Control of the amount of combustion gas and auxiliary gas Adjusts the flame length and flame temperature. The spherical fused silica powder produced in the furnace is sucked by a blower, guided to a collection system, and collected by a bag filter.
実施例1
粉砕珪石粉(平均粒径:12μm、SiO2純度:99.9質量%)100質量部とイオン交換水100質量部を攪拌混合器で混合して水スラリー(二酸化ケイ素粉末原料濃度50質量%)を調製した。このスラリーをポンプ搬送にて二流体ノズル(アトマックス社製「BNH500S−IS」)から、火炎中(温度約1900℃)に30L/hrで噴霧した。噴霧には二流体ノズルに24Nm3/hrの気体(酸素)を用い、その突出速度を150m/sとして行った。この気体は炉内で旋回気流を形成することは別途確認されている。なお、バーナーからは、燃料ガスとしてLPG:10Nm3/hr、助燃ガスとして酸素:40Nm3/hrを噴射して火炎を形成した。
Example 1
100 parts by mass of pulverized silica stone powder (average particle size: 12 μm, SiO 2 purity: 99.9% by mass) and 100 parts by mass of ion-exchanged water are mixed with a stirring mixer to form an aqueous slurry (silicon dioxide powder raw material concentration: 50% by mass). Was prepared. This slurry was sprayed at 30 L / hr in a flame (temperature about 1900 ° C.) from a two-fluid nozzle (“BNH500S-IS” manufactured by Atmax Co., Ltd.) by pump conveyance. For spraying, a gas (oxygen) of 24 Nm 3 / hr was used in a two-fluid nozzle, and the protrusion speed was 150 m / s. It has been separately confirmed that this gas forms a swirling airflow in the furnace. Incidentally, the burner, LPG as fuel gas: 10 Nm 3 / hr, oxygen as combustion support gas: inject 40 Nm 3 / hr to form a flame.
バグフィルターにて捕集された球状溶融シリカ粉末は、一部炉体への付着があったが、95質量%の回収率であった。得られた球状溶融シリカ粉末について以下の物性を測定した。それらの結果を表1に示す。 The spherical fused silica powder collected by the bag filter partially adhered to the furnace body, but the recovery rate was 95% by mass. The obtained spherical fused silica powder was measured for the following physical properties. The results are shown in Table 1.
実施例2〜7、比較例1、2
水スラリー中の二酸化ケイ素粉末原料の濃度、水スラリーフィード量、気体の突出速度を種々変更したこと以外は、実施例1と同様にして球状溶融シリカ粉末を製造した。
Examples 2 to 7, Comparative Examples 1 and 2
Spherical fused silica powder was produced in the same manner as in Example 1 except that the concentration of the silicon dioxide powder raw material in the water slurry, the amount of water slurry feed, and the gas projection speed were variously changed.
比較例3
金属シリコン粉末の混合された水スラリーを用いたこと、すなわち水50質量%、二酸化ケイ素粉末45質量%、金属シリコン粉末5質量%の水スラリーを用いたこと以外は、実施例1と同様の条件で球状溶融シリカ粉末を製造した。
Comparative Example 3
The same conditions as in Example 1 except that a water slurry mixed with metal silicon powder was used, that is, a water slurry of 50 mass% water, 45 mass% silicon dioxide powder, and 5 mass% metal silicon powder was used. To produce spherical fused silica powder.
比較例4
粉砕珪石粉を水スラリーで噴霧するかわりに粉末で供給したこと以外は、実施例1に準じて球状溶融シリカ粉末を製造した。粉砕珪石粉は、テーブルフィーダーにて粉砕珪石粉の21.4kg/hを噴射口まで搬送し、20Nm3/hの酸素ガスを用いバーナー中心部の内径21mmのフィード管より噴射した。
Comparative Example 4
A spherical fused silica powder was produced according to Example 1 except that the pulverized silica powder was supplied as a powder instead of being sprayed with a water slurry. The pulverized silica powder was transported 21.4 kg / h of the pulverized silica powder to the injection port with a table feeder and sprayed from a feed tube having an inner diameter of 21 mm at the center of the burner using 20 Nm 3 / h oxygen gas.
実施例8
二流体ノズルとして、気体が炉内で旋回流を形成しないものを用いたこと以外は、実施例1と同様の条件で球状溶融シリカ粉末を製造した。
Example 8
A spherical fused silica powder was produced under the same conditions as in Example 1 except that a gas that does not form a swirling flow in the furnace was used as the two-fluid nozzle.
(1)平均球形度
日本電子社製走査型電子顕微鏡「FE−SEM、モデルJSM−6301F」にて撮影した粒子像を画像解析して測定した。すなわち、粒子の投影面積(A)と周囲長(PM)を写真から測定する。周囲長(PM)に対応する真円の面積を(B)とすると、その粒子の真円度はA/Bとして表示できる。そこで、試料粒子の周囲長(PM)と同一の周囲長を持つ真円を想定すると、PM=2πr、B=πr2であるから、B=π×(PM/2π)2となり、個々の粒子の球形度は、球形度=A/B=A×4π/(PM)2として算出することができる。このようにして得られた任意の粒子200個の球形度を求めその平均値を粉末の平均球形度とした。平均球形度は0.80以上が好ましい。
(1) Average sphericity A particle image photographed with a scanning electron microscope “FE-SEM, model JSM-6301F” manufactured by JEOL Ltd. was subjected to image analysis and measured. That is, the projected area (A) and the perimeter (PM) of the particle are measured from the photograph. When the area of a perfect circle corresponding to the perimeter (PM) is (B), the roundness of the particle can be displayed as A / B. Therefore, assuming a perfect circle having the same circumference as the sample particle (PM), PM = 2πr and B = πr 2 , so that B = π × (PM / 2π) 2 , and each particle Can be calculated as sphericity = A / B = A × 4π / (PM) 2 . The sphericity of 200 arbitrary particles thus obtained was determined, and the average value was taken as the average sphericity of the powder. The average sphericity is preferably 0.80 or more.
(2)溶融率
RIGAKU社製粉末X線回折装置「モデルMini Flex」を用い、CuKα線の2θが26°〜27.5°の範囲において、試料のX線回折分析を行った。結晶シリカの場合は、26.7°に主ピークが存在するが、溶融シリカではこの位置には存在しない。溶融シリカと結晶シリカが混在していると、それらの割合に応じて26.7°のピーク高さが変化する。そこで、結晶シリカ標準試料のX線強度に対する試料のX線強度の比から、結晶シリカ混在率(測定物質のX線強度/結晶シリカのX線強度)を算出し、式、溶融率(%)=(1−結晶シリカ混在率)×100から溶融率を求めた。
(2) Melting rate Using a powder X-ray diffractometer “Model Mini Flex” manufactured by RIGAKU, X-ray diffraction analysis of the sample was performed in the range of 2θ of CuKα ray of 26 ° to 27.5 °. In the case of crystalline silica, a main peak exists at 26.7 °, but in fused silica it does not exist at this position. When fused silica and crystalline silica are mixed, the peak height of 26.7 ° changes depending on the ratio thereof. Therefore, from the ratio of the X-ray intensity of the sample to the X-ray intensity of the crystalline silica standard sample, the mixed ratio of crystalline silica (X-ray intensity of the measured substance / X-ray intensity of the crystalline silica) is calculated, and the formula, melting rate (%) = (Mixing ratio of 1-crystalline silica) × 100 The melting rate was determined.
(3)平均粒径
ベックマンコールター社製「モデルLS−230」(レーザー回折光散乱法)粒度分布測定機を用いて測定した。溶媒に水を用い、ホモジナイザーを用いて200Wの出力を1分間かけて分散処理させたものを試料とした。PIDS(Polarization Intensity Differential Scattering)濃度を45〜55%になるように調製し、水の屈折率を1.33、二酸化ケイ素粉末、溶融シリカ粉末の屈折率を1.50とした。
(3) Average particle diameter It measured using the "model LS-230" (laser diffraction light scattering method) particle size distribution measuring machine by a Beckman Coulter company. A sample was prepared by using water as a solvent and dispersing the output of 200 W for 1 minute using a homogenizer. The concentration of PIDS (Polarization Intensity Differential Scattering) was adjusted to 45 to 55%, the refractive index of water was 1.33, and the refractive indexes of silicon dioxide powder and fused silica powder were 1.50.
(4)シリカフュームの付着量
粒度分布測定機における累積重量分布において、1μm以下の累積重量の値をシリカフュームの付着量とした。本発明で用いた粒度分布測定機「モデルLS−230」では、1μmに測定における境界がないため、0.953μm以下の値にて判断した。シリカフュームの付着量は5質量%以下(0は含まず)が好ましい。
(4) Adhesion amount of silica fume In the cumulative weight distribution in the particle size distribution analyzer, the cumulative weight value of 1 μm or less was defined as the adhesion amount of silica fume. In the particle size distribution measuring instrument “Model LS-230” used in the present invention, since there is no boundary in measurement at 1 μm, the value was determined to be 0.953 μm or less. The adhesion amount of silica fume is preferably 5% by mass or less (excluding 0).
(5)比表面積
湯浅アイオニクス社製測定機「4−SORB U2」)を用い、BET法比表面積を測定した。
(5) Specific surface area BET method specific surface area was measured using a measuring machine “4-SORB U2” manufactured by Yuasa Ionics.
表1から、本発明の実施例1〜7は、比較例1〜4に比べて、溶融率が優れ、比表面積の低い、シリカフュームの付着した球状溶融シリカ粉末が得られていることがわかる。とくに、水スラリーの二酸化ケイ素粉末原料の濃度、水スラリーフィード量及び気体の突出速度を選べば、球状溶融シリカ粉末の平均粒子径が二酸化ケイ素粉末原料の平均粒子径の1.5倍以下、比表面積が球状シリカ粉末の平均粒子径から算出した理論値の5倍以下、シリカフュームの付着量が5質量%以下(0は含まず)である球状溶融シリカ粉末が得られた。また、実施例1、4、6は比較例1、2に比べて粒子の肥大化がも抑制された。実施例8は実施例1に比べて平均球形度と平均粒径が若干劣った。 From Table 1, it can be seen that Examples 1 to 7 of the present invention have spherical fused silica powders with excellent melting rate and low specific surface area to which silica fume adheres, as compared with Comparative Examples 1 to 4. In particular, if the concentration of the silicon dioxide powder raw material in the water slurry, the amount of water slurry feed and the gas projection speed are selected, the average particle size of the spherical fused silica powder is 1.5 times or less than the average particle size of the silicon dioxide powder raw material. A spherical fused silica powder having a surface area of 5 times or less the theoretical value calculated from the average particle diameter of the spherical silica powder and a silica fume adhesion amount of 5 mass% or less (not including 0) was obtained. Further, in Examples 1, 4, and 6, particle enlargement was also suppressed as compared with Comparative Examples 1 and 2. Example 8 was slightly inferior in average sphericity and average particle size as compared to Example 1.
本発明によって製造された球状溶融シリカ粉末は、例えば封止材の充填材として用いることができる。 The spherical fused silica powder produced by the present invention can be used, for example, as a sealing material filler.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004283502A JP4145855B2 (en) | 2004-09-29 | 2004-09-29 | Method for producing spherical fused silica powder |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004283502A JP4145855B2 (en) | 2004-09-29 | 2004-09-29 | Method for producing spherical fused silica powder |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006096599A true JP2006096599A (en) | 2006-04-13 |
JP4145855B2 JP4145855B2 (en) | 2008-09-03 |
Family
ID=36236761
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004283502A Expired - Fee Related JP4145855B2 (en) | 2004-09-29 | 2004-09-29 | Method for producing spherical fused silica powder |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4145855B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008031229A1 (en) * | 2006-09-14 | 2008-03-20 | Silicium Becancour Inc. | Process and apparatus for purifying low-grade silicon material |
WO2021215285A1 (en) * | 2020-04-24 | 2021-10-28 | 株式会社トクヤマ | Method for producing surface-treated silica powder |
US12098076B2 (en) | 2019-02-28 | 2024-09-24 | Tokuyama Corporation | Silica powder, resin composition, and dispersion |
-
2004
- 2004-09-29 JP JP2004283502A patent/JP4145855B2/en not_active Expired - Fee Related
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008031229A1 (en) * | 2006-09-14 | 2008-03-20 | Silicium Becancour Inc. | Process and apparatus for purifying low-grade silicon material |
EA015387B1 (en) * | 2006-09-14 | 2011-08-30 | Силисиум Беканкур Инк. | Process and apparatus for purifying low-grade silicon material |
US12098076B2 (en) | 2019-02-28 | 2024-09-24 | Tokuyama Corporation | Silica powder, resin composition, and dispersion |
WO2021215285A1 (en) * | 2020-04-24 | 2021-10-28 | 株式会社トクヤマ | Method for producing surface-treated silica powder |
Also Published As
Publication number | Publication date |
---|---|
JP4145855B2 (en) | 2008-09-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109455728B (en) | Device and method for producing high-purity superfine spherical silicon micro powder by heating gas | |
TWI723114B (en) | Method for producing nonstoichiometric titanium oxide fine particle | |
JP4941629B2 (en) | Method for producing spheroidized inorganic powder | |
US8117867B2 (en) | Process for producing spherical inorganic particle | |
JPH11147711A (en) | Alumina fine sphere and its production | |
JP4145855B2 (en) | Method for producing spherical fused silica powder | |
JP4601497B2 (en) | Spherical alumina powder, production method and use thereof | |
JPH0891874A (en) | Glass spherical powder and its production | |
JP2003212572A (en) | Method of manufacturing spherical glass powder | |
JP3957581B2 (en) | Method for producing spherical silica powder | |
JP4294191B2 (en) | Method and apparatus for producing spherical silica powder | |
JP4313924B2 (en) | Spherical silica powder and method for producing the same | |
JP2002179409A (en) | Method of manufacturing fine spherical inorganic powder | |
JP4330298B2 (en) | Method for producing spherical inorganic powder | |
JP2006131442A (en) | Method for manufacturing spherical fused silica powder | |
JP3525677B2 (en) | Filler for IC substrate and resin composition for IC encapsulation | |
JP4230554B2 (en) | Method for producing spherical particles | |
JP3891740B2 (en) | Method for producing fine spherical siliceous powder | |
JP4318288B2 (en) | Spherical powder production apparatus, powder processing burner, and spherical powder production method | |
JP4392097B2 (en) | Method for producing ultrafine spherical silica | |
JP3853137B2 (en) | Method for producing fine spherical silica | |
JP3868141B2 (en) | Method for producing spherical silica powder | |
JP2001354409A (en) | Method for manufacturing ultrafine powder silica | |
JP3765769B2 (en) | Method for producing fine spherical silica powder | |
JP4231014B2 (en) | Method for producing spherical inorganic oxide powder |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080131 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080219 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080418 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080617 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080618 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110627 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110627 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120627 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130627 Year of fee payment: 5 |
|
LAPS | Cancellation because of no payment of annual fees |