[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4230554B2 - Method for producing spherical particles - Google Patents

Method for producing spherical particles Download PDF

Info

Publication number
JP4230554B2
JP4230554B2 JP01126498A JP1126498A JP4230554B2 JP 4230554 B2 JP4230554 B2 JP 4230554B2 JP 01126498 A JP01126498 A JP 01126498A JP 1126498 A JP1126498 A JP 1126498A JP 4230554 B2 JP4230554 B2 JP 4230554B2
Authority
JP
Japan
Prior art keywords
gas
powder
silica powder
particles
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP01126498A
Other languages
Japanese (ja)
Other versions
JPH11209106A (en
Inventor
一也 山本
光芳 岩佐
晃 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP01126498A priority Critical patent/JP4230554B2/en
Publication of JPH11209106A publication Critical patent/JPH11209106A/en
Application granted granted Critical
Publication of JP4230554B2 publication Critical patent/JP4230554B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock

Landscapes

  • Oxygen, Ozone, And Oxides In General (AREA)
  • Silicon Compounds (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、球状粒子を含有する無機質粉末の製造法に関し、より詳細には、無機質粉末を火炎中に噴射して該粉末を構成する粒子を加熱球状化することで、分散性、充填性に優れ、半導体封止用の樹脂組成物の充填材として好適な球状粒子の製造方法に関する。
【0002】
【従来の技術】
半導体素子を封止して湿気等から隔離しその信頼性を高める目的で用いられる封止用樹脂組成物は、半導体素子の高性能化及び表面実装方式の採用に伴い低熱膨張化・高強度化が要求されている。このため、封止用樹脂組成物としたときに従来からの高流動性を維持しつつ、前記樹脂中に高充填可能な充填材が要求され、これを解決する手段として充填材の球状化技術が開発されている。
【0003】
無機質粉末の球状化技術としては、例えば金属微粒子を火炎中に投じて酸化反応させながら球状粒子を製造する方法、金属アルコラートを特定の条件でゾルゲル法により析出させ球状化する方法、あるいは不定形の粒子を粉砕機中で粒子の角を徐々に取り、疑似球状化する方法等が提案あるいは実用化されている。
【0004】
本発明は、無機質原料粉末を高温火炎中に投じて、該粉末中の粒子を溶融又は軟化により球状化する方法に関するもので、本方法は原料粉末の化学組成を基本的に変えることなく、高純度原料を用いて容易に高純度の無機質粉末が得られるという特徴がある。更に、本方法は、粒径の異なる粒子群を同時に幅広く、連続して球状化が可能な方法であり、多量生産に適した方法といえる。
【0005】
しかしながら、原料粉末に最大粒子径が20μm以下の微粒子からなる粉末を、特に5μm以下からなる粉末を用いると、粒子同士の分散が不十分のままに火炎内でおのおのの粒子が溶融し、相互に付着して肥大した球状粒子となったり、また個別の粒子が所望の通りに球状化されていても、火炎を通過する直後の冷却過程で、個々の粒子間で接触し、融着結合して団子状となるなど、投入原料粉末よりも粗い粒度分布のものが得らると云う問題があった。
【0006】
この様な粒子間同士の凝集及び合着等による粒子の肥大化の問題に対して、例えば特開平6−199013号公報では、火炎形成領域に冷却エアを導入して火炎形成領域を調整することで、原料の融点以上の温度域に滞留する時間を制御して、粒子間の融着や融合を防止する方法が提案されている。また、特開平6−56445号公報には、溶融原料噴射時の断面積を変更可能にした溶射バーナーを使用し、原料噴射時のガス流速を規定し、粗粉と微粉をつくり分ける方法が開示されている。更には、特開昭61−35145号公報には、原料量/ガス量の比を小さくし、火炎中の粒子間相互の分散性を向上させ、粒子間の融着現象を低減させるという方法が開示されている。
【0007】
【発明が解決しようとする課題】
しかしながら上記方法では、粒子径が20μm以下の微粒子からなる粉末を原料に用いる時には、粒子間同士の凝集並びに合着による粒子肥大化の現象を十分には抑制できないために、原料と同程度の粒度若しくは粒度分布を有する球状粒子を含有した無機質粉末を得ることが困難という問題が依然として解決されていなかった。
【0008】
本発明の目的は、シリカ粉末を高温火炎中に投じて該粉末中の粒子を球状化するシリカ粉末の製造方法に於いて、原料粉末中並びに球状化後の個々の粒子間が溶融及び冷却中に凝集、合着することを防止して、分散性が良く、凝集合着の少ない球状粒子を含有するシリカ粉末を安定して提供することにある。
【0009】
本発明は、上記事情に鑑みなされたもので、火炎中に微粉シリカ粉末を投入して球状粒子を含有するシリカ粉末を得る製造方法に関して、ガス速度、ガス混合比、原料のシリカ粉末の粒度とそれらの関係に着目し、それらの球状化過程に与える影響について実験した結果、燃焼ガスをバーナーノズルの先端で70〜1200m/secの高速で吹き出すときに、シリカ粉末の5μm以下の微粉に対して、300〜1200m/secの超高速で吹き出す時、そのなかにある粒子同士の凝集、合着が少なく、しかも球状化が達成され、その結果微粉の球状粒子含有シリカ粉末を容易に製造できることを見出し、本発明に至ったものである。また、理論燃焼比より多い所定範囲の支燃性ガス量を供給するときに、前記効果がより好ましく得られるという知見を得て、本発明に至ったものである。
【0010】
すなわち、本発明は可燃性ガス及び/又は支燃性ガスに、シリカ粉末を担持させ火炎中に噴射してシリカ粉末を加熱球状化する方法に於いて、バーナーノズル先端に於けるシリカ粉末の噴射速度を70〜1200m/secとすることを特徴とする球状粒子の製造方法である。またシリカ原料粉末が、平均粒径が0.1〜20μmである球状粒子の製造方法である。
【0011】
更に、可燃性ガス及び/又は支燃性ガスに、平均粒径が0.1〜5μmであるシリカ粉末を担持させ、火炎中に噴射してシリカ粉末を加熱球状化する方法に於いて、バーナーノズル先端に於けるシリカ粉末の噴射速度を300〜1200m/secとすることを特徴とする球状シリカの製造方法であり、可燃性ガス量に対する支燃性ガス量を理論燃焼量の1.04〜1.4倍とする前記球状粒子の製造方法である。
【0012】
【発明の実施の形態】
一般に、微粒子を多く含む無機質粉末を原料とする場合、原料粉末量/ガス量の比を高くして火炎に噴射して加熱溶融すると、溶融時に又は火炎から飛び出した直後の冷却過程に於いて、粒子同士が衝突を繰り返し、凝集合着する率が高くなる。従って原料粉末の粒度が微粉側になればなるほど、原料粉末量/ガス量の比を小さくしなければならなかった。しかし、本発明によれば、バーナーノズル出口でのガスの速度が高速であるので、例えば、0.1〜20μmの平均粒子径を有し凝集性の大きな微粉末を原料に用いても、凝集、合着がなく、原料と同程度の平均粒子径を有する球状粒子からなる粉末を容易に得ることができる。
【0013】
無機質粉末のノズルからの噴射速度は担持ガスと同等であり、担持ガスの速度を知ることによって無機粉末の噴射速度を知ることができる。この時
Qm=無機質粉末の比熱及び融解熱より計算される溶融に必要な熱量
Qt=可燃性ガスの理論燃焼熱量
としたとき、熱量比P=Qm/Qtが0.01〜0.2となるような無機質粉濃度とすることが好ましい。
【0014】
担持ガスのノズル出口での速度は70m/sec未満の場合では微粒子同士の凝集、合着が発生し易くなるし、1200m/secを越える場合では未溶融粒子が多くなる。300〜1000m/secが好適な範囲であり、ことに5μm以下のシリカ微粉原料を用いるときには400m/sec以上が更に好ましく選択される。又、可燃性ガスと支燃性ガスとを同速度で、若しくは混合ガスとしてバーナーより噴射し、形成された火炎中に投入する方法が最も望ましい。
【0015】
ここで、ガス速度Vとは、火炎を形成する為のバーナーのノズル先端部に於いて、原料の無機質粉末を担持したガスのノズル開口面積をS(m2)とし、無機質粉末を担持したガスの標準状態(0℃、1atm)に換算したガスの流量をQg(Nm3/sec)としたとき、下記の式(1)で計算される値で定義される。
V=Qg/S (m/sec) (1)
【0016】
シリカ粉末の担持ガスへの担持方法としては、例えば、テーブルフィーダーから切込まれた前記シリカ粉末を担持ガスと共にバーナーに供給する等の公知の方法で実施すれば良い。シリカ粉末は、可燃性ガスと支燃性ガスとのいずれか一方、或いは両方に担持させることができる。いずれか一方に担持する方法については、本発明者らの検討結果によれば、理由は定かでないが、支燃性ガスに担持する方が好ましく、本発明の目的を達成することが容易である。
【0017】
シリカ粉末を可燃性ガス及び支燃性ガスのいずれにも担持させる場合、ガス速度はそれぞれのガスについて、前述の所定範囲の速度を満足することが必要である。一方のガスの速度が、所定の速度範囲よりも低速側では粒子同士が接触する可能性が高くなるので、球状化は可能であるとしても凝集や合着が誘発されて得られる粉末の平均粒子径は大きくなってしまう。これに対して、一方のガスの速度が所定速度範囲よりも高速側では球状化不十分で破砕状の粒子が製品中に多く含まれるようになり好ましくない。
【0018】
可燃性ガス量と支燃性ガス量との比については、可燃性ガスの完全燃焼に必要な理論酸素量を含む支燃性ガス量を理論支燃性ガス量Qsとすると、理論支燃性ガス量Qsの1.04〜1.4倍とするのが好適である。さらに好ましくは1.1〜1.3倍の支燃性ガス量とする。支燃性ガス量がQsの1.00以上で、1.04倍未満の場合には、火炎温度が高く、シリカ粉末の温度上昇が余りに容易なために、火炎から飛び出した後の冷却に時間がかかり、凝集や合着による粒度変動を招く。一方理論量Qsの1.4倍を越える場合には、火炎温度も低下し、溶融不十分となり、破砕状粒子を多く含むようになる。
【0019】
本発明で用いる可燃性ガスとしては、アセチレン、プロパン、ブタン等の炭化水素ガスのいずれか又はこれらのガスの混合ガスを用いることが出来る。このうち、平均粒径が20μm以下の微粉の加熱溶融、球状化においては、発熱量の比較的低いプロパン、ブタン或いはこれらの混合ガスが好ましい。
【0020】
支燃性ガスは、酸素を含むガスであれば、どの様なガスであっても使用可能である。一般的には、99%以上の純酸素を用いるのが安価で最も好ましい方法であるが、ガスの発熱量低減を目的として空気の使用若しくはアルゴン等の不活性なガスを前記支燃性ガスの酸素以外の成分として添加することもできる。
【0021】
本発明のシリカ粉末については、珪石のように加熱して溶融軟化する物質であれば球状化が可能であり、シリカ粉体として使用することができる。
【0022】
導体封止用の樹脂組成物の充填剤として低熱膨張及び耐湿性等の封止材としての要求特性に応じることが出来るという観点から、シリカ粉末を用いる。シリカ粉末は結晶質のいわゆる珪石を用いるのが価格の面から好ましいが、非晶質又は結晶質/非晶質の混合物であっても良い。
【0023】
原料シリカの粒子径に関しては、平均粒子径が0.1〜20μmであることが好ましい。一般に原料に用いるシリカは、塊状の珪石を粉砕して得られることが多く、このために粉末を構成する粒子は角ばっていて、特に微粒子は著しい凝集性を有するが、本発明者らの検討によれば、平均粒子径が特定の範囲にあれば、安定して本発明の目的を達成することができる。この理由は、平均粒子径が0.1μmより小さい場合には、シリカ微粉が著しい凝集特性を有するので、特定のガス条件下で溶融、球状化した場合であっても、時として粒子分散が不十分なまま溶融され製品の粒子径増大を招くことがあるし、平均粒子径が20μmより大きい場合は、球状化不十分なまま製品中に破砕状粒子が多く含まれ易くなるからである。
【0024】
尚、本発明では、高速のガスを得る必要があるが、細孔オリフィス、リングノズルを用いる等、公知の方法で達成可能である。このためにバーナー部の入り口でガスの圧力を0.05〜2MPaとする。また、バーナー部先端はシリカ粉末を含む高速のガスが流れるので摩耗、損耗が激しい為、バーナー先端部はセラミックスのように高耐熱、耐摩耗の部材を用いる方が長時間安定に製造できる。
【0025】
【実施例】
以下、本発明を実施例と比較例を挙げて更に具体的に説明するが、本発明は以下の実施例によって限定されるものではない。
【0026】
球状化に使用した設備の構成を図1に基づいて説明する。設備は、球状化バ−ナ−1と火炎2の高温排ガスを冷却するための外気吸引口3を設けた水冷ジャケット方式の竪型炉体及び生成した球状粒子を排ガス中より回収するバッグフィルター9及びブロワ10により構成される。炉体は横型にして火炎を水平方向に吹き出す、いわゆる横型炉又は傾斜炉として炉体を回転させて球状化する方法など制限するものではない。ブロワによりバーナーからの燃焼排ガス及びバーナー近傍に設けられた吸引口からの希釈空気と共に吸引された生成球状粒子は、接続部8を通過しバッグフィルターにて回収される。
【0027】
(1)原料の調整
原料シリカA〜C
高純度の天然珪石を乾式粉砕し、その後分級することにより表1に示す特性のシリカ粉末原料A〜Cを得た。
原料シリカD
高純度の天然珪石を撹拌式ミルにて湿式粉砕し、その後乾燥分級することにより表1に示す特性のシリカ粉末原料Dを得た。
原料シリカE
シリカ粉末原料Eとしては日本アエロジル社製アエロジルOX−50を使用した。
(2)溶融条件
表1に示すシリカ粉末原料を担持ガスにより、表2〜4に示す種々の溶融条件にてプロパンガス−酸素の火炎中に投入することで溶融球状化操作を試みた。この際、担持ガスとしては高純度酸素ガスを使用した。尚、粉体濃度Pとしてはシリカ粉末原料投入量(kg/hr)/プロパンガス量(Nm3 /hr)をどの溶融条件でも3.0となるようにして実施した。溶融品を捕集し、その平均粒径、溶融率を測定し、その結果を表2、3、及び4に記載した。
【0028】
(3)平均粒径(D50)
レーザー回折式粒度測定機から得られる重量粒度分布曲線より求められる平均粒径である。測定器はコールター社「モデルLS230」型を使用した。 但し、表1記載の原料EのアエロジルについてはSEM観察によるサイズである。微粒子が微粒子同士で或いは粗粉の周囲に合着すると、溶融後に得られる平均粒径が増大するので、投入原料に対する溶融球状化後の粒径増大率を評価することにより粒子の合着度が評価できる。
(4)溶融率
測定は、X線回折にて行い、得られたピーク面積によって製品中の結晶質分を定量し、残分を非晶質成分と見なしこれを溶融率と定義した。
溶融率値は、結晶質原料を使用した場合に溶融程度を知る特性であるが、溶融率が高いものはよく粒子が溶けて球形度も良好であることを示す球状化程度の代用特性でもある。
【0029】
【表1】

Figure 0004230554
【0030】
【表2】
Figure 0004230554
【0031】
【表3】
Figure 0004230554
【0032】
【表4】
Figure 0004230554
【0033】
【発明の効果】
本発明の構成により、微粉原料の凝集合着を少なくし、溶融率の高いすなわち高球形度の微粉を効率よく製造することができる。微細な球状の粒子を含有するので、樹脂組成物に容易に高充填することができ、そのため得られる樹脂組成物の硬化体が低熱膨張化・高強度化を達成することができ、半導体封止用の樹脂組成物に好適な球状粒子含有シリカ粉末を安価に、多量に、しかも安定して提供できる。従って半導体封止用樹脂組成物の高充填で高流動化に寄与するものである。
【図面の簡単な説明】
【図1】球状粒子製造装置の概観図
【符号の説明】
1 球状化バ−ナ−
2 火炎
3 冷却ガス(空気吸入口)
4.冷却ジャケット外管
5 冷却ジャケット内管
6.冷却水入口
7.冷却水出口
8 排気連絡口
9.バッグフィルター
10 排気用吸引ブロワ−
11 ガス量コントロ−ル用バルブ
12 ガス排出口
13 溶融粉抜出装置[0001]
[Industrial application fields]
The present invention relates to a method for producing an inorganic powder containing spherical particles, and more specifically, by spraying the inorganic powder into a flame and spheroidizing the particles constituting the powder, thereby improving dispersibility and filling properties. The present invention relates to a method for producing spherical particles that are excellent and suitable as a filler for a resin composition for semiconductor encapsulation.
[0002]
[Prior art]
The sealing resin composition used for the purpose of encapsulating semiconductor elements and isolating them from moisture, etc., to increase their reliability is a low thermal expansion and high strength due to the high performance of semiconductor elements and the adoption of surface mounting methods. Is required. For this reason, when a sealing resin composition is used, a filler capable of high filling in the resin is required while maintaining the conventional high fluidity, and as a means to solve this, a filler spheroidization technique is required. Has been developed.
[0003]
Examples of the spheroidizing technology of the inorganic powder include, for example, a method of producing spherical particles by injecting metal fine particles into a flame to cause an oxidation reaction, a method of depositing metal alcoholates by a sol-gel method under specific conditions, or spheroidizing. A method has been proposed or put into practical use in which particles are gradually rounded in a pulverizer and pseudo-sphericalized.
[0004]
The present invention relates to a method in which an inorganic raw material powder is thrown into a high-temperature flame, and particles in the powder are spheroidized by melting or softening, and this method does not basically change the chemical composition of the raw material powder. It is characterized in that high-purity inorganic powder can be easily obtained using a purity raw material. Furthermore, this method is a method suitable for mass production because it is possible to spheroidize a group of particles having different particle sizes simultaneously and widely.
[0005]
However, if a powder composed of fine particles having a maximum particle size of 20 μm or less is used as the raw material powder, especially a powder composed of 5 μm or less, each particle melts in the flame with insufficient dispersion between the particles, Even if the adhering and enlarged spherical particles are formed or the individual particles are spheroidized as desired, the particles are brought into contact with each other in the cooling process immediately after passing through the flame and fused and bonded. There was a problem that a coarser particle size distribution than the input raw material powder was obtained, such as a dumpling.
[0006]
For example, in Japanese Patent Laid-Open No. 6-199013, cooling air is introduced into a flame formation region to adjust the flame formation region in order to deal with the problem of particle enlargement due to such aggregation and coalescence between particles. Thus, a method has been proposed in which the residence time in the temperature range equal to or higher than the melting point of the raw material is controlled to prevent fusion and fusion between particles. Japanese Patent Laid-Open No. 6-56445 discloses a method of using a thermal spray burner in which the cross-sectional area at the time of molten raw material injection can be changed, defining the gas flow rate at the time of raw material injection, and separating coarse powder and fine powder. Has been. Furthermore, Japanese Patent Application Laid-Open No. 61-35145 discloses a method of reducing the ratio of the raw material amount / gas amount, improving the dispersibility between particles in the flame, and reducing the fusion phenomenon between particles. It is disclosed.
[0007]
[Problems to be solved by the invention]
However, in the above method, when a powder composed of fine particles having a particle size of 20 μm or less is used as a raw material, the phenomenon of particle enlargement due to aggregation and coalescence between particles cannot be sufficiently suppressed. Alternatively, the problem that it is difficult to obtain an inorganic powder containing spherical particles having a particle size distribution has not been solved.
[0008]
An object of the present invention, the silica powder particles in the powder charged into a high temperature flame in the manufacturing method of the silica powder to be spheroidized, raw material powder as well as between the individual particles melt after spheronization and during cooling It is intended to stably provide a silica powder containing spherical particles having good dispersibility and less aggregation and coalescence by preventing aggregation and coalescence.
[0009]
The present invention has been made in view of the above circumstances, and relates to a production method for obtaining silica powder containing spherical particles by introducing finely divided silica powder into a flame, gas velocity, gas mixing ratio, particle size of raw silica powder and As a result of experimenting on the influence on the spheroidizing process by paying attention to these relationships, when the combustion gas is blown out at a high speed of 70 to 1200 m / sec at the tip of the burner nozzle, the fine powder of 5 μm or less of silica powder is used . when blown ultrafast 300~1200m / sec, aggregation of the particles which is among them, less coalescence, moreover spheroidization is achieved, found that spherical particles containing silica powder and the resulting fine powder can be easily manufactured This has led to the present invention. In addition, the present inventors have obtained the knowledge that the above-mentioned effect can be obtained more favorably when supplying a combustion-supporting gas amount in a predetermined range that is larger than the theoretical combustion ratio.
[0010]
That is, the present invention relates to a method in which a silica powder is supported on a combustible gas and / or a combustion-supporting gas and sprayed into a flame, and the silica powder is heated and spheroidized, and the silica powder is injected at the tip of the burner nozzle. This is a method for producing spherical particles, characterized in that the speed is 70 to 1200 m / sec. The silica raw material powder is a method for producing spherical particles having an average particle size of 0.1 to 20 μm.
[0011]
Furthermore, in a method in which a silica powder having an average particle diameter of 0.1 to 5 μm is supported on a combustible gas and / or a combustion-supporting gas and sprayed into a flame, the silica powder is heated and spheronized. A method for producing spherical silica, characterized in that the injection speed of silica powder at the nozzle tip is 300 to 1200 m / sec, and the amount of combustible gas relative to the amount of combustible gas is 1.04 to the theoretical combustion amount. It is the manufacturing method of the said spherical particle made into 1.4 times.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
In general, when the inorganic powder containing a large amount of fine particles is used as the raw material, the ratio of the raw material powder amount / gas amount is increased and injected into the flame to heat and melt, in the cooling process at the time of melting or immediately after jumping out of the flame, The rate at which the particles repeatedly collide and agglomerate and coalesce increases. Therefore, as the particle size of the raw material powder becomes finer, the ratio of the raw material powder amount / gas amount has to be reduced. However, according to the present invention, since the gas velocity at the burner nozzle outlet is high, for example, even if a fine powder having an average particle diameter of 0.1 to 20 μm and having high cohesiveness is used as a raw material, Thus, it is possible to easily obtain a powder composed of spherical particles having no average particle size comparable to that of the raw material without coalescence.
[0013]
The injection speed of the inorganic powder from the nozzle is equivalent to that of the carrier gas, and the injection speed of the inorganic powder can be known by knowing the speed of the carrier gas. At this time, when Qm = the amount of heat necessary for melting calculated from the specific heat of the inorganic powder and the heat of fusion Qt = theoretical combustion heat amount of the combustible gas, the heat amount ratio P = Qm / Qt becomes 0.01 to 0.2. Such an inorganic powder concentration is preferable.
[0014]
When the velocity of the carrier gas at the nozzle outlet is less than 70 m / sec, the particles tend to aggregate and coalesce, and when it exceeds 1200 m / sec, the number of unmelted particles increases. 300 to 1000 m / sec is a suitable range, and 400 m / sec or more is more preferably selected when a silica fine powder raw material of 5 μm or less is used. Further, it is most desirable to inject the combustible gas and the combustion-supporting gas at the same speed or as a mixed gas from a burner and put it into the formed flame.
[0015]
Here, the gas velocity V is defined as a gas carrying inorganic powder, where S (m 2 ) is the nozzle opening area of the gas carrying the raw inorganic powder at the nozzle tip of the burner for forming a flame. When the gas flow rate converted to the standard state (0 ° C., 1 atm) is defined as Qg (Nm 3 / sec), it is defined by the value calculated by the following equation (1).
V = Qg / S (m / sec) (1)
[0016]
As a method for supporting the silica powder on the supporting gas, for example, a known method such as supplying the silica powder cut from the table feeder to the burner together with the supporting gas may be used. Silica powder can be carried on either or both of a combustible gas and a combustion-supporting gas. Regarding the method of supporting either one, according to the results of the study by the present inventors, the reason is not clear, but it is preferable to support it on a combustion-supporting gas, and it is easy to achieve the object of the present invention. .
[0017]
When the silica powder is supported on both the combustible gas and the combustion-supporting gas, the gas velocity needs to satisfy the above-mentioned predetermined range of velocity for each gas. Since the gas is more likely to come into contact with each other when the velocity of one gas is lower than the predetermined velocity range, even if spheroidization is possible, the average particle of the powder obtained by inducing aggregation and coalescence The diameter will increase. On the other hand, when the speed of one gas is higher than the predetermined speed range, spheroidization is insufficient and many crushed particles are contained in the product, which is not preferable.
[0018]
Regarding the ratio of the amount of combustible gas and the amount of combustible gas, if the amount of combustible gas including the theoretical oxygen amount necessary for complete combustion of combustible gas is the theoretical amount of combustible gas Qs, The gas amount is preferably 1.04 to 1.4 times the gas amount Qs. More preferably, the amount of supporting gas is 1.1 to 1.3 times. If the amount of combustion-supporting gas is 1.00 or more and less than 1.04 times Qs, the flame temperature is too high and the temperature of the silica powder rises so easily that it takes time to cool down after jumping out of the flame. It causes a change in particle size due to aggregation and coalescence. On the other hand, when it exceeds 1.4 times the theoretical amount Qs, the flame temperature also decreases, the melting becomes insufficient, and many crushed particles are contained.
[0019]
As the combustible gas used in the present invention, any one of hydrocarbon gases such as acetylene, propane and butane or a mixed gas of these gases can be used. Among these, propane, butane, or a mixed gas thereof having a relatively low calorific value is preferable in the heat melting and spheronization of fine powder having an average particle size of 20 μm or less.
[0020]
Any gas may be used as the combustion-supporting gas as long as it contains oxygen. In general, the use of 99% or more of pure oxygen is the cheapest and most preferable method. However, for the purpose of reducing the calorific value of the gas, the use of air or inert gas such as argon is used for the combustion-supporting gas. It can also be added as a component other than oxygen.
[0021]
The silica powder of the present invention can be spheroidized as long as it is a substance that melts and softens when heated , such as silica stone, and can be used as a silica powder.
[0022]
From the viewpoint to respond as fillers in the resin composition for a semi-conductor sealing the characteristics required as a sealing material such as low thermal expansion and moisture resistance it can be used silica powder. The silica powder is preferably crystalline so-called quartzite from the viewpoint of cost, but may be amorphous or a crystalline / amorphous mixture.
[0023]
Regarding the particle diameter of the raw silica, the average particle diameter is preferably 0.1 to 20 μm. In general, silica used as a raw material is often obtained by pulverizing massive silica stone. For this reason, the particles constituting the powder are angular and particularly fine particles have significant cohesiveness. Therefore, if the average particle diameter is in a specific range, the object of the present invention can be achieved stably. The reason for this is that when the average particle size is smaller than 0.1 μm, the silica fine powder has a remarkable agglomeration property, so even if it is melted and spheroidized under specific gas conditions, sometimes the particle dispersion is not good. This is because the product may be melted sufficiently to increase the particle size of the product, and when the average particle size is larger than 20 μm, many crushed particles are likely to be contained in the product with insufficient spheroidization.
[0024]
In the present invention, it is necessary to obtain a high-speed gas, but this can be achieved by a known method such as using a pore orifice or a ring nozzle. For this purpose, the gas pressure is set to 0.05 to 2 MPa at the entrance of the burner section. Further, since a high-speed gas containing silica powder flows at the tip of the burner portion, the wear and wear are severe. Therefore, the tip of the burner can be manufactured stably for a longer time by using a member having high heat resistance and wear resistance such as ceramics.
[0025]
【Example】
EXAMPLES Hereinafter, although an Example and a comparative example are given and this invention is demonstrated more concretely, this invention is not limited by a following example.
[0026]
The structure of the equipment used for spheroidization is demonstrated based on FIG. The equipment includes a water-cooled jacket type vertical furnace body provided with an outside air suction port 3 for cooling the high-temperature exhaust gas of the spheroidizing burner-1 and the flame 2, and a bag filter 9 for recovering the generated spherical particles from the exhaust gas. And the blower 10. The furnace body is not limited to a horizontal type in which a flame is blown out in a horizontal direction, such as a so-called horizontal furnace or a tilted furnace, in which the furnace body is rotated and spheroidized. The generated spherical particles sucked together with the combustion exhaust gas from the burner and the diluted air from the suction port provided in the vicinity of the burner by the blower pass through the connection portion 8 and are collected by the bag filter.
[0027]
(1) Preparation of raw materials
Raw silica A-C
Silica powder raw materials A to C having the characteristics shown in Table 1 were obtained by dry-pulverizing high-purity natural silica and then classifying it.
Raw material silica D
High-purity natural silica was wet pulverized with a stirring mill and then subjected to dry classification to obtain silica powder raw material D having the characteristics shown in Table 1.
Raw material silica E
As silica powder raw material E, Aerosil OX-50 manufactured by Nippon Aerosil Co., Ltd. was used.
(2) Melting conditions The spheroidizing operation was attempted by introducing the silica powder raw material shown in Table 1 into the propane gas-oxygen flame under the various melting conditions shown in Tables 2 to 4 using the carrier gas. At this time, high-purity oxygen gas was used as the carrier gas. The powder concentration P was set so that the silica powder raw material input amount (kg / hr) / propane gas amount (Nm 3 / hr) was 3.0 under any melting condition. The molten product was collected, the average particle diameter and the melting rate were measured, and the results are shown in Tables 2, 3, and 4.
[0028]
(3) Average particle diameter (D50)
It is an average particle size obtained from a weight particle size distribution curve obtained from a laser diffraction particle size analyzer. The measuring instrument used was a “Model LS230” type manufactured by Coulter. However, Aerosil of the raw material E described in Table 1 is the size by SEM observation. When the fine particles are coalesced between the fine particles or around the coarse powder, the average particle size obtained after melting increases, so the degree of particle coalescence can be determined by evaluating the rate of increase in particle size after melt spheronization with respect to the raw material. Can be evaluated.
(4) The melting rate was measured by X-ray diffraction, the crystalline content in the product was quantified based on the obtained peak area, the residue was regarded as an amorphous component, and this was defined as the melting rate.
The melting rate value is a characteristic that knows the degree of melting when a crystalline raw material is used, but a material with a high melting rate is also a substitute characteristic of a degree of spheroidization that indicates that the particles melt well and the sphericity is good. .
[0029]
[Table 1]
Figure 0004230554
[0030]
[Table 2]
Figure 0004230554
[0031]
[Table 3]
Figure 0004230554
[0032]
[Table 4]
Figure 0004230554
[0033]
【The invention's effect】
According to the configuration of the present invention, agglomeration and coalescence of the fine powder raw material can be reduced, and a fine powder having a high melting rate, that is, a high sphericity can be efficiently produced. Since it contains fine spherical particles, it can be easily filled into the resin composition, and the cured product of the resulting resin composition can achieve low thermal expansion and high strength. The spherical particle-containing silica powder suitable for the resin composition can be provided at low cost, in large quantities, and stably. Therefore, high filling of the resin composition for semiconductor encapsulation contributes to high fluidization.
[Brief description of the drawings]
[Fig. 1] Overview of spherical particle production equipment [Explanation of symbols]
1 Spherical burner
2 Flame 3 Cooling gas (Air inlet)
4). 5. Cooling jacket outer tube 5 Cooling jacket inner tube 6. Cooling water inlet Cooling water outlet 8 Exhaust communication port 9. Bag filter 10 Exhaust suction blower
11 Gas quantity control valve 12 Gas discharge port 13 Molten powder extraction device

Claims (4)

可燃性ガス及び/又は支燃性ガスに、シリカ粉末を担持させ火炎中に噴射してシリカ粉末を加熱球状化する方法に於いて、バーナーノズル先端に於けるシリカ粉末の噴射速度を70〜1200m/secとすることを特徴とする球状粒子の製造方法。In a method in which a silica powder is supported on a combustible gas and / or a combustion-supporting gas and sprayed into a flame to heat the silica powder into a spherical shape, the spraying speed of the silica powder at the tip of the burner nozzle is set to 70 to 1200 m. / Sec., A method for producing spherical particles. シリカ粉末が、平均粒径が0.1〜20μmであることを特徴とする請求項1記載の球状粒子の製造方法。 2. The method for producing spherical particles according to claim 1 , wherein the silica powder has an average particle size of 0.1 to 20 [mu] m. 可燃性ガス及び/又は支燃性ガスに、平均粒径が0.1〜5μmであるシリカ粉末を担持させ、火炎中に噴射してシリカ粉末を加熱球状化する方法に於いて、バーナーノズル先端に於けるシリカ粉末の噴射速度を300〜1200m/secとすることを特徴とするシリカの球状粉末の製造方法。In a method in which a silica powder having an average particle size of 0.1 to 5 μm is supported on a combustible gas and / or a combustion-supporting gas and sprayed into a flame, the silica powder is heated and spheronized. A method for producing a spherical silica powder, characterized in that the spraying speed of the silica powder is 300 to 1200 m / sec. 可燃性ガス量に対する支燃性ガス量を理論燃焼量の1.04〜1.4倍とすることを特徴とする請求項1、請求項2又は請求項3記載の球状粒子の製造方法。  4. The method for producing spherical particles according to claim 1, wherein the amount of combustible gas relative to the amount of combustible gas is 1.04 to 1.4 times the theoretical combustion amount.
JP01126498A 1998-01-23 1998-01-23 Method for producing spherical particles Expired - Fee Related JP4230554B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01126498A JP4230554B2 (en) 1998-01-23 1998-01-23 Method for producing spherical particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01126498A JP4230554B2 (en) 1998-01-23 1998-01-23 Method for producing spherical particles

Publications (2)

Publication Number Publication Date
JPH11209106A JPH11209106A (en) 1999-08-03
JP4230554B2 true JP4230554B2 (en) 2009-02-25

Family

ID=11773110

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01126498A Expired - Fee Related JP4230554B2 (en) 1998-01-23 1998-01-23 Method for producing spherical particles

Country Status (1)

Country Link
JP (1) JP4230554B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002355544A (en) 2001-05-30 2002-12-10 Tdk Corp Method of producing spherical ceramic powder, spherical ceramic powder, and composite material
US20060275723A1 (en) * 2003-05-23 2006-12-07 Shenglei Che Apparatus for producing spherical powder, burner for treaitng powder, method for producing spherical powder, spherical oxide powder, and oxide powder
JP4140834B2 (en) * 2003-06-23 2008-08-27 Tdk株式会社 Method for producing spherical oxide powder
WO2018179344A1 (en) * 2017-03-31 2018-10-04 株式会社イーツーラボ Plasma surface treatment method and plasma surface treatment apparatus

Also Published As

Publication number Publication date
JPH11209106A (en) 1999-08-03

Similar Documents

Publication Publication Date Title
CN106348306B (en) Preparation method of spherical nano silicon dioxide
CN109455728B (en) Device and method for producing high-purity superfine spherical silicon micro powder by heating gas
US4961770A (en) Process for producing spherical glass particles
JP4230554B2 (en) Method for producing spherical particles
JP2670628B2 (en) Method for producing fine fused spherical silica
JP4294191B2 (en) Method and apparatus for producing spherical silica powder
JP4313924B2 (en) Spherical silica powder and method for producing the same
JP4330298B2 (en) Method for producing spherical inorganic powder
JP4318288B2 (en) Spherical powder production apparatus, powder processing burner, and spherical powder production method
JP2002179409A (en) Method of manufacturing fine spherical inorganic powder
JP3891740B2 (en) Method for producing fine spherical siliceous powder
JP2003212572A (en) Method of manufacturing spherical glass powder
US4781753A (en) Process for producing fine spherical particles from non-flowing powders
JP4392097B2 (en) Method for producing ultrafine spherical silica
JP4145855B2 (en) Method for producing spherical fused silica powder
JP2004051409A (en) Process for manufacturing spherical, inorganic ultra-fine powder
EP1627679A1 (en) Apparatus for producing spherical powder, burner for treating powder, method for producing spherical powder, spherical oxide powder and oxide powder
JP3868141B2 (en) Method for producing spherical silica powder
JP3608968B2 (en) Method for producing spherical inorganic particles
JPH11199249A (en) Production of spheroidized particle
JPH11199219A (en) Production of spherical silica particle
CN101519207A (en) Powder burning furnace
JP2005015303A (en) Method of manufacturing spherical powder, spherical oxide powder and oxide powder
JP2005029425A (en) Method and device for producing glass bead
JP2005288399A (en) Method of producing spherical inorganic powder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041029

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080909

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081204

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121212

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131212

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees