JP2005298856A - Aluminum alloy casting material with excellent thermal conductivity - Google Patents
Aluminum alloy casting material with excellent thermal conductivity Download PDFInfo
- Publication number
- JP2005298856A JP2005298856A JP2004113584A JP2004113584A JP2005298856A JP 2005298856 A JP2005298856 A JP 2005298856A JP 2004113584 A JP2004113584 A JP 2004113584A JP 2004113584 A JP2004113584 A JP 2004113584A JP 2005298856 A JP2005298856 A JP 2005298856A
- Authority
- JP
- Japan
- Prior art keywords
- thermal conductivity
- aluminum alloy
- mass
- casting material
- alloy casting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000463 material Substances 0.000 title claims abstract description 30
- 229910000838 Al alloy Inorganic materials 0.000 title claims abstract description 26
- 238000005266 casting Methods 0.000 title claims abstract description 19
- 230000032683 aging Effects 0.000 claims abstract description 19
- 239000012535 impurity Substances 0.000 claims abstract description 6
- 238000001816 cooling Methods 0.000 claims description 3
- 239000000203 mixture Substances 0.000 abstract description 5
- 239000000956 alloy Substances 0.000 description 10
- 229910045601 alloy Inorganic materials 0.000 description 9
- 230000000694 effects Effects 0.000 description 9
- 230000007423 decrease Effects 0.000 description 8
- 239000006104 solid solution Substances 0.000 description 7
- 239000000243 solution Substances 0.000 description 7
- 239000011159 matrix material Substances 0.000 description 6
- 229910019064 Mg-Si Inorganic materials 0.000 description 5
- 229910019406 Mg—Si Inorganic materials 0.000 description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- 238000000034 method Methods 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- 229910018125 Al-Si Inorganic materials 0.000 description 2
- 229910018520 Al—Si Inorganic materials 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000004512 die casting Methods 0.000 description 2
- 238000010791 quenching Methods 0.000 description 2
- 239000002210 silicon-based material Substances 0.000 description 2
- 230000005484 gravity Effects 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 239000011856 silicon-based particle Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Landscapes
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
- Continuous Casting (AREA)
Abstract
Description
本発明は、高い熱伝導率を有するアルミニウム合金鋳造材に関するものである。本発明による高い熱伝導率を有するアルミニウム合金鋳造材は、放熱性を高めるために複雑な形状を有するヒートシンクや薄肉部を有するヒートシンク等に好適に使用することができる。 The present invention relates to an aluminum alloy cast material having high thermal conductivity. The aluminum alloy casting material having high thermal conductivity according to the present invention can be suitably used for a heat sink having a complicated shape, a heat sink having a thin portion, etc. in order to enhance heat dissipation.
アルミニウム合金は一般にアルミニウム純度の高い合金ほど熱伝導率が高い。したがって、高い熱伝導率を必要とする場合には純アルミニウムを使用することも考えられるが、純アルミニウムは強度が低く、鋳造性が悪いという問題があり、したがって、複雑な形状のものや薄肉部を有するものは鋳造することができなかった。 In general, the higher the aluminum purity, the higher the thermal conductivity of the aluminum alloy. Therefore, it is conceivable to use pure aluminum when high thermal conductivity is required. However, pure aluminum has a problem of low strength and poor castability. Those having a could not be cast.
そのため、複雑な形状のヒートシンクを製造する場合は、例えば、特開2001−316748号公報、特開2002−3972号公報、特開2002−105571号公報に記載されているように、熱伝導率をある程度犠牲にしても鋳造性を向上させるためにSiを添加したアルミニウム合金を用いられている。
従来技術が有する上記のような課題を解決するために、本発明は、Siを添加して鋳造性を向上させたアルミニウム合金鋳造材であって、同時に熱伝導率を向上させた熱伝導用アルミニウム合金鋳造材を目的とする。 In order to solve the above-mentioned problems of the prior art, the present invention is an aluminum alloy casting material in which Si is added to improve castability, and at the same time, heat conductivity aluminum having improved heat conductivity. For alloy castings.
上記の課題を解決するために本発明が提案するアルミニウム合金鋳造材は、Si:5〜10.0質量%、Mg:0.1〜0.5質量%を含み、残部がAlおよび不可避的不純物からなり、時効処理を施されたことを特徴とする熱伝導性に優れたアルミニウム合金鋳造材である。 In order to solve the above problems, the aluminum alloy casting material proposed by the present invention contains Si: 5 to 10.0% by mass, Mg: 0.1 to 0.5% by mass, and the balance is Al and inevitable impurities. It is an aluminum alloy casting material excellent in thermal conductivity, characterized by comprising an aging treatment.
上記のアルミニウム合金鋳造材には、さらに、Fe:0.3〜0.6質量%を含んでもよい。
これらの組成を有するアルミニウム合金鋳造材は、以下に実施例を挙げて述べるように、高い熱伝導率と強度に加えて優れた鋳造性を併せ持つアルミニウム合金鋳造材である。
The aluminum alloy cast material may further contain Fe: 0.3 to 0.6% by mass.
The aluminum alloy cast material having these compositions is an aluminum alloy cast material having excellent castability in addition to high thermal conductivity and strength, as described in the following examples.
時効処理としては、160〜270°Cの温度で、1〜10時間保持することを提案する。 As an aging treatment, it is proposed to hold at a temperature of 160 to 270 ° C. for 1 to 10 hours.
本発明はまた、時効処理を施す前に、480〜540°Cで、1〜10時間保持して溶体化処理を行い、その後、100°C/秒以上の冷却速度で100°C以下の温度まで冷却して焼入れすることを提案するものである。
以下に実施例を挙げて述べるように、上述の時効処理や溶体化処理を行うことにより、前記アルミニウム合金鋳造材の熱伝導特性と機械的強度が一層向上することが発見された。
The present invention also provides a solution treatment by holding at 480 to 540 ° C. for 1 to 10 hours before the aging treatment, and then a temperature of 100 ° C. or less at a cooling rate of 100 ° C./second or more. It is proposed to cool and quench until
As will be described below with reference to examples, it has been discovered that the heat conduction characteristics and mechanical strength of the aluminum alloy casting are further improved by performing the above-described aging treatment and solution treatment.
上述の、優れた熱伝導特性と機械的強度を有し、鋳造性に優れたアルミニウム合金の特性を活かして、複雑な形状を有するヒートシンクや薄肉部を有するヒートシンクに好適に製造することが可能になる。 Utilizing the characteristics of the aluminum alloy having excellent heat conduction characteristics and mechanical strength, and excellent castability as described above, it can be suitably manufactured for heat sinks with complex shapes and heat sinks with thin parts. Become.
Al−Si系アルミニウム合金において、Mgは機械的強度を向上させる作用があるものの熱伝導率を低下させるので、高い熱伝導率が必要とされる鋳造材には可能な限りMgの含有量を低くすることが好ましいと考えられていた。 In Al-Si-based aluminum alloys, Mg has the effect of improving mechanical strength, but lowers the thermal conductivity. Therefore, the content of Mg should be as low as possible for castings that require high thermal conductivity. It was considered preferable to do.
しかし、本特許出願の発明者等は、鋭意研究を重ねた結果、本願にかかる合金組成の場合には、0.1〜0.5質量%の範囲のMgを添加し、適切な時効処理を行うと母相中のSiの固溶量が減少して熱伝導率が向上することを発見した。 However, the inventors of the present patent application, as a result of earnest research, have added Mg in the range of 0.1 to 0.5 mass% in the case of the alloy composition according to the present application, and applied an appropriate aging treatment. As a result, it was found that the amount of Si dissolved in the matrix decreased and the thermal conductivity improved.
そこで、本願発明はAl−Si系アルミニウム合金にMgを0.1〜0.5質量%添加することによりアルミニウム合金鋳造材の熱伝導率を高めている。
以下に、各組成の効果について簡単に説明する。
Therefore, the present invention increases the thermal conductivity of the cast aluminum alloy material by adding 0.1 to 0.5% by mass of Mg to the Al—Si based aluminum alloy.
Below, the effect of each composition is demonstrated easily.
(Si:5〜10.0質量%)
Siは鋳造性を向上させる作用を有する。ヒートシンクのような複雑な形状や薄肉部を有するものを鋳造する場合は、鋳造性の観点からSiを5質量%以上添加することが必要になる。Siは、また、鋳造材の機械的強度、耐摩耗性、防振性を向上させる作用を有する。しかし、Siは増加と共に合金の熱伝導率と伸展性を低下させ、Siの量が10質量%を超えると塑性加工性が不十分となるので10.0質量%以下であることが望ましい。
(Si: 5 to 10.0% by mass)
Si has an effect of improving castability. When casting a complicated shape such as a heat sink or a thin part, it is necessary to add 5% by mass or more of Si from the viewpoint of castability. Si also has the effect of improving the mechanical strength, wear resistance, and vibration resistance of the cast material. However, as Si increases, the thermal conductivity and extensibility of the alloy decrease, and if the amount of Si exceeds 10% by mass, the plastic workability becomes insufficient, so 10.0% by mass or less is desirable.
(Fe:0.3〜0.6質量%)
Feはアルミニウム合金の機械的強度を向上させると共に、ダイカスト法で鋳造する場合には、金型の焼き付きを防止する作用がある。この効果は、Feが0.3質量%以上含まれると顕著になる。しかし、Feの増加に伴って熱伝導率と伸展性が低下し、Feの量が0.6質量%を超えると塑性加工性が不十分になる。
(Fe: 0.3-0.6% by mass)
Fe improves the mechanical strength of the aluminum alloy and also has an effect of preventing seizure of the mold when casting by the die casting method. This effect becomes significant when Fe is contained in an amount of 0.3% by mass or more. However, the thermal conductivity and extensibility decrease with increasing Fe, and if the amount of Fe exceeds 0.6 mass%, the plastic workability becomes insufficient.
(Mg:0.1〜0.5質量%)
Mgは、時効処理の際に、母相中のSiとMg−Si系化合物をして析出し、母相中のSi固溶量を低下させ、熱伝導率を向上させる。さらに、Mgの添加によって機械的強度が向上する。この効果は、Mgの添加量が0.1質量%以上で顕著になるが、添加量が0.5質量%を超えると逆に熱伝導率が低下する。
(Mg: 0.1 to 0.5% by mass)
In the aging treatment, Mg precipitates as Si and Mg—Si-based compounds in the matrix phase, lowers the amount of Si solid solution in the matrix phase, and improves the thermal conductivity. Furthermore, mechanical strength improves by addition of Mg. This effect becomes significant when the added amount of Mg is 0.1% by mass or more, but when the added amount exceeds 0.5% by mass, the thermal conductivity is decreased.
(不可避不純物)
不純物の増加に伴って熱伝導率が低下するので、不可避不純物は0.1質量%以下に抑えるのが好ましい。特に、Ti、MnおよびZrは熱伝導率への影響が大きいので、0.05質量%以下に抑制するのが好ましい。
(Inevitable impurities)
Since the thermal conductivity decreases with the increase of impurities, it is preferable to keep the inevitable impurities to 0.1% by mass or less. In particular, since Ti, Mn, and Zr have a large influence on the thermal conductivity, it is preferably suppressed to 0.05% by mass or less.
(溶体化処理:480〜540°Cで1〜10時間、その後、焼き入れ)
上記の条件で溶体化処理を行うことによって、鋳造組織に見られるミクロ・マクロ的な偏析を緩和して熱伝導特性や機械的強度に関するばらつきを減少させ、母相中のMg−Si系析出物の固溶化を促進し、Fe等の遷移元素の過飽和固溶分を析出させて熱伝導率を向上させ、さらに、Si粒子を球状化して伸展性を向上させて塑性加工性を向上させることができる。
(Solution treatment: 1 to 10 hours at 480 to 540 ° C. and then quenching)
By performing solution treatment under the above conditions, the micro- and macro-segregation observed in the cast structure is alleviated to reduce variations in heat conduction characteristics and mechanical strength, and Mg-Si based precipitates in the matrix phase. It is possible to promote the solid solution of Fe, precipitate the supersaturated solid solution of transition elements such as Fe, improve the thermal conductivity, and further improve the plastic workability by spheroidizing the Si particles to improve the extensibility. it can.
処理温度が480°C未満、あるいは、保持時間が1時間未満では上記の効果が不十分で、逆に540°Cを超えたり、あるいは、10時間を越えて保持すると局部溶融が発生して強度が低下する可能性が高まる。溶体化処理の効果をより一層得るためには、処理温度を500°Cより高温にするのが好ましい。なお、溶体化処理を行わない場合は、鋳造後200°Cまでは、冷却速度100°C/秒以上で冷却することが好ましい。 If the processing temperature is less than 480 ° C or the holding time is less than 1 hour, the above effect is insufficient. Conversely, if the processing temperature exceeds 540 ° C or if the holding time exceeds 10 hours, local melting occurs and the strength is increased. Is likely to decline. In order to further obtain the effect of the solution treatment, the treatment temperature is preferably higher than 500 ° C. In addition, when not performing a solution treatment, it is preferable to cool at a cooling rate of 100 ° C / second or more up to 200 ° C after casting.
(時効処理:160〜270°Cで1〜10時間)
上記の時効処理によって、母相中に固溶しているSiとMgを、Mg−Si系化合物として析出させ、母相中に固溶しているSiとMgの量を減少させることによって合金の熱伝導率を向上させることができる。また、Mg−Si系化合物は合金の機械的強度を向上させる。時効条件が160°C未満や1時間未満では、Mg−Si系化合物の析出量が比較的少ないので、熱伝導率の向上が小さい。逆に、270°Cや10時間を越えると過時効になり、強度が低下する。熱処理の条件は、合金組成と同じく望まれる熱伝導率と強度等の特性から、また、工業生産上の制約を考慮して選択することができるが、熱伝導度と郷土のバランスを考慮すると180°C〜250°Cで4〜8hrの範囲であることがより望ましい。
(Aging treatment: 1 to 10 hours at 160 to 270 ° C.)
By the above aging treatment, Si and Mg dissolved in the matrix phase are precipitated as Mg-Si compounds, and the amount of Si and Mg dissolved in the matrix phase is reduced to reduce the amount of the alloy. Thermal conductivity can be improved. Further, the Mg—Si based compound improves the mechanical strength of the alloy. When the aging condition is less than 160 ° C. or less than 1 hour, the amount of precipitation of the Mg—Si compound is relatively small, so that the improvement in thermal conductivity is small. Conversely, if it exceeds 270 ° C. or 10 hours, it will be over-aged and the strength will decrease. The heat treatment conditions can be selected from the characteristics such as the desired thermal conductivity and strength, as well as the alloy composition, and in consideration of the constraints on industrial production, but considering the balance between thermal conductivity and locality, 180 It is more desirable that the temperature is in the range of 4 to 8 hours at ° C to 250 ° C.
以下に本発明の実施例について述べる。
(実施例1)
Siを7.0質量%含有するAl合金に、Mgを0、0.3、0.5、0.6質量%添加した合金の鋳造材を準備し、その後、当該鋳造材に対して表1に示す条件で時効処理を行い、熱伝導率を測定した。熱伝導率の測定結果を合わせて表1に示す。また、Mgを0、0.3質量%含有する合金については、SiとMgの固溶量も測定した。その結果を表2に示す。なお、鋳造は、重力金型鋳造法で行った。
熱伝導率の単位:λ/w・m-1・k-1
(Example 1)
A cast material of an alloy obtained by adding 0, 0.3, 0.5, and 0.6 mass% of Mg to an Al alloy containing 7.0 mass% of Si is prepared. An aging treatment was performed under the conditions shown in FIG. The measurement results of thermal conductivity are shown together in Table 1. Moreover, about the alloy which contains 0, 0.3 mass% of Mg, the solid solution amount of Si and Mg was also measured. The results are shown in Table 2. The casting was performed by a gravity mold casting method.
Unit of thermal conductivity: λ / w · m -1 · k -1
表1によれば、Mgを添加した鋳造材は、時効処理を施さない状態ではMgを添加していない鋳造材よりも熱伝導率が低いが、時効処理を施すとMgを添加していない鋳造材と同等以上にまで熱伝導率が向上していることがわかる。ただし、Mgを0.6質量%添加した鋳造材は、熱伝導率の向上は不十分でMgを添加していない鋳造材よりも低い。これは、Mgの添加に伴うSiの固溶量低下がもたらす熱伝導率の向上よりも、Mgの固溶量の増加による熱伝導率の低下の影響が大きいためであると考えられる。 According to Table 1, the cast material to which Mg is added has lower thermal conductivity than the cast material to which Mg is not added in a state where aging treatment is not performed, but the cast material to which Mg is not added when aging treatment is performed. It can be seen that the thermal conductivity is improved to the same level or higher as the material. However, the cast material to which 0.6% by mass of Mg is added has a lower thermal conductivity and is lower than the cast material to which no Mg is added. This is considered to be because the influence of the decrease in the thermal conductivity due to the increase in the solid solution amount of Mg is larger than the increase in the thermal conductivity caused by the decrease in the solid solution amount of Si accompanying the addition of Mg.
また、表2は、時効処理を行うとMgを添加した合金のSi固溶量が低くなることを示している。 Further, Table 2 shows that the Si solid solution amount of the alloy to which Mg is added decreases when the aging treatment is performed.
(実施例2)
Siを7.0資料%、Feを0.4質量%含有するAl合金に、Mgを0および0.3質量%添加した鋳造材を準備した。なお、鋳造材は、PFダイカスト法により鋳造した。得られた鋳造材を500°Cで2時間溶体化処理した後、水焼入れした。その後、熱伝導率を測定し、その後、250°Cで4時間時効処理し、再度熱伝導率を測定した。その結果を表3に示す。
(Example 2)
A cast material was prepared by adding 0 and 0.3% by mass of Mg to an Al alloy containing 7.0% by mass of Si and 0.4% by mass of Fe. The cast material was cast by the PF die casting method. The obtained cast material was subjected to solution treatment at 500 ° C. for 2 hours and then water-quenched. Thereafter, the thermal conductivity was measured, and then an aging treatment was performed at 250 ° C. for 4 hours, and the thermal conductivity was measured again. The results are shown in Table 3.
表3によれば、Feを含有する場合も、Mgを添加した鋳造材は時効処理を施さない状態では、Mgを添加していない鋳造材よりも熱伝導率が低いが、時効処理を施すとMgを添加していない鋳造材と同等以上にまで熱伝導率が向上することが分かる。
熱伝導率の単位:λ/w・m-1・k-1
According to Table 3, even when Fe is contained, the cast material added with Mg has a lower thermal conductivity than the cast material not added with Mg in a state where aging treatment is not performed. It can be seen that the thermal conductivity is improved to be equal to or higher than that of the cast material to which Mg is not added.
Unit of thermal conductivity: λ / w · m -1 · k -1
Claims (4)
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004113584A JP4487615B2 (en) | 2004-04-07 | 2004-04-07 | Method for producing cast aluminum alloy material with excellent thermal conductivity |
PCT/JP2005/006639 WO2005098065A1 (en) | 2004-04-05 | 2005-04-05 | Aluminum alloy casting material for heat treatment excelling in heat conduction and process for producing the same |
KR1020067019220A KR20060130658A (en) | 2004-04-05 | 2005-04-05 | Aluminum alloy casting material for heat treatment excelling in heat conduction and process for producing the same |
EP05728404.4A EP1736561B1 (en) | 2004-04-05 | 2005-04-05 | Aluminum alloy casting material for heat treatment excelling in heat conduction and process for producing the same |
EP10182491A EP2275584B1 (en) | 2004-04-05 | 2005-04-05 | Manufacturing method for cast aluminium heat sinks |
US11/547,257 US20110132504A1 (en) | 2004-04-05 | 2005-04-05 | Aluminum Alloy Casting Material for Heat Treatment Excelling in Heat Conduction and Process for Producing the Same |
EP10182479A EP2281909B1 (en) | 2004-04-05 | 2005-04-05 | Manufacturing method of an aluminium alloy cast heat sink having a complex structure or a thin walled protion with excellent thermal conductivity |
US13/342,625 US8936688B2 (en) | 2004-04-05 | 2012-01-03 | Aluminum alloy casting material for heat treatment excelling in heat conduction and process for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004113584A JP4487615B2 (en) | 2004-04-07 | 2004-04-07 | Method for producing cast aluminum alloy material with excellent thermal conductivity |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010011142A Division JP5251894B2 (en) | 2010-01-21 | 2010-01-21 | Method for producing aluminum alloy cast material with excellent thermal conductivity |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005298856A true JP2005298856A (en) | 2005-10-27 |
JP4487615B2 JP4487615B2 (en) | 2010-06-23 |
Family
ID=35330769
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004113584A Expired - Lifetime JP4487615B2 (en) | 2004-04-05 | 2004-04-07 | Method for producing cast aluminum alloy material with excellent thermal conductivity |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4487615B2 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008105066A1 (en) * | 2007-02-27 | 2008-09-04 | Nippon Light Metal Company, Ltd. | Aluminum alloy material for thermal conduction |
DE102008056511A1 (en) * | 2008-11-08 | 2010-05-20 | Audi Ag | Producing thin-walled metal components of a motor vehicle, comprises solution-annealing the components in a two-stage heat treatment process after its shaping and then artificial ageing after resulted deterrence |
JP2010201497A (en) * | 2009-03-06 | 2010-09-16 | Nissan Motor Co Ltd | Heat sink for strong electric car parts, heat sink unit using the same, and method for producing heat sink for strong electric car parts |
JP2015212408A (en) * | 2014-05-02 | 2015-11-26 | 株式会社浅沼技研 | Radiation fin consisting of aluminum alloy and manufacturing method therefor |
WO2018117315A1 (en) * | 2016-12-20 | 2018-06-28 | 주식회사 에스제이테크 | Aluminum alloy composition for high heat conductivity and high strength die casting, capable of thin wall molding, and preparation method therefor |
CN110343883A (en) * | 2019-06-24 | 2019-10-18 | 广东省材料与加工研究所 | A kind of high tough cast Al-Si alloy and its aluminium scrap regeneration method |
JP2020125528A (en) * | 2019-02-06 | 2020-08-20 | 昭和電工株式会社 | Aluminum alloy casting material |
CN113462932A (en) * | 2021-07-05 | 2021-10-01 | 南昌航空大学 | High-thermal-conductivity aluminum alloy material for semi-solid rheocasting and preparation method thereof |
-
2004
- 2004-04-07 JP JP2004113584A patent/JP4487615B2/en not_active Expired - Lifetime
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008105066A1 (en) * | 2007-02-27 | 2008-09-04 | Nippon Light Metal Company, Ltd. | Aluminum alloy material for thermal conduction |
JP5206664B2 (en) * | 2007-02-27 | 2013-06-12 | 日本軽金属株式会社 | Aluminum alloy material for heat conduction |
US9353429B2 (en) | 2007-02-27 | 2016-05-31 | Nippon Light Metal Company, Ltd. | Aluminum alloy material for use in thermal conduction application |
US10508329B2 (en) | 2007-02-27 | 2019-12-17 | Nippon Light Metal Company, Ltd. | Aluminum alloy material for use in thermal conduction application |
DE102008056511A1 (en) * | 2008-11-08 | 2010-05-20 | Audi Ag | Producing thin-walled metal components of a motor vehicle, comprises solution-annealing the components in a two-stage heat treatment process after its shaping and then artificial ageing after resulted deterrence |
DE102008056511B4 (en) * | 2008-11-08 | 2011-01-20 | Audi Ag | Process for producing thin-walled metal components from an Al-SiMg alloy, in particular components of a motor vehicle |
JP2010201497A (en) * | 2009-03-06 | 2010-09-16 | Nissan Motor Co Ltd | Heat sink for strong electric car parts, heat sink unit using the same, and method for producing heat sink for strong electric car parts |
JP2015212408A (en) * | 2014-05-02 | 2015-11-26 | 株式会社浅沼技研 | Radiation fin consisting of aluminum alloy and manufacturing method therefor |
WO2018117315A1 (en) * | 2016-12-20 | 2018-06-28 | 주식회사 에스제이테크 | Aluminum alloy composition for high heat conductivity and high strength die casting, capable of thin wall molding, and preparation method therefor |
JP2020125528A (en) * | 2019-02-06 | 2020-08-20 | 昭和電工株式会社 | Aluminum alloy casting material |
CN110343883A (en) * | 2019-06-24 | 2019-10-18 | 广东省材料与加工研究所 | A kind of high tough cast Al-Si alloy and its aluminium scrap regeneration method |
CN113462932A (en) * | 2021-07-05 | 2021-10-01 | 南昌航空大学 | High-thermal-conductivity aluminum alloy material for semi-solid rheocasting and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP4487615B2 (en) | 2010-06-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8936688B2 (en) | Aluminum alloy casting material for heat treatment excelling in heat conduction and process for producing the same | |
JP5327515B2 (en) | Magnesium alloys for casting and magnesium alloy castings | |
WO2009049500A1 (en) | An al alloy with high thermal and electric conductivity and high strength, manufacturing method and application thereof | |
US10508329B2 (en) | Aluminum alloy material for use in thermal conduction application | |
JP5301750B1 (en) | High heat conductive aluminum alloy for die casting, aluminum alloy die casting using the same, and heat sink using the alloy | |
JP2013204087A (en) | High-strength highly heat-conductive aluminum alloy member and method for manufacturing the same | |
JP4413106B2 (en) | Aluminum alloy material for heat sink and manufacturing method thereof | |
KR101502340B1 (en) | Aluminum alloy for casting having high thermal conductivity | |
JP4487615B2 (en) | Method for producing cast aluminum alloy material with excellent thermal conductivity | |
JP2002105571A (en) | Aluminum alloy material for heat sink, having excellent thermal conductivity | |
JP4210020B2 (en) | Aluminum alloy material for heat sinks with excellent thermal conductivity | |
JP5251894B2 (en) | Method for producing aluminum alloy cast material with excellent thermal conductivity | |
US20010043880A1 (en) | Aluminum die casting alloy | |
JP5590413B2 (en) | High thermal conductivity magnesium alloy | |
JP7449367B2 (en) | Die-cast aluminum alloy, aluminum alloy die-cast material and manufacturing method thereof | |
JP2017071840A (en) | High toughness aluminum alloy cast and manufacturing method therefor | |
JP5747103B1 (en) | Radiation fin made of aluminum alloy and method of manufacturing the same | |
JP3951921B2 (en) | Manufacturing method of aluminum alloy processed material of 58.1IACS% or more | |
JP2002226932A (en) | Aluminum alloy for heat sink having excellent strength and thermal conductivity and production method therefor | |
JP4341453B2 (en) | Aluminum alloy casting excellent in thermal conductivity and method for producing the same | |
JP2022539416A (en) | ALUMINUM ALLOY, METHOD FOR MANUFACTURING THE SAME, AND STRUCTURAL MEMBER OF ALUMINUM ALLOY | |
JP3958230B2 (en) | Aluminum alloy die casting and manufacturing method thereof | |
KR101502341B1 (en) | Aluminum alloy for permanent mould casting having high thermal conductivity | |
JP4562296B2 (en) | Aluminum alloy material for heat sinks with excellent thermal conductivity | |
JP2022147009A (en) | Heat-resistant aluminum alloy and heat-resistant aluminum alloy member |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060628 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090310 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090508 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20091124 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100121 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100309 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100322 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130409 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4487615 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130409 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140409 Year of fee payment: 4 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
EXPY | Cancellation because of completion of term |