[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2010201497A - Heat sink for strong electric car parts, heat sink unit using the same, and method for producing heat sink for strong electric car parts - Google Patents

Heat sink for strong electric car parts, heat sink unit using the same, and method for producing heat sink for strong electric car parts Download PDF

Info

Publication number
JP2010201497A
JP2010201497A JP2009052778A JP2009052778A JP2010201497A JP 2010201497 A JP2010201497 A JP 2010201497A JP 2009052778 A JP2009052778 A JP 2009052778A JP 2009052778 A JP2009052778 A JP 2009052778A JP 2010201497 A JP2010201497 A JP 2010201497A
Authority
JP
Japan
Prior art keywords
heat sink
heat
mass
aluminum alloy
automotive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009052778A
Other languages
Japanese (ja)
Other versions
JP5414310B2 (en
Inventor
Hatsuna Seshimo
初奈 瀬下
Akira Murakami
亮 村上
Nobuo Kino
伸郎 木野
Mikio Naruse
幹夫 成瀬
Koyo Ono
公洋 小野
Masahiko Shioda
正彦 塩田
Hiroshi Horikawa
宏 堀川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Nippon Light Metal Co Ltd
Original Assignee
Nissan Motor Co Ltd
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd, Nippon Light Metal Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2009052778A priority Critical patent/JP5414310B2/en
Publication of JP2010201497A publication Critical patent/JP2010201497A/en
Application granted granted Critical
Publication of JP5414310B2 publication Critical patent/JP5414310B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat sink for strong electric car parts made of a stock provided with high thermal conductivity, sufficient mechanical strength and satisfactory castability, and having high heat dissipation efficiency, to provide a heat sink unit using the same, and to provide a method for producing the heat sink for strong electric car parts. <P>SOLUTION: The heat sink for strong electric car parts made of aluminum is provided with: a cooling passage; a contact part of a heat source; and a heat dissipation fin projected from the back face part of the contact part, wherein the back face part composes a part of the cooling passage. The aluminum alloy has a composition comprising Si, Mg and Fe, and the balance aluminum with inevitable impurities, and has the characteristics satisfying the thermal conductivity of 150 to 200 W/mK and the hardness of 38 to 100 HRF, and in which the heat dissipation area of the back face corresponding to the contact face between a heat source and the back face corresponding to the contact face of the contact part is 3 to 20 times the area of the contact face. The heat sink unit includes: the heat sink for strong electric car parts ; and a heat source. In the method for producing the heat sink for strong electric car parts, after the heat dissipation fin is integrally molded by a die casting process, aging treatment is performed. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、熱源を冷却するための自動車強電部品用ヒートシンク(冷却器)及び、それを用いたヒートシンクユニットとその製造方法に係り、更に詳細には、優れた熱伝導率、機械的強度及び鋳造性を有するアルミニウム合金から成る放熱効率の高い自動車強電部品用ヒートシンク及び、それを用いたヒートシンクユニットとその製造方法に関する。   The present invention relates to a heat sink (cooler) for automotive high-power components for cooling a heat source, a heat sink unit using the same, and a manufacturing method thereof, and more particularly, excellent thermal conductivity, mechanical strength and casting. TECHNICAL FIELD The present invention relates to a heat sink for an automotive high-voltage component made of an aluminum alloy having high heat dissipation efficiency, a heat sink unit using the heat sink, and a manufacturing method thereof.

半導体装置、特に直流電力を交流電力に変換するインバータや、交流電力を直流電力に変換するコンバータ等の半導体装置では、消費電力の増加や装置の小型化が進むにつれて発熱量が大きくなるため、該装置を冷却するヒートシンクには高い放熱効率が求められている。   In semiconductor devices, particularly semiconductor devices such as inverters that convert DC power into AC power and converters that convert AC power into DC power, the amount of heat generated increases as power consumption increases and the size of the device decreases. High heat dissipation efficiency is required for a heat sink for cooling the apparatus.

そのため従来より、水や空気などの冷却媒体と接する放熱フィン部の形状を微細化、複雑化してヒートシンクの放熱面を増やしたり、ヒートシンクの素材である合金の成分や熱処理方法を適正化して該合金の熱伝導率を高くしたりすることで、ヒートシンクの放熱効率を改良する試みがされている。   Therefore, conventionally, the shape of the radiating fin portion in contact with the cooling medium such as water or air is made finer and complicated to increase the heat radiating surface of the heat sink, or the alloy components and heat treatment methods that are the materials of the heat sink are optimized. Attempts have been made to improve the heat dissipation efficiency of the heat sink by increasing the thermal conductivity of the heat sink.

例えば、一般的な高熱伝導材料としては、純アルミニウム(熱伝導率:220W/mK)が挙げられる。また、いくつかの高熱伝導アルミニウム合金が提案されている(特許文献1、特許文献2及び特許文献3参照)。   For example, as a general high thermal conductive material, pure aluminum (thermal conductivity: 220 W / mK) can be cited. Some high thermal conductive aluminum alloys have been proposed (see Patent Document 1, Patent Document 2 and Patent Document 3).

特開2005−290527号公報JP 2005-290527 A 特開2005−298856号公報JP 2005-298856 A 特開2006−63420号公報JP 2006-63420 A

また、ヒートシンクの素材は、冷却の対象である半導体等に取り付けるためのねじ込みや、冷却媒体である水などのバルジ圧入に対する機械的強度が要求され、更に、微細で複雑な形状の放熱フィン部を手間をかけずに安価に成型するための鋳造性(成型性)をも要求されるので、例えば機械的強度及び鋳造性に優れた材料であるADC12などのダイカスト材が放熱フィンに使用されている。   In addition, the heat sink material is required to have mechanical strength against screwing to be attached to a semiconductor to be cooled or bulge press-fitting of water or the like as a cooling medium. Since castability (moldability) for molding at low cost without requiring labor is also required, for example, die casting materials such as ADC12, which is a material excellent in mechanical strength and castability, are used for the radiation fins. .

しかしながら、素材の熱伝導率と機械的強度とは相反する特性であり、上述の純アルミニウムや高熱伝導アルミニウム合金の機械的強度は低く、その高い熱伝導率は、バルジ圧入等に耐える機械的強度と両立しない。また上述のADC12は機械的強度及び鋳造性には優れるが、熱伝導率が低く放熱効率が悪い。   However, the thermal conductivity and mechanical strength of the material are contradictory properties, and the mechanical strength of the above pure aluminum and high thermal conductivity aluminum alloy is low, and the high thermal conductivity is mechanical strength that can withstand bulge press-fitting etc. Incompatible with. The ADC 12 described above is excellent in mechanical strength and castability, but has low thermal conductivity and poor heat dissipation efficiency.

すなわち、かかる従来の技術においては、高い熱伝導率と、十分な機械的強度と、良好な鋳造性とを兼ね備えた適当な素材がなく、従って、望ましい放熱効率を有するヒートシンクを製造することが困難であるという問題があった。   That is, in such a conventional technique, there is no suitable material having high thermal conductivity, sufficient mechanical strength, and good castability, and therefore it is difficult to manufacture a heat sink having desirable heat dissipation efficiency. There was a problem of being.

本発明は、このような従来技術の有する課題に鑑みてなされたものであり、その目的とするところは、高い放熱効率のヒートシンク、特に、高い熱伝導率と、十分な機械的強度と、大量生産にも適した鋳造性とを備えた素材から成る高い放熱効率の自動車強電部品用ヒートシンク及び、それを用いたヒートシンクユニットとその製造方法を提供することにある。   The present invention has been made in view of such problems of the prior art, and the object of the present invention is a heat sink with high heat dissipation efficiency, particularly high heat conductivity, sufficient mechanical strength, and a large amount. An object of the present invention is to provide a heat sink for automobile high-power components with high heat dissipation efficiency, which is made of a material having castability suitable for production, a heat sink unit using the heat sink, and a manufacturing method thereof.

本発明者らは、上記目的を達成すべく鋭意検討を重ねた結果、特定の成分比を有するアルミニウム合金を用いて、所定部位の放熱面積を適切に制御することにより、上記目的が達成できることを見出し、本発明を完成するに至った。   As a result of intensive studies to achieve the above object, the present inventors have found that the above object can be achieved by appropriately controlling the heat radiation area of a predetermined part using an aluminum alloy having a specific component ratio. The headline and the present invention were completed.

即ち、本発明の自動車強電部品用ヒートシンクは、冷却媒体が流通する冷却通路と、熱源と接触する接触部と、この接触部の裏面部から一体的に突出した放熱フィンとを有し、その放熱フィン付の裏面部が上記冷媒通路の一部を構成する構造を有するアルミニウム合金製である。該アルミニウム合金は、Si、Mg、Feと、残部アルミニウムと、不可避的不純物とから成り、且つ、熱伝導率150〜200W/mK及び硬さ38〜100HRFの特性を有し、更に上記熱源と上記接触部との接触面と対応する裏面における放熱面積が、この接触面の面積の3〜20倍であることを特徴とする。本発明のヒートシンクユニットは、この自動車強電部品用ヒートシンクと、熱源として自動車用強電部品とを有することを特徴とする。   That is, the heat sink for automotive high-power components of the present invention has a cooling passage through which a cooling medium circulates, a contact portion that comes into contact with a heat source, and a heat radiation fin that protrudes integrally from the back surface portion of the contact portion. The back surface portion with fins is made of an aluminum alloy having a structure constituting a part of the refrigerant passage. The aluminum alloy is composed of Si, Mg, Fe, the balance aluminum, and unavoidable impurities, and has characteristics of thermal conductivity of 150 to 200 W / mK and hardness of 38 to 100 HRF, and further, the heat source and the above The heat radiation area on the back surface corresponding to the contact surface with the contact portion is 3 to 20 times the area of the contact surface. The heat sink unit of the present invention is characterized by having the heat sink for automotive high-power components and the high-power automotive component as a heat source.

また、本発明の自動車強電部品用ヒートシンクの製造方法は、上述のような自動車強電部品用ヒートシンクの製造方法であって、上記の放熱フィンをダイカスト工法で一体成型した後に、時効処理を施すことを特徴とする。   Moreover, the manufacturing method of the heat sink for automotive high-power components according to the present invention is a manufacturing method of the heat sink for automotive high-power components as described above, and the aging fin is subjected to aging treatment after the heat radiation fin is integrally formed by the die casting method. Features.

本発明によれば、特定の成分と特性を有するアルミニウム合金を用いて、所定部位の放熱面積を適切に制御することとしたため、高い熱伝導率と、十分な機械的強度と、大量生産に適した鋳造性とを備えた素材から成る高い放熱効率の自動車強電部品用ヒートシンク及び、それを用いたヒートシンクユニットとその製造方法を提供することができる。   According to the present invention, an aluminum alloy having specific components and characteristics is used to appropriately control the heat radiation area of a predetermined portion, so that it is suitable for high thermal conductivity, sufficient mechanical strength, and mass production. It is possible to provide a heat sink for automobile high-power components with high heat dissipation efficiency, a heat sink unit using the same, and a method of manufacturing the same.

本発明の自動車強電部品用ヒートシンクを用いたヒートシンクユニットの一実施形態を示す切欠平面図である。It is a notch top view which shows one Embodiment of the heat sink unit using the heat sink for motor vehicle electrical components of this invention. 図1に示すヒートシンクユニットのII−II断面における断面図である。It is sectional drawing in the II-II cross section of the heat sink unit shown in FIG. 溶湯流動長評価用シェル砂スパイラル型の概略図である。It is the schematic of the shell sand spiral type for molten metal flow length evaluation. 放熱効率測定方法の説明図である。It is explanatory drawing of the thermal radiation efficiency measuring method.

以下、本発明の自動車強電部品用ヒートシンク及びヒートシンクユニットの一実施形態について図面を参照して詳細に説明する。なお、本明細書において、濃度、含有量及び配合量などについての「%」は、特記しない限り質量百分率を表すものとする。   Hereinafter, an embodiment of a heat sink and a heat sink unit for an automotive high power component according to the present invention will be described in detail with reference to the drawings. In the present specification, “%” for concentration, content, blending amount and the like represents a mass percentage unless otherwise specified.

図1は、本発明のヒートシンクユニットの一実施形態を示す切欠平面図である。また、図2は、図1に示すヒートシンクユニットのII−II断面における断面図である。このヒートシンクユニットは、本発明の自動車強電部品用ヒートシンクの一実施形態である自動車強電部品用ヒートシンク200と熱源100とから成る。   FIG. 1 is a cutaway plan view showing an embodiment of a heat sink unit of the present invention. FIG. 2 is a cross-sectional view of the heat sink unit shown in FIG. This heat sink unit is composed of a heat sink 200 for automobile high-power components, which is an embodiment of a heat sink for automotive high-power components of the present invention, and a heat source 100.

(1)自動車強電部品用ヒートシンク
図2において、自動車強電部品用ヒートシンク200は、冷却媒体が流通する冷却通路10と、熱源100と接触する接触部20と、この接触部の裏面部22から一体的に突出した放熱フィン30とを有する。そして、この放熱フィン付の裏面部22が上記冷却通路10の一部を構成する。
なお、この自動車強電部品用ヒートシンクは後述するアルミニウム合金から構成されている。
(1) Heat sink for automotive high-power components In FIG. 2, a heat sink for automotive high-power components 200 is integrated from a cooling passage 10 through which a cooling medium flows, a contact portion 20 in contact with the heat source 100, and a back surface portion 22 of this contact portion. And a heat radiation fin 30 protruding in the direction. And this back surface part 22 with a radiation fin comprises a part of said cooling channel | path 10. FIG.
Note that this heat sink for high-voltage automotive components is made of an aluminum alloy described later.

熱源100は、本実施形態の自動車強電部品用ヒートシンクが冷却する対象であり、例えば、インバータ、モータ、コンバータ及びコンデンサ等の自動車用強電部品である。この熱源100と自動車強電部品用ヒートシンクの接触部20とが接している範囲全体を接触面21と呼ぶことにする。この接触面21は、当然に上記接触部20に含まれている。   The heat source 100 is an object to be cooled by the heat sink for automotive high-power components of the present embodiment, and is a high-power automotive component such as an inverter, a motor, a converter, and a capacitor. The entire area where the heat source 100 and the contact portion 20 of the heat sink for automobile high-power components are in contact is referred to as a contact surface 21. This contact surface 21 is naturally included in the contact portion 20.

また、接触面21の範囲全体から裏面部22に向けて垂直に下ろした範囲全体に相当する面を「接触面と対応する裏面23」と呼ぶことにする。この裏面23は当然に接触面21と同じ面積である。そして、この裏面23は裏面部22の一部又は全部であるので、一体的に突出した放熱フィンを有し、この裏面23の範囲に突設されたフィン31の全表面とフィン以外の部分の裏面23の全表面とを合算した表面の面積を、接触面21と対応する裏面23の「放熱面積」と称することにする。   Further, a surface corresponding to the entire range vertically lowered from the entire range of the contact surface 21 toward the back surface portion 22 is referred to as a “back surface 23 corresponding to the contact surface”. Naturally, this back surface 23 has the same area as the contact surface 21. And since this back surface 23 is a part or all of the back surface part 22, it has the radiation fin which protruded integrally, and the whole surface of the fin 31 projected in the range of this back surface 23, and parts other than a fin The total surface area of the back surface 23 is referred to as the “heat dissipating area” of the back surface 23 corresponding to the contact surface 21.

本発明の自動車強電部品用ヒートシンクでは、上記放熱面積は、上記接触面の面積の3〜20倍である。3倍未満の場合は、自動車強電部品用ヒートシンクの 放熱効率が著しく低下し所望の性能が得られず、一方、20倍を超えると放熱フィンの形状が非常に複雑となるため成型が困難となる。特に、本実施形態の自動車強電部品用ヒートシンクを製造する際には、安価に大量生産するために、例えばダイカスト工法で放熱フィンを一体成型するので、複雑な形状の放熱フィンは成型が困難となる。   In the heat sink for automotive high-power components of the present invention, the heat dissipation area is 3 to 20 times the area of the contact surface. If it is less than 3 times, the heat dissipation efficiency of the heat sink for automotive high-voltage parts is significantly lowered and the desired performance cannot be obtained. On the other hand, if it exceeds 20 times, the shape of the heat dissipation fin becomes very complicated, making it difficult to mold. . In particular, when manufacturing the heat sink for automotive high-power components of this embodiment, in order to mass-produce at a low cost, for example, the heat radiation fin is integrally formed by die casting, so that it is difficult to mold the heat radiation fin having a complicated shape. .

本発明において、上述のような構造を有する自動車強電部品用ヒートシンクを構成するアルミニウム合金としては、Si、Mg、Feと、残部アルミニウムと、不可避的不純物とから成り、且つ、熱伝導率150〜200W/mK及び硬さ38〜100HRFの特性を有するものである。なかでも熱伝導率が160〜200W/mKのアルミニウム合金が好ましい。熱伝導率が150W/mK未満では、目標とする放熱効率が得られず、200W/mKを超えると、機械的強度が低下する。また、硬さが38HRF未満では、半導体装置(熱源)を組み付ける際のねじ加工やへたりや冷却水のバルジ圧入に耐えられず、100HRFを超えると熱伝導率が低下して150W/mK未満となる。
これらの成分と特性を有するアルミニウム合金は、この熱伝導率と機械的強度の特性により放熱効率の高い自動車強電部品用ヒートシンクを実現する。また、以下に示す鋳造性に関する値を実現することが可能である。
In the present invention, the aluminum alloy constituting the heat sink for automotive high-voltage components having the above-described structure is composed of Si, Mg, Fe, the balance aluminum, and inevitable impurities, and has a thermal conductivity of 150 to 200 W. / mK and hardness of 38 to 100 HRF. Of these, an aluminum alloy having a thermal conductivity of 160 to 200 W / mK is preferable. If the thermal conductivity is less than 150 W / mK, the target heat dissipation efficiency cannot be obtained, and if it exceeds 200 W / mK, the mechanical strength decreases. Also, if the hardness is less than 38 HRF, it cannot withstand threading or sag or cooling water bulge injection when assembling a semiconductor device (heat source), and if it exceeds 100 HRF, the thermal conductivity decreases and is less than 150 W / mK. Become.
The aluminum alloy having these components and characteristics realizes a heat sink for automobile high-power components having high heat dissipation efficiency due to the characteristics of thermal conductivity and mechanical strength. Moreover, it is possible to implement | achieve the value regarding the castability shown below.

上記鋳造性については、溶湯流動長をアルミ合金ADC12と比較した値をその指標とするが、その値は60〜90%であることが好ましい。60%未満では、所望の放熱面積を有するフィンをダイカスト工法によって一体成型できないことがある。   About the said castability, although the value which compared the molten metal flow length with the aluminum alloy ADC12 is used as the parameter | index, it is preferable that the value is 60 to 90%. If it is less than 60%, a fin having a desired heat radiation area may not be integrally formed by a die casting method.

次に、上記アルミニウム合金の各々の成分、すなわちSi、Mg、Fe、不可避的不純物等について詳述する。
上述のように、該アルミニウム合金には、Si、Mg、Feが含まれるが、その好ましい含有割合は、Siが5.0〜10.0質量%、Mgが0.1〜0.5質量%、Feが0.3〜0.6質量%であり、より好ましくはSiが6.0〜9.0質量%、Mgが0.1〜0.4質量%、Feが0.3〜0.6質量%である。
Next, each component of the aluminum alloy, that is, Si, Mg, Fe, inevitable impurities, etc. will be described in detail.
As described above, the aluminum alloy contains Si, Mg, and Fe, but the preferable content ratio is 5.0 to 10.0 mass% for Si and 0.1 to 0.5 mass% for Mg. Fe is 0.3-0.6% by mass, more preferably Si is 6.0-9.0% by mass, Mg is 0.1-0.4% by mass, and Fe is 0.3-0. 6% by mass.

本発明において、Siは鋳造性を向上させる効果を有するため、含有量が5.0%未満のアルミニウム合金を用いた場合には、複雑な形状の放熱フィンや薄肉部を有する自動車強電部品用ヒートシンクの製造、特に大量製造が難しくなる傾向にある。この他に、Siはアルミニウム合金の機械的強度、耐摩耗性及び防振性を向上させる効果をも有する。
一方、Siの含有量が増加するとアルミニウム合金の熱伝導率が低下するため、含有量が10%を超えると所望の熱伝導率が得られない場合がある。また過剰のSiはアルミウム合金の伸展性も低下させる傾向にある。
In the present invention, since Si has an effect of improving castability, when an aluminum alloy having a content of less than 5.0% is used, a heat sink for an automotive high-voltage component having a heat radiation fin having a complicated shape or a thin portion. In particular, the production of such products tends to be difficult. In addition, Si also has the effect of improving the mechanical strength, wear resistance and vibration proofing properties of the aluminum alloy.
On the other hand, when the Si content is increased, the thermal conductivity of the aluminum alloy is lowered. Therefore, if the content exceeds 10%, a desired thermal conductivity may not be obtained. Excessive Si also tends to reduce the extensibility of the aluminum alloy.

Mgは、自動車強電部品用ヒートシンク製造時に後述の時効処理が行われる場合に、アルミニウム母相中のSiをMg−Si系化合物として析出させて該母相中のSi固溶量を低下させ、熱伝導率を向上させる効果を有する。またMgを含有することによってアルミニウム合金の機械的強度が向上する。これらの効果はMg含有量を0.1%以上とすることで顕著となる傾向にあり、0.5%を超えると熱伝導率が低下する傾向にある。   Mg, when the aging treatment described later is performed at the time of manufacturing a heat sink for automobile high-power components, Si in the aluminum matrix phase is precipitated as an Mg-Si compound to reduce the amount of Si solid solution in the matrix phase, It has the effect of improving conductivity. Moreover, the mechanical strength of an aluminum alloy improves by containing Mg. These effects tend to be prominent when the Mg content is 0.1% or more, and when it exceeds 0.5%, the thermal conductivity tends to decrease.

Feは機械的強度を向上させると共に、ダイカスト法で鋳造する場合には、金型の焼き付きを防止する効果を有し、これらの効果は含有量を0.3%以上とすることで顕著となる傾向にある。
一方、Feの含有量が増加すると、アルミニウム合金の熱伝導率及び伸展率が低下するため、含有量が0.6%を超えると熱伝導率が低下する傾向にある。
Fe improves the mechanical strength and has the effect of preventing die seizure when cast by the die casting method. These effects become significant when the content is 0.3% or more. There is a tendency.
On the other hand, when the Fe content is increased, the thermal conductivity and the extension rate of the aluminum alloy are decreased. Therefore, when the content exceeds 0.6%, the thermal conductivity tends to be decreased.

上記不可避的不純物は、その含有量の増加に伴ってアルミニウム合金の熱伝導率を低下させる。従って、その含有量は合計で0.5%以下に抑えることが好ましい。特に、アルミニウム母相中への固溶限が比較的小さいTi、Mn及びCr等の遷移元素はその合計を0.1%以下に抑えることが好ましい。   The inevitable impurities lower the thermal conductivity of the aluminum alloy as its content increases. Therefore, the total content is preferably suppressed to 0.5% or less. In particular, it is preferable to keep the total of transition elements such as Ti, Mn and Cr having a relatively small solid solubility limit in the aluminum matrix to 0.1% or less.

また、このアルミニウム合金のアルミニウム母相中へのSi固溶量は0.50質量%以下、Mg固溶量は0.20質量%以下であることが好ましく、さらに好ましくはSi固溶量が0.20質量%以下、Mg固溶量が0.10質量%以下である。より好適な熱伝導率を確保することができるからである。   Further, the Si solid solution amount of the aluminum alloy in the aluminum matrix is preferably 0.50% by mass or less, the Mg solid solution amount is preferably 0.20% by mass or less, and more preferably the Si solid solution amount is 0%. 20% by mass or less, and Mg solid solution amount is 0.10% by mass or less. It is because more suitable thermal conductivity can be ensured.

(2)ヒートシンクユニット
図2に示すように、本発明のヒートシンクユニットは、自動車強電部品用ヒートシンク200と熱源100とを有する。また熱源100は自動車強電部品用ヒートシンク200と接触して備えられることが好ましい。
上記熱源は、上述のように、例えば、インバータ、モータ、コンバータ及びコンデンサなどの自動車用強電部品である。
(2) Heat Sink Unit As shown in FIG. 2, the heat sink unit of the present invention has a heat sink 200 for an automotive high voltage component and a heat source 100. Moreover, it is preferable that the heat source 100 is provided in contact with the heat sink 200 for automobile high-voltage components.
As described above, the heat source is a high-voltage automotive component such as an inverter, a motor, a converter, and a capacitor.

次に、本発明の自動車強電部品用ヒートシンクの製造方法の一実施形態について説明する。
この製造方法は、上に説明した特定の成分比を有するアルミニウム合金を材料として、上述のような自動車強電部品用ヒートシンクを製造する方法であり、上記の放熱フィンをダイカスト工法で一体成型し、次いで、時効処理を施すものである。
Next, an embodiment of a method for manufacturing a heat sink for automotive high-voltage components of the present invention will be described.
This manufacturing method is a method for manufacturing a heat sink for an automotive high-voltage component as described above, using the aluminum alloy having the specific component ratio described above as a material, and then integrally molding the above-described heat radiation fin by a die casting method, Aging treatment is performed.

ここで、ダイカスト工法とは、溶湯を型に流し込むことで成型する工法であり、溶湯の充填圧力により、重力鋳造法、低圧鋳造法、高圧鋳造法、スクイズダイカスト法(層流充填ダイカスト法)などに分類されるが、なかでも高圧鋳造法が安価で、量産性が高く好ましい。   Here, the die casting method is a method of molding by pouring molten metal into a mold. Depending on the filling pressure of the molten metal, gravity casting method, low pressure casting method, high pressure casting method, squeeze die casting method (laminar flow filling die casting method), etc. Among them, among them, the high pressure casting method is preferable because it is inexpensive and has high mass productivity.

上記ダイカスト法による成型後、時効処理をすることによってアルミニウムの母相中の固溶元素を析出させて熱伝導率を向上させることができる。該熱処理の温度は、好ましくは270℃〜380℃であり、更に好ましくは300℃〜350℃である。270℃未満では熱伝導率向上の効果が少なくなることがあり、350℃を超えると成型時(鋳造時)に発生しうる巣(ボイド)を起点とする膨れが発生し、機械的強度が低下する可能性があるからである。また処理時間は一般的な時効時間、例えば2〜12時間である。   After molding by the die casting method, aging treatment can be performed to precipitate solid solution elements in the matrix of aluminum and improve the thermal conductivity. The temperature of the heat treatment is preferably 270 ° C to 380 ° C, more preferably 300 ° C to 350 ° C. If the temperature is lower than 270 ° C., the effect of improving the thermal conductivity may be reduced. If the temperature exceeds 350 ° C., blistering starting from voids that may occur at the time of molding (casting) occurs and the mechanical strength decreases. Because there is a possibility of doing. The processing time is a general aging time, for example, 2 to 12 hours.

以下、本発明を実施例及び比較例により更に詳細に説明するが、本発明はこれら実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention further in detail, this invention is not limited to these Examples.

(実施例1〜13、比較例1〜3)
表1に示す各成分比及び特性を有するアルミニウム合金を溶解し、ダイカスト工法にて、図1及び図2に示す自動車強電部品用ヒートシンクを製造した。得られた各例の自動車強電部品用ヒートシンクについて、時効処理(300℃)を行い、次いで後述する測定法により、熱伝導率(レーザーフラッシュ法)及び硬さ(HRF:ロックウェル式硬度のFスケール)について、時効処理の前後で測定を行った。その結果を表1に示す。
(Examples 1-13, Comparative Examples 1-3)
Aluminum alloys having the respective component ratios and characteristics shown in Table 1 were melted, and the heat sink for automotive high-voltage components shown in FIGS. 1 and 2 was manufactured by a die casting method. The heat sinks for automotive high-power components obtained in each example were subjected to aging treatment (300 ° C.), and then the thermal conductivity (laser flash method) and hardness (HRF: F scale of Rockwell hardness) by the measurement method described later. ) Was measured before and after aging treatment. The results are shown in Table 1.

Figure 2010201497
Figure 2010201497

上述した自動車強電部品用ヒートシンク製造時のダイカスト成型性の可否を表2に示した。また、これらの各アルミニウム合金について、後述の溶湯流動長測定方法により溶湯流動長(ADC12合金との比較)を測定し、その結果を表2に示した。   Table 2 shows whether or not die casting moldability is possible when manufacturing the heat sink for automotive high-power components described above. Moreover, about each of these aluminum alloys, the melt flow length (comparison with ADC12 alloy) was measured by the melt flow length measurement method described later, and the results are shown in Table 2.

Figure 2010201497
Figure 2010201497

表2より、合金成分のSiを含まないアルミニウム合金を用いた比較例では、ダイカスト成型ができなかった。
また熱伝導率の値が低いものは、溶湯流動長(ADC12合金比)においても、良好な結果が得られなかった。
From Table 2, in the comparative example using the aluminum alloy which does not contain Si of an alloy component, die casting was not able to be performed.
Moreover, the thing with a low value of thermal conductivity did not obtain a favorable result also in the molten metal flow length (ADC12 alloy ratio).

高い熱伝導率を得るためには、Si、Mg及びFe以外の元素を含まないアルミニウム合金であることが望ましいが、Cu:0.1%以下、Mn:0.0 5%以下、Cr:0.1%以下、Ti:0.05%以下を含んでも熱伝導率は良好であり、ダイカスト成型性及び溶湯流動長についても良好な結果となった。   In order to obtain a high thermal conductivity, an aluminum alloy containing no elements other than Si, Mg and Fe is desirable, Cu: 0.1% or less, Mn: 0.05% or less, Cr: 0 The thermal conductivity was good even when the content of Ti was 0.05% or less, and the results of die casting moldability and molten metal flow length were also good.

(実施例14、比較例4及び5)
表3に示すアルミニウム合金(成分比及び特性については表1参照)を用いて、熱源(ヒーター)との接触面積に対応する裏面の放熱面積が異なる3種類の自動車強電部品用ヒートシンクをダイカスト工法により一体成型した。そして、冷却媒体として水を用いて、これらの自動車強電部品用ヒートシンクの放熱効率を評価した。表3に各自動車強電部品用ヒートシンクの形状及び放熱効率の評価結果を示す。
(Example 14, Comparative Examples 4 and 5)
Using the aluminum alloy shown in Table 3 (see Table 1 for the component ratio and characteristics), three types of heat sinks for high-voltage automotive parts with different heat dissipation areas on the back surface corresponding to the contact area with the heat source (heater) are produced by die casting. Molded integrally. Then, using water as a cooling medium, the heat dissipation efficiency of these heat sinks for high-voltage automotive components was evaluated. Table 3 shows the evaluation results of the shape and heat dissipation efficiency of the heat sinks for each automotive high-voltage component.

Figure 2010201497
Figure 2010201497

表3より、放熱面積比が3倍未満の形状の自動車強電部品用ヒートシンク(比較例4)は放熱効率が低く、自動車強電部品用ヒートシンクとしての機能が発揮できないことが分かる。また、放熱面積比が20倍を超える形状の自動車強電部品用ヒートシンク(比較例5)はフィン部の成型ができなかった。   From Table 3, it can be seen that the heat sink for automotive high-power components having a heat dissipation area ratio of less than 3 times (Comparative Example 4) has low heat dissipation efficiency and cannot function as a heat sink for automotive high-power components. Moreover, the heat sink for automobile high-power components having a heat dissipation area ratio exceeding 20 times (Comparative Example 5) could not mold the fin portion.

(実施例15〜19、比較例6及び7)
表1に示した合金(合金No.1,4及び9(表1参照))を用いて、ダイカスト工法による一体成型後の時効処理温度及び時間を変化させ、時効処理前後の熱伝導率、硬さ、及び時効処理後の固溶量を測定した。時効処理条件及び測定結果を表4に示す。
(Examples 15 to 19, Comparative Examples 6 and 7)
Using the alloys shown in Table 1 (Alloy Nos. 1, 4 and 9 (see Table 1)), the aging treatment temperature and time after integral molding by the die casting method were changed, and the thermal conductivity and hardness before and after the aging treatment were changed. The solid solution amount after aging treatment was measured. Table 4 shows the aging treatment conditions and the measurement results.

Figure 2010201497
Figure 2010201497

表4より、時効処理後の熱伝導率又は硬さが条件を満たさない場合は、Si固溶量が比較的多くなったり、成型不良が起こったりすることが分かる。   From Table 4, it can be seen that when the thermal conductivity or hardness after the aging treatment does not satisfy the condition, the Si solid solution amount becomes relatively large or molding failure occurs.

[測定方法]
以下に上記の実施例及び比較例において用いた性能の測定方法について説明する。
(A)溶湯流動長
本発明の溶湯流動長評価は、図3に示すシェル砂スパイラル型を用いた方法により行った。すなわち、シェル砂により蚊取り線香状に構成されたキャビティ内に、700℃の所定組成溶湯を所定位置から流し込んだ際の溶湯流動長を測定した。
[Measuring method]
The performance measurement methods used in the above examples and comparative examples will be described below.
(A) Melt Flow Length Evaluation of the melt flow length of the present invention was performed by a method using a shell sand spiral type shown in FIG. That is, the molten metal flow length was measured when a predetermined composition of molten metal at 700 ° C. was poured from a predetermined position into a cavity constituted by a shell sand like a mosquito coil.

(B)熱伝導率
本発明の熱伝導率評価は、レーザーフラッシュ法により行った。すなわち、レーザー発振器からレーザー光を発射し、試料の表面に直接当て、試料の裏面から出てくる熱量とその時間を測定し、比熱(Cp)と熱拡散率(α)を導き出し、式(1)にて熱伝導率(λ)を算出した。
・熱伝導率: λ = α ・ Cp ・ ρ ・・・(1)
(ρ:試料の密度)
なお、熱拡散率αはt1/2(最高温度上昇ΔTmの1/2に達する時間)と厚さLから式(2)を用いて算出した。
・α=0.1388L2/t1 /2 ・・・(2)
(B) Thermal conductivity The thermal conductivity of the present invention was evaluated by a laser flash method. That is, a laser beam is emitted from a laser oscillator, directly applied to the surface of the sample, the amount of heat emitted from the back surface of the sample and its time are measured, and the specific heat (Cp) and the thermal diffusivity (α) are derived. ) To calculate the thermal conductivity (λ).
・ Thermal conductivity: λ = α ・ Cp ・ ρ (1)
(Ρ: Sample density)
The thermal diffusivity α was calculated from the t1 / 2 (time to reach 1/2 of the maximum temperature rise ΔTm) and the thickness L using the formula (2).
.Alpha. = 0.1388L2 / t1 / 2 (2)

(C)硬さ
本発明の硬さ評価は、ロックウェル硬さ試験にて行った。硬さの評価は、深さの零点として初試験力を負荷した点を基準とし、更に試験力を負荷してから再び初試験力に戻し、その前後2回の初試験力におけるくぼみ深さの差h(mm)を測定して硬さ値を算出した。
(C) Hardness The hardness evaluation of the present invention was performed by the Rockwell hardness test. The evaluation of hardness is based on the point at which the initial test force is applied as the zero point of the depth. Further, after applying the test force, it is returned to the initial test force again, and the depth of the indentation at the initial test force twice before and after that The difference h (mm) was measured to calculate the hardness value.

(D)固溶量
本発明のアルミ母相中の固溶量は、熱ブタノール法によりアルミニウムマトリクスを溶解し、溶解溶液中の対象元素を原子吸光法により定量化することにより測定した。
(D) Solid solution amount The solid solution amount in the aluminum matrix of the present invention was measured by dissolving the aluminum matrix by the hot butanol method and quantifying the target element in the solution by the atomic absorption method.

(E)放熱効率
本発明の放熱効率は、図4に示すように、熱源下面温度及び冷却媒体温度を熱電対にて測定し、それらの測定値の差から放熱効率を算出した。
(E) Heat dissipation efficiency As shown in FIG. 4, the heat dissipation efficiency of the present invention was obtained by measuring the heat source bottom surface temperature and the cooling medium temperature with a thermocouple, and calculating the heat dissipation efficiency from the difference between these measured values.

10 冷却通路
20 接触部
21 接触面
22 裏面部
23 接触面と対応する裏面
30 放熱フィン
31 接触面と対応する裏面に突設されたフィン
100 熱源
200 自動車強電部品用ヒートシンク
DESCRIPTION OF SYMBOLS 10 Cooling path 20 Contact part 21 Contact surface 22 Back surface part 23 Back surface corresponding to a contact surface 30 Radiation fin 31 Fin 100 protruded on the back surface corresponding to a contact surface Heat source 200 Heat sink for automotive high power components

Claims (11)

冷却媒体が流通する冷却通路と、熱源と接触する接触部と、この接触部の裏面部から一体的に突出した放熱フィンとを有し、この放熱フィン付の裏面部が上記冷媒通路の一部を構成する構造を有するアルミニウム合金製の自動車強電部品用ヒートシンクであって、
上記アルミニウム合金は、Si、Mg、Feと、残部アルミニウムと、不可避的不純物とから成り、且つ、熱伝導率150〜200W/mK及び硬さ38〜100HRFの特性を有し、
上記熱源と上記接触部との接触面と対応する裏面における放熱面積が、この接触面の面積の3〜20倍である、
ことを特徴とする自動車強電部品用ヒートシンク。
A cooling passage through which the cooling medium flows, a contact portion in contact with the heat source, and a radiation fin integrally protruding from the back surface portion of the contact portion, and the back surface portion with the radiation fin is a part of the refrigerant passage. A heat sink for an automotive high-voltage component made of an aluminum alloy having a structure comprising:
The aluminum alloy is composed of Si, Mg, Fe, the balance aluminum, and inevitable impurities, and has the characteristics of thermal conductivity of 150 to 200 W / mK and hardness of 38 to 100 HRF,
The heat radiation area on the back surface corresponding to the contact surface between the heat source and the contact portion is 3 to 20 times the area of the contact surface.
A heat sink for automotive high-voltage components.
上記熱伝導率が160〜200W/mKであることを特徴とする請求項1に記載の自動車強電部品用ヒートシンク。   2. The heat sink for an automotive high voltage component according to claim 1, wherein the thermal conductivity is 160 to 200 W / mK. 上記アルミニウム合金のアルミニウム母相中へのSi固溶量が0.50質量%以下、Mg固溶量が0.20質量%以下であることを特徴とする請求項1又は2に記載の自動車強電部品用ヒートシンク。   3. The automobile high voltage according to claim 1 or 2, wherein the amount of Si solid solution in the aluminum matrix of the aluminum alloy is 0.50% by mass or less and the amount of Mg solid solution is 0.20% by mass or less. Heat sink for parts. 上記アルミニウム合金のアルミニウム母相中へのSi固溶量が0.20質量%以下、Mg固溶量が0.10質量%以下であることを特徴とする請求項1又は2に記載の自動車強電部品用ヒートシンク。 3. The automobile high voltage according to claim 1, wherein the amount of Si solid solution in the aluminum matrix of the aluminum alloy is 0.20% by mass or less, and the amount of Mg solid solution is 0.10% by mass or less. Heat sink for parts. 上記アルミニウム合金は、溶湯流動長がADC12合金に比して60〜90%であることを特徴とする請求項1〜4のいずれか1つの項に記載の自動車強電部品用ヒートシンク。   5. The heat sink for an automotive high-voltage component according to claim 1, wherein the aluminum alloy has a molten metal flow length of 60 to 90% as compared with the ADC12 alloy. 上記アルミニウム合金は、5.0〜10.0質量%のSiと、0.1〜0.5質量%のMgと、0.3〜0.6質量%のFeと、残部アルミニウムと、不可避的不純物とから成ることを特徴とする請求項1〜5のいずれか1つの項に記載の自動車強電部品用ヒートシンク。   The above aluminum alloy is unavoidable with 5.0 to 10.0% by mass of Si, 0.1 to 0.5% by mass of Mg, 0.3 to 0.6% by mass of Fe and the balance of aluminum. The heat sink for automobile high-voltage components according to any one of claims 1 to 5, characterized by comprising impurities. 上記アルミニウム合金は、6.0〜9.0質量%のSiと、0.1〜0.4質量%のMgと、0.3〜0.6質量%のFeと、残部アルミニウムと、不可避的不純物とから成ることを特徴とする請求項1〜5のいずれか1つの項に記載の自動車強電部品用ヒートシンク。 The aluminum alloy is inevitable with 6.0-9.0 mass% Si, 0.1-0.4 mass% Mg, 0.3-0.6 mass% Fe, the balance aluminum. The heat sink for automobile high-voltage components according to any one of claims 1 to 5, characterized by comprising impurities. 請求項1〜7のいずれか1つの項に記載の自動車強電部品用ヒートシンクと、熱源とを有するヒートシンクユニットであって、
上記熱源が自動車用強電部品である、
ことを特徴とするヒートシンクユニット。
A heat sink unit comprising the heat sink for an automotive high-voltage component according to any one of claims 1 to 7, and a heat source,
The heat source is a high-voltage automotive component.
A heat sink unit characterized by that.
請求項1〜7のいずれか1つの項に記載の自動車強電部品用ヒートシンクを製造するに当たり、
上記放熱フィンをダイカスト工法で一体成型した後、時効処理を施すことを特徴とする自動車強電部品用ヒートシンクの製造方法。
In manufacturing the heat sink for an automotive high voltage component according to any one of claims 1 to 7,
A method of manufacturing a heat sink for an automotive high-voltage component, characterized in that the heat radiating fin is integrally molded by a die casting method and then subjected to an aging treatment.
ダイカスト成型後の時効処理温度が270〜380℃であることを特徴とする請求項9に記載の自動車強電部品用ヒートシンクの製造方法。   The method for producing a heat sink for an automotive high-voltage component according to claim 9, wherein the aging treatment temperature after die casting is 270 to 380 ° C. ダイカスト成型後の時効処理温度が300〜350℃であることを特徴とする請求項9に記載の自動車強電部品用ヒートシンクの製造方法。   The method for producing a heat sink for an automotive high-voltage component according to claim 9, wherein the aging treatment temperature after die casting is 300 to 350 ° C.
JP2009052778A 2009-03-06 2009-03-06 Heat sink for automotive high-power components, heat sink unit using the same, and method for manufacturing heat sink for automotive high-power components Expired - Fee Related JP5414310B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009052778A JP5414310B2 (en) 2009-03-06 2009-03-06 Heat sink for automotive high-power components, heat sink unit using the same, and method for manufacturing heat sink for automotive high-power components

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009052778A JP5414310B2 (en) 2009-03-06 2009-03-06 Heat sink for automotive high-power components, heat sink unit using the same, and method for manufacturing heat sink for automotive high-power components

Publications (2)

Publication Number Publication Date
JP2010201497A true JP2010201497A (en) 2010-09-16
JP5414310B2 JP5414310B2 (en) 2014-02-12

Family

ID=42963516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009052778A Expired - Fee Related JP5414310B2 (en) 2009-03-06 2009-03-06 Heat sink for automotive high-power components, heat sink unit using the same, and method for manufacturing heat sink for automotive high-power components

Country Status (1)

Country Link
JP (1) JP5414310B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017135463A1 (en) * 2016-02-05 2017-08-10 学校法人芝浦工業大学 Aluminum alloy for casting, aluminum alloy member and method for producing aluminum alloy member
KR101874005B1 (en) 2016-11-28 2018-07-04 한국기계연구원 Aluminum alloy having high heat conductivity and high strength and aluminum alloy casting material having the same
CN108541171A (en) * 2017-03-03 2018-09-14 上海奉吉汽车电器有限公司 Waterproof construction between a kind of radiator and pedestal of speed adjusting module used for automobile air conditioning
EP3505649A1 (en) * 2017-12-29 2019-07-03 Huawei Technologies Co., Ltd. Die casting aluminum alloy, production method of die casting aluminum alloy, and communications product
JP2020500265A (en) * 2016-11-23 2020-01-09 ビーワイディー カンパニー リミテッド Thermal conductive aluminum alloy and its use
KR20220099622A (en) * 2021-01-07 2022-07-14 주식회사 에스제이테크 Aluminum die casting alloy having excellent formability, corrosion resistance, heat conductivity, strength
KR20220100292A (en) * 2021-01-08 2022-07-15 주식회사 에스제이테크 Aluminum die casting alloy having excellent formability, corrosion resistance, heat conductivity, strength
KR20220100244A (en) * 2021-01-08 2022-07-15 주식회사 에스제이테크 Aluminum die casting alloy having excellent formability, corrosion resistance, heat conductivity, strength
CN115431011A (en) * 2022-08-15 2022-12-06 西安长远电子工程有限责任公司 Method for processing high-density radiating teeth
CN115853855A (en) * 2022-12-19 2023-03-28 安徽鑫铂铝业股份有限公司 Reinforced aluminum alloy section for cylinder manufacturing
CN118127384A (en) * 2024-02-05 2024-06-04 广东辉煌金属制品有限公司 Al-Si-Fe-Mg series high heat conduction aluminum alloy, preparation method thereof and heat dissipation structure

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101779439B1 (en) 2016-08-09 2017-09-26 주식회사 에스제이테크 Method of producing an aluminum alloy for die-casting and aluminum alloy castings using the same

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09295102A (en) * 1996-05-07 1997-11-18 Nippon Light Metal Co Ltd Releasing agent for metallic mold casting and metallic mold casting method of light metal using it
JP2003089838A (en) * 2001-09-18 2003-03-28 Toyota Industries Corp Heat radiation/absorption parts made of die-cast aluminum
JP2003119535A (en) * 2001-10-10 2003-04-23 Nippon Light Metal Co Ltd Aluminum alloy for casting superior in thermal conductivity
JP2003119536A (en) * 2001-10-10 2003-04-23 Nippon Light Metal Co Ltd Aluminum alloy for casting superior in thermal conductivity
JP2005097723A (en) * 2003-08-26 2005-04-14 Toyota Motor Corp Method for stabilizing dimension of cylinder block
JP2005290527A (en) * 2004-04-05 2005-10-20 Nippon Light Metal Co Ltd Aluminum alloy casting having excellent thermal conductivity and its production method
JP2005298856A (en) * 2004-04-07 2005-10-27 Nippon Light Metal Co Ltd Aluminum alloy casting material with excellent thermal conductivity
JP2006063420A (en) * 2004-08-30 2006-03-09 Ryoka Macs Corp Aluminum alloy material for heat sink and its production method
JP2007036214A (en) * 2005-06-21 2007-02-08 Diamond Electric Mfg Co Ltd Cooling structure and cooling apparatus

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09295102A (en) * 1996-05-07 1997-11-18 Nippon Light Metal Co Ltd Releasing agent for metallic mold casting and metallic mold casting method of light metal using it
JP2003089838A (en) * 2001-09-18 2003-03-28 Toyota Industries Corp Heat radiation/absorption parts made of die-cast aluminum
JP2003119535A (en) * 2001-10-10 2003-04-23 Nippon Light Metal Co Ltd Aluminum alloy for casting superior in thermal conductivity
JP2003119536A (en) * 2001-10-10 2003-04-23 Nippon Light Metal Co Ltd Aluminum alloy for casting superior in thermal conductivity
JP2005097723A (en) * 2003-08-26 2005-04-14 Toyota Motor Corp Method for stabilizing dimension of cylinder block
JP2005290527A (en) * 2004-04-05 2005-10-20 Nippon Light Metal Co Ltd Aluminum alloy casting having excellent thermal conductivity and its production method
JP2005298856A (en) * 2004-04-07 2005-10-27 Nippon Light Metal Co Ltd Aluminum alloy casting material with excellent thermal conductivity
JP2006063420A (en) * 2004-08-30 2006-03-09 Ryoka Macs Corp Aluminum alloy material for heat sink and its production method
JP2007036214A (en) * 2005-06-21 2007-02-08 Diamond Electric Mfg Co Ltd Cooling structure and cooling apparatus

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017135463A1 (en) * 2016-02-05 2017-08-10 学校法人芝浦工業大学 Aluminum alloy for casting, aluminum alloy member and method for producing aluminum alloy member
JP2020500265A (en) * 2016-11-23 2020-01-09 ビーワイディー カンパニー リミテッド Thermal conductive aluminum alloy and its use
KR101874005B1 (en) 2016-11-28 2018-07-04 한국기계연구원 Aluminum alloy having high heat conductivity and high strength and aluminum alloy casting material having the same
CN108541171A (en) * 2017-03-03 2018-09-14 上海奉吉汽车电器有限公司 Waterproof construction between a kind of radiator and pedestal of speed adjusting module used for automobile air conditioning
EP3505649A1 (en) * 2017-12-29 2019-07-03 Huawei Technologies Co., Ltd. Die casting aluminum alloy, production method of die casting aluminum alloy, and communications product
KR102553706B1 (en) * 2021-01-07 2023-07-10 주식회사 에스제이테크 Aluminum die casting alloy having excellent formability, corrosion resistance, heat conductivity, strength
KR20220099622A (en) * 2021-01-07 2022-07-14 주식회사 에스제이테크 Aluminum die casting alloy having excellent formability, corrosion resistance, heat conductivity, strength
KR20220100292A (en) * 2021-01-08 2022-07-15 주식회사 에스제이테크 Aluminum die casting alloy having excellent formability, corrosion resistance, heat conductivity, strength
KR102553712B1 (en) 2021-01-08 2023-07-10 주식회사 에스제이테크 Aluminum die casting alloy having excellent formability, corrosion resistance, heat conductivity, strength
KR102553711B1 (en) * 2021-01-08 2023-07-10 주식회사 에스제이테크 Aluminum die casting alloy having excellent formability, corrosion resistance, heat conductivity, strength
KR20220100244A (en) * 2021-01-08 2022-07-15 주식회사 에스제이테크 Aluminum die casting alloy having excellent formability, corrosion resistance, heat conductivity, strength
CN115431011A (en) * 2022-08-15 2022-12-06 西安长远电子工程有限责任公司 Method for processing high-density radiating teeth
CN115853855A (en) * 2022-12-19 2023-03-28 安徽鑫铂铝业股份有限公司 Reinforced aluminum alloy section for cylinder manufacturing
CN118127384A (en) * 2024-02-05 2024-06-04 广东辉煌金属制品有限公司 Al-Si-Fe-Mg series high heat conduction aluminum alloy, preparation method thereof and heat dissipation structure

Also Published As

Publication number Publication date
JP5414310B2 (en) 2014-02-12

Similar Documents

Publication Publication Date Title
JP5414310B2 (en) Heat sink for automotive high-power components, heat sink unit using the same, and method for manufacturing heat sink for automotive high-power components
JP6860768B2 (en) Manufacturing method of aluminum alloy for casting, aluminum alloy member, and aluminum alloy member
JPWO2014010678A1 (en) Hard disk drive device case body manufacturing method and case body shape material
KR101502340B1 (en) Aluminum alloy for casting having high thermal conductivity
KR101924319B1 (en) Highly heat conductive aluminum alloy for die casting, aluminum alloy die cast product using same, and heatsink using same
JP4413106B2 (en) Aluminum alloy material for heat sink and manufacturing method thereof
US9353429B2 (en) Aluminum alloy material for use in thermal conduction application
KR101468957B1 (en) Aluminum alloy for casting
JP2002105571A (en) Aluminum alloy material for heat sink, having excellent thermal conductivity
JP4210020B2 (en) Aluminum alloy material for heat sinks with excellent thermal conductivity
JP2008240007A (en) Cr-Cu ALLOY SHEET, HEAT SINK FOR SEMICONDUCTOR, AND HEAT DISSIPATING COMPONENT FOR SEMICONDUCTOR
JP6635652B2 (en) Fin material for heat exchanger and assembled body for heat exchanger
JP2003089838A (en) Heat radiation/absorption parts made of die-cast aluminum
JP2008057032A (en) Cr-Cu ALLOY, MANUFACTURING METHOD THEREFOR, RADIATION PLATE FOR SEMICONDUCTOR AND RADIATION PARTS FOR SEMICONDUCTOR
JP2005298856A (en) Aluminum alloy casting material with excellent thermal conductivity
EP3249065B1 (en) Heat sink for battery using aluminum alloy and manufacturing method thereof
JP5747103B1 (en) Radiation fin made of aluminum alloy and method of manufacturing the same
EP2905351B1 (en) Hypereutectic aluminum/silicon alloy die-cast member and process for producing same
KR101502341B1 (en) Aluminum alloy for permanent mould casting having high thermal conductivity
JP2010126791A (en) Heat dissipation material, heat dissipation plate for semiconductor and heat dissipation component for semiconductor using the same, and method for producing heat dissipation material
JP2014210270A (en) Heat sink and method of manufacturing the same
KR101803256B1 (en) An aluminum alloy for die casting
JP2002226932A (en) Aluminum alloy for heat sink having excellent strength and thermal conductivity and production method therefor
KR102553711B1 (en) Aluminum die casting alloy having excellent formability, corrosion resistance, heat conductivity, strength
US20240125566A1 (en) Heat transfer member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110802

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131112

R150 Certificate of patent or registration of utility model

Ref document number: 5414310

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees