[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2014061442A1 - Aluminum film, article having aluminum film formed thereon, and method for producing aluminum film - Google Patents

Aluminum film, article having aluminum film formed thereon, and method for producing aluminum film Download PDF

Info

Publication number
WO2014061442A1
WO2014061442A1 PCT/JP2013/076699 JP2013076699W WO2014061442A1 WO 2014061442 A1 WO2014061442 A1 WO 2014061442A1 JP 2013076699 W JP2013076699 W JP 2013076699W WO 2014061442 A1 WO2014061442 A1 WO 2014061442A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum
film
aluminum film
molten salt
substrate
Prior art date
Application number
PCT/JP2013/076699
Other languages
French (fr)
Japanese (ja)
Inventor
弘太郎 木村
細江 晃久
西村 淳一
奥野 一樹
健吾 後藤
英彰 境田
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Publication of WO2014061442A1 publication Critical patent/WO2014061442A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/66Electroplating: Baths therefor from melts
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/42Electroplating: Baths therefor from solutions of light metals
    • C25D3/44Aluminium
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • C25D5/50After-treatment of electroplated surfaces by heat-treatment

Definitions

  • the present invention relates to an aluminum film containing aluminum carbide formed on the surface of a base material in order to improve the wear resistance of the base material, and a method for producing the same.
  • Aluminum is poor in wear resistance, and it is difficult to use it as a sliding member such as a gear or a shaft or a lightweight polishing tool.
  • Various proposals have been made as methods for improving the wear resistance of aluminum.
  • Patent Document 1 Japanese Patent Laid-Open No. 2009-41087
  • a powder mixture obtained by mechanically mixing aluminum powder and stearic acid is sintered by a discharge plasma sintering method and molded. It describes that an aluminum sintered body is produced by reacting aluminum and stearic acid to produce aluminum oxide and aluminum carbide.
  • Patent Document 2 Japanese Patent Laid-Open No. 2003-343702
  • a viscous material obtained by mixing an organic binder with an aluminum fine powder is applied to the surface of aluminum, and after drying, is heated to 300 ° C. or higher in a non-oxidizing or neutral atmosphere.
  • a method in which the organic binder is carbonized by heating in the range of 600 ° C., and the activated carbon and aluminum fine powder are reacted to form a high-hardness aluminum carbide coating on the surface of the aluminum base to harden the aluminum surface. is described.
  • Patent Document 2 The method described in Patent Document 2 is versatile because it treats the surface of an aluminum molded article to increase the surface hardness.
  • Patent Document 2 what is obtained by this method is that in which an aluminum base material and an aluminum carbide layer are joined.
  • Aluminum carbide has the property of reacting with water at room temperature to produce methane and aluminum hydroxide, and has a problem of poor stability.
  • an object of the present invention is to provide a high hardness aluminum film and a manufacturing method for manufacturing the high hardness aluminum film.
  • the present inventors In the electrolysis using a molten salt electrolytic solution (sometimes abbreviated as molten salt electrolysis), the present inventors have used aluminum containing organic matter on the surface of a substrate such as aluminum by using a molten salt electrolytic solution containing organic matter.
  • the present invention was completed by finding that an aluminum film having a structure having a structure in which fine aluminum carbide (Al 4 C 3 ) particles are dispersed in aluminum can be obtained by forming a plating film and then heating the plating film. .
  • the present invention adopts the following configuration in order to solve the above problems.
  • the aluminum film has a high hardness, and the wear resistance can be improved.
  • the aluminum film has good hardness without deteriorating the characteristics of the aluminum film.
  • the base material is made of aluminum, and the aluminum oxide film present on the surface of the base material is removed, and the aluminum oxide film is eluted in the molten salt by performing molten salt electrolysis using the base material as an anode.
  • the manufacturing method of the aluminum film of Claim 5 performed by doing. With the configuration (6), the adhesion between the substrate and the aluminum film is improved, and a homogeneous aluminum film is formed.
  • a high hardness aluminum film can be formed on the surface of a substrate.
  • the aluminum plating film of the present invention is obtained by electrolyzing a molten salt obtained by dissolving an organic substance on a substrate as an electrolytic solution and electrodepositing aluminum on the cathode.
  • An organic molten salt or an inorganic molten salt can be used as the molten salt, and an organic molten salt that is a eutectic salt of an organic halide and an aluminum halide can be used as the organic molten salt.
  • organic halides include imidazolium salts and pyridinium salts (such as butylpyridinium chloride (BPC)), and specific examples of molten salts include aluminum chloride and alkylimidazolium chloride, or aluminum chloride and Molten salts containing alkylpyridinium chloride are preferred.
  • BPC butylpyridinium chloride
  • an imidazolium salt is preferable, and a salt containing an imidazolium cation having an alkyl group (having 1 to 5 carbon atoms) at the 1,3-position is preferably used.
  • a salt containing an imidazolium cation having an alkyl group (having 1 to 5 carbon atoms) at the 1,3-position is preferably used.
  • aluminum chloride-1-ethyl-3-methylimidazolium chloride (AlCl 3 -EMIC) type molten salt is most preferably used because of its high stability and resistance to decomposition and high electrical conductivity.
  • the temperature of the molten salt bath is 10 ° C to 100 ° C, preferably 25 ° C to 45 ° C. The higher the temperature, the wider the current density range that can be plated, and by setting it to 100 ° C. or lower, the heating cost is reduced and the decomposition of the molten salt can be suppressed.
  • the pyridinium salt buty
  • an eutectic salt of an alkali metal halide and an aluminum halide (AlCl 3 -XCl (X: alkali metal)) can be used.
  • Such an inorganic molten salt generally has a higher melting temperature than an organic salt bath such as an imidazolium salt bath, but is less restricted by environmental conditions such as moisture and oxygen, and can be put into practical use at a low cost overall.
  • an organic substance is added to the molten salt as described later.
  • the inorganic molten salt has a high melting point, it is necessary to increase the temperature of the plating solution, and the organic substance may volatilize and decompose at a high temperature. It is preferable to use an organic molten salt that melts at a low temperature.
  • An organic material added to the electrolytic solution is taken into the aluminum plating film obtained by electrolysis.
  • the aluminum plating film formed on the substrate is heat-treated in the next step.
  • the organic matter taken into the aluminum plating film is decomposed and reacted with aluminum constituting the aluminum plating film to form fine aluminum carbide particles. Since the organic substance is dissolved in the molten salt and is uniformly taken in as a molecule into the plating film, the aluminum carbide particles generated by the above reaction are uniformly dispersed in the aluminum.
  • the aluminum carbide particles are present in the interstices between the aluminum crystal particles.
  • FIG. 2 is a TEM photograph of the aluminum film of the present invention (aluminum carbide particles are present in a portion surrounded by a square), and a grain size of about 100 nm is formed at a grain boundary portion of aluminum particles having a diameter of about 1 ⁇ m to 10 ⁇ m. It can be seen that fine particles of aluminum carbide having a diameter are uniformly dispersed.
  • the aluminum film may be an aluminum alloy film containing iron, copper, manganese, chromium, titanium, and magnesium in addition to aluminum as a metal component.
  • the aluminum alloy coating can be obtained by performing electrolysis by adding iron, copper, manganese, chromium, titanium, and magnesium as metal components to the electrolytic solution.
  • the atmosphere for the heat treatment may be an air atmosphere.
  • the heating temperature and the heating time may be appropriately set depending on the concentration of the organic substance in the aluminum plating film, and are usually 570 ° C. to 640 ° C. and 5 minutes to 30 minutes.
  • the concentration of the organic matter in the electrolytic solution decreases as the plating proceeds. Therefore, in order to allow a predetermined amount of organic matter to be taken into the plating film, it is necessary to maintain the concentration of the organic matter in the electrolytic solution within a predetermined setting range. For this reason, it is necessary to monitor the concentration of the organic substance in the electrolytic solution.
  • the concentration of the organic substance in the electrolytic solution measures the overvoltage, and based on this measured value, the organic substance can be obtained in a predetermined range. Can be adjusted by adding to the electrolyte. Monitoring may be performed continuously or at intervals.
  • the overvoltage is the absolute value of the potential difference between the theoretical potential (equilibrium electrode potential) at which the aluminum electrodeposition reaction occurs and the electrode potential when the aluminum electrodeposition reaction actually starts. Since the absolute value of the potential difference reflects the concentration of the organic substance, the concentration of the organic substance in the electrolytic solution can be controlled by adjusting the amount of the organic substance added so that the overvoltage is within a predetermined range.
  • Any organic substance can be used as long as it is soluble in the molten salt. If the concentration of the organic substance in the electrolytic solution is high, the concentration of the organic substance taken into the aluminum plating film also increases, the content of aluminum carbide in the aluminum film increases, and the hardness of the aluminum film also increases.
  • the hardness of the aluminum film can be appropriately set by adjusting the content of aluminum carbide according to the application.
  • the concentration of the organic substance is set so that the content of aluminum carbide in the aluminum film is 0.2 mass% to 50 mass%, preferably 2 mass% to 10 mass%.
  • the aluminum film preferably has a smooth surface.
  • an organic substance smoothing agent having a function of smoothing the surface of the plating film to the molten salt electrolyte.
  • Examples of the organic substance that serves as a smoothing agent include benzene, xylene, pyridinebenzotriazole, polystyrene, 1,10-phenanthroline, and the like, which can be appropriately selected depending on the type of the molten salt.
  • a smoothing agent examples include benzene, xylene, pyridinebenzotriazole, polystyrene, 1,10-phenanthroline, and the like, which can be appropriately selected depending on the type of the molten salt.
  • AlCl 3 -EMIC as the molten salt
  • 1,10-phenanthroline is particularly preferably used.
  • FIG. 3 shows the relationship between the overvoltage and the concentration of the smoothing agent when AlCl 3 -EMIC is used as the molten salt and 1,10-phenanthroline (denoted as “phen” in the figure) is used as the smoothing agent. Show. The concentration of 1,10-phenanthroline is indicated by the mass with respect to the plating solution.
  • FIG. 4 shows the relationship between the concentration of the leveling agent and the content of aluminum carbide when AlCl 3 -EMIC is used as the molten salt and 1,10-phenanthroline is used as the leveling agent.
  • the content of aluminum carbide in the aluminum film can be controlled by measuring the overvoltage and adjusting the concentration of the organic matter (smoothing agent) in the electrolyte based on this signal.
  • the base material for forming the aluminum film an appropriate one can be selected.
  • the main object of the present invention is to improve the wear resistance of the aluminum base material among the base materials. Is preferably used.
  • the substrate is made of aluminum
  • an aluminum oxide film is usually present on the surface of the aluminum, so the adhesion between the aluminum plating film and the aluminum substrate is not good, and the aluminum film is easy to peel off. . Therefore, in order to improve the adhesion of the aluminum film to the base material, the oxide film present on the surface of the aluminum base material is removed by reverse electrolytic treatment or the like, and then the base material is subjected to molten salt electrolytic treatment to form the aluminum film. It is preferable to form.
  • the oxide film on the surface of the aluminum substrate is eluted in the molten salt by performing an electrolytic treatment using the aluminum substrate having an oxide film as an anode in a molten salt electrolytic bath.
  • an aluminum oxide film is present.
  • FIG. 1 is a diagram showing the configuration of an apparatus for maintaining the concentration of organic matter in a molten salt electrolyte at a set value.
  • the electrolytic solution in which the organic matter has been reduced by electrodeposition overflows from the electrolytic cell 1 is continuously returned to the recovered electrolytic solution tank 21, and then sent to the replenisher storage tank 22.
  • An organic substance storage tank 23 is connected to the recovered electrolyte tank 21, and a supply valve 24 is controlled by a control signal from a control device 25 that sends a control signal based on an overvoltage signal, whereby a predetermined amount of organic substance is recovered from the organic substance storage tank 23.
  • the organic substance concentration in the electrolytic solution is adjusted by being supplied to the electrolytic solution tank 21.
  • the electrolytic solution is supplied from the replenisher storage tank 22 to the electrolytic tank 1 after removing solids in the liquid by the filter 26. Further, since the liquid temperature rises due to electrolysis, a cooling device may be provided to cool the electrolytic solution.
  • the overvoltage is measured by taking out the potential difference between the voltage between the aluminum substrate (cathode) and the anode in the electrolytic cell 1 and the theoretical potential (equilibrium electrode potential), that is, the overvoltage as an electric signal, and controlling the overvoltage and the set voltage.
  • the amount of supply of the smoothing agent to the replenishing liquid storage tank 22 is controlled by adjusting the opening of the organic substance supply valve so that the overvoltage becomes a set value.
  • electrolysis is performed in an inert gas atmosphere such as nitrogen or argon, and in a sealed environment. It is preferable. Specifically, the surface of the plating bath of the electrolytic cell 1 is covered and an inert gas is bubbled from below the electrolytic cell 1 to stir the electrolytic solution and expel moisture and oxygen contained in the electrolytic solution, The space on the electrolyte surface is a nitrogen gas atmosphere. Further, instead of the lid, a shielding plate may be suspended on the surface of the electrolytic solution to shut out the outside air, or an inert gas may be supplied from above the electrolytic cell 1.
  • an inert gas atmosphere such as nitrogen or argon
  • the temperature of the plating bath it is preferable to perform electroplating while adjusting the temperature of the plating bath to be 60 ° C to 120 ° C.
  • the temperature of the plating bath is more preferably 60 ° C. to 100 ° C., and further preferably 60 ° C. to 80 ° C.
  • the apparatus shown in FIG. 5 is a view showing an example of an apparatus in which a metal oxide film on an aluminum surface of a base material is removed in advance and aluminum plating is performed so that a homogeneous aluminum film can be formed.
  • a plating tank (102) in which a plating solution is accommodated is divided into a first electrolytic chamber (104) and a second electrolytic chamber (105) by a partition plate (103). It is divided into.
  • the substrate (101) is continuously conveyed from the first electrolysis chamber (104) to the second electrolysis chamber (105).
  • the partition plate (103) is provided for the purpose of electrically separating the first electrolysis chamber (104) and the second electrolysis chamber (105), and an insulating material can be preferably used.
  • an insulating material can be preferably used.
  • Teflon (registered trademark) Ceramics, glass, super engineering plastic such as PEEK (polyetheretherketone), heat-resistant vinyl chloride resin, or the like can be used.
  • the partition plate (103) is provided with a passage through the base, but the passage is preferably the minimum through which the base can pass.
  • the passage of the substrate has a slit shape.
  • a cathode (107) is provided in the first electrolysis chamber (104) in which the substrate (101) is first transported, and the substrate (101) acts as an anode in the first electrolysis chamber (104). So that it is electrically connected. As a result, electrolysis occurs between the cathode (107) and the substrate (101), and the metal oxide film formed on the surface of the substrate (101) is removed by electrolysis, so that the metal surface constituting the substrate (101) is removed. Exposed.
  • the cathode (107) is not particularly limited, and for example, aluminum, titanium, copper or the like can be preferably used.
  • FIG. 5 illustrates the case where two cathodes (107) are provided in the vertical direction of the base body (101).
  • the number of cathodes (107) is not particularly limited, and one or three or more are provided. It doesn't matter.
  • the position where the cathode (107) is provided is not particularly limited, but it is preferable that the cathode (107) is provided as close as possible to the base (101) because electrolysis occurs efficiently.
  • the anode terminal of the power source connected to the cathode (107) and the substrate (101) are connected. That's fine.
  • the substrate (101) is connected to the anode on the upstream side in the vicinity of the inlet of the first electrolysis chamber (104) because electrolysis occurs efficiently.
  • FIG. 5 shows a case where a first power supply roller (106) is provided upstream of the inlet of the first electrolysis chamber (104), and the first power supply roller (106) is connected to the anode of the power source. ing.
  • the substrate (101) is applied with a potential from the first power supply roller (106) while being continuously transported by the first power supply roller (106) and the first transport roller (110). It will act as an anode in the electrolysis chamber (104).
  • FIG. 5 shows the case where the first conveying roller (110) is provided on the opposite side of the first power supply roller (106), but it is connected to the anode instead of the first conveying roller (110).
  • a power feeding roller may be provided.
  • the precipitation amount or dissolution amount of aluminum can be prepared based on the following formula.
  • Aluminum precipitation / electrolysis [g] 0.3352 ⁇ I [A] ⁇ t [Hr] (formula)
  • I represents a current value
  • t represents time
  • a constant 0.3352 is a constant peculiar to aluminum
  • the substrate is another metal, it is calculated by changing to a constant peculiar to that metal. Good.
  • the substrate (101) from which the metal oxide film has been removed as described above is subsequently conveyed to the second electrolysis chamber (105) through a slit provided in the partition plate (103).
  • An anode (109) is provided in the second electrolysis chamber (105), and the base (101) is electrically connected so as to act as a cathode in the second electrolysis chamber (105).
  • electrolysis occurs between the anode (109) and the substrate (101), and aluminum is electrodeposited on the surface of the substrate (101).
  • the anode (109) is not particularly limited, and for example, aluminum, titanium, copper or the like can be preferably used.
  • FIG. 5 illustrates the case where two anodes (109) are provided in the vertical direction of the substrate (101), but the number of anodes (109) is not particularly limited. One or three or more may be used. Further, the position where the anode (109) is provided is not particularly limited, but it is preferable to provide the anode (109) as close to the substrate (101) as possible because electrolysis occurs efficiently.
  • the cathode terminal of the power source connected to the anode (109) and the substrate (101) are connected. That's fine.
  • the substrate (101) is connected to the cathode on the downstream side in the vicinity of the outlet of the second electrolysis chamber (105) because electrolysis occurs efficiently.
  • FIG. 5 shows a case where a second power supply roller (108) is provided downstream of the outlet of the second electrolysis chamber (105) and the second power supply roller (108) is connected to the cathode of the power source. ing.
  • the substrate (101) is applied with a potential from the second power supply roller (108) while being continuously transported by the second power supply roller (108) and the second transport roller (111). It comes to act as a cathode in the electrolysis chamber (105).
  • FIG. 5 shows the case where the second transport roller (111) is provided on the opposite side of the second power supply roller (108), but it is connected to the cathode instead of the second transport roller (111).
  • a power feeding roller may be provided.
  • the amount of aluminum deposited in the second electrolysis chamber (105) can be calculated by the above formula. Therefore, the current value and time may be adjusted so that desired aluminum is electrodeposited on the surface of the substrate (101). The time can be adjusted by changing the conveyance speed of the substrate (101).
  • Example 1 (Plating process) After removing the aluminum oxide film on the surface of the aluminum substrate (80 mm ⁇ 50 mm ⁇ 1 mmt) by reverse electrolysis, this was connected to the cathode side in the electrolytic cell, and the aluminum plate (purity 99.99%) of the counter electrode was connected to the anode side Then, plating was performed under the following electrolysis conditions while bubbling nitrogen from the bottom of the electrolytic cell at a flow rate of 0.2 L / min to form an aluminum plating film on the surface of the aluminum base plate. In the measurement of overvoltage, aluminum was used for the reference electrode and the counter electrode, and platinum was used for the working electrode. The electrolysis conditions were as follows.
  • Molten salt composition 33 mol% EMIC-66 mol% AlCl 3
  • Organic matter 1,10-phenanthroline
  • Liquid temperature 45 ° C
  • Current density 2 A / dm 2 (DC current)
  • Setting overvoltage -120 mV to -140 mV (Heat treatment process)
  • the obtained sample was heat-treated in the atmosphere at 600 ° C. for 20 minutes.
  • the film thickness of the obtained aluminum film, the aluminum carbide content in the aluminum film by X-ray diffraction (XRD), and the Vickers hardness of the aluminum film were evaluated. The evaluation results are shown in Table 1.
  • Example 2 An aluminum plating film was formed on the substrate in the same manner as in Example 1 except that the electrolysis conditions were as follows, and then the obtained sample was heat-treated in the atmosphere at 600 ° C. for 20 minutes.
  • the film thickness of the aluminum film, the aluminum carbide content in the aluminum film by X-ray diffraction (XRD), and the Vickers hardness of the aluminum film were evaluated in the same manner as in Example 1. The evaluation results are shown in Table 1.
  • Electrolyte composition 33 mol% EMIC-66 mol% AlCl 3
  • Organic matter (smoothing agent): Xylene liquid temperature: 45 ° C
  • Example 3 An aluminum plating film was formed on the substrate in the same manner as in Example 1 except that the electrolysis conditions were as follows, and then the obtained sample was heat-treated in the atmosphere at 600 ° C. for 20 minutes.
  • the film thickness of the aluminum film, the aluminum carbide content in the aluminum film by X-ray diffraction (XRD), and the Vickers hardness of the aluminum film were measured in the same manner as in Example 1. The evaluation results are shown in Table 1.
  • Electrolyte composition 33 mol% EMIC-66 mol% AlCl 3
  • Organic matter smoothing agent: Toluene liquid temperature: 45 ° C
  • Current density 2 A / dm 2 (DC current)
  • Setting overvoltage -120 mV to -140 mV
  • Example 1 In Example 1, an aluminum film was obtained in the same manner as in Example 1 except that no organic substance was added to the electrolytic solution, and evaluated in the same manner as in Example 1. The evaluation results are shown in Table 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrolytic Production Of Metals (AREA)

Abstract

An aluminum film which is a film of polycrystalline aluminum and is composed of aluminum crystal particles, wherein aluminum carbide particles exist at the interfaces among the aluminum crystal particles. The aluminum film can be produced by: carrying out electrolysis using an electrolytic solution that is produced by dissolving an organic substance in a molten salt, thereby electrodepositing an aluminum film containing the organic substance on a base; and then heating the aluminum film, thereby forming aluminum carbide particles in the aluminum film.

Description

アルミニウム膜、アルミニウム膜形成体、及びアルミニウム膜の製造方法Aluminum film, aluminum film forming body, and method for producing aluminum film
 本発明は基材の耐摩耗性を向上させるために基材表面に形成される炭化アルミニウムを含有するアルミニウム膜及びその製造方法に関する。 The present invention relates to an aluminum film containing aluminum carbide formed on the surface of a base material in order to improve the wear resistance of the base material, and a method for producing the same.
 アルミニウムは耐摩耗性が悪く、歯車やシャフトのような摺動部材や軽量研磨工具として利用することは難しい。アルミニウムの耐摩耗性を向上するための方法として、種々の提案が成されている。 Aluminum is poor in wear resistance, and it is difficult to use it as a sliding member such as a gear or a shaft or a lightweight polishing tool. Various proposals have been made as methods for improving the wear resistance of aluminum.
 例えば、特許文献1(特開2009-41087号公報)には、アルミニウム粉末と、ステアリン酸とを機械的に混合して得た混合粉末を放電プラズマ焼結法により焼結して成形するとともに、アルミニウムとステアリン酸とを反応させて酸化アルミニウム及び炭化アルミニウムを生じさせてアルミニウム焼結体を製造することが記載されている。 For example, in Patent Document 1 (Japanese Patent Laid-Open No. 2009-41087), a powder mixture obtained by mechanically mixing aluminum powder and stearic acid is sintered by a discharge plasma sintering method and molded. It describes that an aluminum sintered body is produced by reacting aluminum and stearic acid to produce aluminum oxide and aluminum carbide.
 特許文献2(特開2003-343702号公報)には、アルミニウム微粉末に有機質粘結剤を混合した粘性物質をアルミニウムの表面に塗布し、乾燥後非酸化性または中性雰囲気中で300℃~600℃の範囲で加熱して有機質粘結剤を炭化し、さらにこの活性炭素とアルミニウム微粉末を反応させ、高硬度の炭化アルミニウム被膜をアルミニウム基材表面に形成させてアルミニウムの表面を硬化する方法が記載されている。 In Patent Document 2 (Japanese Patent Laid-Open No. 2003-343702), a viscous material obtained by mixing an organic binder with an aluminum fine powder is applied to the surface of aluminum, and after drying, is heated to 300 ° C. or higher in a non-oxidizing or neutral atmosphere. A method in which the organic binder is carbonized by heating in the range of 600 ° C., and the activated carbon and aluminum fine powder are reacted to form a high-hardness aluminum carbide coating on the surface of the aluminum base to harden the aluminum surface. Is described.
特開2009-41087号公報JP 2009-41087A 特開2003-343702号公報JP 2003-343702 A
特許文献1に記載された方法によると、焼結時に、高温によりアルミニウムとステアリン酸とが反応(固相反応)し、酸化アルミニウム(Al2 O3 )及び炭化アルミニウム(Al4 C3 )が生成し、純アルミニウム粉末の焼結体中に硬く熱安定性に優れた酸化アルミニウム及び炭化アルミニウムが微細に分散した状態となるため高い硬度を有する焼結体が得られる。しかしながら、この方法は成形型を必要とし、また焼結工程が必要であるためコストが高くなる。また、この方法はアルミニウム成形品の表面を処理して表面硬度を上げるというものではないため汎用性がない。 According to the method described in Patent Document 1, aluminum and stearic acid react (solid phase reaction) at a high temperature during sintering to produce aluminum oxide (Al 2 O 3 ) and aluminum carbide (Al 4 C 3 ). In addition, since the aluminum oxide and aluminum carbide that are hard and excellent in thermal stability are finely dispersed in the sintered body of pure aluminum powder, a sintered body having high hardness can be obtained. However, this method requires a molding die and requires a sintering step, which increases costs. This method is not versatile because it does not increase the surface hardness by treating the surface of an aluminum molded product.
特許文献2に記載された方法は、アルミニウム成形品の表面を処理して表面硬度を上げるというものであるため、汎用性がある。しかしながら、特許文献2の記載によれば、この方法によって得られるのはアルミニウム基材と炭化アルミニウム層とが接合されたものである。炭化アルミニウムは水と常温で反応してメタンと水酸化アルミニウムを生成する性質があり、安定性に乏しいという問題がある。 The method described in Patent Document 2 is versatile because it treats the surface of an aluminum molded article to increase the surface hardness. However, according to the description of Patent Document 2, what is obtained by this method is that in which an aluminum base material and an aluminum carbide layer are joined. Aluminum carbide has the property of reacting with water at room temperature to produce methane and aluminum hydroxide, and has a problem of poor stability.
 本発明は上記問題点に鑑みて、高硬度のアルミニウム膜及びこの高硬度のアルミニウム膜を製造するための製造方法を提供することを目的とする。 In view of the above problems, an object of the present invention is to provide a high hardness aluminum film and a manufacturing method for manufacturing the high hardness aluminum film.
 本発明者らは、溶融塩電解液を用いた電解(場合により溶融塩電解と略す。)において、有機物を含有する溶融塩電解液を用いることによってアルミニウム等の基材表面に有機物を含有するアルミニウムめっき膜を形成し、次いでこれを加熱することによって微細な炭化アルミニウム(Al)粒子がアルミニウム中に分散した構造の高い硬度を有するアルミニウム膜が得られることを見出して本発明を完成した。 In the electrolysis using a molten salt electrolytic solution (sometimes abbreviated as molten salt electrolysis), the present inventors have used aluminum containing organic matter on the surface of a substrate such as aluminum by using a molten salt electrolytic solution containing organic matter. The present invention was completed by finding that an aluminum film having a structure having a structure in which fine aluminum carbide (Al 4 C 3 ) particles are dispersed in aluminum can be obtained by forming a plating film and then heating the plating film. .
 本発明は上記課題を解決すべく以下の構成を採用する。
(1)アルミニウム結晶粒子から構成される多結晶のアルミニウム膜であって、
炭化アルミニウム粒子が前記アルミニウム結晶粒子間の界面に存在しているアルミニウム膜。
 上記(1)の構成によりアルミニウム膜が高硬度なものとなり耐摩耗性を向上させることができる。
(2)前記アルミニウム結晶粒子の体積平均粒子径が1μm~10μmであり、前記炭化アルミニウム粒子の体積平均粒子径が150nm以下である上記(1)に記載のアルミニウム膜。
 上記(2)の構成によりアルミニウム膜がより良好な硬度、及び耐摩耗性を有するようになる。
(3)前記アルミニウム膜に含まれる前記炭化アルミニウムの含有量は、0.2質量%~50質量%である上記(1)又は(2)に記載のアルミニウム膜。
 上記(3)の構成によりアルミニウム膜の特性を損なうことなくアルミニウム膜が良好な硬度を有するようになる。
(4)上記(1)~(3)のいずれか一項に記載のアルミニウム膜を、アルミニウムからなる基材上に形成したアルミニウム膜形成体。
 上記(4)の構成によりアルミニウムを含む材料を基材とする製品の表面硬度を高めることができる。
(5)溶融塩中に有機物を溶解してなる電解液を使用して電解する事により、基材上に前記有機物を含むアルミニウム膜を電着させ、次いで、前記アルミニウム膜を加熱処理して、前記アルミニウム膜中に炭化アルミニウム粒子を生成させるアルミニウム膜の製造方法。
 上記(5)の構成により基材上に高硬度のアルミニウム膜を形成することができる。
(6)前記基材はアルミニウムからなり、前記基材の表面に存在する酸化アルミニウム膜の除去を、前記基材を陽極にして溶融塩電解することによって、前記酸化アルミニウム膜を溶融塩中に溶出することによって行う請求項5に記載のアルミニウム膜の製造方法。
 上記(6)の構成により基材とアルミニウム膜との密着性が良好となり、また、均質なアルミニウム膜が形成される。
The present invention adopts the following configuration in order to solve the above problems.
(1) A polycrystalline aluminum film composed of aluminum crystal particles,
An aluminum film in which aluminum carbide particles are present at the interface between the aluminum crystal particles.
With the configuration (1) above, the aluminum film has a high hardness, and the wear resistance can be improved.
(2) The aluminum film according to (1), wherein the volume average particle diameter of the aluminum crystal particles is 1 μm to 10 μm, and the volume average particle diameter of the aluminum carbide particles is 150 nm or less.
With the configuration (2), the aluminum film has better hardness and wear resistance.
(3) The aluminum film according to (1) or (2), wherein the content of the aluminum carbide contained in the aluminum film is 0.2% by mass to 50% by mass.
With the configuration (3), the aluminum film has good hardness without deteriorating the characteristics of the aluminum film.
(4) An aluminum film forming body in which the aluminum film according to any one of (1) to (3) is formed on a base material made of aluminum.
With the configuration (4), the surface hardness of a product based on a material containing aluminum can be increased.
(5) Electrolyzing using an electrolytic solution obtained by dissolving an organic substance in a molten salt to electrodeposit an aluminum film containing the organic substance on a substrate, and then heat-treating the aluminum film, A method for producing an aluminum film, wherein aluminum carbide particles are produced in the aluminum film.
With the configuration (5), a high hardness aluminum film can be formed on the substrate.
(6) The base material is made of aluminum, and the aluminum oxide film present on the surface of the base material is removed, and the aluminum oxide film is eluted in the molten salt by performing molten salt electrolysis using the base material as an anode. The manufacturing method of the aluminum film of Claim 5 performed by doing.
With the configuration (6), the adhesion between the substrate and the aluminum film is improved, and a homogeneous aluminum film is formed.
 本発明によれば、基材の表面上高硬度のアルミニウム膜を形成することができる。 According to the present invention, a high hardness aluminum film can be formed on the surface of a substrate.
本発明のアルミニウム膜の製造装置の一例を示す図である。It is a figure which shows an example of the manufacturing apparatus of the aluminum film of this invention. 本発明のアルミニウム膜の透過型電子顕微鏡(Transmission Electron Microscope;TEM)写真を示す図である。It is a figure which shows the transmission electron microscope (Transmission Electron Microscope; TEM) photograph of the aluminum film of this invention. 過電圧と有機物(平滑化剤)の濃度との関係を示す図である。It is a figure which shows the relationship between the overvoltage and the density | concentration of organic substance (smoothing agent). 有機物(平滑化剤)濃度と炭化アルミニウムの含有量との関係を示す図である。It is a figure which shows the relationship between organic substance (smoothing agent) density | concentration and content of aluminum carbide. 本発明のアルミニウムめっき装置の一例を示す図である。It is a figure which shows an example of the aluminum plating apparatus of this invention.
 本発明のアルミニウムめっき膜は基材上に有機物を溶解した溶融塩を電解液として用いてこれを電解して陰極上にアルミニウムを電着することによって得られる。
 溶融塩としては、有機溶融塩又は無機溶融塩を用いることができ、有機溶融塩としては、有機系ハロゲン化物とアルミニウムハロゲン化物の共晶塩である有機溶融塩を用いることができる。有機系ハロゲン化物としてはイミダゾリウム塩及びピリジニウム塩(ブチルピリジニウムクロライド(BPC)等)などが使用でき、溶融塩としては具体的には塩化アルミニウム及びアルキルイミダゾリウムクロリドを含むか、又は塩化アルミニウム及びとアルキルピリジニウムクロリドを含む溶融塩が好ましい。
The aluminum plating film of the present invention is obtained by electrolyzing a molten salt obtained by dissolving an organic substance on a substrate as an electrolytic solution and electrodepositing aluminum on the cathode.
An organic molten salt or an inorganic molten salt can be used as the molten salt, and an organic molten salt that is a eutectic salt of an organic halide and an aluminum halide can be used as the organic molten salt. Examples of organic halides include imidazolium salts and pyridinium salts (such as butylpyridinium chloride (BPC)), and specific examples of molten salts include aluminum chloride and alkylimidazolium chloride, or aluminum chloride and Molten salts containing alkylpyridinium chloride are preferred.
 中でもイミダゾリウム塩が好ましく、1,3位にアルキル基(炭素数1~5)を持つイミダゾリウムカチオンを含む塩が好ましく用いられ、特に塩化アルミニウム-1-エチル-3-メチルイミダゾリウムクロライド(AlCl-EMIC)系溶融塩が、安定性が高く分解し難いことや電気伝導率が高いことから最も好ましく用いられる。溶融塩浴の温度は10℃から100℃、好ましくは25℃から45℃である。高温になる程めっき可能な電流密度範囲が広くなり、100℃以下にすることにより加熱コストが小さくなり溶融塩の分解を抑制できる。
 ピリジニウム塩としてはブチルピリジニウムクロライド(BPC)等が使用できる。
Of these, an imidazolium salt is preferable, and a salt containing an imidazolium cation having an alkyl group (having 1 to 5 carbon atoms) at the 1,3-position is preferably used. In particular, aluminum chloride-1-ethyl-3-methylimidazolium chloride (AlCl 3 -EMIC) type molten salt is most preferably used because of its high stability and resistance to decomposition and high electrical conductivity. The temperature of the molten salt bath is 10 ° C to 100 ° C, preferably 25 ° C to 45 ° C. The higher the temperature, the wider the current density range that can be plated, and by setting it to 100 ° C. or lower, the heating cost is reduced and the decomposition of the molten salt can be suppressed.
As the pyridinium salt, butylpyridinium chloride (BPC) or the like can be used.
 無機溶融塩としてはアルカリ金属のハロゲン化物とアルミニウムハロゲン化物の共晶塩(AlCl-XCl(X:アルカリ金属))を使用することができる。このような無機溶融塩はイミダゾリウム塩浴のような有機塩浴に比べて一般に溶融温度は高いが、水分や酸素など環境条件の制約が少なく、全体に低コストでの実用化が可能とできる。
 但し、本発明では後述するように有機物を溶融塩に添加するが、無機溶融塩は融点が高いためめっき液の液温高くする必要があり、高温では有機物が揮発、分解する可能性があるため、低温で溶融する有機溶融塩を用いることが好ましい。
As the inorganic molten salt, an eutectic salt of an alkali metal halide and an aluminum halide (AlCl 3 -XCl (X: alkali metal)) can be used. Such an inorganic molten salt generally has a higher melting temperature than an organic salt bath such as an imidazolium salt bath, but is less restricted by environmental conditions such as moisture and oxygen, and can be put into practical use at a low cost overall. .
However, in the present invention, an organic substance is added to the molten salt as described later. However, since the inorganic molten salt has a high melting point, it is necessary to increase the temperature of the plating solution, and the organic substance may volatilize and decompose at a high temperature. It is preferable to use an organic molten salt that melts at a low temperature.
 電解によって得られたアルミニウムめっき膜には電解液に添加した有機物が取り込まれる。
 基材上に形成したアルミニウムめっき膜は次工程で加熱処理される。
 加熱処理を行うことにより、アルミニウムめっき膜中に取り込まれた有機物が分解すると共にアルミニウムめっき膜を構成しているアルミニウムと反応して微細な炭化アルミニウム粒子が形成される。
 有機物は溶融塩中に溶解しており、めっき膜中にも分子として均一に取り込まれるため、上記の反応によって生成した炭化アルミニウム粒子はアルミニウム中に均一に分散された状態となる。炭化アルミニウム粒子はアルミニウム結晶粒子間の界面の間隙に存在する。
An organic material added to the electrolytic solution is taken into the aluminum plating film obtained by electrolysis.
The aluminum plating film formed on the substrate is heat-treated in the next step.
By performing the heat treatment, the organic matter taken into the aluminum plating film is decomposed and reacted with aluminum constituting the aluminum plating film to form fine aluminum carbide particles.
Since the organic substance is dissolved in the molten salt and is uniformly taken in as a molecule into the plating film, the aluminum carbide particles generated by the above reaction are uniformly dispersed in the aluminum. The aluminum carbide particles are present in the interstices between the aluminum crystal particles.
 図2は本発明のアルミニウム膜のTEM写真である(四角で囲った部分に炭化アルミニウム粒子が存在している)が、1μm~10μm程度の粒径のアルミニウム粒子の粒界部分に100nm程度の粒径の炭化アルミニウムの微細粒子が均一に分散して存在していることがわかる。
 また、アルミニウム膜は金属成分としてアルミニウムの他に鉄、銅、マンガン、クロム、チタン、マグネシウムを含むアルミニウム合金膜であってもよい。アルミニウム合金被膜は電解液に金属成分として鉄、銅、マンガン、クロム、チタン、マグネシウムを添加して電解を行うことによって得られる。
FIG. 2 is a TEM photograph of the aluminum film of the present invention (aluminum carbide particles are present in a portion surrounded by a square), and a grain size of about 100 nm is formed at a grain boundary portion of aluminum particles having a diameter of about 1 μm to 10 μm. It can be seen that fine particles of aluminum carbide having a diameter are uniformly dispersed.
The aluminum film may be an aluminum alloy film containing iron, copper, manganese, chromium, titanium, and magnesium in addition to aluminum as a metal component. The aluminum alloy coating can be obtained by performing electrolysis by adding iron, copper, manganese, chromium, titanium, and magnesium as metal components to the electrolytic solution.
 加熱処理の雰囲気は大気雰囲気でよい。
 加熱温度及び加熱時間は、アルミニウムめっき膜中の有機物の濃度によって適宜設定すればよく、通常は570℃~640℃、5分~30分である。
The atmosphere for the heat treatment may be an air atmosphere.
The heating temperature and the heating time may be appropriately set depending on the concentration of the organic substance in the aluminum plating film, and are usually 570 ° C. to 640 ° C. and 5 minutes to 30 minutes.
 有機物はめっき工程中に一部がめっき膜に取り込まれるため、めっきの進行につれて電解液中の有機物の濃度が低下する。従って、所定量の有機物がめっき膜中に取り込まれるようにするには電解液中の有機物の濃度を所定の設定範囲内に維持する必要がある。
 このため、電解液中の有機物の濃度をモニタリングする必要があるが、電解液中の有機物の濃度は過電圧を測定し、この測定値に基づいて所定の範囲内の過電圧が得られ得るように有機物を電解液に添加することによって調節できる。モニタリングは連続的に行なっても良く、また、インターバルを設けて行ってもよい。
Since a part of the organic matter is taken into the plating film during the plating process, the concentration of the organic matter in the electrolytic solution decreases as the plating proceeds. Therefore, in order to allow a predetermined amount of organic matter to be taken into the plating film, it is necessary to maintain the concentration of the organic matter in the electrolytic solution within a predetermined setting range.
For this reason, it is necessary to monitor the concentration of the organic substance in the electrolytic solution. The concentration of the organic substance in the electrolytic solution measures the overvoltage, and based on this measured value, the organic substance can be obtained in a predetermined range. Can be adjusted by adding to the electrolyte. Monitoring may be performed continuously or at intervals.
 過電圧は、アルミニウムの電着反応が起こる理論電位(平衡電極電位)と、実際にアルミニウムの電着反応が開始するときの電極の電位との電位差の絶対値である。この電位差の絶対値は有機物の濃度を反映しているので、この過電圧が所定の範囲内となるように有機物の添加量を調整することにより電解液中の有機物の濃度を制御することができる。 The overvoltage is the absolute value of the potential difference between the theoretical potential (equilibrium electrode potential) at which the aluminum electrodeposition reaction occurs and the electrode potential when the aluminum electrodeposition reaction actually starts. Since the absolute value of the potential difference reflects the concentration of the organic substance, the concentration of the organic substance in the electrolytic solution can be controlled by adjusting the amount of the organic substance added so that the overvoltage is within a predetermined range.
 有機物としては溶融塩に溶解するものであればいかなるものでも用いることができる。
 電解液中の有機物の濃度が高ければアルミニウムめっき膜中に取り込まれる有機物の濃度も高くなり、アルミニウム膜中の炭化アルミニウムの含有量が多くなり、アルミニウム膜の硬度も高くなる。アルミニウム膜の硬度は用途に応じて炭化アルミニウムの含有量を調節することによって適宜設定することができる。
 有機物の濃度はアルミニウム膜中の炭化アルミニウムの含有量が0.2質量%~50質量%、好ましくは2質量%~10質量%となるように設定する。
Any organic substance can be used as long as it is soluble in the molten salt.
If the concentration of the organic substance in the electrolytic solution is high, the concentration of the organic substance taken into the aluminum plating film also increases, the content of aluminum carbide in the aluminum film increases, and the hardness of the aluminum film also increases. The hardness of the aluminum film can be appropriately set by adjusting the content of aluminum carbide according to the application.
The concentration of the organic substance is set so that the content of aluminum carbide in the aluminum film is 0.2 mass% to 50 mass%, preferably 2 mass% to 10 mass%.
 摺動材料等の用途のためにはアルミニウム膜は平滑面を有することが好ましい。
アルミニウムめっき膜を平滑な面を有するものとするためには、溶融塩電解液中にめっき膜の表面を平滑化する機能を有する有機物(平滑化剤)を添加することが好ましい。
For applications such as sliding materials, the aluminum film preferably has a smooth surface.
In order to make the aluminum plating film have a smooth surface, it is preferable to add an organic substance (smoothing agent) having a function of smoothing the surface of the plating film to the molten salt electrolyte.
 平滑化剤となる有機物(以下平滑剤ともいう)としてはベンゼン、キシレン、ピリジンベンゾトリアゾール、ポリスチレン、1,10-フェナントロリン等を挙げることができ溶融塩の種類によって適宜選択することができる。
 溶融塩としてAlCl-EMICを用いる場合には、特に1,10-フェナントロリンが好ましく用いられる。
Examples of the organic substance that serves as a smoothing agent (hereinafter also referred to as a smoothing agent) include benzene, xylene, pyridinebenzotriazole, polystyrene, 1,10-phenanthroline, and the like, which can be appropriately selected depending on the type of the molten salt.
When using AlCl 3 -EMIC as the molten salt, 1,10-phenanthroline is particularly preferably used.
 図3に、溶融塩としてAlCl-EMICを用い、平滑化剤として1,10-フェナントロリン(図においては「phen」と表記した。)を用いた場合の過電圧と平滑化剤濃度との関係を示す。なお、1,10-フェナントロリンの濃度はめっき液に対する質量で示す。
 また、図4に溶融塩としてAlCl-EMICを用い、平滑化剤として1,10-フェナントロリンを用いた場合の平滑化剤濃度と炭化アルミニウムの含有量との関係を示す。
 過電圧を測定し、この信号に基づいて電解液中の有機物(平滑化剤)の濃度を調節することにより、アルミニウム膜中の炭化アルミニウムの含有量を制御することができる。
FIG. 3 shows the relationship between the overvoltage and the concentration of the smoothing agent when AlCl 3 -EMIC is used as the molten salt and 1,10-phenanthroline (denoted as “phen” in the figure) is used as the smoothing agent. Show. The concentration of 1,10-phenanthroline is indicated by the mass with respect to the plating solution.
FIG. 4 shows the relationship between the concentration of the leveling agent and the content of aluminum carbide when AlCl 3 -EMIC is used as the molten salt and 1,10-phenanthroline is used as the leveling agent.
The content of aluminum carbide in the aluminum film can be controlled by measuring the overvoltage and adjusting the concentration of the organic matter (smoothing agent) in the electrolyte based on this signal.
 アルミニウム膜を形成する基材としては、適宜のものが選択できるが、本発明の主な目的は基材の中でもとくにアルミニウム基材の耐摩耗性を向上することであるから、基材としてはアルミニウムを用いることが好ましい。
 但し、基材をアルミニウムとした場合には、通常はアルミニウムの表面には酸化アルミニウム膜が存在するため、アルミニウムめっき膜とアルミニウム基材との接着性がよくないため、アルミニウム膜が剥離しやすくなる。従って、アルミニウム膜の基材への密着性を向上させるには、アルミニウム基材の表面に存在する酸化膜を、逆電解処理等によって除去した後の基材を溶融塩電解処理してアルミニウム膜を形成することが好ましい。
 逆電解処理は、溶融塩電解槽中で酸化膜を有するアルミニウム基材を陽極として電解処理することによってアルミニウム基材表面の酸化膜を溶融塩中に溶出させるものである。
 他方、アルミニウム膜を単離する場合には、酸化アルミニウム膜が存在する方が好適である。
As the base material for forming the aluminum film, an appropriate one can be selected. However, the main object of the present invention is to improve the wear resistance of the aluminum base material among the base materials. Is preferably used.
However, when the substrate is made of aluminum, an aluminum oxide film is usually present on the surface of the aluminum, so the adhesion between the aluminum plating film and the aluminum substrate is not good, and the aluminum film is easy to peel off. . Therefore, in order to improve the adhesion of the aluminum film to the base material, the oxide film present on the surface of the aluminum base material is removed by reverse electrolytic treatment or the like, and then the base material is subjected to molten salt electrolytic treatment to form the aluminum film. It is preferable to form.
In the reverse electrolysis treatment, the oxide film on the surface of the aluminum substrate is eluted in the molten salt by performing an electrolytic treatment using the aluminum substrate having an oxide film as an anode in a molten salt electrolytic bath.
On the other hand, when an aluminum film is isolated, it is preferable that an aluminum oxide film is present.
 図1は、溶融塩電解液中の有機物の濃度を設定値に維持するための装置の構成を示した図である。
 電着により有機物が減少した電解液は、図1に示すように、電解槽1からオーバーフローして連続的に回収電解液槽21に戻され、次いで補給液貯槽22に送液される。回収電解液槽21には有機物貯槽23が接続されており、過電圧信号に基づいて制御信号を送る制御装置25からの制御信号により供給バルブ24が制御されて有機物貯槽23から所定量の有機物が回収電解液槽21に供給されて電解液中の有機物濃度が調整される。次いで電解液は補給液貯槽22から濾過機26によって、液中の固形物を除去したのち電解槽1に供給される。また、電解によって液温が上昇するので、冷却装置を設けて電解液を冷却しても良い。
FIG. 1 is a diagram showing the configuration of an apparatus for maintaining the concentration of organic matter in a molten salt electrolyte at a set value.
As shown in FIG. 1, the electrolytic solution in which the organic matter has been reduced by electrodeposition overflows from the electrolytic cell 1, is continuously returned to the recovered electrolytic solution tank 21, and then sent to the replenisher storage tank 22. An organic substance storage tank 23 is connected to the recovered electrolyte tank 21, and a supply valve 24 is controlled by a control signal from a control device 25 that sends a control signal based on an overvoltage signal, whereby a predetermined amount of organic substance is recovered from the organic substance storage tank 23. The organic substance concentration in the electrolytic solution is adjusted by being supplied to the electrolytic solution tank 21. Next, the electrolytic solution is supplied from the replenisher storage tank 22 to the electrolytic tank 1 after removing solids in the liquid by the filter 26. Further, since the liquid temperature rises due to electrolysis, a cooling device may be provided to cool the electrolytic solution.
 過電圧の測定は電解槽1におけるアルミニウム基体(陰極)と陽極との間の電圧と理論電位(平衡電極電位)との間の電位差すなわち過電圧を電気信号として取り出し、この過電圧と設定電圧とを制御装置25で比較して過電圧が設定値となるように有機物の供給バルブの開度を調節して補給液貯槽22への平滑化剤の供給量を制御する。 The overvoltage is measured by taking out the potential difference between the voltage between the aluminum substrate (cathode) and the anode in the electrolytic cell 1 and the theoretical potential (equilibrium electrode potential), that is, the overvoltage as an electric signal, and controlling the overvoltage and the set voltage. The amount of supply of the smoothing agent to the replenishing liquid storage tank 22 is controlled by adjusting the opening of the organic substance supply valve so that the overvoltage becomes a set value.
 溶融塩中に水分や酸素が混入すると溶融塩が劣化したり、うまくめっきが行われないという問題が生じるため、電解は窒素、アルゴン等の不活性ガス雰囲気下で、かつ密閉した環境下で行うことが好ましい。
 具体的には、電解槽1のめっき浴表面に蓋をして電解槽1の下方から不活性ガスをバブリングすることによって電解液を攪拌すると共に電解液中に含まれる水分や酸素を追い出すとともに、電解液の液面上の空間を窒素ガス雰囲気とする。また、蓋の代わりに電解液の液面に遮蔽板を浮遊させて外気をシャットアウトしてもよく、不活性ガスを電解槽1の上方から供給するようにしても良い。
If moisture or oxygen is mixed in the molten salt, the molten salt will deteriorate or plating will not be performed properly. Therefore, electrolysis is performed in an inert gas atmosphere such as nitrogen or argon, and in a sealed environment. It is preferable.
Specifically, the surface of the plating bath of the electrolytic cell 1 is covered and an inert gas is bubbled from below the electrolytic cell 1 to stir the electrolytic solution and expel moisture and oxygen contained in the electrolytic solution, The space on the electrolyte surface is a nitrogen gas atmosphere. Further, instead of the lid, a shielding plate may be suspended on the surface of the electrolytic solution to shut out the outside air, or an inert gas may be supplied from above the electrolytic cell 1.
 本発明におけるアルミニウムめっきにおいては、前記めっき浴の温度が60℃~120℃となるように調整しながら電気めっきを行うことが好ましい。めっき浴の温度が60℃以上にすることによりめっき浴の粘度を充分に低くすることができ、めっき効率を向上させることができる。また、120℃以下にすることにより塩化アルミニウムの揮発を抑制することができる。前記めっき浴の温度は60℃~100℃であることがより好ましく、60℃~80℃であることが更に好ましい。 In the aluminum plating in the present invention, it is preferable to perform electroplating while adjusting the temperature of the plating bath to be 60 ° C to 120 ° C. By setting the temperature of the plating bath to 60 ° C. or higher, the viscosity of the plating bath can be sufficiently lowered, and the plating efficiency can be improved. Moreover, volatilization of aluminum chloride can be suppressed by setting it to 120 degrees C or less. The temperature of the plating bath is more preferably 60 ° C. to 100 ° C., and further preferably 60 ° C. to 80 ° C.
 また、基材としてアルミニウムを用いる場合には、通常アルミニウムは表面に絶縁性あるいは導電性が低い金属酸化膜等が形成されているため、アルミニウムを電着させようとしても表面に均質に通電させることができず、均質なアルミニウム膜が形成されない場合がある。図5に示す装置は予め基材のアルミニウムの表面の金属酸化膜を除去してアルミニウムめっきを施し、均質なアルミニウム膜を形成することができるようにした装置の一例を示す図である。 In addition, when aluminum is used as the base material, since a metal oxide film or the like having a low insulating or low electrical conductivity is usually formed on the surface, the surface should be uniformly energized even if it is to be electrodeposited. In some cases, a uniform aluminum film cannot be formed. The apparatus shown in FIG. 5 is a view showing an example of an apparatus in which a metal oxide film on an aluminum surface of a base material is removed in advance and aluminum plating is performed so that a homogeneous aluminum film can be formed.
 図5に示すように本発明のアルミニウムめっき装置は、めっき液が収容されるめっき槽(102)が仕切り板(103)によって第一の電解室(104)と第二の電解室(105)とに分けられている。そして、基体(101)は第一の電解室(104)から第二の電解室(105)へと連続的に搬送される。 As shown in FIG. 5, in the aluminum plating apparatus of the present invention, a plating tank (102) in which a plating solution is accommodated is divided into a first electrolytic chamber (104) and a second electrolytic chamber (105) by a partition plate (103). It is divided into. The substrate (101) is continuously conveyed from the first electrolysis chamber (104) to the second electrolysis chamber (105).
 仕切り板(103)は第一の電解室(104)と第二の電解室(105)とを電気的に隔てる目的で設けるものであり、絶縁性のものを好ましく用いることができる。例えば、テフロン(登録商標)、セラミックス、ガラス、PEEK(ポリエーテルエーテルケトン)などのスーパーエンジニアリングプラスチック、耐熱塩化ビニル樹脂等を用いることができる。
 また、仕切り板(103)には基体の通り口が設けられているが、当該通り口は基体が通ることのできる最小限のものであることが好ましい。例えば、基体の通り口をスリット状にすることが好ましい。
The partition plate (103) is provided for the purpose of electrically separating the first electrolysis chamber (104) and the second electrolysis chamber (105), and an insulating material can be preferably used. For example, Teflon (registered trademark), ceramics, glass, super engineering plastic such as PEEK (polyetheretherketone), heat-resistant vinyl chloride resin, or the like can be used.
In addition, the partition plate (103) is provided with a passage through the base, but the passage is preferably the minimum through which the base can pass. For example, it is preferable that the passage of the substrate has a slit shape.
 基体(101)が最初に搬送される第一の電解室(104)には陰極(107)が設けられており、第一の電解室(104)の中で基体(101)が陽極として作用するように電気的に接続されている。これにより陰極(107)と基体(101)との間で電解が生じ、基体(101)の表面に形成されていた金属酸化膜が電解除去され、基体(101)を構成している金属表面が露出する。
 陰極(107)は特に限定される物ではなく、例えば、アルミニウム、チタン、銅等を好ましく用いることができる。
A cathode (107) is provided in the first electrolysis chamber (104) in which the substrate (101) is first transported, and the substrate (101) acts as an anode in the first electrolysis chamber (104). So that it is electrically connected. As a result, electrolysis occurs between the cathode (107) and the substrate (101), and the metal oxide film formed on the surface of the substrate (101) is removed by electrolysis, so that the metal surface constituting the substrate (101) is removed. Exposed.
The cathode (107) is not particularly limited, and for example, aluminum, titanium, copper or the like can be preferably used.
 図5では陰極(107)は基体(101)の上下方向に2つ設けた場合が例示されているが、陰極(107)の数は特に限定されるものではなく、1つでも、3つ以上でも構わない。また、陰極(107)を設ける位置も特に限定される物ではないが、なるべく基体(101)の近傍に位置するように設けた方が効率よく電解が起こるため好ましい。 FIG. 5 illustrates the case where two cathodes (107) are provided in the vertical direction of the base body (101). However, the number of cathodes (107) is not particularly limited, and one or three or more are provided. It doesn't matter. Further, the position where the cathode (107) is provided is not particularly limited, but it is preferable that the cathode (107) is provided as close as possible to the base (101) because electrolysis occurs efficiently.
 第一の電解室(104)の中で基体(101)が陽極として作用するようにするためには、陰極(107)と接続されている電源の陽極端子と、基体(101)とを接続すればよい。このとき、基体(101)は第一の電解室(104)の入口近傍の上流側で陽極と接続されていると、効率よく電解が起こるため好ましい。 In order for the substrate (101) to act as an anode in the first electrolysis chamber (104), the anode terminal of the power source connected to the cathode (107) and the substrate (101) are connected. That's fine. At this time, it is preferable that the substrate (101) is connected to the anode on the upstream side in the vicinity of the inlet of the first electrolysis chamber (104) because electrolysis occurs efficiently.
 図5は第一の電解室(104)の入口の上流側に第一の給電ローラ(106)を設け、当該第一の給電ローラ(106)と電源の陽極とを接続している場合を示している。これにより、基体(101)は、第一の給電ローラ(106)と第一の搬送ローラ(110)によって連続的に搬送されつつ第一の給電ローラ(106)から電位が付与され、第一の電解室(104)の中で陽極として作用するようになる。なお、図5では第一の給電ローラ(106)の向かい側に第一の搬送ローラ(110)を設けた場合を示しているが、第一の搬送ローラ(110)の代わりに、陽極と接続された給電ローラを設けてもよい。 FIG. 5 shows a case where a first power supply roller (106) is provided upstream of the inlet of the first electrolysis chamber (104), and the first power supply roller (106) is connected to the anode of the power source. ing. As a result, the substrate (101) is applied with a potential from the first power supply roller (106) while being continuously transported by the first power supply roller (106) and the first transport roller (110). It will act as an anode in the electrolysis chamber (104). FIG. 5 shows the case where the first conveying roller (110) is provided on the opposite side of the first power supply roller (106), but it is connected to the anode instead of the first conveying roller (110). A power feeding roller may be provided.
 第一の電解室(104)において電解除去する金属酸化膜の量は、基体(101)上に形成されている酸化膜の量に応じて適宜調整すればよい。例えば、基体がアルミニウムである場合には、アルミニウムの析出量又は溶解量は次式に基づいて調製することができる。
  アルミニウム析出量/電解量[g]
       =0.3352×I[A]×t[Hr]       (式)
 上記式においてIは電流値、tは時間を表し、定数0.3352はアルミニウムに特有の定数であり、基体が他の金属の場合には、その金属に特有の定数に変更して計算すればよい。
What is necessary is just to adjust suitably the quantity of the metal oxide film electrolytically removed in a 1st electrolysis chamber (104) according to the quantity of the oxide film currently formed on the base | substrate (101). For example, when the substrate is aluminum, the precipitation amount or dissolution amount of aluminum can be prepared based on the following formula.
Aluminum precipitation / electrolysis [g]
= 0.3352 × I [A] × t [Hr] (formula)
In the above formula, I represents a current value, t represents time, a constant 0.3352 is a constant peculiar to aluminum, and when the substrate is another metal, it is calculated by changing to a constant peculiar to that metal. Good.
 上記のようにして金属酸化膜が除去された基体(101)は、続いて仕切り板(103)に設けられたスリットを通じて第二の電解室(105)へと搬送される。第二の電解室(105)には陽極(109)が設けられており、第二の電解室(105)の中で基体(101)が陰極として作用するように電気的に接続されている。これにより、陽極(109)と基体(101)との間で電解が生じ、基体(101)の表面にアルミニウムが電着する。 The substrate (101) from which the metal oxide film has been removed as described above is subsequently conveyed to the second electrolysis chamber (105) through a slit provided in the partition plate (103). An anode (109) is provided in the second electrolysis chamber (105), and the base (101) is electrically connected so as to act as a cathode in the second electrolysis chamber (105). As a result, electrolysis occurs between the anode (109) and the substrate (101), and aluminum is electrodeposited on the surface of the substrate (101).
 前記のように基体(101)の表面に形成されていた金属酸化膜は第一の電解室(104)において除去されているため、第二の電解室(105)では基体(101)の表面に均一なアルミニウムめっきを形成することが可能である。
 陽極(109)は特に限定されるものではなく、例えば、アルミニウム、チタン、銅等を好ましく用いることができる。
Since the metal oxide film formed on the surface of the base (101) as described above is removed in the first electrolysis chamber (104), the second electrolysis chamber (105) is formed on the surface of the base (101). It is possible to form a uniform aluminum plating.
The anode (109) is not particularly limited, and for example, aluminum, titanium, copper or the like can be preferably used.
 陰極(107)と同様に図5では陽極(109)を基体(101)の上下方向に2つ設けた場合を例示しているが、陽極(109)の数は特に限定されるものではなく、1つでも、3つ以上でも構わない。また、陽極(109)を設ける位置も特に限定される物ではないが、なるべく基体(101)の近傍に位置するように設けた方が効率よく電解が起こるため好ましい。 As in the case of the cathode (107), FIG. 5 illustrates the case where two anodes (109) are provided in the vertical direction of the substrate (101), but the number of anodes (109) is not particularly limited. One or three or more may be used. Further, the position where the anode (109) is provided is not particularly limited, but it is preferable to provide the anode (109) as close to the substrate (101) as possible because electrolysis occurs efficiently.
 第二の電解室(105)の中で基体(101)が陰極として作用するようにするためには、陽極(109)と接続されている電源の陰極端子と、基体(101)とを接続すればよい。このとき、基体(101)は第二の電解室(105)の出口近傍の下流側で陰極と接続されていると、効率よく電解が起こるため好ましい。 In order for the substrate (101) to act as a cathode in the second electrolysis chamber (105), the cathode terminal of the power source connected to the anode (109) and the substrate (101) are connected. That's fine. At this time, it is preferable that the substrate (101) is connected to the cathode on the downstream side in the vicinity of the outlet of the second electrolysis chamber (105) because electrolysis occurs efficiently.
 図5は第二の電解室(105)の出口の下流側に第二の給電ローラ(108)を設け、当該第二の給電ローラ(108)と電源の陰極とを接続している場合を示している。これにより、基体(101)は、第二の給電ローラ(108)と第二の搬送ローラ(111)によって連続的に搬送されつつ第二の給電ローラ(108)から電位が付与され、第二の電解室(105)の中で陰極として作用するようになる。なお、図5では第二の給電ローラ(108)の向かい側に第二の搬送ローラ(111)を設けた場合を示しているが、第二の搬送ローラ(111)の代わりに、陰極と接続された給電ローラを設けてもよい。 FIG. 5 shows a case where a second power supply roller (108) is provided downstream of the outlet of the second electrolysis chamber (105) and the second power supply roller (108) is connected to the cathode of the power source. ing. As a result, the substrate (101) is applied with a potential from the second power supply roller (108) while being continuously transported by the second power supply roller (108) and the second transport roller (111). It comes to act as a cathode in the electrolysis chamber (105). FIG. 5 shows the case where the second transport roller (111) is provided on the opposite side of the second power supply roller (108), but it is connected to the cathode instead of the second transport roller (111). A power feeding roller may be provided.
 第二の電解室(105)において析出させるアルミニウムの量は、上記式によって計算することができる。従って、所望のアルミニウムが基体(101)表面に電着するように、電流値、及び時間を調整すればよい。時間は基体(101)の搬送速度を変更することで調整することができる。 The amount of aluminum deposited in the second electrolysis chamber (105) can be calculated by the above formula. Therefore, the current value and time may be adjusted so that desired aluminum is electrodeposited on the surface of the substrate (101). The time can be adjusted by changing the conveyance speed of the substrate (101).
 以下、実施例に基づいて本発明をより詳細に説明するが、これらの実施例は例示であって、本発明の金属多孔体はこれらに限定されるものではない。本発明の範囲は特許請求の範囲の範囲によって示され、特許請求の範囲の範囲と均等の意味及び範囲内でのすべての変更が含まれる。 Hereinafter, the present invention will be described in more detail based on examples. However, these examples are merely examples, and the metal porous body of the present invention is not limited to these examples. The scope of the present invention is defined by the scope of the claims, and includes meanings equivalent to the scope of the claims and all modifications within the scope.
[実施例1]
(めっき工程)
 アルミニウム基体(80mm×50mm×1mmt)を逆電解処理によって表面の酸化アルミニウム膜を除去した後、これを電解槽内で陰極側に接続し、対極のアルミニウム板(純度99.99%)を陽極側に接続して、電解槽底部から窒素を0.2L/minの流量でバブリングさせながら以下の電解条件でめっきを行ってアルミニウム基体板表面にアルミニウムめっき膜を形成した。また、過電圧の測定では、参照極及び対極にはアルミニウムを用い、作用極には白金を用いた。
 電解条件は以下の通りとした。
 溶融塩組成 : 33mol%EMIC-66mol%AlCl
 有機物   : 1,10-フェナントロリン
 液温    : 45℃
 電流密度  : 2A/dm(直流電流)
 設定過電圧 : -120mV~-140mV
(熱処理工程)
 得られた試料を大気中で600℃、20分加熱処理した。
 得られたアルミニウム膜の膜厚、X線回折(XRD)によるアルミニウム膜中の炭化アルミニウム含有量、アルミニウム膜のビッカース硬度をそれぞれ評価した。評価結果を表1に示す。
[Example 1]
(Plating process)
After removing the aluminum oxide film on the surface of the aluminum substrate (80 mm × 50 mm × 1 mmt) by reverse electrolysis, this was connected to the cathode side in the electrolytic cell, and the aluminum plate (purity 99.99%) of the counter electrode was connected to the anode side Then, plating was performed under the following electrolysis conditions while bubbling nitrogen from the bottom of the electrolytic cell at a flow rate of 0.2 L / min to form an aluminum plating film on the surface of the aluminum base plate. In the measurement of overvoltage, aluminum was used for the reference electrode and the counter electrode, and platinum was used for the working electrode.
The electrolysis conditions were as follows.
Molten salt composition: 33 mol% EMIC-66 mol% AlCl 3
Organic matter: 1,10-phenanthroline Liquid temperature: 45 ° C
Current density: 2 A / dm 2 (DC current)
Setting overvoltage: -120 mV to -140 mV
(Heat treatment process)
The obtained sample was heat-treated in the atmosphere at 600 ° C. for 20 minutes.
The film thickness of the obtained aluminum film, the aluminum carbide content in the aluminum film by X-ray diffraction (XRD), and the Vickers hardness of the aluminum film were evaluated. The evaluation results are shown in Table 1.
[実施例2]
 電解条件を以下の通りとしたこと以外は実施例1と同様にして基体上にアルミニウムめっき膜を形成し、次いで得られた試料を大気中で600℃、20分加熱処理した。
 加熱処理して得られた試料について実施例1と同様にしてアルミニウム膜の膜厚、X線回折(XRD)によるアルミニウム膜中の炭化アルミニウム含有量、アルミニウム膜のビッカース硬度をそれぞれ評価した。評価結果を表1に示す。
(電解条件)
電解液組成 : 33mol%EMIC-66mol%AlCl
有機物(平滑化剤) : キシレン
液温    : 45℃
電流密度  : 2A/dm(直流電流)
設定過電圧 : -120mV~-140mV
[Example 2]
An aluminum plating film was formed on the substrate in the same manner as in Example 1 except that the electrolysis conditions were as follows, and then the obtained sample was heat-treated in the atmosphere at 600 ° C. for 20 minutes.
For the sample obtained by the heat treatment, the film thickness of the aluminum film, the aluminum carbide content in the aluminum film by X-ray diffraction (XRD), and the Vickers hardness of the aluminum film were evaluated in the same manner as in Example 1. The evaluation results are shown in Table 1.
(Electrolysis conditions)
Electrolyte composition: 33 mol% EMIC-66 mol% AlCl 3
Organic matter (smoothing agent): Xylene liquid temperature: 45 ° C
Current density: 2 A / dm 2 (DC current)
Setting overvoltage: -120 mV to -140 mV
[実施例3]
 電解条件を以下の通りとしたこと以外は実施例1と同様にして基体上にアルミニウムめっき膜を形成し、次いで得られた試料を大気中で600℃、20分加熱処理した。
 加熱処理して得られた試料について実施例1と同様にしてアルミニウム膜の膜厚、X線回折(XRD)によるアルミニウム膜中の炭化アルミニウム含有量、アルミニウム膜のビッカース硬度をそれぞれ測定した。評価結果を表1に示す。
(電解条件)
電解液組成 : 33mol%EMIC-66mol%AlCl
有機物(平滑化剤) : トルエン
液温    : 45℃
電流密度  : 2A/dm(直流電流)
設定過電圧 : -120mV~-140mV
[Example 3]
An aluminum plating film was formed on the substrate in the same manner as in Example 1 except that the electrolysis conditions were as follows, and then the obtained sample was heat-treated in the atmosphere at 600 ° C. for 20 minutes.
For the sample obtained by heat treatment, the film thickness of the aluminum film, the aluminum carbide content in the aluminum film by X-ray diffraction (XRD), and the Vickers hardness of the aluminum film were measured in the same manner as in Example 1. The evaluation results are shown in Table 1.
(Electrolysis conditions)
Electrolyte composition: 33 mol% EMIC-66 mol% AlCl 3
Organic matter (smoothing agent): Toluene liquid temperature: 45 ° C
Current density: 2 A / dm 2 (DC current)
Setting overvoltage: -120 mV to -140 mV
[比較例1]
 実施例1において、電解液に有機物を添加しなかったこと以外は実施例1と同様にしてアルミニウム膜を得て、実施例1と同様にして評価した。評価結果を表1に示す。
[Comparative Example 1]
In Example 1, an aluminum film was obtained in the same manner as in Example 1 except that no organic substance was added to the electrolytic solution, and evaluated in the same manner as in Example 1. The evaluation results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 1 電解槽
21 回収電解液槽
22 補給液貯槽
23 有機物貯槽
24 供給バルブ
25 制御装置
26 濾過機
101 基体
102 めっき槽
103 仕切り板
104 第一の電解室
105 第二の電解室
106 第一の給電ローラ
107 陰極
108 第二の給電ローラ
109 陽極
110 第二の搬送ローラ
111 第二の搬送ローラ
DESCRIPTION OF SYMBOLS 1 Electrolysis tank 21 Recovery electrolyte tank 22 Replenishment liquid storage tank 23 Organic substance storage tank 24 Supply valve 25 Control device 26 Filter 101 Base 102 Plating tank 103 Partition plate 104 First electrolysis chamber 105 Second electrolysis chamber 106 First feeding roller 107 Cathode 108 Second power supply roller 109 Anode 110 Second transport roller 111 Second transport roller

Claims (6)

  1.  アルミニウム結晶粒子から構成される多結晶のアルミニウム膜であって、
    炭化アルミニウム粒子が前記アルミニウム結晶粒子間の界面に存在しているアルミニウム膜。
    A polycrystalline aluminum film composed of aluminum crystal particles,
    An aluminum film in which aluminum carbide particles are present at the interface between the aluminum crystal particles.
  2.  前記アルミニウム結晶粒子の体積平均粒子径が1μm~10μmであり、前記炭化アルミニウム粒子の体積平均粒子径が150nm以下である請求項1に記載のアルミニウム膜。 2. The aluminum film according to claim 1, wherein the volume average particle diameter of the aluminum crystal particles is 1 μm to 10 μm, and the volume average particle diameter of the aluminum carbide particles is 150 nm or less.
  3.  前記アルミニウム膜に含まれる前記炭化アルミニウムの含有量は、0.2質量%~50質量%である請求項1又は請求項2に記載のアルミニウム膜。 3. The aluminum film according to claim 1, wherein a content of the aluminum carbide contained in the aluminum film is 0.2% by mass to 50% by mass.
  4.  請求項1~請求項3のいずれか一項に記載のアルミニウム膜を、アルミニウムからなる基材上に形成したアルミニウム膜形成体。 An aluminum film forming body in which the aluminum film according to any one of claims 1 to 3 is formed on a base material made of aluminum.
  5.  溶融塩中に有機物を溶解してなる電解液を使用して電解する事により、基材上に前記有機物を含むアルミニウム膜を電着させ、
    次いで、前記アルミニウム膜を加熱処理して、前記アルミニウム膜中に炭化アルミニウム粒子を生成させるアルミニウム膜の製造方法。
    By electrolysis using an electrolytic solution obtained by dissolving an organic substance in a molten salt, an aluminum film containing the organic substance is electrodeposited on a substrate,
    Next, a method for producing an aluminum film, wherein the aluminum film is heat-treated to produce aluminum carbide particles in the aluminum film.
  6.  前記基材はアルミニウムからなり、前記基材の表面に存在する酸化アルミニウム膜の除去を、前記基材を陽極にして溶融塩電解することによって、前記酸化アルミニウム膜を溶融塩中に溶出することによって行う請求項5に記載のアルミニウム膜の製造方法。 The base material is made of aluminum, and the aluminum oxide film present on the surface of the base material is removed by eluting the aluminum oxide film into the molten salt by subjecting the base material to an anode and molten salt electrolysis. The manufacturing method of the aluminum film of Claim 5 to perform.
PCT/JP2013/076699 2012-10-15 2013-10-01 Aluminum film, article having aluminum film formed thereon, and method for producing aluminum film WO2014061442A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-228148 2012-10-15
JP2012228148A JP2016000838A (en) 2012-10-15 2012-10-15 Aluminum film, aluminum film formed body and production method of aluminum film

Publications (1)

Publication Number Publication Date
WO2014061442A1 true WO2014061442A1 (en) 2014-04-24

Family

ID=50488013

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/076699 WO2014061442A1 (en) 2012-10-15 2013-10-01 Aluminum film, article having aluminum film formed thereon, and method for producing aluminum film

Country Status (2)

Country Link
JP (1) JP2016000838A (en)
WO (1) WO2014061442A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015227498A (en) * 2014-06-02 2015-12-17 矢崎総業株式会社 Aluminum-based composite material and production method thereof
CN110291617A (en) * 2017-02-10 2019-09-27 应用材料公司 Dynamical low temperature electroplated aluminum

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6915681B2 (en) 2017-04-05 2021-08-04 住友電気工業株式会社 Aluminum porous body and method for producing aluminum porous body
JP7127984B2 (en) * 2017-12-27 2022-08-30 東邦チタニウム株式会社 Method for operating molten salt electrolyzer and method for producing molten metal
JP7061519B2 (en) * 2018-06-26 2022-04-28 東邦チタニウム株式会社 Molten salt moisture reduction method, molten salt electrolysis method, and molten metal manufacturing method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4824133B1 (en) * 1969-04-23 1973-07-19
JPH05125587A (en) * 1991-10-30 1993-05-21 Nisshin Steel Co Ltd Die cast product formed with aluminum plating
JPH05156490A (en) * 1991-11-29 1993-06-22 Nisshin Steel Co Ltd Aluminum alloy sheet excellent in phosphating property and corrosion resistance after coating
JPH05311487A (en) * 1992-05-08 1993-11-22 Nippon Steel Corp Method for electroplating aluminum sheet and aluminum alloy sheet with excellent adhesion
JP2006500476A (en) * 2002-09-25 2006-01-05 アルミナル オーベルフレッヒェンテヒニク ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディトゲゼルシャフト Electrolytic coating of materials with aluminum, magnesium, or an alloy of aluminum and magnesium
JP2008019456A (en) * 2006-07-11 2008-01-31 Nissan Motor Co Ltd Electrically composite-plated wire rod, manufacturing method therefor, and manufacturing apparatus therefor
JP2008031551A (en) * 2006-06-29 2008-02-14 Hitachi Metals Ltd Aluminum plating layer, metallic member and manufacturing method therefor
JP2012144763A (en) * 2011-01-11 2012-08-02 Sumitomo Electric Ind Ltd Method for producing aluminum structure, and aluminum structure

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4824133B1 (en) * 1969-04-23 1973-07-19
JPH05125587A (en) * 1991-10-30 1993-05-21 Nisshin Steel Co Ltd Die cast product formed with aluminum plating
JPH05156490A (en) * 1991-11-29 1993-06-22 Nisshin Steel Co Ltd Aluminum alloy sheet excellent in phosphating property and corrosion resistance after coating
JPH05311487A (en) * 1992-05-08 1993-11-22 Nippon Steel Corp Method for electroplating aluminum sheet and aluminum alloy sheet with excellent adhesion
JP2006500476A (en) * 2002-09-25 2006-01-05 アルミナル オーベルフレッヒェンテヒニク ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディトゲゼルシャフト Electrolytic coating of materials with aluminum, magnesium, or an alloy of aluminum and magnesium
JP2008031551A (en) * 2006-06-29 2008-02-14 Hitachi Metals Ltd Aluminum plating layer, metallic member and manufacturing method therefor
JP2008019456A (en) * 2006-07-11 2008-01-31 Nissan Motor Co Ltd Electrically composite-plated wire rod, manufacturing method therefor, and manufacturing apparatus therefor
JP2012144763A (en) * 2011-01-11 2012-08-02 Sumitomo Electric Ind Ltd Method for producing aluminum structure, and aluminum structure

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015227498A (en) * 2014-06-02 2015-12-17 矢崎総業株式会社 Aluminum-based composite material and production method thereof
US11248279B2 (en) 2014-06-02 2022-02-15 Yazaki Corporation Aluminum-based composite material and method of manufacturing the same
CN110291617A (en) * 2017-02-10 2019-09-27 应用材料公司 Dynamical low temperature electroplated aluminum

Also Published As

Publication number Publication date
JP2016000838A (en) 2016-01-07

Similar Documents

Publication Publication Date Title
Li et al. Electro-codeposition of Ni-SiO2 nanocomposite coatings from deep eutectic solvent with improved corrosion resistance
EP3097222B1 (en) Electroplating bath containing trivalent chromium and process for depositing chromium
JPH11310896A (en) Electroplating method
WO2014061442A1 (en) Aluminum film, article having aluminum film formed thereon, and method for producing aluminum film
JP5950162B2 (en) Method for producing aluminum film
US8951401B2 (en) Method for electrochemically depositing carbon film on a substrate
US3444058A (en) Electrodeposition of refractory metals
Saranya et al. Electrodeposition of Ni–Cu alloys from a protic ionic liquid medium-voltammetric and surface morphologic studies
Tu et al. Electrodeposition of aluminium foils on carbon electrodes in low temperature ionic liquid
Wu et al. The influence of current density and bath temperature on electrodeposition of rhodium film from sulfate–phosphate aqueous solutions
De Sa et al. Electrodeposition of gold thin films from 1-butyl-1-methylpyrrolidinium dicyanamide Au3+ solutions
CN103806044B (en) The method of electrolytic preparation iridium coating layer in chloro-iridic acid caesium-Chlorides molten salts
Takeda et al. Zirconium metal production by electrorefining of Zr oxycarbide
JP3124848B2 (en) Manufacturing method of metal foil by electrolysis
EP0365969B1 (en) Method for continuously electro-tinplating metallic material
RU2692759C1 (en) Lead-carbon metal composite material for electrodes of lead-acid batteries and a method for synthesis thereof
JP2014077188A (en) Method and apparatus for producing aluminum powder, and aluminum powder
Popescu et al. Recovery of metals from anodic dissolution slime of waste from electric and electronic equipment (WEEE) by extraction in ionic liquids
Popescu et al. The use of deep eutectic solvents ionic liquids for selective dissolution and recovery of Sn, Pb and Zn from electric and electronic waste (WEEE)
KR101552770B1 (en) Process for electrorefining of magnesium by non-aqueous electrolysis
Kim et al. Cobalt electrodeposition from cobalt chloride using urea and choline chloride ionic liquid: effect of temperature, applied voltage, and cobalt chloride concentration on current efficiency and energy consumption
JP6990130B2 (en) Electrolytic aluminum foil manufacturing method and manufacturing equipment
CN114277421A (en) Ti-Mo-B ternary boride coating and preparation method thereof
CN114293232A (en) Method for preparing tungsten dispersion strengthened copper composite material by electroforming
Ghosh Electrodeposition of Cu, Sn and Cu-Sn alloy from choline chloride ionic liquid

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13847091

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13847091

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP