[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2005215419A - Reflection-type liquid crystal display and transmission-type liquid crystal display - Google Patents

Reflection-type liquid crystal display and transmission-type liquid crystal display Download PDF

Info

Publication number
JP2005215419A
JP2005215419A JP2004023125A JP2004023125A JP2005215419A JP 2005215419 A JP2005215419 A JP 2005215419A JP 2004023125 A JP2004023125 A JP 2004023125A JP 2004023125 A JP2004023125 A JP 2004023125A JP 2005215419 A JP2005215419 A JP 2005215419A
Authority
JP
Japan
Prior art keywords
transparent
liquid crystal
film
amorphous
substrate chip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004023125A
Other languages
Japanese (ja)
Inventor
Hideo Yamanaka
英雄 山中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2004023125A priority Critical patent/JP2005215419A/en
Publication of JP2005215419A publication Critical patent/JP2005215419A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high-precision and high-performance liquid crystal display device having high luminance, by controlling the angle or the density of the fine structure of a particulate columnar laminate of an inorganic alignment layer, such as a SiOx film formed by oblique vapor deposition or directional sputtering, by arranging the alignment of liquid crystal in the order, and by reducing color unevenness. <P>SOLUTION: In the reflecting LCD panel 1, provided with an opaque TFT substrate chip 3, on which a plurality of pixels are formed into a matrix shape, a transparent opposite substrate chip 4, disposed opposite the opaque TFT substrate chip via a prescribed gap, and the liquid crystal 5 held, in the gap between the opaque TFT substrate chip and the transparent opposite substrate chip; the opaque TFT substrate chip is provided with a pixel electrode 7 formed for each pixel; an amorphous transparent conductive film 8 covering the pixel electrode; and the SiOx film 9 formed by the oblique vapor deposition or the directional sputtering on the upper layer of the amorphous transparent conductive film; and the transparent opposite substrate chip is provided with the amorphous transparent conductive film 8, formed on the surface thereof; and the SiOx film, formed by the oblique vapor deposition or the directional sputtering, on the upper layer of the amorphous transparent conductive film. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は反射型液晶表示装置及び透過型液晶表示装置に関する。詳しくは、非晶質透明材料の上に斜方蒸着或いは指向性スパッタリングにより無機系配向膜を形成することによって、液晶配向を揃わせ、色ムラを低減しようとした反射型液晶表示装置及び透過型液晶表示装置に係るものである。   The present invention relates to a reflective liquid crystal display device and a transmissive liquid crystal display device. Specifically, a reflective liquid crystal display device and a transmission type liquid crystal display device that are designed to align the liquid crystal alignment and reduce color unevenness by forming an inorganic alignment film by oblique deposition or directional sputtering on an amorphous transparent material. The present invention relates to a liquid crystal display device.

液晶用配向膜には、ポリイミド、ポリアミド等の有機系配向膜とSiOx等の無機系配向膜がある。
前者の場合は、正の誘電異方性のツイストネマティック型液晶などに用いられ、ロールコーティング、スピンコーティング、ディッピング、バーコーティング等でTFT基板或いは対向基板にポリイミド、ポリアミド等の有機系配向膜を形成した後、バフラビング配向処理、257nm直線偏光UV照射などの光照射配向処理、アルゴンイオンビーム照射などのイオンビーム照射配向処理、266nmYAGレーザー照射などのレーザー照射配向処理などの配向処理が行われ、透過型液晶表示装置(以後透過型LCDとも言う)が製作される。後者の場合は、負の誘電異方性のツイストネマティック型液晶いわゆる垂直配向型液晶などに用いられ、例えば、エレクトロンビーム蒸着装置によりガラス材を所望の斜め蒸着角で飛ばし、TFT基板や対向基板上に所望の角度を有するガラス微粒子の積層膜(斜め蒸着膜)の配向膜形成、或いはガラス材をミラートロンスパッタリング(指向性スパッタリング)で所望の角度で飛ばし、TFT基板や対向基板上に所望のスパッタリング角度を有するガラス微粒子の積層膜(斜めスパッタリング膜)の配向膜形成が行われ、反射型LCDが製作される。
The alignment film for liquid crystal includes an organic alignment film such as polyimide and polyamide and an inorganic alignment film such as SiOx.
In the former case, it is used for twisted nematic type liquid crystal with positive dielectric anisotropy, and organic alignment film such as polyimide and polyamide is formed on TFT substrate or counter substrate by roll coating, spin coating, dipping, bar coating, etc. Then, alignment processing such as buffing alignment processing, light irradiation alignment processing such as 257 nm linearly polarized UV irradiation, ion beam irradiation alignment processing such as argon ion beam irradiation, laser irradiation alignment processing such as 266 nm YAG laser irradiation, etc. is performed, and transmission type A liquid crystal display device (hereinafter also referred to as a transmissive LCD) is manufactured. In the latter case, it is used for twisted nematic liquid crystal having negative dielectric anisotropy, so-called vertical alignment type liquid crystal, etc. For example, an electron beam evaporation apparatus is used to blow a glass material at a desired oblique evaporation angle, and on a TFT substrate or a counter substrate. An alignment film of a laminated film of glass particles having a desired angle (an obliquely deposited film) or a glass material is blown at a desired angle by mirrortron sputtering (directional sputtering), and a desired sputtering is performed on a TFT substrate or a counter substrate. An alignment film of a laminated film (oblique sputtering film) of glass fine particles having an angle is formed, and a reflective LCD is manufactured.

ところで、最近LCOS(Liquid Crystal On Silicon)と呼ばれる反射型LCDが、プロジェクタ用途等に採用されている。これは、単結晶Siの高い電子/正孔移動度を利用し、汎用MOSLSI技術により単結晶Si基板表面に周辺駆動回路及び表示素子のみならず、映像信号処理回路、メモリー回路等の機能を取り込んだ反射型LCDであり、高精細、高輝度といった特徴を有するものであり、このLCOSには強い入射光でも劣化しないSiOx等の無機系配向膜と垂直配向型液晶が用いられている。   Incidentally, a reflective LCD called LCOS (Liquid Crystal On Silicon) has recently been adopted for projector applications. This utilizes the high electron / hole mobility of single crystal Si and incorporates not only peripheral drive circuits and display elements but also video signal processing circuits, memory circuits, etc. on the surface of the single crystal Si substrate using general-purpose MOSLSI technology. This LCOS is characterized by high definition and high brightness, and this LCOS uses an inorganic alignment film such as SiOx and vertical alignment liquid crystal that does not deteriorate even with strong incident light.

ここで、斜め蒸着膜は、溝構造と柱状構造を持ち、蒸着角度により両者の特徴が変化し液晶の配向方向が変化することが知られており、また、蒸着ビームが基板法線となす角度である蒸着角度によって柱状の微細構造の角度や密度が変化することが知られている(例えば、非特許文献1参照。)。   Here, the oblique deposition film has a groove structure and a columnar structure, and it is known that the characteristics of both change depending on the deposition angle and the orientation direction of the liquid crystal changes, and the angle between the deposition beam and the substrate normal It is known that the angle and density of the columnar microstructure change depending on the deposition angle (see, for example, Non-Patent Document 1).

この蒸着角度が20°以上では面内配向方向は決まらずランダムな配向となり、50°前後では表面のビームの入射面に垂直な溝構造により傾き角0°の水平配向が出現する。また、入射角80°以上ではセルフシャドーニング効果により、柱状構造の異方性が発達し液晶分子の長軸はビームに平行な方向に配向して傾き角を発現する。   When the vapor deposition angle is 20 ° or more, the in-plane orientation direction is not determined and the orientation is random, and when it is around 50 °, a horizontal orientation with an inclination angle of 0 ° appears due to the groove structure perpendicular to the incident surface of the surface beam. In addition, when the incident angle is 80 ° or more, the anisotropy of the columnar structure develops due to the self-shadowing effect, and the long axis of the liquid crystal molecules is aligned in a direction parallel to the beam to express an inclination angle.

従って、液晶配向を揃わせるためには、斜め蒸着膜の柱状積層の微細構造の角度や密度をコントロールすることが重要である。   Therefore, in order to align the liquid crystal alignment, it is important to control the angle and density of the microstructure of the columnar laminate of the obliquely deposited film.

液晶便覧編集委員会編,「液晶便覧」,丸善株式会社,平成12年10月30日,p.229−230Liquid Crystal Handbook Editorial Committee, “Liquid Crystal Handbook”, Maruzen Co., Ltd., October 30, 2000, p. 229-230

しかしながら、従来の反射型及び透過型液晶表示装置の対向基板の透明電極や、透過型液晶表示装置のTFT基板の透明画素電極は、結晶化したITO透明導電膜で形成されており、この結晶化したITO透明導電膜で形成された対向基板の透明電極やTFT基板の透明画素電極にガラス材を所望の斜め角度で飛ばし、ガラス微粒子の積層膜を形成しているために、下地のランダムなITO透明導電膜の結晶形状に沿ってガラス微粒子が積層し、柱状の微細構造の角度や密度のコントロールが困難であった。   However, the transparent electrode of the counter substrate of the conventional reflective and transmissive liquid crystal display devices and the transparent pixel electrode of the TFT substrate of the transmissive liquid crystal display device are formed of a crystallized ITO transparent conductive film. Since the glass material is blown at a desired oblique angle to the transparent electrode of the counter substrate formed of the ITO transparent conductive film and the transparent pixel electrode of the TFT substrate, a laminated film of glass particles is formed, so that the random ITO of the base Glass fine particles were laminated along the crystal shape of the transparent conductive film, and it was difficult to control the angle and density of the columnar microstructure.

また、反射型液晶表示装置のTFT基板の画素電極は、高反射率のアルミニウム等で形成されており、スパッタリングで形成したアルミニウム膜であっても微細な結晶集合体であり、この微細な結晶集合体で形成されたTFT基板の画素電極にガラス材を所望の斜め角度で飛ばし、ガラス微粒子の積層膜を形成しているために、下地のランダムな微細アルミニウム結晶形状に沿ってガラス微粒子が積層し、柱状の微細構造の角度や密度のコントロールが困難であった。   Further, the pixel electrode of the TFT substrate of the reflective liquid crystal display device is formed of aluminum having a high reflectance, and even an aluminum film formed by sputtering is a fine crystal aggregate. Since the glass material is blown to the pixel electrode of the TFT substrate formed by the body at a desired oblique angle to form a laminated film of glass particles, the glass particles are laminated along the random aluminum aluminum crystal shape of the base. It was difficult to control the angle and density of the columnar microstructure.

本発明は以上の点に鑑みて創案されたものであって、斜方蒸着或いは指向性スパッタリングにより形成する無機系配向膜のガラス微粒子の柱状積層の微細構造の角度や密度をコントロールし、液晶配向を揃え、色ムラを低減して高輝度、高精細、高性能、高品質、高信頼性の反射型液晶表示装置及び透過型液晶表示装置を提供することを目的とするものである。   The present invention was devised in view of the above points, and controls the angle and density of the microstructure of the columnar layer of glass particles of an inorganic alignment film formed by oblique deposition or directional sputtering, and aligns the liquid crystal. The present invention aims to provide a reflective liquid crystal display device and a transmissive liquid crystal display device with high brightness, high definition, high performance, high quality, and high reliability by reducing color unevenness.

上記の目的を達成するために、本発明に係る反射型液晶表示装置は、液晶を挟んで対向させた光反射層を備えた駆動基板と対向基板を備える反射型液晶表示装置において、前記駆動基板は、同駆動基板の画素毎に形成された画素電極と、少なくとも該画素電極を被覆する非晶質透明膜と、該非晶質透明膜の上層に形成された第1の無機配向膜を備え、前記対向基板は、同対向基板の表面に形成された非晶質透明導電膜と、該非晶質透明導電膜の上層に形成された第2の無機配向膜を備える。   In order to achieve the above object, a reflective liquid crystal display device according to the present invention is a reflective liquid crystal display device comprising a driving substrate having a light reflecting layer and a counter substrate facing each other with a liquid crystal interposed therebetween. Comprises a pixel electrode formed for each pixel of the drive substrate, an amorphous transparent film covering at least the pixel electrode, and a first inorganic alignment film formed on the amorphous transparent film, The counter substrate includes an amorphous transparent conductive film formed on a surface of the counter substrate and a second inorganic alignment film formed on the amorphous transparent conductive film.

また、本発明に係る透過型液晶表示装置は、液晶を挟んで対向させた駆動基板と対向基板を備える透過型液晶表示装置において、前記駆動基板は、同駆動基板の画素毎に形成された非晶質透明導電材料から成る画素電極と、該画素電極の上層に形成された第1の無機配向膜を備え、前記対向基板は、同対向基板の表面に形成された非晶質透明導電膜と、該非晶質透明導電膜の上層に形成された第2の無機配向膜を備える。   Further, the transmissive liquid crystal display device according to the present invention is a transmissive liquid crystal display device comprising a driving substrate and a counter substrate facing each other with a liquid crystal interposed therebetween, wherein the driving substrate is formed for each pixel of the driving substrate. A pixel electrode made of a crystalline transparent conductive material, and a first inorganic alignment film formed on the pixel electrode, wherein the counter substrate includes an amorphous transparent conductive film formed on a surface of the counter substrate; And a second inorganic alignment film formed on the amorphous transparent conductive film.

ここで、上記本発明に係る反射型液晶表示装置において、駆動基板が、同駆動基板の画素毎に形成された画素電極を被覆する非晶質透明膜を備えることによって、画素電極の結晶形状の影響をなくし、下地に影響されることなく第1の無機配向膜を形成することができる。   Here, in the reflection type liquid crystal display device according to the present invention, the driving substrate includes an amorphous transparent film that covers the pixel electrode formed for each pixel of the driving substrate, whereby the crystal shape of the pixel electrode is increased. The first inorganic alignment film can be formed without any influence and without being affected by the underlying layer.

また、上記本発明に係る透過型液晶表示装置において、駆動基板が、同駆動基板の画素毎に形成された非晶質透明導電材料から成る画素電極を備えることによって、下地に影響されることなく第1の無機配向膜を形成することができる。   In the transmissive liquid crystal display device according to the present invention, the drive substrate includes a pixel electrode made of an amorphous transparent conductive material formed for each pixel of the drive substrate, so that the substrate is not affected by the base. A first inorganic alignment film can be formed.

更に、上記本発明に係る反射型及び透過型液晶表示装置において、対向基板が、同対向基板の表面に形成された非晶質透明導電膜を備えることによって、下地に影響されることなく第2の無機配向膜を形成することができる。   Furthermore, in the reflective and transmissive liquid crystal display device according to the present invention, the counter substrate includes the amorphous transparent conductive film formed on the surface of the counter substrate, so that the second is not affected by the base. An inorganic alignment film can be formed.

ここで、上記本発明に係る反射型液晶表示装置において、非晶質透明膜は導電膜であることが望ましい。これにより、液晶駆動時に駆動基板の画素電極と対向基板の非晶質透明導電膜との間に印加する電圧のロスを低減することができるからである。   Here, in the reflective liquid crystal display device according to the present invention, the amorphous transparent film is preferably a conductive film. This is because the loss of voltage applied between the pixel electrode of the driving substrate and the amorphous transparent conductive film of the counter substrate can be reduced during liquid crystal driving.

なお、上記本発明に係る反射型及び透過型液晶表示装置において、駆動基板の少なくとも外部引き出しパット電極領域及びコモン領域を除く領域に第1の無機配向膜が形成され、対向基板の少なくともコモン領域を除く領域に第2の無機配向膜が形成されることによって、駆動基板の外部引き出しパット電極と外部との電気的な接続を可能にすると共に、コモン領域に塗布されるコモン剤による駆動基板と対向基板の電気的導通を確保することができる。   In the reflection type and transmission type liquid crystal display device according to the present invention, a first inorganic alignment film is formed in a region excluding at least the external lead pad electrode region and the common region of the driving substrate, and at least the common region of the counter substrate is formed. By forming the second inorganic alignment film in the excluded region, it is possible to electrically connect the external lead pad electrode of the driving substrate to the outside and to face the driving substrate by the common agent applied to the common region. The electrical continuity of the substrate can be ensured.

本発明を適用した反射型若しくは透過型液晶表示装置では、駆動基板の画素毎に形成された画素電極を非晶質透明膜で被覆若しくは駆動基板の画素毎に形成される画素電極を非晶質透明導電材料で形成しているために、画素電極の上層に形成する第1の無機配向膜が下地の影響を受けずに、ガラス微粒子の柱状積層の微細構造の角度や密度のコントロールができ、液晶配向が揃い、色ムラが低減できる。   In the reflective or transmissive liquid crystal display device to which the present invention is applied, the pixel electrode formed for each pixel of the driving substrate is covered with an amorphous transparent film, or the pixel electrode formed for each pixel of the driving substrate is amorphous. Since it is formed of a transparent conductive material, the first inorganic alignment film formed on the upper layer of the pixel electrode is not affected by the base, and the angle and density of the fine structure of the columnar laminate of glass particles can be controlled. Liquid crystal alignment is uniform and color unevenness can be reduced.

また、本発明を適用した反射型若しくは透過型液晶表示装置では、対向基板の表面に非晶質透明導電膜を形成しているために、この非晶質透明導電膜の上層に形成する第2の無機配向膜が下地の影響を受けずに、ガラス微粒子の柱状積層の微細構造の角度や密度のコントロールができ、液晶配向が揃い、色ムラが低減できる。   In addition, in the reflective or transmissive liquid crystal display device to which the present invention is applied, since the amorphous transparent conductive film is formed on the surface of the counter substrate, the second layer formed over the amorphous transparent conductive film. The inorganic alignment film can control the angle and density of the fine structure of the columnar laminated layer of glass fine particles without being affected by the underlayer, aligning the liquid crystal alignment, and reducing color unevenness.

また、上記した様に、駆動基板側及び対向基板側共に液晶配向が揃い、色ムラが低減できるために、高輝度、高精細、高性能の液晶表示装置を実現できる。   In addition, as described above, since the liquid crystal alignment is uniform on both the driving substrate side and the counter substrate side and color unevenness can be reduced, a liquid crystal display device with high luminance, high definition, and high performance can be realized.

更に、反射型液晶表示装置の場合には、画素電極を非晶質透明膜で被覆しているために、画素電極を構成する高反射率の金属を液晶中に浸透した水分による腐食から保護することができ、腐食による反射率劣化が少なく、高輝度、高精細、高性能、高品質、高信頼性の反射型液晶表示装置を実現できる。   Further, in the case of a reflective liquid crystal display device, the pixel electrode is covered with an amorphous transparent film, so that the high-reflectance metal constituting the pixel electrode is protected from corrosion due to moisture penetrating into the liquid crystal. Therefore, it is possible to realize a reflection type liquid crystal display device with less luminance degradation due to corrosion and high brightness, high definition, high performance, high quality, and high reliability.

以下、本発明の実施の形態を図面を参照しながら説明し、本発明の理解に供する。
図1は本発明を適用した液晶表示装置の一例である反射型LCDパネルを説明するための模式的な図である。ここで示す反射型LCDパネル1は、シール剤2及びコモン剤(図示せず)によって所定の間隙を介して重ね合わせられた非透明TFT基板チップ3及び透明対向基板チップ4と、これら非透明TFT基板チップと透明対向基板チップの間隙内に保持された垂直配向型の液晶5とを備えている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings to provide an understanding of the present invention.
FIG. 1 is a schematic diagram for explaining a reflective LCD panel which is an example of a liquid crystal display device to which the present invention is applied. The reflective LCD panel 1 shown here includes a non-transparent TFT substrate chip 3 and a transparent counter substrate chip 4 which are stacked with a sealing agent 2 and a common agent (not shown) through a predetermined gap, and these non-transparent TFTs. And a vertically aligned liquid crystal 5 held in a gap between the substrate chip and the transparent counter substrate chip.

非透明TFT基体は、複数の非透明TFT基板チップ及びスクライブラインから構成される単結晶Si基板であり、単結晶Si基板からなるTFT基板チップは表示領域、周辺回路領域、シール領域(コモン領域含む)、外部取り出し電極領域などからなる。
そして、表示領域は各画素電極下に絶縁層を介して各表示回路、またはメモリー含む周辺回路の一部及び表示回路が形成されている。この表示領域には複数の画素表示用TFT6がマトリックス形状に形成されており、これら画素表示用TFT6に対応して形成されたアルミニウムなどから成る厚さ100〜200nmの画素電極7が形成されている。また、画素電極を被覆する厚さ30〜200nmの非晶質IZO(Indium Zinc Oxide;酸化インジウムと酸化亜鉛の混合透明導電膜)や非晶質ITO(Indium Tin Oxide;酸化インジウムと酸化錫の混合透明導電膜)等の非晶質透明導電膜8が形成されており、非晶質透明導電膜の上層には例えば斜め蒸着角度60°の斜方蒸着によって厚さ30〜200nmのSiOx膜9がTFT基板チップの少なくとも外部引き出しパット電極領域及びコモン領域を除く領域に形成されている。
この時に、シール領域にSiOx膜9が形成されてもシール性に問題ないので必ずしもシール領域にマスキングする必要はない。
The non-transparent TFT substrate is a single crystal Si substrate composed of a plurality of non-transparent TFT substrate chips and scribe lines. The TFT substrate chip composed of the single crystal Si substrate includes a display area, a peripheral circuit area, and a seal area (including a common area). ), And an external extraction electrode region.
In the display region, each display circuit or a part of a peripheral circuit including a memory and a display circuit are formed below each pixel electrode via an insulating layer. In this display area, a plurality of pixel display TFTs 6 are formed in a matrix shape, and a pixel electrode 7 having a thickness of 100 to 200 nm made of aluminum or the like formed corresponding to these pixel display TFTs 6 is formed. . Also, amorphous IZO (Indium Zinc Oxide; mixed transparent conductive film of indium oxide and zinc oxide) or amorphous ITO (Indium Tin Oxide; mixed of indium oxide and tin oxide) covering the pixel electrode. An amorphous transparent conductive film 8 such as a transparent conductive film is formed, and an SiOx film 9 having a thickness of 30 to 200 nm is formed on the amorphous transparent conductive film by oblique deposition with an oblique deposition angle of 60 °, for example. The TFT substrate chip is formed in a region excluding at least the external lead pad electrode region and the common region.
At this time, even if the SiOx film 9 is formed in the seal region, there is no problem in the sealing property, and therefore it is not always necessary to mask the seal region.

なお、非晶質透明膜は、微細なアルミニウム結晶集合体である画素電極の結晶形状の影響をなくし、下地に影響されることなくSiOx膜等の無機系配向膜を形成できるようにすれば充分であり、必ずしも非晶質IZOや非晶質ITO等の透明導電膜である必要は無く、結晶化したITOやIZO等の透明導電膜上に形成する薄い非晶質SiO等であっても良い。但し、反射型或いは透過型LCDパネルの駆動時にTFT基板チップと対向基板チップとの間に印加する電圧のロスを低減するためには、非晶質透明導電膜であった方が好ましい。
また、画素電極は必ずしもアルミニウムによって形成される必要は無く、アルミニウム−シリコン合金、銀、銀合金、チタン、チタン合金、ニッケル、ニッケル合金等の高反射率金属であれば良い。
It should be noted that the amorphous transparent film is sufficient if the influence of the crystal shape of the pixel electrode, which is a fine aluminum crystal aggregate, is eliminated and an inorganic alignment film such as a SiOx film can be formed without being affected by the underlying layer. It is not always necessary to be a transparent conductive film such as amorphous IZO or amorphous ITO, but thin amorphous SiO 2 or the like formed on a transparent conductive film such as crystallized ITO or IZO may be used. good. However, in order to reduce the loss of voltage applied between the TFT substrate chip and the counter substrate chip when the reflective or transmissive LCD panel is driven, it is preferable to use an amorphous transparent conductive film.
The pixel electrode is not necessarily formed of aluminum, and may be a high reflectivity metal such as an aluminum-silicon alloy, silver, a silver alloy, titanium, a titanium alloy, nickel, or a nickel alloy.

また、石英ガラス材、ネオセラム等の透明結晶化ガラス材から成る透明対向基板チップ4は、その表面に厚さ100〜150nmの非晶質IZOや非晶質ITO等の非晶質透明導電膜8が形成されており、非晶質透明導電膜の上層には例えば斜め蒸着角度60°の斜方蒸着によって厚さ30〜200nmのSiOx膜9が対向基板チップのコモン領域を除く領域に形成されている。
この時もTFT基板同様に、非晶質透明膜は微細な結晶化したITOやIZO等の結晶形状の影響をなくし、下地に影響されることなくSiOx膜等の無機系配向膜を形成できるようにすれば充分であり、必ずしも非晶質IZOや非晶質ITO等の透明導電膜である必要は無く、結晶化したITOやIZO等の透明導電膜上に形成する薄い非晶質SiO等であっても良い。但し、反射型或いは透過型LCDパネルの駆動時にTFT基板チップと対向基板チップとの間に印加する電圧のロスを低減するためには、非晶質透明導電膜であった方が好ましい。
この時に、シール領域にSiOx膜9が形成されてもシール性に問題ないので必ずしもマスキングする必要はない。
The transparent counter substrate chip 4 made of a transparent crystallized glass material such as quartz glass material or neo-serum has an amorphous transparent conductive film 8 such as amorphous IZO or amorphous ITO having a thickness of 100 to 150 nm on its surface. The SiOx film 9 having a thickness of 30 to 200 nm is formed in the region excluding the common region of the counter substrate chip, for example, by oblique deposition with an oblique deposition angle of 60 °. Yes.
At this time, like the TFT substrate, the amorphous transparent film eliminates the influence of the crystallized shape such as finely crystallized ITO and IZO, and can form an inorganic alignment film such as a SiOx film without being affected by the base. However, it is not always necessary to use a transparent conductive film such as amorphous IZO or amorphous ITO, and thin amorphous SiO 2 formed on a transparent conductive film such as crystallized ITO or IZO. It may be. However, in order to reduce the loss of voltage applied between the TFT substrate chip and the counter substrate chip when the reflective or transmissive LCD panel is driven, it is preferable to use an amorphous transparent conductive film.
At this time, even if the SiOx film 9 is formed in the seal region, there is no problem in the sealing property, so that it is not always necessary to mask.

以下、上記した反射型LCDパネルの製造方法について、図2〜図5に示す工程フローに沿って説明する。   Hereinafter, a manufacturing method of the above-described reflective LCD panel will be described along the process flow shown in FIGS.

図2に工程フローを示す反射型LCDパネルの製造方法(1)では、単個状態の良品の非透明TFT基板チップと単個状態の良品の透明対向基板チップを重ね合わせて空セルを形成するいわゆる単単液晶組立て方法である。   In the reflective LCD panel manufacturing method (1), the process flow of which is shown in FIG. 2, a single non-defective non-transparent TFT substrate chip and a single non-transparent transparent substrate chip are stacked to form an empty cell. This is a so-called single-single liquid crystal assembly method.

先ず、単結晶Si基板から成る非透明TFT基体に複数の画素がマトリックス形状に形成されている非透明TFT基板チップを複数形成する。また、各非透明TFT基板チップに形成されている各画素に対応してスパッタリング等によってアルミニウムから成る厚さ100〜200nmの画素電極を形成し、この画素電極を被覆する様にスパッタリングによって厚さ30〜200nmの非晶質IZOや非晶質ITO等の非晶質透明導電膜を形成する。更に、非透明TFT基体内の各非透明TFT基板チップの少なくとも外部引き出しパット電極領域及びコモン領域をマスクキング冶具でマスクした後、非晶質透明導電膜の上層に例えば斜め蒸着角度60°で厚さ30〜200nmのSiOx膜を斜方蒸着によって形成して非透明TFT基板チップ側の無機系液晶配向膜とする。その後、非透明TFT基板を非透明TFT基板チップ毎にブレードダイシングを行って単個状態の非透明TFT基板チップを形成し、必要に応じて洗浄を行う。   First, a plurality of non-transparent TFT substrate chips in which a plurality of pixels are formed in a matrix shape are formed on a non-transparent TFT substrate made of a single crystal Si substrate. In addition, a pixel electrode having a thickness of 100 to 200 nm made of aluminum is formed by sputtering or the like corresponding to each pixel formed on each non-transparent TFT substrate chip, and a thickness of 30 is formed by sputtering so as to cover the pixel electrode. An amorphous transparent conductive film such as amorphous IZO or amorphous ITO having a thickness of ˜200 nm is formed. Further, after masking at least the external lead pad electrode region and the common region of each non-transparent TFT substrate chip in the non-transparent TFT substrate with a mask king jig, the thickness is set to an upper layer of the amorphous transparent conductive film, for example, at an oblique deposition angle of 60 °. A SiOx film having a thickness of 30 to 200 nm is formed by oblique deposition to form an inorganic liquid crystal alignment film on the non-transparent TFT substrate chip side. Thereafter, the non-transparent TFT substrate is subjected to blade dicing for each non-transparent TFT substrate chip to form a single non-transparent TFT substrate chip, and is washed as necessary.

この時に、YAGレーザーまたはCOレーザーまたはYAGレーザー及びCOレーザーを組み合わせたレーザーシステムなどのレーザー加工、更にはレーザーとウオータージェットを組み合わせたレーザーウオータージェット加工、更には基板の切断予定ラインに沿って基板内部に多光子吸収による改質領域形成するレーザーダイシングによる切断を行ってもよく、この場合には必ずしも洗浄は必要でない。 At this time, laser processing such as YAG laser or CO 2 laser or laser system combining YAG laser and CO 2 laser, laser water jet processing combining laser and water jet, and further along the planned cutting line of the substrate The substrate may be cut by laser dicing to form a modified region by multiphoton absorption. In this case, cleaning is not always necessary.

次に、透明対向基体は複数の透明対向基板チップ及びスクライブラインから構成される石英ガラス材、ネオセラム等の透明結晶化ガラス材等のガラス系基板であり、透明対向基板チップはベタ透明導電膜基板(パターン無しの非晶質ITO、IZOなどの透明導電体)或いはブラックマスク基板(画素開口部以外に遮光膜形成したベタ透明導電膜基板)などが形成されている。
この石英ガラス材、ネオセラム等の透明結晶化ガラス材等から成る透明対向基体に透明対向基板チップを複数形成する。また、各透明対向基板チップの表面に厚さ100〜150nmの非晶質IZOや非晶質ITO等の非晶質透明導電膜を形成する。更に、透明対向基体内の透明対向基板チップの少なくともコモン領域をマスキング冶具でマスクした後、非晶質透明導電膜の上層に例えば斜め蒸着角度60°で厚さ30〜200nmのSiOx膜を斜方蒸着によって形成し透明対向基板チップ側の無機系液晶配向膜とする。その後、透明対向基体を透明対向基板チップ毎にブレードダイシングを行って単個状態の透明対向基板チップを形成し、必要に応じて洗浄を行う。
Next, the transparent counter substrate is a glass-based substrate such as a quartz glass material composed of a plurality of transparent counter substrate chips and scribe lines, a transparent crystallized glass material such as neo-serum, and the transparent counter substrate chip is a solid transparent conductive film substrate (Transparent conductors such as non-patterned amorphous ITO and IZO) or a black mask substrate (solid transparent conductive film substrate in which a light shielding film is formed in addition to the pixel openings) and the like are formed.
A plurality of transparent counter substrate chips are formed on a transparent counter substrate made of this quartz glass material, a transparent crystallized glass material such as neo-serum. Further, an amorphous transparent conductive film such as amorphous IZO or amorphous ITO having a thickness of 100 to 150 nm is formed on the surface of each transparent counter substrate chip. Further, after masking at least the common region of the transparent counter substrate chip in the transparent counter substrate with a masking jig, an SiOx film having a thickness of 30 to 200 nm at an oblique deposition angle of 60 ° is obliquely formed on the amorphous transparent conductive film. An inorganic liquid crystal alignment film on the transparent counter substrate chip side is formed by vapor deposition. Thereafter, the transparent counter substrate is subjected to blade dicing for each transparent counter substrate chip to form a single transparent counter substrate chip, and is cleaned as necessary.

このブレードダイシングの場合は、透明対向基体内の透明対向基板チップの切断ラインの裏面に予めVカットまたはUカットの溝を形成しておき、SiOx膜形成後に、ダイシングテープを切らないフルカットダイシングすれば、ゴミ、汚れの少ない透明対向基板チップが得られる。
またこの時に、YAGレーザー及びCOレーザーを組み合わせたレーザーシステムなどのレーザー加工、更にはレーザーとウオータージェットを組み合わせたレーザーウオータージェット加工により切断を行ってもよく、この場合には必ずしも洗浄は必要ではない。
In the case of this blade dicing, a V-cut or U-cut groove is formed in advance on the back surface of the cutting line of the transparent counter substrate chip in the transparent counter substrate, and after the SiOx film is formed, the full cut dicing is performed without cutting the dicing tape. Thus, a transparent counter substrate chip with less dust and dirt can be obtained.
At this time, cutting may be performed by laser processing such as a laser system combining a YAG laser and a CO 2 laser, or laser water jet processing combining a laser and a water jet. In this case, cleaning is not always necessary. Absent.

続いて、単個状態の良品の非透明TFT基板チップのシール領域及びコモン領域に、可視光を照射することによって硬化する可視光照射硬化型接着剤若しくは紫外線を照射することによって硬化する紫外線照射硬化型接着剤中に液晶ギャップ相当のマイクロファイバー或いはマイクロファイバー及びフィラーを混入したシール剤と、液晶ギャップより若干大きい金メッキ樹脂のミクロパールを混入したコモン剤を塗布し、所定の液晶ギャップで単個状態の良品の対向基板チップと重ね合わせを行って、空セルを形成する際に、非透明TFT基板チップと透明対向基板チップの重ね合わせ時の加圧でミクロパールを破砕し、破砕された金メッキ樹脂が双方の透明導電膜を電気的に導通させて空セルを形成する。
その後に、この空セル中に垂直配向型液晶を注入封止する。
Subsequently, a visible light irradiation curable adhesive that cures by irradiating visible light to the seal region and common region of a non-transparent TFT substrate chip in a single unit state or UV irradiation curing that cures by irradiating ultraviolet rays Apply a sealing agent mixed with microfiber equivalent to the liquid crystal gap or microfiber and filler into the mold adhesive and a common agent mixed with gold-plated resin micropearls slightly larger than the liquid crystal gap, and in a single state with a predetermined liquid crystal gap When overlaying with a non-defective counter substrate chip to form an empty cell, the micropearl is crushed by the pressure applied when the non-transparent TFT substrate chip and the transparent counter substrate chip are superimposed, and the crushed gold plating resin Electrically connects both transparent conductive films to form empty cells.
Thereafter, vertically aligned liquid crystal is injected and sealed in the empty cell.

ところでシール剤とコモン剤は、可視光照射硬化型接着剤、熱硬化併用の可視光照射硬化型接着剤、若しくは紫外線照射硬化型接着剤、熱硬化併用の紫外線照射硬化型接着剤、熱硬化型接着剤のいずれでもよいが、特性及び作業面から同じタイプとするのが好ましい。
具体的なシール剤及びコモン剤は、例えばシール剤及びコモン剤の主成分で硬化後の基本特性を出現する変性アクリレートオリゴマー、液の粘度調整するアクリレートモノマー、可視光硬化またはUV硬化部分を硬化する光開始剤、シール剤及びコモン剤の主成分で硬化後の基本特性を出現するエポキシ樹脂、エポキシ樹脂を硬化させる硬化剤、シール剤中には外気からの水分進入を防ぐ充填フィラー(シリカ真球など)、液晶ギャップ相当のファイバーなどから構成されている。
By the way, the sealing agent and the common agent are a visible light irradiation curable adhesive, a thermosetting combined visible light irradiation curable adhesive, or an ultraviolet irradiation curable adhesive, a thermosetting combined ultraviolet irradiation curable adhesive, and a thermosetting type. Any of adhesives may be used, but the same type is preferable in view of characteristics and work surface.
Specific sealants and common agents include, for example, modified acrylate oligomers that exhibit basic properties after curing with the main components of sealants and common agents, acrylate monomers that adjust the viscosity of the liquid, and curing visible light or UV cured parts. Epoxy resin that exhibits basic properties after curing with the main components of photoinitiator, sealing agent and common agent, curing agent that cures epoxy resin, and filler that prevents moisture from entering from outside air (silica sphere) Etc.) and a fiber corresponding to a liquid crystal gap.

尚、SiOx等の無機系配向膜厚によってはコモン剤中の金メッキ樹脂したミクロパールの圧着によるSiOx等の無機系配向膜貫通は難しいので、対向基板との電気的導通の為に非透明TFT基板チップのコモン剤塗布領域をマスキングしてSiOx等の無機系配向膜形成されないようにしておく必要がある。
更に、SiOx等の無機系配向膜厚によってはフレキシブル基板の異方性導電膜の熱圧着による電気的接続は難しいので、フレキシブル基板との電気的導通の為に非透明TFT基板チップの外部取り出し電極部はマスキングしてSiOx等の無機系配向膜形成されないようにしておく必要がある。
In addition, depending on the inorganic alignment film thickness such as SiOx, it is difficult to penetrate the inorganic alignment film such as SiOx by pressure bonding of gold-plated resin micropearl in the common agent, so the non-transparent TFT substrate for electrical conduction with the counter substrate It is necessary to mask the common agent application region of the chip so that an inorganic alignment film such as SiOx is not formed.
Furthermore, depending on the inorganic orientation film thickness of SiOx or the like, it is difficult to electrically connect the anisotropic conductive film of the flexible substrate by thermocompression bonding. Therefore, the external extraction electrode of the non-transparent TFT substrate chip is used for electrical connection with the flexible substrate. It is necessary to mask the portion so that an inorganic alignment film such as SiOx is not formed.

その後、透明対向基板チップに低反射膜付きの防塵ガラスを可視光照射硬化型、可視光照射+低温硬化型、UV照射硬化型、UV照射+低温硬化型、低温硬化型等の透明接着剤で貼り合わせ、非透明TFT基板チップの外部引き出しパット電極12にフレキ基板13を異方性導電膜の熱圧着で取り付けると共に、非透明TFT基板チップ及び透明対向基板チップを金属枠に取り付け、非透明TFT基板チップ及び透明対向基板チップと金属枠との間を高熱伝導性モールド樹脂で固着する。こうして得られた液晶表示装置の画質検査を行って、合格したものを出荷することでプロジェクタ用反射型液晶表示装置を製作する。   After that, use a transparent adhesive such as visible light irradiation curing type, visible light irradiation + low temperature curing type, UV irradiation curing type, UV irradiation + low temperature curing type, low temperature curing type, etc. on a transparent counter substrate chip with a low reflection film. The flexible substrate 13 is attached to the external lead pad electrode 12 of the non-transparent TFT substrate chip by thermocompression bonding of an anisotropic conductive film, and the non-transparent TFT substrate chip and the transparent counter substrate chip are attached to the metal frame, and the non-transparent TFT The substrate chip and the transparent counter substrate chip are fixed to the metal frame with a high thermal conductive mold resin. The liquid crystal display device thus obtained is inspected for image quality, and a successful one is shipped to produce a reflective liquid crystal display device for a projector.

図3に工程フローを示す反射型LCDパネルの製造方法(2)は、非透明TFT基体内の良品の非透明TFT基板チップに単個状態の良品の透明対向基板チップを重ね合わせて空セルを形成するいわゆる面単液晶組立て方法である。   In the reflection type LCD panel manufacturing method (2) shown in the process flow in FIG. 3, the empty cell is formed by superimposing a single transparent non-transparent substrate chip on a non-transparent TFT substrate chip in the non-transparent TFT substrate. This is a so-called plane single liquid crystal assembly method to be formed.

上記した反射型LCDパネルの製造方法(1)と同様にして、非透明TFT基板チップの形成、画素電極の形成、画素電極を被覆する非晶質透明導電膜の形成、非透明TFT基板チップ側の無機系液晶配向膜の形成し、洗浄を行う。
また、上記した反射型LCDパネルの製造方法(1)と同様にして、単個状態の透明対向基板チップを形成し、洗浄を行う。
In the same manner as in the reflective LCD panel manufacturing method (1) described above, formation of a non-transparent TFT substrate chip, formation of a pixel electrode, formation of an amorphous transparent conductive film covering the pixel electrode, non-transparent TFT substrate chip side An inorganic liquid crystal alignment film is formed and washed.
Further, in the same manner as in the reflective LCD panel manufacturing method (1), a single transparent counter substrate chip is formed and cleaned.

続いて、非透明TFT基体に形成された良品の非透明TFT基板チップのシール領域及びコモン領域にシール剤とコモン剤を塗布し、所定の液晶ギャップで単個状態の良品の透明対向基板チップと重ね合わせを行って空セルを形成し、この空セル中に垂直配向型液晶を注入封止した後、非透明TFT基体のダイシングを行う。
その後の出荷までの工程は、上記した反射型LCDパネルの製造方法(1)と同様である。
Subsequently, a sealant and a common agent are applied to a seal region and a common region of a good non-transparent TFT substrate chip formed on the non-transparent TFT substrate, and a good transparent counter substrate chip in a single state with a predetermined liquid crystal gap Superposition is performed to form empty cells, vertically aligned liquid crystal is injected and sealed in the empty cells, and then the non-transparent TFT substrate is diced.
The subsequent processes up to the shipment are the same as the above-described reflection type LCD panel manufacturing method (1).

図4に工程フローを示す反射型LCDパネルの製造方法(3)は、非透明TFT基体内の非透明TFT基板チップと透明対向基体内の透明対向基板チップを相対して重ね合わせて空セルを形成するいわゆる面面液晶組立て方法である。   In the reflective LCD panel manufacturing method (3), the process flow of which is shown in FIG. 4, the non-transparent TFT substrate chip in the non-transparent TFT substrate and the transparent counter substrate chip in the transparent counter substrate are relatively overlapped to form an empty cell. This is a so-called surface liquid crystal assembling method to be formed.

上記した反射型LCDパネルの製造方法(1)と同様にして、非透明TFT基体内の非透明TFT基板チップの形成、画素電極の形成、画素電極を被覆した非晶質透明導電膜の形成、非透明TFT基板チップ側の無機系液晶配向膜の形成を行う。
また、上記した反射型LCDパネルの製造方法(1)と同様にして、透明TFT基体内の透明対向基板チップの形成、非晶質透明導電膜の形成、透明対向基板チップ側の無機系液晶配向膜の形成を行う。
In the same manner as in the reflective LCD panel manufacturing method (1) described above, formation of a non-transparent TFT substrate chip in a non-transparent TFT substrate, formation of a pixel electrode, formation of an amorphous transparent conductive film covering the pixel electrode, An inorganic liquid crystal alignment film on the non-transparent TFT substrate chip side is formed.
Further, in the same manner as the above-described reflective LCD panel manufacturing method (1), formation of a transparent counter substrate chip in a transparent TFT substrate, formation of an amorphous transparent conductive film, and inorganic liquid crystal alignment on the transparent counter substrate chip side A film is formed.

次に、非透明TFT基板チップのシール領域及びコモン領域にシール剤とコモン剤を塗布し、非透明TFT基体に形成された非透明TFT基板チップと透明対向基体に形成された透明対向基板チップが所定の液晶ギャップを介して対面配置する様に、TFT基体と対向基体とを重ね合わせて空セルを形成する。   Next, a sealing agent and a common agent are applied to the sealing region and the common region of the non-transparent TFT substrate chip, and the non-transparent TFT substrate chip formed on the non-transparent TFT substrate and the transparent counter substrate chip formed on the transparent counter substrate are An empty cell is formed by superimposing the TFT substrate and the counter substrate so as to face each other through a predetermined liquid crystal gap.

続いて、非透明TFT基体及び透明対向基体のレーザーダイシングを行った後に空セル中に垂直型液晶を注入封止、若しくは、透明対向基体のみをレーザー等で非透明対向基板チップ毎に分断し、空セル中に垂直配向型液晶を注入封止した後に非透明TFT基体を非透明TFT基板チップ毎にブレードダイシングを行う。   Subsequently, after performing laser dicing of the non-transparent TFT substrate and the transparent counter substrate, vertical liquid crystal is injected and sealed in the empty cell, or only the transparent counter substrate is divided into non-transparent counter substrate chips with a laser or the like, After the vertical alignment type liquid crystal is injected and sealed in the empty cell, the non-transparent TFT substrate is subjected to blade dicing for each non-transparent TFT substrate chip.

この時に、非透明TFT基体及び透明対向基体切断の際に切削水を使用するブレードダイシングやレーザーウオータージェットあるいは高圧ウオータージェットで行うと、その切削水が空セル中に浸入するので、例えばYAGレーザーとCOレーザーを組み合わせた複合レーザーシステムなどのレーザーダイシングで水などの液体を使用しないのが好ましい。
その後の出荷までの工程は、上記した反射型LCDパネルの製造方法(1)と同様である。
At this time, if cutting is performed with blade dicing, laser water jet or high pressure water jet using cutting water when cutting the non-transparent TFT substrate and the transparent counter substrate, the cutting water penetrates into the empty cell. It is preferable not to use a liquid such as water in laser dicing such as a composite laser system combined with a CO 2 laser.
The subsequent processes up to the shipment are the same as the above-described reflection type LCD panel manufacturing method (1).

図5に工程フローを示す反射型LCDパネルの製造方法(4)は、上記した反射型LCDパネルの製造方法(1)の変形で、単個状態の良品の非透明TFT基板チップと単個状態の良品の透明対向基板チップを重ね合わせて空セルを形成するいわゆる単単液晶組立て方法である。   The reflective LCD panel manufacturing method (4) whose process flow is shown in FIG. 5 is a modification of the above-described reflective LCD panel manufacturing method (1). This is a so-called single-single liquid crystal assembly method in which empty cells are formed by superimposing non-defective transparent transparent substrate chips.

まず、上記した反射型LCDパネルの製造方法(1)のように、非透明TFT基板チップの形成、画素電極の形成を行う。
また、上記した反射型LCDパネルの製造方法(1)と同様にして、透明対向基板チップの形成、非晶質透明導電膜の形成を行う。
First, as in the reflective LCD panel manufacturing method (1), a non-transparent TFT substrate chip and a pixel electrode are formed.
Further, the transparent counter substrate chip and the amorphous transparent conductive film are formed in the same manner as in the reflective LCD panel manufacturing method (1).

次に、非透明TFT基体内の非透明TFT基板チップに形成された画素電極を被覆する様に厚さ100〜150nmの非晶質IZOや非晶質ITO等の非晶質透明導電膜を形成し、画素電極を被覆して露出しないように大き目にパターニングする。また、非透明TFT基体を非透明TFT基板チップ毎にダイシングを行って単個状態の非透明TFT基板チップを形成し、必要に応じて洗浄を行う。更に、非透明TFT基板チップの少なくとも外部引き出しパット電極領域及びコモン領域をマスキング冶具でマスクした後、非晶質透明導電膜の上層に例えば斜め蒸着角度60°で厚さ30〜200nmのSiOx膜を斜方蒸着によって形成して非透明TFT基板チップ側の無機系液晶配向膜とする。   Next, an amorphous transparent conductive film such as amorphous IZO or amorphous ITO having a thickness of 100 to 150 nm is formed so as to cover the pixel electrode formed on the non-transparent TFT substrate chip in the non-transparent TFT substrate. Then, the pixel electrode is covered and patterned so as not to be exposed. Further, the non-transparent TFT substrate is diced for each non-transparent TFT substrate chip to form a single non-transparent TFT substrate chip, and is washed as necessary. Further, after masking at least the external lead pad electrode region and the common region of the non-transparent TFT substrate chip with a masking jig, an SiOx film having a thickness of 30 to 200 nm, for example, at an oblique deposition angle of 60 ° is formed on the upper layer of the amorphous transparent conductive film. An inorganic liquid crystal alignment film on the non-transparent TFT substrate chip side is formed by oblique deposition.

次に、透明対向基体を透明対向基板チップ毎にダイシングを行って単個状態の透明対向基板チップを形成し、必要に応じて洗浄を行う。また、透明対向基板チップの少なくともコモン領域をマスキング冶具でマスクした後、非晶質透明導電膜の上層に例えば斜め蒸着角度60°で厚さ30〜200nmのSiOx膜を斜方蒸着によって形成し透明対向基板チップ側の無機系液晶配向膜とする。   Next, the transparent counter substrate is diced for each transparent counter substrate chip to form a single transparent counter substrate chip, and is washed as necessary. Further, after masking at least the common region of the transparent counter substrate chip with a masking jig, an SiOx film having a thickness of 30 to 200 nm, for example, at an oblique deposition angle of 60 ° is formed on the upper layer of the amorphous transparent conductive film by oblique deposition. An inorganic liquid crystal alignment film on the counter substrate chip side is used.

続いて、単個状態の良品の非透明TFT基板チップのシール領域及びコモン領域にシール剤とコモン剤を塗布し、所定の液晶ギャップで単個状態の良品の透明対向基板チップと重ね合わせて空セルを形成し、この空セル中に垂直配向型液晶を注入封止する。
その後の出荷までの工程は、上記した反射型LCDパネルの製造方法(1)と同様である。
Subsequently, a sealant and a common agent are applied to the seal region and the common region of a single non-defective non-transparent TFT substrate chip, and are overlapped with a single transparent non-transparent substrate substrate chip with a predetermined liquid crystal gap. A cell is formed, and vertically aligned liquid crystal is injected and sealed in the empty cell.
The subsequent processes up to the shipment are the same as the above-described reflection type LCD panel manufacturing method (1).

図6は本発明を適用した液晶表示装置の他の一例である透過型LCDパネルを説明するための模式的な図である。ここで示す透過型LCDパネル10は、シール剤2及びコモン剤(図示せず)によって所定の間隙を介して重ね合わせられた透明TFT基板チップ14及び透明対向基板チップ4と、これら透明TFT基板チップと透明対向基板チップで形成された空セルの間隙内に保持された正の誘電異方性のTN(Twisted Nematic)モードの液晶5とを備えている。   FIG. 6 is a schematic diagram for explaining a transmissive LCD panel which is another example of the liquid crystal display device to which the present invention is applied. The transmissive LCD panel 10 shown here includes a transparent TFT substrate chip 14 and a transparent counter substrate chip 4 which are stacked with a sealing agent 2 and a common agent (not shown) through a predetermined gap, and these transparent TFT substrate chips. And a TN (Twisted Nematic) mode liquid crystal 5 having a positive dielectric anisotropy held in a gap between empty cells formed of a transparent counter substrate chip.

透明TFT基体は複数の透明TFT基板チップ及びスクライブラインから構成されるガラス系基板であり、透明TFT基板チップは表示領域、周辺回路領域、シール領域(コモン領域含む)、外部取り出し電極領域などからなり、TFT素子などのスイッチング素子、非晶質ITO、非晶質IZOなどの非晶質透明導電体からなる画素電極、配線、外部取り出し電極などが形成されている。
尚、透明対向基体は複数の対向基板チップ及びスクライブラインから構成されるガラス系基板であり、透明対向基板チップはベタ基板(パターン無しのITO、IZOなどの非晶質透明導電体膜形成)またはブラックマスク基板(画素開口部以外に遮光膜形成したパターン無しのITO、IZOなどの非晶質透明導電体膜)、あるいはマイクロレンズ基板(複数のマイクロレンズアレイにスタック層を介してパターン無しのITO、IZOなどの非晶質透明導電体膜形成または複数のマイクロレンズアレイに直接パターン無しのITO、IZOなどの非晶質透明導電体膜形成)などが形成されている。
The transparent TFT substrate is a glass substrate composed of a plurality of transparent TFT substrate chips and scribe lines. The transparent TFT substrate chip is composed of a display area, a peripheral circuit area, a seal area (including a common area), an external extraction electrode area, and the like. Further, a switching element such as a TFT element, a pixel electrode made of an amorphous transparent conductor such as amorphous ITO or amorphous IZO, a wiring, an external extraction electrode, and the like are formed.
The transparent counter substrate is a glass-based substrate composed of a plurality of counter substrate chips and scribe lines, and the transparent counter substrate chip is a solid substrate (formation of an amorphous transparent conductor film such as ITO, IZO without pattern) or Black mask substrate (non-patterned ITO with a light-shielding film other than the pixel opening, amorphous transparent conductor film such as IZO), or microlens substrate (non-patterned ITO via a stack layer on multiple microlens arrays) In addition, an amorphous transparent conductor film such as IZO or an amorphous transparent conductor film such as ITO or IZO having no pattern is directly formed on a plurality of microlens arrays.

この透明TFT基板チップ14と透明対向基板チップ4を相対して所定間隔で重ね合わせ、これらの基板間に注入される液晶5とを備えてアクティブマトリクス型のLCDパネルが構成される。   The transparent TFT substrate chip 14 and the transparent counter substrate chip 4 are overlapped with each other at a predetermined interval, and a liquid crystal 5 injected between these substrates is provided to constitute an active matrix LCD panel.

ここで、石英ガラス材などから成る透明TFT基板チップは、複数の画素表示用TFT6がマトリックス形状に形成されており、これら各画素表示用TFT6に対応して厚さ100〜150nmの非晶質IZOや非晶質ITO等の非晶質透明導電材料から成る透明画素電極11が形成されており、透明画素電極の上層には例えば斜め角度60°の斜方蒸着によって厚さ30〜200nmのSiOx膜9が透明TFT基板チップの少なくとも外部引き出しパット電極領域及びコモン領域を除く領域に形成されている。   Here, the transparent TFT substrate chip made of quartz glass material or the like has a plurality of pixel display TFTs 6 formed in a matrix shape, and an amorphous IZO having a thickness of 100 to 150 nm corresponding to each of these pixel display TFTs 6. A transparent pixel electrode 11 made of an amorphous transparent conductive material such as amorphous ITO is formed, and an SiOx film having a thickness of 30 to 200 nm is formed on the upper layer of the transparent pixel electrode by, for example, oblique vapor deposition at an oblique angle of 60 °. 9 is formed in at least a region excluding the external lead pad electrode region and the common region of the transparent TFT substrate chip.

なお、透明画素電極は、その表面に、下地に影響されることなくSiOx膜等の無機系配向膜を形成できれば充分であり、必ずしも非晶質IZOや非晶質ITO等の非晶質透明導電材料から成る透明画素電極である必要は無く、結晶化したIZOやITO等から成る透明画素電極を被覆する非晶質IZOや非晶質ITO等の非晶質透明導電膜を形成したり、結晶化したIZOやITO等から成る透明画素電極を被覆する薄い非晶質SiO等の非晶質透明膜を形成したりしても良い。但し、結晶化したIZOやITO等から成る透明画素電極を被覆する非晶質透明導電膜や非晶質膜を形成するためには、透明画素電極を形成した後に成膜作業が必要となり、また、結晶化したIZOやITO等から成る透明画素電極を非晶質膜で被覆した場合には、透過型LCDパネルの駆動時にTFT基板チップと対向基板チップとの間に印加する電圧をロスしてしまうために、透明画素電極は非晶質IZOや非晶質ITO等の非晶質導電材料から構成された方が好ましい。 The transparent pixel electrode is sufficient if an inorganic alignment film such as a SiOx film can be formed on the surface without being affected by the underlying layer, and is not necessarily an amorphous transparent conductive material such as amorphous IZO or amorphous ITO. It is not necessary to be a transparent pixel electrode made of a material, and an amorphous transparent conductive film such as amorphous IZO or amorphous ITO covering a transparent pixel electrode made of crystallized IZO or ITO, Alternatively, a thin amorphous transparent film such as amorphous SiO 2 may be formed to cover the transparent pixel electrode made of converted IZO, ITO, or the like. However, in order to form an amorphous transparent conductive film or an amorphous film covering a transparent pixel electrode made of crystallized IZO, ITO or the like, a film forming operation is required after forming the transparent pixel electrode. When the transparent pixel electrode made of crystallized IZO or ITO is covered with an amorphous film, the voltage applied between the TFT substrate chip and the counter substrate chip is lost when the transmissive LCD panel is driven. Therefore, the transparent pixel electrode is preferably composed of an amorphous conductive material such as amorphous IZO or amorphous ITO.

また、石英ガラス材、透明結晶化ガラス材などから成る透明対向基板チップは、その表面に厚さ100〜150nmの非晶質IZOや非晶質ITO等の非晶質透明導電膜が形成されており、非晶質透明導電膜の上層には例えば斜め角度60°の斜方蒸着によって厚さ30〜200nmのSiOx膜9が対向基板チップの少なくともコモン領域を除く領域に形成されている。   In addition, a transparent counter substrate chip made of quartz glass material, transparent crystallized glass material or the like has an amorphous transparent conductive film such as amorphous IZO or amorphous ITO having a thickness of 100 to 150 nm formed on the surface thereof. In addition, an SiOx film 9 having a thickness of 30 to 200 nm is formed in an area excluding at least the common area of the counter substrate chip, for example, by oblique vapor deposition at an oblique angle of 60 °.

以下、上記した透過型LCDパネルの製造方法について、図7〜図10に示す工程フローに沿って説明する。   Hereinafter, the manufacturing method of the above-described transmission type LCD panel will be described along the process flow shown in FIGS.

図7に工程フローを示す透過型LCDパネルの製造方法(1)は、単個状態の良品の透明TFT基板チップと単個状態の良品の透明対向基板チップを重ね合わせて空セルを形成するいわゆる単単液晶組立て方法である。   In the manufacturing method (1) of the transmission type LCD panel whose process flow is shown in FIG. 7, a so-called empty cell is formed by superimposing a single good-quality transparent TFT substrate chip and a single-quality good transparent counter substrate chip. This is a single liquid crystal assembly method.

先ず、石英ガラス材などから成る透明TFT基体に複数の画素がマトリックス形状に形成されている透明TFT基板チップを複数形成する。また、各透明TFT基板チップに形成されている各画素表示用TFTに対して非晶質IZOや非晶質ITO等の非晶質透明導電材料から成る透明画素電極を形成する。更に、透明TFT基板チップの少なくとも外部引き出しパット電極領域及びコモン領域をマスキング冶具でマスクした後、透明画素電極の上層に例えば斜め蒸着角度60°で厚さ30〜200nmのSiOx膜を斜方蒸着によって形成して透明TFT基板チップ側の無機系液晶配向膜とする。その後、透明TFT基体を透明TFT基板チップ毎にダイシングを行って単個状態の透明TFT基板チップを形成し、洗浄を行う。
また、上記した反射型LCDパネルの製造方法(1)と同様にして、単個状態の透明対向基板チップを形成し、洗浄を行う。
First, a plurality of transparent TFT substrate chips in which a plurality of pixels are formed in a matrix shape are formed on a transparent TFT substrate made of quartz glass material or the like. Further, a transparent pixel electrode made of an amorphous transparent conductive material such as amorphous IZO or amorphous ITO is formed on each pixel display TFT formed on each transparent TFT substrate chip. Further, after masking at least the external lead pad electrode region and the common region of the transparent TFT substrate chip with a masking jig, an SiOx film having a thickness of 30 to 200 nm, for example, at an oblique deposition angle of 60 ° is obliquely deposited on the upper layer of the transparent pixel electrode. This is formed as an inorganic liquid crystal alignment film on the transparent TFT substrate chip side. Thereafter, the transparent TFT substrate is diced for each transparent TFT substrate chip to form a single transparent TFT substrate chip, and cleaning is performed.
Further, in the same manner as in the reflective LCD panel manufacturing method (1), a single transparent counter substrate chip is formed and cleaned.

続いて、単個状態の良品の透明TFT基板チップのシール領域及びコモン領域にシール剤とコモン剤を塗布し、所定の液晶ギャップで単個状態の良品の透明対向基板チップと重ね合わせて空セルを形成し、TNモード液晶を注入封止し、液晶配向の熱処理をする。   Subsequently, a sealant and a common agent are applied to the seal area and common area of a single transparent good TFT substrate chip, and are superposed on a single transparent transparent substrate chip in a single state with a predetermined liquid crystal gap. TN mode liquid crystal is injected and sealed, and heat treatment for liquid crystal alignment is performed.

その後、透明TFT基板チップ及び透明対向基板チップに低反射膜付きの防塵ガラスを可視光照射硬化型、可視光照射+低温硬化型、UV照射硬化型、UV照射+低温硬化型、低温硬化型等の透明接着剤で貼り合わせ、透明TFT基板チップの外部引き出しパット電極12にフレキ基板13を異方性導電膜の熱圧着で取り付けると共に、透明TFT基板チップ及び透明対向基板チップを金属枠に取り付け、透明TFT基板チップ及び透明対向基板チップと金属枠との間を高熱伝導性モールド樹脂で固着する。こうして得られた液晶表示装置の画質検査を行って、合格したものを出荷することでプロジェクタ用透過型LCDを製作する。   After that, dust-proof glass with a low reflection film is applied to the transparent TFT substrate chip and the transparent counter substrate chip, visible light irradiation curing type, visible light irradiation + low temperature curing type, UV irradiation curing type, UV irradiation + low temperature curing type, low temperature curing type, etc. The flexible substrate 13 is attached to the external lead pad electrode 12 of the transparent TFT substrate chip by thermocompression bonding of the anisotropic conductive film, and the transparent TFT substrate chip and the transparent counter substrate chip are attached to the metal frame. The transparent TFT substrate chip and the transparent counter substrate chip are fixed to the metal frame with a high thermal conductive mold resin. The liquid crystal display device thus obtained is subjected to image quality inspection, and those that have passed are shipped to produce a transmissive LCD for a projector.

図8に工程フローを示す透過型LCDパネルの製造方法(2)は、透明TFT基体内の良品の透明TFT基板チップに単個状態の良品の透明対向基板チップを重ね合わせて空セルを形成するいわゆる面単液晶組立て方法である。   In the transmissive LCD panel manufacturing method (2), the process flow of which is shown in FIG. 8, the empty cell is formed by superimposing a good transparent counter substrate chip in a single state on a good transparent TFT substrate chip in the transparent TFT substrate. This is a so-called plane single liquid crystal assembly method.

上記した透過型LCDパネルの製造方法(1)と同様にして、透明TFT基体に透明TFT基板チップの形成、非晶質透明画素電極の形成、透明TFT基板チップ側の無機系液晶配向膜の形成し、洗浄を行う。
また、上記した透過型LCDパネルの製造方法(1)と同様にして、単個状態の透明対向基板チップを形成し、洗浄を行う。
In the same manner as the above-described transmissive LCD panel manufacturing method (1), a transparent TFT substrate chip is formed on a transparent TFT substrate, an amorphous transparent pixel electrode is formed, and an inorganic liquid crystal alignment film is formed on the transparent TFT substrate chip side. And wash.
Further, similarly to the above-described transmissive LCD panel manufacturing method (1), a single transparent counter substrate chip is formed and washed.

続いて、透明TFT基体に形成された良品の透明TFT基板チップのシール領域及びコモン領域にシール剤とコモン剤を塗布し、所定の液晶ギャップで単個状態の良品の透明対向基板チップと重ね合わせを行って、TNモード液晶を注入封止及び液晶配向の熱処理した後、透明TFT基体のダイシングを行う。
その後の出荷までの工程は、上記した透過型LCDパネルの製造方法(1)と同様である。
Subsequently, a sealant and a common agent are applied to the seal region and common region of a good transparent TFT substrate chip formed on the transparent TFT substrate, and are superposed on a good transparent counter substrate chip in a single state with a predetermined liquid crystal gap. After the TN mode liquid crystal is injected and sealed and the liquid crystal alignment is heat-treated, the transparent TFT substrate is diced.
The subsequent processes up to the shipment are the same as those in the manufacturing method (1) of the transmissive LCD panel described above.

図9に工程フローを示す透過型LCDパネルの製造方法(3)は、透明TFT基体内の透明TFT基板チップと透明対向基体内の透明対向基板チップを相対して重ね合わせて空セルを形成するいわゆる面面液晶組立て方法である。   In the manufacturing method (3) of the transmissive LCD panel whose process flow is shown in FIG. 9, the transparent TFT substrate chip in the transparent TFT substrate and the transparent counter substrate chip in the transparent counter substrate are relatively overlapped to form an empty cell. This is a so-called surface liquid crystal assembling method.

上記した透過型LCDパネルの製造方法(1)と同様にして、透明TFT基体に透明TFT基板チップの形成、非晶質透明画素電極の形成、透明TFT基板チップ側の無機系液晶配向膜の形成し、洗浄を行う。
また、上記した透過型LCDパネルの製造方法(1)と同様にして、透明対向基体に透明対向基板チップの形成、非晶質透明導電膜の形成、透明対向基板チップ側の無機系液晶配向膜の形成し、洗浄を行う。
In the same manner as the above-described transmissive LCD panel manufacturing method (1), a transparent TFT substrate chip is formed on a transparent TFT substrate, an amorphous transparent pixel electrode is formed, and an inorganic liquid crystal alignment film is formed on the transparent TFT substrate chip side. And wash.
Further, in the same manner as the above-described transmissive LCD panel manufacturing method (1), the transparent counter substrate chip is formed on the transparent counter substrate, the amorphous transparent conductive film is formed, and the inorganic liquid crystal alignment film on the transparent counter substrate chip side is formed. Forming and cleaning.

次に、透明TFT基板チップのシール領域及びコモン領域にシール剤とコモン剤を塗布し、透明TFT基体に形成された透明TFT基板チップと透明対向基体に形成された透明対向基板チップが所定の液晶ギャップを介して対面配置する様に、透明TFT基体と透明対向基体の重ね合わせを行い、空セルを形成する。   Next, a sealing agent and a common agent are applied to the sealing region and the common region of the transparent TFT substrate chip, and the transparent TFT substrate chip formed on the transparent TFT substrate and the transparent counter substrate chip formed on the transparent counter substrate are provided with predetermined liquid crystals. The transparent TFT substrate and the transparent counter substrate are overlapped so as to face each other through a gap to form an empty cell.

続いて、透明TFT基体及び透明対向基体のダイシングを行った後にTNモード液晶を注入封止及び液晶配向の熱処理した後、若しくは、透明対向基体のみをレーザー等で透明対向基板チップ毎に分断し、TNモード液晶を注入封止及び液晶配向の熱処理した後に透明TFT基体を透明TFT基板チップ毎にダイシングを行う。
その後の出荷までの工程は、上記した透過型LCDパネルの製造方法(1)と同様である。
Subsequently, after dicing the transparent TFT substrate and the transparent counter substrate, the TN mode liquid crystal is injected and sealed and subjected to a heat treatment for liquid crystal alignment, or only the transparent counter substrate is divided into transparent counter substrate chips with a laser or the like, After the TN mode liquid crystal is injected and sealed and the liquid crystal alignment is heat-treated, the transparent TFT substrate is diced for each transparent TFT substrate chip.
The subsequent processes up to the shipment are the same as those in the manufacturing method (1) of the transmissive LCD panel described above.

図10に工程フローを示す透過型LCDパネルの製造方法(4)は図7に工程フローを示す透過型LCDパネルの製造方法(1)の変形で、単個状態の良品の透明TFT基板チップと単個状態の良品の透明対向基板チップを重ね合わせて空セルを形成するいわゆる単単液晶組立て方法である。   A transmissive LCD panel manufacturing method (4) having a process flow shown in FIG. 10 is a modification of the transmissive LCD panel manufacturing method (1) having a process flow shown in FIG. This is a so-called single-single-liquid crystal assembly method in which empty cells are formed by superimposing single transparent non-defective substrate chips.

上記した透過型LCDパネルの製造方法(1)と同様にして、透明TFT基体に透明TFT基板チップの形成、非晶質透明画素電極の形成を行う。
また、上記した透過型LCDパネルの製造方法(1)と同様にして、透明対向基体に透明対向基板チップの形成、非晶質透明導電膜の形成を行う。
In the same manner as the above-described transmissive LCD panel manufacturing method (1), a transparent TFT substrate chip and an amorphous transparent pixel electrode are formed on a transparent TFT substrate.
Further, in the same manner as the above-described transmissive LCD panel manufacturing method (1), the transparent counter substrate chip is formed on the transparent counter substrate, and the amorphous transparent conductive film is formed.

次に、透明TFT基体を透明TFT基板チップ毎にダイシングを行って単個状態の透明TFT基板チップを形成し、洗浄を行う。また、透明TFT基板チップの少なくとも外部引き出しパット電極領域及びコモン領域をマスキング冶具でマスクした後、非晶質透明画素電極の上層に例えば斜め蒸着角度60°で厚さ30〜200nmのSiOx膜を斜方蒸着或いは指向性スパッタリングによって形成して透明TFT基板チップ側の無機系液晶配向膜とする。   Next, the transparent TFT substrate is diced for each transparent TFT substrate chip to form a single transparent TFT substrate chip, and cleaning is performed. Further, after masking at least the external lead pad electrode region and the common region of the transparent TFT substrate chip with a masking jig, an SiOx film having a thickness of 30 to 200 nm at an oblique deposition angle of 60 ° is obliquely deposited on the upper layer of the amorphous transparent pixel electrode. An inorganic liquid crystal alignment film on the transparent TFT substrate chip side is formed by side vapor deposition or directional sputtering.

また、透明対向基体を透明対向基板チップ毎にダイシングを行って単個状態の透明対向基板チップを形成し、洗浄を行う。更に、透明対向基板チップのコモン領域をマスキング冶具でマスクした後、非晶質透明導電膜の上層に例えば斜め蒸着角度60°で厚さ30〜200nmのSiOx膜を斜方蒸着或いは指向性スパッタリングによって形成し透明対向基板チップ側の無機系液晶配向膜とする。   Further, the transparent counter substrate is diced for each transparent counter substrate chip to form a single transparent counter substrate chip, and cleaning is performed. Further, after masking the common area of the transparent counter substrate chip with a masking jig, an SiOx film having a thickness of 30 to 200 nm, for example, at an oblique deposition angle of 60 ° is formed on the amorphous transparent conductive film by oblique deposition or directional sputtering. An inorganic liquid crystal alignment film on the transparent counter substrate chip side is formed.

続いて、単個状態の良品の透明TFT基板チップのシール領域及びコモン領域にシール剤とコモン剤を塗布し、所定の液晶ギャップで単個状態の良品の透明対向基板チップと重ね合わせて空セルを形成し、TNモード液晶を注入封止及び液晶配向の熱処理をする。
その後の出荷までの工程は、上記した透過型LCDパネルの製造方法(1)と同様である。
Subsequently, a sealant and a common agent are applied to the seal area and common area of a single transparent good TFT substrate chip, and are superposed on a single transparent transparent substrate chip in a single state with a predetermined liquid crystal gap. The TN mode liquid crystal is injected and sealed, and the liquid crystal alignment is heat-treated.
The subsequent processes up to the shipment are the same as those in the manufacturing method (1) of the transmissive LCD panel described above.

上記した本発明を適用した反射型LCDパネル及びその製造方法では、非透明TFT基板チップの各画素に対応してスパッタリング等によって形成された高反射のアルミニウムから成る画素電極を被覆する様に非晶質透明膜または非晶質透明膜及び非晶質透明導電膜が形成されているために、SiOx等の斜方蒸着或いは指向性スパッタリングによって非透明TFT基板チップ側の無機系液晶配向膜を形成する際に、下地の影響を受けることなく柱状の微細構造の角度や密度のコントロールができ、液晶配向が揃い、反射色ムラが低減する。
即ち、スパッタリング等で形成した高反射のアルミニウムであっても微細なランダム結晶集合体であり、所望の斜め蒸着角度でガラス微粒子の積層膜を形成しようとしても、下地のランダムな微細アルミニウム結晶形状に沿ってガラス微粒子が積層するので、柱状の微細構造の角度や密度をコントロールし難いが、本発明を適用した反射型LCDパネル及びその製造方法では、画素電極を非晶質透明膜または非晶質透明膜及び非晶質透明導電膜で被覆しているために、柱状の微細構造の角度や密度のコントロールができ、液晶配向が揃い、反射色ムラが低減する。
In the reflective LCD panel to which the present invention is applied and the manufacturing method thereof, the amorphous electrode is formed so as to cover the pixel electrode made of highly reflective aluminum formed by sputtering or the like corresponding to each pixel of the non-transparent TFT substrate chip. Since an inorganic transparent film or an amorphous transparent film and an amorphous transparent conductive film are formed, an inorganic liquid crystal alignment film on the non-transparent TFT substrate chip side is formed by oblique vapor deposition such as SiOx or directional sputtering. At this time, the angle and density of the columnar fine structure can be controlled without being affected by the underlying layer, the liquid crystal alignment is uniform, and the reflection color unevenness is reduced.
That is, even a highly reflective aluminum formed by sputtering or the like is a fine random crystal aggregate, and even if an attempt is made to form a laminated film of glass fine particles at a desired oblique deposition angle, it becomes a random fine aluminum crystal shape of the base. Since the glass particles are laminated along the axis, it is difficult to control the angle and density of the columnar microstructure. However, in the reflective LCD panel to which the present invention is applied and the manufacturing method thereof, the pixel electrode is formed of an amorphous transparent film or an amorphous film. Since it is covered with the transparent film and the amorphous transparent conductive film, the angle and density of the columnar microstructure can be controlled, the liquid crystal alignment is uniform, and the reflection color unevenness is reduced.

また、透明対向基板チップの表面に非晶質透明導電膜が形成されているために、SiOx等の斜方蒸着或いは指向性スパッタリングによって透明対向基板チップ側の無機系液晶配向膜を形成する際に、下地の影響を受けることなく柱状の微細構造の角度や密度のコントロールができ、液晶配向が揃い、反射色ムラが低減する。
即ち、その表面に結晶化した透明導電膜が形成された透明対向基板チップに所望の斜め蒸着角度でガラス微粒子の積層膜を形成しようとしても、下地のランダムな透明導電膜の結晶形状に沿ってガラス微粒子が積層するので、柱状の微細構造の角度や密度をコントロールし難いが、本発明を適用した反射型LCDパネル及びその製造方法では、透明対向基板チップの表面に非晶質透明導電膜を形成しているために、柱状の微細構造の角度や密度のコントロールができ、液晶配向が揃い、反射色ムラが低減する。
Also, since the amorphous transparent conductive film is formed on the surface of the transparent counter substrate chip, when forming the inorganic liquid crystal alignment film on the transparent counter substrate chip side by oblique vapor deposition such as SiOx or directional sputtering. In addition, the angle and density of the columnar microstructure can be controlled without being affected by the underlayer, the liquid crystal alignment is uniform, and the reflection color unevenness is reduced.
That is, even if an attempt is made to form a laminated film of glass particles at a desired oblique deposition angle on a transparent counter substrate chip on which a transparent conductive film crystallized is formed, along the crystal shape of the underlying random transparent conductive film Since the glass particles are laminated, it is difficult to control the angle and density of the columnar microstructure. However, in the reflective LCD panel and the manufacturing method to which the present invention is applied, an amorphous transparent conductive film is formed on the surface of the transparent counter substrate chip. Since it is formed, the angle and density of the columnar microstructure can be controlled, the liquid crystal alignment is uniform, and the reflection color unevenness is reduced.

また、上記した様に、非透明TFT基板チップ及び透明対向基板チップ共に液晶配向が揃い、反射色ムラが低減できるために、高輝度、高精細、高性能の反射型LCDパネルを実現することができる。   In addition, as described above, since the liquid crystal alignment is the same for both the non-transparent TFT substrate chip and the transparent counter substrate chip and the unevenness of reflected color can be reduced, a high-brightness, high-definition, high-performance reflective LCD panel can be realized. it can.

更に、画素電極を非晶質透明導電膜で被覆しているために、画素電極を構成する高反射の例えばアルミニウムを液晶中に浸透した水分による腐食から保護することができ、腐食による反射率低下が少なく、高輝度、高精細、高性能、高品質、高信頼性の反射型LCDパネルを実現できる。   Furthermore, since the pixel electrode is covered with an amorphous transparent conductive film, it is possible to protect against corrosion caused by moisture that has penetrated into the liquid crystal, such as highly reflective aluminum that constitutes the pixel electrode, and the reflectance decreases due to corrosion. Therefore, a reflective LCD panel with high brightness, high definition, high performance, high quality, and high reliability can be realized.

上記した本発明を適用した透過型LCDパネル及びその製造方法では、透明TFT基板チップの各画素に対応して非晶質透明導電材料から成る透明画素電極が形成されているために、SiOx等の斜方蒸着或いは指向性スパッタリングによって透明TFT基板チップ側の無機系液晶配向膜を形成する際に、下地の影響を受けることなく柱状の微細構造の角度や密度のコントロールができ、液晶配向が揃い、色ムラが低減する。
即ち、透明TFT基板チップの各画素に対応して結晶化した透明導電材料から成る透明画素電極に所望の斜め蒸着角度でガラス微粒子の積層膜を形成しようとしても、下地のランダムな透明画素電極の結晶形状に沿ってガラス微粒子が積層するので、柱状の微細構造の角度や密度をコントロールし難いが、本発明を適用した透過型LCDパネル及びその製造方法では、透明TFT基板チップの各画素に対応して非晶質透明導電材料から成る透明画素電極が形成されているために、柱状の微細構造の角度や密度のコントロールができ、液晶配向が揃い、色ムラが低減する。
尚、ITOなどの結晶性透明導電材料を使用する場合には、非晶質のSiOなどの非晶質透明膜を形成して下地の影響を無くしてSiOx等の斜方蒸着或いは指向性スパッタリングによって透明TFT基板チップ側に無機系液晶配向膜を形成してもよい。
In the above-described transmissive LCD panel to which the present invention is applied and the manufacturing method thereof, since transparent pixel electrodes made of an amorphous transparent conductive material are formed corresponding to each pixel of the transparent TFT substrate chip, When forming an inorganic liquid crystal alignment film on the transparent TFT substrate chip side by oblique deposition or directional sputtering, the angle and density of the columnar microstructure can be controlled without being affected by the base, and the liquid crystal alignment is aligned. Color unevenness is reduced.
That is, even if an attempt is made to form a laminated film of glass particles at a desired oblique deposition angle on a transparent pixel electrode made of a transparent conductive material crystallized corresponding to each pixel of the transparent TFT substrate chip, Since glass particles are stacked along the crystal shape, it is difficult to control the angle and density of the columnar microstructure, but the transmissive LCD panel to which the present invention is applied and its manufacturing method can handle each pixel of the transparent TFT substrate chip. Since the transparent pixel electrode made of the amorphous transparent conductive material is formed, the angle and density of the columnar microstructure can be controlled, the liquid crystal alignment is uniform, and the color unevenness is reduced.
When a crystalline transparent conductive material such as ITO is used, an amorphous transparent film such as amorphous SiO 2 is formed to eliminate the influence of the underlayer, and oblique deposition such as SiOx or directional sputtering. An inorganic liquid crystal alignment film may be formed on the transparent TFT substrate chip side.

また、透明対向基板チップの表面に非晶質透明導電膜が形成されているために、SiOx等の斜方蒸着或いは指向性スパッタリングによって対向基板チップ側の無機系液晶配向膜を形成する際に、下地の影響を受けることなく柱状の微細構造の角度や密度のコントロールができ、液晶配向が揃い、色ムラが低減する。
即ち、その表面に結晶化した透明導電膜が形成された透明対向基板チップに所望の斜め蒸着角度でガラス微粒子の積層膜を形成しようとしても、下地のランダムな透明導電膜の結晶形状に沿ってガラス微粒子が積層するので、柱状の微細構造の角度や密度をコントロールし難いが、本発明を適用した透過型LCDパネル及びその製造方法では、透明対向基板チップの表面に非晶質透明導電膜を形成しているために、柱状の微細構造の角度や密度のコントロールができ、液晶配向が揃い、色ムラが低減する。
Further, since the amorphous transparent conductive film is formed on the surface of the transparent counter substrate chip, when forming the inorganic liquid crystal alignment film on the counter substrate chip side by oblique vapor deposition such as SiOx or directional sputtering, The angle and density of the columnar microstructure can be controlled without being affected by the underlying layer, the liquid crystal alignment is uniform, and color unevenness is reduced.
That is, even if an attempt is made to form a laminated film of glass particles at a desired oblique deposition angle on a transparent counter substrate chip on which a transparent conductive film crystallized is formed, along the crystal shape of the underlying random transparent conductive film Since the glass particles are laminated, it is difficult to control the angle and density of the columnar microstructure. However, in the transmissive LCD panel and the manufacturing method to which the present invention is applied, an amorphous transparent conductive film is formed on the surface of the transparent counter substrate chip. Since it is formed, the angle and density of the columnar microstructure can be controlled, the liquid crystal alignment is uniform, and color unevenness is reduced.

また、上記した様に、透明TFT基板チップ及び透明対向基板チップ共に液晶配向が揃い、色ムラが低減できるために、高輝度、高精細、高性能の透過型LCDパネルを実現することができる。   In addition, as described above, since the liquid crystal alignment is uniform in both the transparent TFT substrate chip and the transparent counter substrate chip and color unevenness can be reduced, a high-luminance, high-definition, high-performance transmissive LCD panel can be realized.

尚、上記では斜方蒸着によるSiOx膜等の無機系配向膜形成の実施例を述べたが、ミラートロンスパッタリング(指向性スパッタリング)によるSiOx膜等の無機系配向膜形成の場合も、斜方蒸着の蒸着角とほぼ等しいスパッタリング角で形成してもよい。
また、斜方蒸着或いは指向性スパッタリングによるSiOx膜にアルゴン等のイオンビーム照射することで、更に液晶配向性を向上させてもよい。
In the above description, an example of forming an inorganic alignment film such as a SiOx film by oblique vapor deposition has been described. However, oblique vapor deposition is also possible in the case of forming an inorganic alignment film such as a SiOx film by mirrortron sputtering (directional sputtering). Alternatively, the sputtering angle may be approximately equal to the vapor deposition angle.
Further, the orientation of the liquid crystal may be further improved by irradiating an ion beam of argon or the like to the SiOx film formed by oblique vapor deposition or directional sputtering.

更に、CVD法によりDLC(ダイヤモンドライクカーボン)膜を約10nm厚形成し、これにアルゴン等のイオンビームを基板に対して45°の方向から照射する方法で無機系配向膜を形成する場合に、下地の結晶性透明導電膜の影響を受けてうまく配向しないことがあり、この場合にも本発明の結晶性透明導電膜上に非晶質透明膜を介してDLC膜形成する、或いは非晶質透明導電膜上にDLC膜形成することで、液晶配向ムラ低減するのが好ましい。   Furthermore, when an inorganic alignment film is formed by a method in which a DLC (diamond-like carbon) film is formed with a thickness of about 10 nm by a CVD method and an ion beam of argon or the like is irradiated to the substrate from a direction of 45 °. In some cases, the DLC film may be formed on the crystalline transparent conductive film of the present invention via an amorphous transparent film or may be amorphous due to the influence of the underlying crystalline transparent conductive film. It is preferable to reduce liquid crystal alignment unevenness by forming a DLC film on the transparent conductive film.

本発明を適用した液晶表示装置の一例である反射型LCDパネルを説明するための模式的な図である。It is a typical figure for demonstrating the reflection type LCD panel which is an example of the liquid crystal display device to which this invention is applied. 反射型LCDパネルの製造方法(1)の工程フローである。It is a process flow of the manufacturing method (1) of a reflection type LCD panel. 反射型LCDパネルの製造方法(2)の工程フローである。It is a process flow of the manufacturing method (2) of a reflection type LCD panel. 反射型LCDパネルの製造方法(3)の工程フローである。It is a process flow of the manufacturing method (3) of a reflection type LCD panel. 反射型LCDパネルの製造方法(4)の工程フローである。It is a process flow of the manufacturing method (4) of a reflection type LCD panel. 本発明を適用した液晶表示装置の他の一例である透過型LCDパネルを説明するための模式的な図である。It is a typical figure for demonstrating the transmissive LCD panel which is another example of the liquid crystal display device to which this invention is applied. 透過型LCDパネルの製造方法(1)の工程フローである。It is a process flow of the manufacturing method (1) of a transmissive LCD panel. 透過型LCDパネルの製造方法(2)の工程フローである。It is a process flow of the manufacturing method (2) of a transmissive LCD panel. 透過型LCDパネルの製造方法(3)の工程フローである。It is a process flow of the manufacturing method (3) of a transmissive LCD panel. 透過型LCDパネルの製造方法(4)の工程フローである。It is a process flow of the manufacturing method (4) of a transmissive LCD panel.

符号の説明Explanation of symbols

1 反射型LCDパネル
2 シール剤
3 非透明TFT基板チップ
4 透明対向基板チップ
5 液晶
6 画素表示用TFT
7 画素電極
8 非晶質透明導電膜
9 SiOx膜
10 透過型LCDパネル
11 透明画素電極
12 外部引き出しパット電極
13 フレキ基板
14 透明TFT基板チップ
DESCRIPTION OF SYMBOLS 1 Reflective type LCD panel 2 Sealant 3 Non-transparent TFT substrate chip 4 Transparent counter substrate chip 5 Liquid crystal 6 Pixel display TFT
7 Pixel electrode 8 Amorphous transparent conductive film 9 SiOx film 10 Transparent LCD panel 11 Transparent pixel electrode 12 External lead pad electrode 13 Flexible substrate 14 Transparent TFT substrate chip

Claims (6)

液晶を挟んで対向させた光反射層を備えた駆動基板と対向基板を備える反射型液晶表示装置において、
前記駆動基板は、同駆動基板の画素毎に形成された画素電極と、
少なくとも該画素電極を被覆する非晶質透明膜と、
該非晶質透明膜の上層に形成された第1の無機配向膜を備え、
前記対向基板は、同対向基板の表面に形成された非晶質透明導電膜と、
該非晶質透明導電膜の上層に形成された第2の無機配向膜を備える
ことを特徴とする反射型液晶表示装置。
In a reflective liquid crystal display device comprising a driving substrate having a light reflecting layer opposed to the liquid crystal and a counter substrate,
The drive substrate includes a pixel electrode formed for each pixel of the drive substrate;
An amorphous transparent film covering at least the pixel electrode;
A first inorganic alignment film formed on the amorphous transparent film;
The counter substrate includes an amorphous transparent conductive film formed on a surface of the counter substrate;
A reflective liquid crystal display device comprising a second inorganic alignment film formed on the amorphous transparent conductive film.
前記非晶質透明膜が導電膜である
ことを特徴とする請求項1に記載の反射型液晶表示装置。
The reflective liquid crystal display device according to claim 1, wherein the amorphous transparent film is a conductive film.
前記非晶質透明膜は、非晶質ガラスまたは非晶質ガラス及び非晶質透明導電膜から成る
ことを特徴とする請求項1に記載の反射型液晶表示装置。
The reflective liquid crystal display device according to claim 1, wherein the amorphous transparent film is made of amorphous glass or amorphous glass and an amorphous transparent conductive film.
前記第1の無機配向膜は、前記駆動基板の少なくとも外部引き出しパット電極領域及びコモン領域を除く領域に形成され、
前記第2の無機配向膜は、前記対向基板の少なくともコモン領域を除く領域に形成された
ことを特徴とする請求項1に記載の反射型液晶表示装置。
The first inorganic alignment film is formed in a region excluding at least the external lead pad electrode region and the common region of the driving substrate,
The reflective liquid crystal display device according to claim 1, wherein the second inorganic alignment film is formed in a region excluding at least a common region of the counter substrate.
液晶を挟んで対向させた駆動基板と対向基板を備える透過型液晶表示装置において、
前記駆動基板は、同駆動基板の画素毎に形成された非晶質透明導電材料から成る画素電極と、
該画素電極の上層に形成された第1の無機配向膜を備え、
前記対向基板は、同対向基板の表面に形成された非晶質透明導電膜と、
該非晶質透明導電膜の上層に形成された第2の無機配向膜を備える
ことを特徴とする透過型液晶表示装置。
In a transmissive liquid crystal display device comprising a driving substrate and a counter substrate opposed to each other with a liquid crystal interposed therebetween,
The drive substrate includes a pixel electrode made of an amorphous transparent conductive material formed for each pixel of the drive substrate;
A first inorganic alignment film formed on an upper layer of the pixel electrode;
The counter substrate includes an amorphous transparent conductive film formed on a surface of the counter substrate;
A transmissive liquid crystal display device comprising a second inorganic alignment film formed on the amorphous transparent conductive film.
前記第1の無機配向膜は、前記駆動基板の少なくとも外部引き出しパット電極領域及びコモン領域を除く領域に形成され、
前記第2の無機配向膜は、前記対向基板の少なくともコモン領域を除く領域に形成された
ことを特徴とする請求項6に記載の透過型液晶表示装置。
The first inorganic alignment film is formed in a region excluding at least the external lead pad electrode region and the common region of the driving substrate,
The transmissive liquid crystal display device according to claim 6, wherein the second inorganic alignment film is formed in a region excluding at least a common region of the counter substrate.
JP2004023125A 2004-01-30 2004-01-30 Reflection-type liquid crystal display and transmission-type liquid crystal display Pending JP2005215419A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004023125A JP2005215419A (en) 2004-01-30 2004-01-30 Reflection-type liquid crystal display and transmission-type liquid crystal display

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004023125A JP2005215419A (en) 2004-01-30 2004-01-30 Reflection-type liquid crystal display and transmission-type liquid crystal display

Publications (1)

Publication Number Publication Date
JP2005215419A true JP2005215419A (en) 2005-08-11

Family

ID=34906252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004023125A Pending JP2005215419A (en) 2004-01-30 2004-01-30 Reflection-type liquid crystal display and transmission-type liquid crystal display

Country Status (1)

Country Link
JP (1) JP2005215419A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007088722A1 (en) * 2006-01-31 2007-08-09 Idemitsu Kosan Co., Ltd. Tft substrate, reflective tft substrate and method for manufacturing such substrates
WO2007091405A1 (en) * 2006-02-09 2007-08-16 Idemitsu Kosan Co., Ltd. Reflective tft substrate and method for manufacturing reflective tft substrate
JP2007235102A (en) * 2006-01-31 2007-09-13 Idemitsu Kosan Co Ltd Tft substrate and manufacturing method thereof
JP2007258675A (en) * 2006-02-21 2007-10-04 Idemitsu Kosan Co Ltd Tft substrate, reflective tft substrate, and method of manufacturing same
JP2011175090A (en) * 2010-02-24 2011-09-08 Citizen Finetech Miyota Co Ltd Method for manufacturing liquid crystal display element
JP2014211593A (en) * 2013-04-22 2014-11-13 セイコーエプソン株式会社 Liquid crystal device, manufacturing method of liquid crystal device, and electronic apparatus
US10108053B2 (en) 2016-10-21 2018-10-23 Omnivision Technologies, Inc. Liquid crystal display device with peripheral electrode
CN110289372A (en) * 2019-07-02 2019-09-27 京东方科技集团股份有限公司 A kind of packaging method of display panel, display device and organic luminescent assembly

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007088722A1 (en) * 2006-01-31 2007-08-09 Idemitsu Kosan Co., Ltd. Tft substrate, reflective tft substrate and method for manufacturing such substrates
JP2007235102A (en) * 2006-01-31 2007-09-13 Idemitsu Kosan Co Ltd Tft substrate and manufacturing method thereof
WO2007091405A1 (en) * 2006-02-09 2007-08-16 Idemitsu Kosan Co., Ltd. Reflective tft substrate and method for manufacturing reflective tft substrate
JP2007258675A (en) * 2006-02-21 2007-10-04 Idemitsu Kosan Co Ltd Tft substrate, reflective tft substrate, and method of manufacturing same
JP2011175090A (en) * 2010-02-24 2011-09-08 Citizen Finetech Miyota Co Ltd Method for manufacturing liquid crystal display element
JP2014211593A (en) * 2013-04-22 2014-11-13 セイコーエプソン株式会社 Liquid crystal device, manufacturing method of liquid crystal device, and electronic apparatus
US10108053B2 (en) 2016-10-21 2018-10-23 Omnivision Technologies, Inc. Liquid crystal display device with peripheral electrode
CN110289372A (en) * 2019-07-02 2019-09-27 京东方科技集团股份有限公司 A kind of packaging method of display panel, display device and organic luminescent assembly
WO2021000908A1 (en) * 2019-07-02 2021-01-07 京东方科技集团股份有限公司 Display panel, display apparatus and manufacturing method

Similar Documents

Publication Publication Date Title
JP4795127B2 (en) Liquid crystal display device and manufacturing method thereof
US20110063561A1 (en) Liquid crystal display panel and manufacturing method thereof
JP5961543B2 (en) Liquid crystal display device and manufacturing method thereof
JP2013218234A (en) Electro-optic device and electronic equipment
WO2012073456A1 (en) Display panel and method for manufacturing same
JP4789337B2 (en) Method for manufacturing liquid crystal display device
JP2005215419A (en) Reflection-type liquid crystal display and transmission-type liquid crystal display
JP5242776B2 (en) Method for manufacturing liquid crystal panel, glass substrate for liquid crystal panel and liquid crystal panel provided with the same
KR20030058166A (en) Liquid crystal display device
JP2006235010A (en) Electro-optical display device and method for manufacturing the same
JP2009172626A (en) Manufacturing method of electrooptical device and electrooptical device
JP2004126054A (en) Display element and its manufacturing method
JP2007248832A (en) Liquid crystal device and its manufacturing method, and electronic equipment
JP5105948B2 (en) Method for manufacturing display device
JP2004354606A (en) Liquid crystal display and method for manufacturing the same
JP2012168348A (en) Liquid crystal display element and method for manufacturing liquid crystal display element
US6882392B2 (en) Method for fabricating smectic liquid crystal display device
CN114144723B (en) Method for manufacturing liquid crystal display device and liquid crystal display device
JP2009058620A (en) Electro-optical device and electronic apparatus
JP2008015374A (en) Liquid crystal display device
JP2008216943A (en) Manufacturing method of liquid crystal device
JP2011215447A (en) Method of manufacturing liquid crystal device
JPH0611703A (en) Liquid crystal display device
JP3927818B2 (en) Liquid crystal display device and manufacturing method thereof
JP5232321B2 (en) Method for manufacturing display device