JP2006063445A - Metal particle and method for producing the same - Google Patents
Metal particle and method for producing the same Download PDFInfo
- Publication number
- JP2006063445A JP2006063445A JP2005220665A JP2005220665A JP2006063445A JP 2006063445 A JP2006063445 A JP 2006063445A JP 2005220665 A JP2005220665 A JP 2005220665A JP 2005220665 A JP2005220665 A JP 2005220665A JP 2006063445 A JP2006063445 A JP 2006063445A
- Authority
- JP
- Japan
- Prior art keywords
- metal particles
- electrolytic solution
- fine carbon
- carbon fibers
- cathode electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002923 metal particle Substances 0.000 title claims abstract description 73
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 25
- 239000008151 electrolyte solution Substances 0.000 claims abstract description 48
- 229920000049 Carbon (fiber) Polymers 0.000 claims abstract description 41
- 239000004917 carbon fiber Substances 0.000 claims abstract description 41
- 239000002131 composite material Substances 0.000 claims description 23
- 238000005868 electrolysis reaction Methods 0.000 claims description 12
- 239000003792 electrolyte Substances 0.000 claims description 11
- 238000002844 melting Methods 0.000 claims description 5
- 230000008018 melting Effects 0.000 claims description 5
- 238000000151 deposition Methods 0.000 claims description 2
- 238000010304 firing Methods 0.000 claims description 2
- 239000002270 dispersing agent Substances 0.000 abstract description 15
- 239000000243 solution Substances 0.000 abstract description 4
- 229910001111 Fine metal Inorganic materials 0.000 abstract 1
- 239000002245 particle Substances 0.000 description 18
- 229910052751 metal Inorganic materials 0.000 description 12
- 239000002184 metal Substances 0.000 description 12
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 9
- 229910052802 copper Inorganic materials 0.000 description 8
- 239000010949 copper Substances 0.000 description 8
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical class C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 8
- 238000001878 scanning electron micrograph Methods 0.000 description 8
- 238000003756 stirring Methods 0.000 description 7
- 239000002134 carbon nanofiber Substances 0.000 description 6
- 239000002041 carbon nanotube Substances 0.000 description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 238000005245 sintering Methods 0.000 description 4
- JPVYNHNXODAKFH-UHFFFAOYSA-N Cu2+ Chemical compound [Cu+2] JPVYNHNXODAKFH-UHFFFAOYSA-N 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 229910001431 copper ion Inorganic materials 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 229910021393 carbon nanotube Inorganic materials 0.000 description 2
- 239000010419 fine particle Substances 0.000 description 2
- 150000002894 organic compounds Chemical class 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- UMGDCJDMYOKAJW-UHFFFAOYSA-N thiourea Chemical compound NC(N)=S UMGDCJDMYOKAJW-UHFFFAOYSA-N 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Natural products NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910000365 copper sulfate Inorganic materials 0.000 description 1
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- -1 for example Substances 0.000 description 1
- 239000002783 friction material Substances 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000010955 niobium Substances 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 239000004584 polyacrylic acid Substances 0.000 description 1
- 238000004663 powder metallurgy Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
Landscapes
- Powder Metallurgy (AREA)
- Manufacture Of Alloys Or Alloy Compounds (AREA)
- Electrolytic Production Of Metals (AREA)
Abstract
Description
本発明は、粉末冶金、電気接点、電池、電磁波シールド、導電材、摩擦材接点、摺動材等の材料として好適に用いることのできる金属材料およびその製造方法に関する。 The present invention relates to a metal material that can be suitably used as a material such as powder metallurgy, an electrical contact, a battery, an electromagnetic wave shield, a conductive material, a friction material contact, and a sliding material, and a manufacturing method thereof.
金属内にカーボンナノチューブまたはカーボンナノファイバー(以下これらを微細炭素繊維という)を分散させた複合材料が知られている。
特許文献1(特開2000−223004号)に示される複合材料は、微細炭素繊維と金属粉体とを混合し、焼結してブロック状となしたものである。
ところで、微細炭素繊維は、直径が5〜300nm程度と極めて微細であり、一方金属粉体は、1μm〜数百μmの範囲の直径を有するものが一般的であり、微細炭素繊維の直径よりも1桁以上大きい。これら2つの材料を単純に混合すると、均一な混合が困難である。
そこで、上記従来のものにあっては、まず、金属粉体を酸溶液に溶かす。例えば銅粉末を塩酸、硫酸、または硝酸に溶かす。そしてこの溶液に微細炭素繊維を分散させ、次いで乾燥、焼結させるようにして複合材料を得ている。
A composite material in which carbon nanotubes or carbon nanofibers (hereinafter referred to as fine carbon fibers) are dispersed in a metal is known.
The composite material disclosed in Patent Document 1 (Japanese Patent Application Laid-Open No. 2000-220304) is obtained by mixing fine carbon fibers and metal powder and sintering them into a block shape.
By the way, the fine carbon fiber has a very fine diameter of about 5 to 300 nm, while the metal powder generally has a diameter in the range of 1 μm to several hundred μm, which is larger than the diameter of the fine carbon fiber. One digit larger. If these two materials are simply mixed, uniform mixing is difficult.
Therefore, in the conventional one, first, the metal powder is dissolved in an acid solution. For example, copper powder is dissolved in hydrochloric acid, sulfuric acid, or nitric acid. Then, fine carbon fibers are dispersed in this solution, and then dried and sintered to obtain a composite material.
しかし、上記従来の方法にあっては、金属粉体を溶解し、さらに微細炭素繊維を分散させた酸溶液を乾燥および焼結させる工程が極めて厄介であり、長時間を有し、コストもかかる上、大量に製造する場合に微細炭素繊維を均一に分散させにくいという課題があった。
そこで本発明者等は、微細炭素繊維を分散した電解液を電解してカソード電極上に、微細炭素電子が混入した金属粒子を析出させることに想到した(特願2003−40308号)。
However, in the above conventional method, the process of dissolving the metal powder and further drying and sintering the acid solution in which fine carbon fibers are dispersed is extremely troublesome, has a long time, and is expensive. Furthermore, when manufacturing in large quantities, there existed a subject that it was difficult to disperse | distribute fine carbon fiber uniformly.
Accordingly, the present inventors have conceived that an electrolytic solution in which fine carbon fibers are dispersed is electrolyzed to deposit metal particles mixed with fine carbon electrons on the cathode electrode (Japanese Patent Application No. 2003-40308).
しかしながら、微細炭素繊維を電解液に分散させるには、例えばポリアクリル酸等の有機化合物からなる分散剤を電解液に添加する必要があり、微細炭素繊維が混入した金属粒子に微量ながら分散剤が取り込まれる可能性もあった。
このように、金属粒子中に分散剤が取り込まれると、電気伝導度や熱伝導度等の性能が低下するおそれがある。
また、電解液の種類および微細炭素電子の種類によりそれぞれ最適な分散剤も異なるので、最適な分散剤を見出すのに実験を繰り返す必要があり、最適な分散剤を見出すことが困難であるという課題もある。
However, in order to disperse the fine carbon fibers in the electrolytic solution, it is necessary to add a dispersant made of an organic compound such as polyacrylic acid to the electrolytic solution, and a small amount of the dispersant is added to the metal particles mixed with the fine carbon fibers. There was also the possibility of being taken in.
As described above, when the dispersant is incorporated into the metal particles, the performance such as electrical conductivity and thermal conductivity may be deteriorated.
In addition, since the optimum dispersant differs depending on the type of electrolyte and the type of fine carbon electrons, it is necessary to repeat experiments to find the optimum dispersant, and it is difficult to find the optimum dispersant. There is also.
そこで、本発明は上記課題を解決すべくなされたものであり、その目的とするところは分散剤を用いなくとも微細炭素繊維を電解液中に分散させることができる金属粒子の製造方法、および分散剤を用いずに製造された金属粒子を提供することにある。 Accordingly, the present invention has been made to solve the above-mentioned problems, and the object of the present invention is a method for producing metal particles that can disperse fine carbon fibers in an electrolyte without using a dispersant, and dispersion. It is providing the metal particle manufactured without using an agent.
本発明にかかる金属粒子の製造方法によれば、微細炭素繊維を分散した電解液を電解して、カソード電極上に、微細炭素繊維が混入した金属粒子を析出させる工程と、該析出した金属粒子をカソード電極上から分離する工程とを含む金属粒子の製造方法において、前記電解液に、振動または衝撃を与えることを特徴としている。
この方法によれば、振動または衝撃によって微細炭素繊維が電解液中に分散するので分散剤を用いることなく、電気伝導性や熱伝導性等の性能が高い、微細炭素繊維が混入した金属粒子を製造することができる。
According to the method for producing metal particles according to the present invention, a step of electrolyzing an electrolytic solution in which fine carbon fibers are dispersed to deposit metal particles mixed with the fine carbon fibers on the cathode electrode, and the deposited metal particles In the method for producing metal particles, including the step of separating from the cathode electrode, vibration or impact is applied to the electrolytic solution.
According to this method, since fine carbon fibers are dispersed in the electrolyte solution by vibration or impact, metal particles mixed with fine carbon fibers having high performance such as electrical conductivity and thermal conductivity are used without using a dispersant. Can be manufactured.
また、前記振動または衝撃を、電解中常時与えるようにしても、一時的に与えるようにしても(所定時間間隔おきに与えることも含む)よい。
さらに、前記振動または衝撃は、カソード電極上から電解液中に離れた微細炭素繊維が混入した金属粒子を破砕することを特徴としてもよい。これによれば、一旦カソード電極で析出した金属粒子がカソード電極から電解液中に離れてしまっても、この離れた金属粒子を破砕することで電解液中で金属粒子と微細炭素繊維とが凝集してしまうことを防止することができる。
Further, the vibration or impact may be applied constantly during electrolysis or may be applied temporarily (including application at predetermined time intervals).
Furthermore, the vibration or impact may be characterized in that metal particles mixed with fine carbon fibers separated from the cathode electrode into the electrolyte are crushed. According to this, even if the metal particles once deposited on the cathode electrode are separated from the cathode electrode into the electrolytic solution, the metal particles and fine carbon fibers are aggregated in the electrolytic solution by crushing the separated metal particles. Can be prevented.
また、前記振動または衝撃は超音波によるものであることを特徴とするとよい。このとき、超音波は、周波数が20kHz以上、電解液1L当り8kW以下の強度であればよい。8kW/Lという数字は実施例4の結果に基づいて得たものである。さらに好ましくは、周波数が20kHz〜1MHzであり、電解液1L当り4kW以下の強度であるとよい。
場合によっては、前記電解液は、撹拌されていることを特徴とするとよい。すなわち、振動や衝撃の他に従来と同様に撹拌も行なうことで、電解液中の濃度や温度の均一化を図ることができる。
The vibration or impact may be caused by ultrasonic waves. At this time, the ultrasonic wave may have a frequency of 20 kHz or more and an intensity of 8 kW or less per liter of the electrolytic solution. The number 8 kW / L was obtained based on the results of Example 4. More preferably, the frequency is 20 kHz to 1 MHz and the strength is 4 kW or less per liter of the electrolyte.
In some cases, the electrolytic solution may be agitated. That is, the concentration and temperature in the electrolyte solution can be made uniform by performing stirring in the same manner as in the past in addition to vibration and impact.
なお、金属粒子は、上記いずれかの製造方法によって製造されることを特徴とする。
また、上記の金属粒子の集合体を溶融または焼成することによって、金属粒子を含む種々の複合材料を得ることができる。
このような複合材料の例として、当該金属粒子の集合体、当該金属粒子と他の元素からなる金属粒子の混合体、または当該金属粒子と高分子もしくはセラミックの混合体等がある。これら集合体または混合体としては、溶融(焼結を含む)によるかもしくは金属や高分子等のバインダによる複合体を含むものである。
The metal particles are manufactured by any one of the above manufacturing methods.
Moreover, various composite materials containing metal particles can be obtained by melting or firing the aggregate of metal particles.
Examples of such a composite material include an aggregate of the metal particles, a mixture of the metal particles and metal particles composed of other elements, or a mixture of the metal particles and a polymer or ceramic. These aggregates or mixtures include composites by melting (including sintering) or by binders such as metals and polymers.
本発明の金属粒子の製造方法によれば、分散剤を用いなくとも、微細炭素繊維を電解液中に分散させることができる。このため、得られた金属粒子中に分散剤が取り込まれることがなく、高性能の金属粒子を製造することができる。また分散剤の分解による生産プロセスの汚染を防ぐことができる。
また、本発明の金属粒子は、分散剤を取り込んでいないので、電気伝導度や熱伝導度といった性能が高いものである。
According to the method for producing metal particles of the present invention, fine carbon fibers can be dispersed in the electrolytic solution without using a dispersant. For this reason, a dispersing agent is not taken in into the obtained metal particle, and a high performance metal particle can be manufactured. Moreover, contamination of the production process due to the decomposition of the dispersant can be prevented.
Moreover, since the metal particle of this invention has not taken in the dispersing agent, its performance, such as electrical conductivity and thermal conductivity, is high.
以下、本発明の好適な実施の形態について説明する。
本発明に係る金属粒子の製造方法は、上記のように、微細炭素繊維(カーボンナノチューブ:CNT、カーボンナノファイバー:CNF)を分散した電解液を電解して、カソード電極上に、微細炭素繊維が混入した金属粒子を析出させる工程中において、電解液に超音波振動を与えて微細炭素繊維を分散させている。
また、カソード電極上に析出した金属粒子がカソード電極から電解液中に離れた場合には、電解液中で金属粒子と微細炭素繊維とが凝集しないように、微細炭素繊維を分散させている超音波振動が、離れた金属粒子を破砕する作用も奏する。
Hereinafter, preferred embodiments of the present invention will be described.
As described above, the metal particle manufacturing method according to the present invention electrolyzes an electrolytic solution in which fine carbon fibers (carbon nanotubes: CNT, carbon nanofibers: CNF) are dispersed, and fine carbon fibers are formed on the cathode electrode. During the process of depositing the mixed metal particles, ultrasonic vibration is applied to the electrolytic solution to disperse the fine carbon fibers.
In addition, when the metal particles deposited on the cathode electrode are separated from the cathode electrode into the electrolytic solution, the ultrafine carbon fibers are dispersed so that the metal particles and the fine carbon fibers are not aggregated in the electrolytic solution. The sound vibration also acts to crush away the separated metal particles.
図1に、金属粒子の製造方法を実行するための製造装置の概略を示す。
電解液Xは、アノード電極21およびカソード電極22を備えた電解槽20に入れられる。アノード電極21とカソード電極22との間には所定の電圧を両電極に印加すべく直流電源24が接続されている。
電解槽20には撹拌装置26が設けられており、電解液Xを撹拌できるように設けられている。
また電解槽20は、内部に入れられた電解液Xの温度を調節するための温度調節器30が設けられている。具体的に温度調節器30は、電解槽20内に配置された温度センサである熱電対31と、電解槽20内の電解液Xの温度を実際に加熱および冷却する加熱・冷却装置32と、熱電対31で計測された温度に基づいて加熱・冷却装置32を制御する温度コントローラ34とから構成されている。
In FIG. 1, the outline of the manufacturing apparatus for performing the manufacturing method of a metal particle is shown.
The electrolytic solution X is put into an electrolytic cell 20 including an anode electrode 21 and a cathode electrode 22. A DC power source 24 is connected between the anode electrode 21 and the cathode electrode 22 so as to apply a predetermined voltage to both electrodes.
The electrolytic bath 20 is provided with a stirring device 26 so that the electrolytic solution X can be stirred.
In addition, the electrolytic cell 20 is provided with a temperature regulator 30 for regulating the temperature of the electrolytic solution X placed therein. Specifically, the temperature controller 30 includes a thermocouple 31 that is a temperature sensor disposed in the electrolytic cell 20, a heating / cooling device 32 that actually heats and cools the temperature of the electrolytic solution X in the electrolytic cell 20, The temperature controller 34 is configured to control the heating / cooling device 32 based on the temperature measured by the thermocouple 31.
電解槽20には、電解槽20内の電解液Xに振動を与えるための振動発生器36が設けられている。振動発生器36の具体例としては、超音波発生器がある。超音波発生器は、超音波発生装置38と振動子39とを有しており、超音波発生装置38で発生させた超音波によって、振動子39が電解槽20内の電解液Xに振動を与える。また、この超音波により、電解液X中で金属粒子と微細炭素繊維とが凝集しないように、電解液X中にカソード電極22から離れた金属粒子は破砕される。 The electrolytic cell 20 is provided with a vibration generator 36 for applying vibration to the electrolytic solution X in the electrolytic cell 20. A specific example of the vibration generator 36 is an ultrasonic generator. The ultrasonic generator has an ultrasonic generator 38 and a vibrator 39, and the vibrator 39 vibrates the electrolyte X in the electrolytic cell 20 by the ultrasonic waves generated by the ultrasonic generator 38. give. Further, the metal particles separated from the cathode electrode 22 in the electrolytic solution X are crushed by the ultrasonic waves so that the metal particles and the fine carbon fibers do not aggregate in the electrolytic solution X.
上述したような製造装置を用い、電流密度や電解時間などの電解条件を調節することによって平均粒径数百nm〜数十μmの範囲の金属粒子を析出させることができる。電流密度は粒径や生産性を考慮して最適値を選択する。
例えば銅の電解液の場合、電解槽20に硫酸銅水溶液と硫酸を主成分とする電解液を入れ、CNTまたはCNFを電解液に入れる。
電解槽20中ではアノード電極21として電気銅を使用し、電解中の銅イオンの補給を行う。電解液Xへの銅イオンの補給は、銅以外の金属、例えば鉛をアノード電極21として使用し、外部から銅イオンを補給しても構わない。
場合によっては、電解中の電解液Xは撹拌装置26により撹拌されると同時に、電解液濃度および成分量も所定の比率となるように制御する。
By using the manufacturing apparatus as described above and adjusting electrolysis conditions such as current density and electrolysis time, metal particles having an average particle size in the range of several hundred nm to several tens of μm can be deposited. The optimum current density is selected in consideration of the particle size and productivity.
For example, in the case of a copper electrolytic solution, an electrolytic solution containing a copper sulfate aqueous solution and sulfuric acid as main components is placed in the electrolytic bath 20, and CNT or CNF is placed in the electrolytic solution.
In the electrolytic cell 20, electrolytic copper is used as the anode electrode 21 to replenish copper ions during electrolysis. The supply of copper ions to the electrolytic solution X may be performed by using a metal other than copper, for example, lead as the anode electrode 21 and supplying copper ions from the outside.
In some cases, the electrolytic solution X being electrolyzed is stirred by the stirring device 26, and at the same time, the electrolytic solution concentration and the component amount are controlled to have a predetermined ratio.
電解液Xに超音波による振動を与えるのは、電解中常時行なっていてもよく、また常時でなくともよい。常時振動を与えない場合には、所定の時間間隔おきであってもよい。 The ultrasonic vibration may be applied to the electrolytic solution X during the electrolysis or may not always be performed. When vibration is not always applied, it may be at predetermined time intervals.
析出した金属粒子をカソード電極22上から分離する場合、金属粒子が析出したカソード電極22よりブレード等を用いて機械的に分離できる。 When the deposited metal particles are separated from the cathode electrode 22, the metal particles can be mechanically separated from the cathode electrode 22 on which the metal particles are deposited using a blade or the like.
析出粒子の粒径や強度、およびカソード電極22からの分離性を調整するため、電解液Xにチオ尿素、ゼラチン、タングステン、塩化物等の有機、無機化合物を添加してもよい。
カソード電極22には、析出する金属の密着性が悪く、析出粒子を分離しやすいチタンを使用すると好適である。またカソード電極22の表面は析出する金属を粒子化するため表面を粗面化しておくことが望ましい。例えば、カソード電極22に、ニオブ、タンタル、白金をチタンの表面に微小突起状に固定したものを好適に使用することができる。
In order to adjust the particle size and strength of the precipitated particles and the separability from the cathode electrode 22, an organic or inorganic compound such as thiourea, gelatin, tungsten, or chloride may be added to the electrolytic solution X.
For the cathode electrode 22, it is preferable to use titanium which has poor adhesion to the deposited metal and can easily separate the deposited particles. Further, it is desirable that the surface of the cathode electrode 22 is roughened in order to make the deposited metal into particles. For example, a cathode electrode 22 in which niobium, tantalum, or platinum is fixed on the surface of titanium in the form of minute protrusions can be suitably used.
生産される、CNTまたはCNFで修飾された金属粒子の粒径は、カソード表面の突起の大きさと形状、電解電流密度、カソードに加えられる衝撃または振動の周期が相互に関連して決まる。
なお、金属粒子の金属の種類は銅に限定されるものではない。
The particle size of the metal particles modified with CNT or CNF to be produced is determined in relation to the size and shape of protrusions on the cathode surface, the electrolytic current density, and the period of impact or vibration applied to the cathode.
Note that the metal type of the metal particles is not limited to copper.
上記金属粒子の集合体を溶融することによって種々の複合材料が得られる。この場合金属粒子に各種添加材を添加して複合材料としてもよい。
例えば、上記微細炭素繊維が混入した金属粒子と、微細炭素繊維を含まない金属粒子の配合比を適宜に制御し、混合することで、微細炭素繊維の配合量を制御した複合材料が実現できる。
その他、樹脂と混合するなど、種々の複合材料の材料として用いることができる。
これら複合材料の生産手段としては、樹脂成形、焼結、メタル・インジェクション・モールディングなどの手段が利用できる。
Various composite materials can be obtained by melting the aggregate of metal particles. In this case, various additives may be added to the metal particles to form a composite material.
For example, the composite material which controlled the compounding quantity of the fine carbon fiber is realizable by controlling suitably and the mixing ratio of the metal particle which mixed the said fine carbon fiber, and the metal particle which does not contain a fine carbon fiber.
In addition, it can be used as a material for various composite materials such as mixed with a resin.
As means for producing these composite materials, means such as resin molding, sintering and metal injection molding can be used.
上記のようにして得られる金属粒子は数百nm〜数十μmの極めて微細なものであり、しかも各金属粒子に微細炭素繊維が混入している。したがって、これら金属粒子の集合体を溶融して得られる複合材料中には、微細炭素繊維が均一に混入されたものとなる。 The metal particles obtained as described above are extremely fine particles of several hundred nm to several tens of μm, and fine carbon fibers are mixed in each metal particle. Therefore, fine carbon fibers are uniformly mixed in the composite material obtained by melting the aggregate of these metal particles.
また、電解液Xへの微細炭素繊維の分散量、電解条件などを変えることによって、種々の微細炭素繊維の混入量、粒径の金属粒子が得られるから、これら金属粒子の集合体を溶融することによって得られる複合材料中の微細炭素繊維量も任意にコントロールすることが可能となる。
このような複合材料は、CNTまたはCNFの特質を生かして、摺動性が必要な軸受、高い電気伝導率が必要な電極や電気接点、高い熱伝導率の必要な放熱機構など、多様な用途に利用可能である。
In addition, by changing the amount of fine carbon fibers dispersed in the electrolytic solution X, the electrolysis conditions, and the like, metal particles having various fine carbon fibers mixed in and particle sizes can be obtained. Therefore, the aggregate of these metal particles is melted. Thus, the amount of fine carbon fibers in the composite material obtained can be arbitrarily controlled.
Such composite materials can be used in various applications such as bearings that require slidability, electrodes and electrical contacts that require high electrical conductivity, and heat dissipation mechanisms that require high thermal conductivity, taking advantage of the characteristics of CNT or CNF. Is available.
以下、実施例について説明するが、各実施例における電解液Xに与える超音波の出力は、実施例1と実施例3で中、実施例2でやや弱、実施例4で強とした場合について説明している。この超音波強度は、各実施例との間での相対的な強度である。また、この超音波出力の強度の後に具体的な超音波の周波数と、電解液1Lあたりの超音波強度を記載する。 Hereinafter, examples will be described. The output of the ultrasonic wave applied to the electrolyte solution X in each example is slightly weak in Example 2 and strong in Example 4 in Example 1 and Example 3. Explains. This ultrasonic intensity is a relative intensity between each example. Further, after the intensity of the ultrasonic output, a specific ultrasonic frequency and the ultrasonic intensity per 1 L of the electrolytic solution are described.
電解液
CuSO4・5H2O 160g/L
H2SO4 100g/L
CNT 1g/L
超音波強度 中(20kHz、4kW/L)
上記電解液を用いて、撹拌下、超音波発生器により中程度の強度の超音波振動を与えつつ、液温25℃、40A/dm2の電流密度で15分間電解を行った場合に、カソード電極の表面に析出した皮膜の走査型電子顕微鏡写真を図2に示す。
図2に見られるように、粒径約10μm以下の極めて微細な球状の銅粒にCNTが多数取り込まれた、Cu-CNT複合物が形成されている。
これら複合物は、機械的に安定してカソード電極から分離し、粒子化できた。
Electrolytic solution CuSO 4 · 5H 2 O 160 g / L
H 2 SO 4 100 g / L
CNT 1g / L
Ultrasonic intensity Medium (20 kHz, 4 kW / L)
When electrolysis was performed for 15 minutes at a liquid temperature of 25 ° C. and a current density of 40 A / dm 2 while applying an ultrasonic vibration of a medium intensity with an ultrasonic generator while stirring using the above electrolytic solution, A scanning electron micrograph of the film deposited on the surface of the electrode is shown in FIG.
As seen in FIG. 2, a Cu—CNT composite is formed in which a large number of CNTs are incorporated into extremely fine spherical copper particles having a particle size of about 10 μm or less.
These composites could be mechanically stably separated from the cathode electrode and granulated.
電解液
CuSO4・5H2O 40g/L
H2SO4 100g/L
CNT 1g/L
超音波強度 やや弱(38kHz、400W/L)
上記電解液を用いて、撹拌下、超音波発生器によりやや弱い強度の超音波振動を与えつつ25℃、40A/dm2の電流密度で15分間電解を行った場合に、カソード電極の表面に析出した皮膜の走査型電子顕微鏡写真を図3に示す。
図3に見られるように、粒径約10μm程度の微細な球状の銅粒にCNTが多数取り込まれた、Cu-CNT複合物が形成されている。
これら複合物は、機械的に安定してカソード電極から分離し、粒子化できた。
Electrolyte CuSO 4 · 5H 2 O 40g / L
H 2 SO 4 100 g / L
CNT 1g / L
Ultrasonic intensity Somewhat weak (38kHz, 400W / L)
When electrolysis was performed for 15 minutes at 25 ° C. and a current density of 40 A / dm 2 using the above electrolytic solution while stirring and applying ultrasonic vibration of slightly weaker strength with an ultrasonic generator, the surface of the cathode electrode A scanning electron micrograph of the deposited film is shown in FIG.
As seen in FIG. 3, a Cu—CNT composite is formed in which a large number of CNTs are incorporated into fine spherical copper particles having a particle size of about 10 μm.
These composites could be mechanically stably separated from the cathode electrode and granulated.
電解液
CuSO4・5H2O 40g/L
H2SO4 100g/L
CNT 1g/L
超音波強度 中(20kHz、4kW/L)
上記電解液を用いて、撹拌下、超音波発生器により中程度の強度の超音波振動を与えつつ25℃、40A/dm2の電流密度で15分間電解を行った場合に、カソード電極の表面に析出した皮膜の走査型電子顕微鏡写真を図4および図5に示す。図4と図5では倍率が異なっている。図5は図4を5倍に拡大した写真である。
図4に見られるように、全体的に粒径のそろった球状のCu-CNT複合物が形成されている。そして、図5に見られるように、粒径約10〜30μmの微細な球状の銅粒にCNTが多数取り込まれた、Cu-CNT複合物が形成されている。
これら複合物は、機械的に安定してカソード電極から分離し、粒子化できた。
Electrolyte CuSO 4 · 5H 2 O 40g / L
H 2 SO 4 100 g / L
CNT 1g / L
Ultrasonic intensity Medium (20 kHz, 4 kW / L)
The surface of the cathode electrode was obtained when electrolysis was performed for 15 minutes at 25 ° C. and a current density of 40 A / dm 2 using the above electrolyte solution while stirring and applying an ultrasonic vibration of medium intensity with an ultrasonic generator. 4 and 5 show scanning electron micrographs of the film deposited on the substrate. 4 and 5 have different magnifications. FIG. 5 is a photograph of FIG. 4 enlarged five times.
As can be seen in FIG. 4, a spherical Cu—CNT composite having a uniform particle size as a whole is formed. As shown in FIG. 5, a Cu—CNT composite is formed in which a large number of CNTs are incorporated into fine spherical copper particles having a particle diameter of about 10 to 30 μm.
These composites could be mechanically stably separated from the cathode electrode and granulated.
電解液
CuSO4・5H2O 40g/L
H2SO4 100g/L
CNT 1g/L
超音波強度 強(20kHz、7.5kW/L)
上記電解液を用いて、撹拌下、超音波発生器により強い強度の超音波振動を与えつつ25℃、40A/dm2の電流密度で15分間電解を行った場合に、カソード電極の表面に析出した皮膜の走査型電子顕微鏡写真を図6および図7に示す。図7は、図6の写真を25倍に拡大したものである。
図6ではわかりにくいが、図7に見られるように、粒径約20〜40μmの微細な球状の銅粒にCNTが多数取り込まれた、Cu-CNT複合物が形成されているが、各複合物の粒は、上述してきた各実施例と比較して1粒1粒が分離していない。すなわち、本実施例のように超音波強度が強い場合には、形成されたCu-CNT複合物が塊状または板状になってしまい、カソード電極から分離して粒子化するのは困難である。
Electrolyte CuSO 4 · 5H 2 O 40g / L
H 2 SO 4 100 g / L
CNT 1g / L
Ultrasonic strength Strong (20kHz, 7.5kW / L)
When electrolysis is performed for 15 minutes at 25 ° C. and a current density of 40 A / dm 2 while applying strong ultrasonic vibration with an ultrasonic generator with stirring using the above electrolytic solution, it is deposited on the surface of the cathode electrode. Scanning electron micrographs of the coated film are shown in FIGS. FIG. 7 is an enlargement of the photograph of FIG. 6 by 25 times.
Although it is difficult to understand in FIG. 6, as seen in FIG. 7, Cu—CNT composites are formed in which a large number of CNTs are incorporated into fine spherical copper particles having a particle diameter of about 20 to 40 μm. As for the grain of a thing, one grain is not separated compared with each example mentioned above. That is, when the ultrasonic intensity is strong as in the present example, the formed Cu—CNT composite becomes a lump or plate, and it is difficult to separate from the cathode electrode to form particles.
このように、電解液に所定強度の超音波を照射することによって、微細炭素繊維を電解液X中に分散剤を用いなくとも良好に分散させることができ、微細炭素繊維が混入した金属粒子の形成をさせることができた。
また、上述した実施例4のように超音波強度が強すぎる場合には、微細炭素繊維を取り込んだ金属は微細な粒子ではなく塊状または板状になってしまい、好ましくないと考えられる。
In this way, by irradiating the electrolyte with ultrasonic waves having a predetermined intensity, the fine carbon fibers can be dispersed well in the electrolyte X without using a dispersant, and the metal particles mixed with the fine carbon fibers can be dispersed. It was possible to form.
In addition, when the ultrasonic intensity is too strong as in Example 4 described above, the metal incorporating the fine carbon fibers is not a fine particle but a lump or plate, which is considered undesirable.
したがって、超音波としては電解液1Lに対して4kW以下の強度であることが好ましいと考えられる。また、このときの超音波の周波数は20kHz以上であり、好ましくは20kHz〜1MHzであるとよい。 Therefore, it is considered preferable for the ultrasonic wave to have an intensity of 4 kW or less with respect to 1 L of the electrolytic solution. Moreover, the frequency of the ultrasonic wave at this time is 20 kHz or more, and preferably 20 kHz to 1 MHz.
なお、上述した実施例では、超音波による振動についてのみ説明したが、超音波による衝撃であってもよい。
さらには、電解液に与えられる振動または衝撃は超音波によるものに限定されるものではない。
In the above-described embodiment, only the vibration due to the ultrasonic wave has been described, but an impact due to the ultrasonic wave may be used.
Furthermore, the vibration or impact applied to the electrolytic solution is not limited to that by ultrasonic waves.
以上本発明につき好適な実施例を挙げて種々説明したが、本発明はこの実施例に限定されるものではなく、発明の精神を逸脱しない範囲内で多くの改変を施し得るのはもちろんである。 While the present invention has been described in detail with reference to a preferred embodiment, the present invention is not limited to this embodiment, and it goes without saying that many modifications can be made without departing from the spirit of the invention. .
20 電解槽
21 アノード電極
22 カソード電極
24 直流電源
26 撹拌装置
30 温度調節器
31 熱電対
32 加熱・冷却装置
34 温度コントローラ
36 振動発生器
38 超音波発生装置
39 振動子
20 Electrolysis Cell 21 Anode Electrode 22 Cathode Electrode 24 DC Power Supply 26 Stirrer 30 Temperature Controller 31 Thermocouple 32 Heating / Cooling Device 34 Temperature Controller 36 Vibration Generator 38 Ultrasonic Generator 39 Vibrator
Claims (8)
該析出した金属粒子をカソード電極上から分離する工程とを含む金属粒子の製造方法において、
前記電解液に、振動または衝撃を与えることを特徴とする金属粒子の製造方法。 Electrolyzing an electrolytic solution in which fine carbon fibers are dispersed, and depositing metal particles mixed with fine carbon fibers on the cathode electrode;
Separating the deposited metal particles from the cathode electrode, and a method for producing the metal particles,
A method for producing metal particles, wherein vibration or impact is applied to the electrolytic solution.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005220665A JP2006063445A (en) | 2004-07-30 | 2005-07-29 | Metal particle and method for producing the same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004224401 | 2004-07-30 | ||
JP2005220665A JP2006063445A (en) | 2004-07-30 | 2005-07-29 | Metal particle and method for producing the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006063445A true JP2006063445A (en) | 2006-03-09 |
Family
ID=36110182
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005220665A Pending JP2006063445A (en) | 2004-07-30 | 2005-07-29 | Metal particle and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006063445A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007270184A (en) * | 2006-03-30 | 2007-10-18 | Furukawa Electric Co Ltd:The | Electrode, and apparatus and method for manufacturing metallic fine particle |
JP2007327117A (en) * | 2006-06-09 | 2007-12-20 | Univ Waseda | Electrode, apparatus for manufacturing metallic fine particle and method of manufacturing metallic fine particle |
KR101234608B1 (en) * | 2010-12-27 | 2013-02-19 | 주식회사 제이씨 | Method of removing magnetic particles on surface of carbon nanotube by using electrolysis |
-
2005
- 2005-07-29 JP JP2005220665A patent/JP2006063445A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007270184A (en) * | 2006-03-30 | 2007-10-18 | Furukawa Electric Co Ltd:The | Electrode, and apparatus and method for manufacturing metallic fine particle |
JP2007327117A (en) * | 2006-06-09 | 2007-12-20 | Univ Waseda | Electrode, apparatus for manufacturing metallic fine particle and method of manufacturing metallic fine particle |
KR101234608B1 (en) * | 2010-12-27 | 2013-02-19 | 주식회사 제이씨 | Method of removing magnetic particles on surface of carbon nanotube by using electrolysis |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Islam et al. | Recent developments in the sonoelectrochemical synthesis of nanomaterials | |
US20090277793A1 (en) | Nanocarbon/aluminum composite material, process for producing the same, and plating liquid for use in said process | |
US9702050B2 (en) | Apparatus and method for producing a graphene material | |
JP4878196B2 (en) | Method for producing metal fine particles using conductive nanodot electrode | |
JP4351120B2 (en) | Method for producing metal particles | |
CZ306436B6 (en) | A tantalum powder and the method of its production and the electrolytic capacitor anode | |
JP2007231414A (en) | Method for manufacturing metal/carbon nanotube composite using electroplating | |
TW201336602A (en) | Plasma device for manufacturing metallic powder | |
WO2004094700A1 (en) | Metal particles and method for producing same | |
JP2007327117A (en) | Electrode, apparatus for manufacturing metallic fine particle and method of manufacturing metallic fine particle | |
CN1934281A (en) | Composite metal article and method for preparation thereof | |
KR100664664B1 (en) | Method and apparatus for manufacturing colloidal carbon nano homogeneously dispersed in aqueous solution | |
Xu et al. | Preparation of copper coated tungsten powders by intermittent electrodeposition | |
CN108044125B (en) | Method for preparing Ag nano particles by using liquid diaphragm discharge plasma | |
JP2006063445A (en) | Metal particle and method for producing the same | |
WO2014061442A1 (en) | Aluminum film, article having aluminum film formed thereon, and method for producing aluminum film | |
US20060021877A1 (en) | Metallic particle and method of producing the same | |
Chang et al. | TiO2 nanoparticle suspension preparation using ultrasonic vibration-assisted arc-submerged nanoparticle synthesis system (ASNSS) | |
JP2007162080A (en) | Thermally conductive member, automotive parts and manufacturing method therefor | |
Song et al. | Copper-graphene composite foils via electro-deposition: A mini review | |
KR100585222B1 (en) | Manufaturing method for providing metal assemble homogeneously combined with carbon nanotube | |
Chang et al. | The electrochemical properties of SiC nanoparticle suspension | |
RU2280718C2 (en) | Method for applying composition electroplated coatings with use of powders prepared by electric erosion dispersing | |
JP6537130B2 (en) | Method of manufacturing plated composite material | |
Perdana et al. | Analysis of the Particle Size and Morphology of Tin Powder Synthesized by the Electrolytic Method |