JP4341453B2 - Aluminum alloy casting excellent in thermal conductivity and method for producing the same - Google Patents
Aluminum alloy casting excellent in thermal conductivity and method for producing the same Download PDFInfo
- Publication number
- JP4341453B2 JP4341453B2 JP2004111496A JP2004111496A JP4341453B2 JP 4341453 B2 JP4341453 B2 JP 4341453B2 JP 2004111496 A JP2004111496 A JP 2004111496A JP 2004111496 A JP2004111496 A JP 2004111496A JP 4341453 B2 JP4341453 B2 JP 4341453B2
- Authority
- JP
- Japan
- Prior art keywords
- aluminum alloy
- mass
- alloy casting
- thermal conductivity
- amount
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Continuous Casting (AREA)
Description
本発明は、一般には熱伝導性に優れたアルミニウム合金鋳物に係り、より詳細には、放熱性を高めるために複雑な形状や薄肉部を有するヒートシンク等に用いて好適なアルミニウム合金鋳物に関する。また、かかるアルミニウム合金鋳物の製造方法にも関する。 The present invention generally relates to an aluminum alloy casting excellent in thermal conductivity, and more particularly to an aluminum alloy casting suitable for use in a heat sink having a complicated shape or a thin portion in order to improve heat dissipation. Moreover, it is related also with the manufacturing method of this aluminum alloy casting.
従来、ヒートシンク等の熱伝導性が求められる部材には、純アルミニウムやアルミニウム合金が用いられている。純アルミニウムの熱伝導性は高いが、鋳造性が低く複雑な形状にすることが困難である。また、強度が低く、複雑な形状になると金型から取り出す際やその他加工や組み立てのために扱っているうちに、割れたり、変形してしまったりする場合がある。そこで、放熱性を高めるために複雑な形状や薄肉部を有するものとする必要があるヒートシンクにあっては、熱伝導性をある程度犠牲にしても高い強度を有し鋳造性に優れるAl−Si系等のアルミニウム合金鋳物が特に好適に用いられている。
ところが、近年の電子機器の高性能化に伴い、更に高性能のヒートシンクが求められるようになってきた。そのため、従来のアルミニウム合金鋳物よりも、更に熱伝導性に優れた合金の開発が待たれていた。 However, with the recent high performance of electronic devices, a higher performance heat sink has been demanded. For this reason, development of an alloy having further higher thermal conductivity than that of a conventional aluminum alloy casting has been awaited.
本発明は、上記事情に鑑みてなされたもので、従来のアルミニウム合金鋳物と同等以上の機械的強度及び鋳造性を持ちながら、更に熱伝導性が向上せしめられたアルミニウム合金鋳物を提供することを目的とする。
また本発明は、かかるアルミニウム合金鋳物を製造するための方法を提供することも目的とする。
The present invention has been made in view of the above circumstances, and provides an aluminum alloy casting in which thermal conductivity is further improved while having mechanical strength and castability equivalent to or higher than those of conventional aluminum alloy castings. Objective.
It is another object of the present invention to provide a method for producing such an aluminum alloy casting.
本発明者等は、上記課題を解決するために鋭意研究した結果、Al−Si系アルミニウム合金鋳物の母相中のSi固溶量と金属組織中の晶出物の面積率が、鋳物の熱伝導度と強度に大きく影響し、Si固溶量と晶出物の面積率を両方とも最適な値にすると、十分な機械的強度を有しながら熱伝導性に特に優れたアルミニウム合金鋳物が得られることを見出した。
また、Si固溶量と晶出物の面積率は、鋳造後の加熱保持処理により、制御することができることが分かった。
As a result of intensive studies to solve the above problems, the present inventors have found that the amount of Si solid solution in the matrix of the Al-Si aluminum alloy casting and the area ratio of the crystallized material in the metal structure are the heat of the casting. If the Si solid solution amount and the crystallized area ratio are both optimized, the aluminum alloy casting having a sufficient mechanical strength and particularly excellent thermal conductivity can be obtained. I found out that
Moreover, it turned out that the amount of Si solid solution and the area ratio of a crystallized substance can be controlled by the heat holding process after casting.
しかして、本発明によれば、Si:6.0〜8.0質量%を含み、Si及びAl以外の元素が単体で0.6%以下であり、アルミニウム母相中のSi固溶量が0.5〜1.1質量%、好ましくは0.55〜1.05質量%、より好ましくは0.6〜1.0質量%に調整され、金属中組織中の晶出物の面積率が5〜8%、好ましくは5.5〜7.5%、より好ましくは6.0〜7.0%に調整されていることを特徴とする、熱伝導性に優れたアルミニウム合金鋳物が提供される。
ここで、上記アルミニウム合金鋳物は、好ましくは、Si及びAl以外の元素が、Mg:0.2〜0.5質量%、Fe:0.6質量%以下及び合計量が0.2質量%以下のその他の元素からなる組成を有する。
Thus, according to the present invention, Si: 6.0 to 8.0% by mass, elements other than Si and Al alone are 0.6% or less, and the amount of Si solid solution in the aluminum matrix is small. It is adjusted to 0.5 to 1.1% by mass, preferably 0.55 to 1.05% by mass, more preferably 0.6 to 1.0% by mass, and the area ratio of crystallized matter in the metal structure is adjusted. Provided is an aluminum alloy casting excellent in thermal conductivity, characterized by being adjusted to 5 to 8%, preferably 5.5 to 7.5%, more preferably 6.0 to 7.0%. The
Here, in the aluminum alloy casting, preferably, elements other than Si and Al are Mg: 0.2 to 0.5 mass%, Fe: 0.6 mass% or less, and the total amount is 0.2 mass% or less. The composition is composed of other elements.
また、上記アルミニウム合金鋳物は、上記その他の元素中にTi及び/又はZrが含まれる場合、Ti及び/又はZrの量が0.03質量%以下に調整されているのが好ましい。
かかるアルミニウム合金鋳物は、従来のアルミニウム合金鋳物よりも優れた熱伝導度を有するものであり、好ましくは160W/m・k以上、より好ましくは165W/m・k以上の熱伝導度を示す。
Moreover, when the said aluminum alloy casting contains Ti and / or Zr in said other element, it is preferable that the quantity of Ti and / or Zr is adjusted to 0.03 mass% or less.
Such an aluminum alloy casting has a thermal conductivity superior to that of a conventional aluminum alloy casting, and preferably exhibits a thermal conductivity of 160 W / m · k or more, more preferably 165 W / m · k or more.
更に、本発明では、Siを6.0〜8.0質量%含み、Si及びAl以外の元素が単体で0.6質量%以下のアルミニウム合金鋳物素材を、400〜510℃で1時間以上加熱保持処理することを特徴とする、熱伝導性に優れたアルミニウム合金鋳物の製造方法が提供される。
ここで、アルミニウム合金鋳物素材は、好ましくは、Si:6.0〜8.0質量%、Mg:0.2〜0.5質量%、Fe:0.6質量%以下を含み、残部はアルミニウムと合計量が0.2質量%以下のその他の元素からなり、またアルミニウム合金鋳物素材中のTi及び/又はZrが0.03質量%以下に調整されている。アルミニウム合金鋳物素材の加熱保持処理の時間は1時間以上である。なお、7時間以上加熱保持処理を施しても、それ以上の特性の向上を得ることができないので、7時間以下にすることが好ましい。
Furthermore, in the present invention, an aluminum alloy casting material containing 6.0 to 8.0% by mass of Si and containing only 0.6% by mass of elements other than Si and Al alone is heated at 400 to 510 ° C. for 1 hour or more. There is provided a method for producing an aluminum alloy casting excellent in thermal conductivity, characterized by performing a holding treatment.
Here, the aluminum alloy casting material preferably contains Si: 6.0 to 8.0% by mass, Mg: 0.2 to 0.5% by mass, Fe: 0.6% by mass or less, and the balance is aluminum. And the total amount is 0.2 mass% or less of other elements, and Ti and / or Zr in the aluminum alloy casting material is adjusted to 0.03% by mass or less. The time for the heat holding treatment of the aluminum alloy casting material is 1 hour or more. In addition, since the improvement of the characteristic beyond it cannot be acquired even if it heat-processes for 7 hours or more, it is preferable to make it 7 hours or less.
本発明によれば、機械的強度及び鋳造性を持ちながら、更に熱伝導性が向上せしめられたアルミニウム合金鋳物が得られる。よって、より高性能のヒートシンク等を製造することができる。 According to the present invention, it is possible to obtain an aluminum alloy casting in which thermal conductivity is further improved while having mechanical strength and castability. Therefore, a higher performance heat sink or the like can be manufactured.
本発明の好適な実施形態では、本発明の熱伝導性に優れたアルミニウム合金鋳物は、Si:6.0〜8.0質量%を含み、Si及びAl以外の元素が単体で0.6%以下であり、アルミニウム母相中のSi固溶量が0.5〜1.1質量%に調整され、金属中組織中の晶出物の面積率が5〜8%に調整されている。
ここで、上記アルミニウム合金鋳物は、好ましくは、Si及びAl以外の元素が、Mg:0.2〜0.5質量%、Fe:0.6質量%以下及び合計量が0.2質量%以下のその他の元素からなる組成を有する。
In a preferred embodiment of the present invention, the aluminum alloy casting excellent in thermal conductivity of the present invention contains Si: 6.0 to 8.0% by mass, and elements other than Si and Al alone are 0.6%. The amount of Si solid solution in the aluminum matrix is adjusted to 0.5 to 1.1% by mass, and the area ratio of the crystallized substance in the metal structure is adjusted to 5 to 8%.
Here, in the aluminum alloy casting, preferably, elements other than Si and Al are Mg: 0.2 to 0.5 mass%, Fe: 0.6 mass% or less, and the total amount is 0.2 mass% or less. The composition is composed of other elements.
以下に、各組成及び晶出物面積率の作用及び限定理由を説明する。 Below, the effect | action and limitation reason of each composition and a crystallized material area ratio are demonstrated.
(Si:6.0〜8.0質量%)
Siは鋳造性を向上させる作用を有する。ヒートシンクのような複雑な形状や薄肉部を有するものを鋳造する場合、鋳造性を十分なものとするためには、Siを6.0質量%以上とすることが必要である。このSiはSi系晶出物として晶出し、鋳物の機械的強度、耐摩耗性、防振性を向上させる作用も有する。またSi量を更に増大させればさせる程、鋳造性等は向上するが、Si量が8.0質量%を超えると熱伝導性が低下してしまう。よって、本発明の目的においては、Si量は6.0〜8.0質量%の範囲とされなければならない。
(Si: 6.0-8.0 mass%)
Si has an effect of improving castability. When casting a complicated shape such as a heat sink or a thin part, it is necessary to set Si to 6.0% by mass or more in order to achieve sufficient castability. This Si crystallizes as a Si-based crystallized product, and also has an effect of improving the mechanical strength, wear resistance, and vibration-proof property of the casting. Further, as the Si amount is further increased, the castability and the like are improved, but when the Si amount exceeds 8.0% by mass, the thermal conductivity is lowered. Therefore, for the purposes of the present invention, the Si content must be in the range of 6.0 to 8.0 mass%.
(Mg:0.2〜0.5質量%)
Mgは、本発明においては必須の元素ではない。しかしながら、Mgは、Mg系晶出物を形成し、機械的強度を向上させる作用を有するので、機械的強度が特に求められる場合には、含有せしめることが好ましい。この作用は、0.2質量%以上で顕著となり、逆に0.5質量%を超えると熱伝導性が低下する。また、Mgの一部はMg−Si系析出物を形成し、機械的強度を向上させる作用を有する。よって、Mgを含有させる場合は、0.2〜0.5質量%の範囲とするのが好ましい。
(Mg: 0.2-0.5% by mass)
Mg is not an essential element in the present invention. However, Mg forms an Mg-based crystallized substance and has an effect of improving mechanical strength. Therefore, when mechanical strength is particularly required, Mg is preferably contained. This effect becomes significant at 0.2% by mass or more, and conversely, when it exceeds 0.5% by mass, the thermal conductivity decreases. Further, part of Mg forms an Mg—Si based precipitate and has an action of improving mechanical strength. Therefore, when it contains Mg, it is preferable to set it as the range of 0.2-0.5 mass%.
(Fe:0.6質量%以下)
Feは不可避的に混入する不純物であるが、機械的強度を向上させると共に、ダイカスト法で鋳造する場合には金型の焼き付きを抑制する作用も有する。しかし、Feの増加に伴って、熱伝導性と伸展性が低下し、Feの量が0.6質量%を超えると塑性加工性が不十分になる。よって、Feは不可避的に混入されるとしても、0.3質量%以下とするのが好ましい。
(Fe: 0.6 mass% or less)
Fe is an impurity inevitably mixed in, but improves the mechanical strength and also has the effect of suppressing die seizure when cast by the die casting method. However, as Fe increases, the thermal conductivity and extensibility decrease, and when the amount of Fe exceeds 0.6 mass%, the plastic workability becomes insufficient. Therefore, even if Fe is inevitably mixed, the content is preferably 0.3% by mass or less.
(Si、Al、Mg及びFe以外のその他の元素の合計量)
本発明によるアルミニウム合金鋳物は、Si、Mg、Fe、Al以外の元素も合計で0.2質量%以下であれば、含有していてもよい。これらの元素は、通常は不可避不純物であるが、必ずしもそうと認識されている必要はない。これらの元素としては、具体的には、Ti、Mn、Cr、B、Zr、P、Ca、Na、Sr、Sb及びZn等が挙げられる。
またここで、Ti、Mn及びZrは熱伝導率に及ぼす影響が大きいので、それらの量は0.05質量%以下に抑制するのが好ましい。
(Total amount of other elements other than Si, Al, Mg and Fe)
The aluminum alloy casting according to the present invention may contain elements other than Si, Mg, Fe, and Al as long as the total is 0.2% by mass or less. These elements are usually inevitable impurities, but need not be recognized as such. Specific examples of these elements include Ti, Mn, Cr, B, Zr, P, Ca, Na, Sr, Sb, and Zn.
Here, since Ti, Mn, and Zr have a large influence on the thermal conductivity, their amount is preferably suppressed to 0.05% by mass or less.
(Si固溶量:0.5〜1.1質量%)(好ましい範囲:0.55〜1.05質量%、更に好ましい範囲:0.6〜1.0質量%)
アルミニウム合金鋳物において、Si固溶量はその熱伝導性に大きな影響を及ぼし、Si固溶量が1.1質量%を超えると、熱伝導性が低下してしまう。一方、Si固溶量が0.5質量%未満になると、十分な機械的強度が得られなくなる。
(Si solid solution amount: 0.5 to 1.1% by mass) (preferable range: 0.55 to 1.05% by mass, more preferable range: 0.6 to 1.0% by mass)
In an aluminum alloy casting, the amount of Si solid solution greatly affects its thermal conductivity, and if the amount of Si solid solution exceeds 1.1% by mass, the thermal conductivity decreases. On the other hand, when the Si solid solution amount is less than 0.5% by mass, sufficient mechanical strength cannot be obtained.
(晶出物の面積率:5〜8%)(好ましい範囲:5.5〜7.5%、更に好ましい範囲:6.0〜7.0%)
本発明者等が新たに知見したところであるが、アルミニウム合金鋳物において、晶出物の面積率が8%を超えると、晶出物が熱伝導を阻害してしまう。また、伸びも低くなる。一方、晶出物の面積率が5%未満と少ないと、十分な強度が得られなくなる。
(Area ratio of crystallized product: 5 to 8%) (Preferable range: 5.5 to 7.5%, more preferable range: 6.0 to 7.0%)
As the inventors have newly found out, in an aluminum alloy casting, when the area ratio of the crystallized substance exceeds 8%, the crystallized substance inhibits heat conduction. Also, the elongation is low. On the other hand, when the area ratio of the crystallized product is as small as less than 5%, sufficient strength cannot be obtained.
本発明者等は、上記のアルミニウム合金鋳物は、従来の鋳造性に優れるアルミニウム合金鋳物を更に所定温度に加熱保持処理することによって得られることを見出した。
すなわち、本発明に係る製造方法は、先ず、所定の組成を持つアルミニウム合金鋳物素材を製造する。鋳造法は、溶湯鋳造法、DC法、金型鋳造法等々、従来から知られている任意の鋳造法を利用することができ、場合によっては、市販のアルミニウム合金鋳物を本発明の方法の素材として利用することもできる。使用するアルミニウム合金鋳物素材は、Siを6.0〜8.0質量%含み、Si及びAl以外の元素が単体で0.6質量%以下のもの、より好ましくは、Si:6.0〜8.0質量%、Mg:0.2〜0.5質量%、Fe:0.6質量%以下を含み、残部はアルミニウムと合計量が0.2質量%以下のその他の元素からなるものである。このようなアルミニウム合金鋳物としては、例えばJIS規格AC4C及びAC4CH合金で鋳造した鋳物が挙げられる。
The present inventors have found that the above-described aluminum alloy casting can be obtained by further heat-holding a conventional aluminum alloy casting having excellent castability to a predetermined temperature.
That is, the manufacturing method according to the present invention first manufactures an aluminum alloy casting material having a predetermined composition. As the casting method, any conventionally known casting method such as a molten metal casting method, a DC method, a mold casting method, or the like can be used. In some cases, a commercially available aluminum alloy casting is used as a material of the method of the present invention. It can also be used as The aluminum alloy casting material to be used contains 6.0 to 8.0% by mass of Si, and elements other than Si and Al alone are 0.6% by mass or less, more preferably Si: 6.0 to 8 0.0% by mass, Mg: 0.2 to 0.5% by mass, Fe: 0.6% by mass or less, with the balance being aluminum and other elements with a total amount of 0.2% by mass or less . Examples of such aluminum alloy castings include castings cast from JIS standard AC4C and AC4CH alloys.
ついで、上記アルミニウム合金鋳物素材を、400〜510℃に加熱保持処理する。このような加熱保持処理によって、母相中に固溶されていたSiが析出し、母相中のSi固溶量が0.5〜1.1質量%の範囲になると共に、晶出物の一部が母相中に固溶し、晶出物の面積率が5〜8%の範囲になる。 Next, the aluminum alloy casting material is heated and held at 400 to 510 ° C. By such heating and holding treatment, Si dissolved in the matrix phase is precipitated, and the amount of Si solution in the matrix phase is in the range of 0.5 to 1.1% by mass. A part is dissolved in the matrix, and the area ratio of the crystallized product is in the range of 5 to 8%.
ここで、加熱保持温度は、510℃を超えると、晶出物が母相中に固溶するものが多くなり、その結果、晶出物の面積率が低下するとともにSi固溶量が多くなり、熱伝導性が低下する。また、機械的強度も低下する。逆に、加熱保持温度が400℃以下の場合、母相中のSiが析出せず、Si固溶量が減少しないので熱伝導性が向上しない。また、晶出物の一部が母相中に固溶しないので、晶出物の面積率が大きくなり、熱伝導性が低下する。
また、加熱保持処理は、好ましくは1時間以上行うことが好ましい。また5時間を超えて加熱保持しても、Si固溶量および晶出物の面積率はそれ以上はほとんど変化しない。よって、コスト面から保持時間は5時間未満とすることが好ましい。
Here, when the heating and holding temperature exceeds 510 ° C., the crystallized product is often dissolved in the matrix, and as a result, the area ratio of the crystallized product decreases and the amount of Si solid solution increases. , Thermal conductivity decreases. Also, the mechanical strength is reduced. On the contrary, when the heating and holding temperature is 400 ° C. or lower, Si in the matrix phase does not precipitate and the amount of Si solid solution does not decrease, so the thermal conductivity is not improved. In addition, since a part of the crystallized product does not dissolve in the matrix, the area ratio of the crystallized product increases and the thermal conductivity decreases.
The heat holding treatment is preferably performed for 1 hour or longer. Moreover, even if it heat-maintains over 5 hours, the amount of Si solid solution and the area ratio of a crystallized substance will hardly change beyond it. Therefore, the holding time is preferably less than 5 hours from the viewpoint of cost.
加熱保持後は、常温まで冷却するが、その後の冷却は、水冷で冷却しても、炉冷で徐冷してもよい。冷却速度によって析出物の量が異なり、Siの固溶量も変化するが、本発明合金の場合には、加熱保持処理の際にSiが既に析出し、Si固溶量が少なくなっているので、その影響は小さい。強度を少しでも高くしたい場合は、水冷が好ましい。しかし、水冷の場合、部分部分によって冷却速度が異なり、冷却時に変形が生じやすいので、ヒートシンクのような薄肉部を有するものの場合は徐冷が好ましい。 After heating and holding, it is cooled to room temperature, but the subsequent cooling may be water cooling or slow cooling with furnace cooling. The amount of precipitate varies depending on the cooling rate, and the solid solution amount of Si also changes. However, in the case of the alloy of the present invention, Si is already precipitated during the heat holding treatment, and the Si solid solution amount is reduced. The effect is small. Water cooling is preferred when it is desired to increase the strength as much as possible. However, in the case of water cooling, the cooling rate differs depending on the portion, and deformation is likely to occur during cooling. Therefore, slow cooling is preferable in the case of a thin part such as a heat sink.
以下、本発明を、実施例によって更に詳細に説明する。
(実施例1)
Siを7.1質量%、Mgを0.32質量%、Feを0.2質量%とアルミニウムからなり、その他の元素の合計量が0.2質量%以下であるアルミニウム合金鋳物素材(JIS規格AC4Cに相当)を、DC鋳造法により203φx2000mmに鋳造した。得られたアズキャスト材(No.1)を、380℃、420℃、450℃、500℃、535℃、550℃で5時間保持し、その後、水冷によって常温まで冷却し、アルミニウム合金鋳物(No.2〜7)を得た。
Hereinafter, the present invention will be described in more detail by way of examples.
(Example 1)
Aluminum alloy casting material (JIS standard) consisting of 7.1 mass% Si, 0.32 mass% Mg, 0.2 mass% Fe and aluminum, and the total amount of other elements being 0.2 mass% or less (Corresponding to AC4C) was cast to 203φ × 2000 mm by the DC casting method. The obtained as-cast material (No. 1) was held at 380 ° C., 420 ° C., 450 ° C., 500 ° C., 535 ° C., 550 ° C. for 5 hours, then cooled to room temperature by water cooling, and an aluminum alloy casting (No. .2-7) were obtained.
アズキャスト材(No.1)及び上記のようにして加熱保持処理を施して得られたアルミニウム合金鋳物(No.4〜6)について顕微鏡による組織観察を行った。その結果の一部を図1に示す。 The as-cast material (No. 1) and the aluminum alloy castings (No. 4 to 6) obtained by performing the heating and holding treatment as described above were observed with a microscope. A part of the result is shown in FIG.
更に、上記アズキャスト材及びアルミニウム合金鋳物について、それぞれ、熱伝導度、引張強度、Si固溶量及び晶出物の面積率を測定した。
ここで、Si固溶量については、合金中のSi量と熱フェノール残渣中のSi量を化学分析によって求め、得られた合金中のSi量から、フェノール残渣中のSi量を差し引いたものをSi固溶量とした。なお、熱フェノール溶解残渣は、合金を熱フェノールで溶解したものをメンブランフィルター(0.1μm)で、濾過して回収した。
また、晶出物の面積率については、鉱物を鏡面研磨した後、画像処理・解析装置にセットし、測定した。測定は、1視野(0.014mm2)を10視野測定し、その平均値をとった。
Furthermore, about the said as-cast material and aluminum alloy casting, the thermal conductivity, the tensile strength, the amount of Si solid solution, and the area ratio of the crystallized substance were measured, respectively.
Here, about the amount of Si solid solution, the amount of Si in the alloy and the amount of Si in the hot phenol residue were obtained by chemical analysis, and the amount of Si in the obtained alloy was subtracted from the amount of Si in the phenol residue. It was set as the amount of Si solid solution. The hot phenol dissolution residue was recovered by filtering an alloy dissolved with hot phenol through a membrane filter (0.1 μm).
Further, the area ratio of the crystallized material was measured after mirror-polishing the mineral and setting it in an image processing / analyzing apparatus. In the measurement, 10 visual fields (0.014 mm 2 ) were measured, and the average value was taken.
以上の測定の結果を表1にまとめる。
この表1の結果から分かるように、加熱保持処理を施していないアズキャスト材(No.1)及び加熱保持処理温度の低い比較アルミニウム合金鋳物(No.2)は、晶出物の面積率が大きく、そのため熱伝導度及び伸びが低くなっている。このことから、晶出物が熱伝導を阻害していることが確認される。
また、加熱保持処理温度が高い比較アルミニウム合金鋳物(No6〜7)は、Si固溶量が増加し、熱伝導度が低くなっていることが分かる。
これに対して、本発明に係るアルミニウム合金鋳物(No3〜5)は、何れもSi固溶量と晶出物の面積が、最適な範囲となっており、熱伝導度、引張強度及び伸びが全て高い数値となっていることが分かる。
As can be seen from the results in Table 1, the as-cast material (No. 1) not subjected to the heat holding treatment and the comparative aluminum alloy casting (No. 2) having a low heat holding treatment temperature have a crystallized area ratio. Large, and therefore have low thermal conductivity and elongation. From this, it is confirmed that the crystallized substance inhibits heat conduction.
Moreover, it turns out that the comparative aluminum alloy casting (No. 6-7) with high heat retention processing temperature has increased the amount of Si solid solution, and has low thermal conductivity.
On the other hand, in the aluminum alloy castings (Nos. 3 to 5) according to the present invention, the Si solid solution amount and the area of the crystallized material are in the optimum ranges, and the thermal conductivity, tensile strength, and elongation are high. It turns out that all are high numbers.
(実施例2)
実施例1で得られたアズキャスト材を、450℃で0.5時間、1時間、3時間及び7時間のそれぞれの保持時間で加熱保持処理を施し、その後常温まで徐冷し、アルミニウム合金鋳物(No.8〜11)を得た。得られたアルミニウム合金鋳物について、実施例1と同じ方法でSi固溶量、晶出物の面積率、熱伝導度、引張強度及び伸びを測定した。
(Example 2)
The as-cast material obtained in Example 1 was heated and held at 450 ° C. for 0.5 hours, 1 hour, 3 hours and 7 hours, and then slowly cooled to room temperature, and then casted aluminum alloy. (Nos. 8 to 11) were obtained. About the obtained aluminum alloy casting, the amount of Si solid solution, the area ratio of the crystallized product, the thermal conductivity, the tensile strength and the elongation were measured by the same method as in Example 1.
その結果を表2に示す。
表2の結果から分かるように、加熱保持処理時間が0.5時間の場合、晶出物が十分に固溶せず、その結果、熱伝導度や引張強度及び伸びが低くなっていることが分かる。 As can be seen from the results in Table 2, when the heat retention treatment time is 0.5 hours, the crystallized product does not sufficiently dissolve, and as a result, the thermal conductivity, tensile strength, and elongation are low. I understand.
Claims (4)
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004111496A JP4341453B2 (en) | 2004-04-05 | 2004-04-05 | Aluminum alloy casting excellent in thermal conductivity and method for producing the same |
PCT/JP2005/006639 WO2005098065A1 (en) | 2004-04-05 | 2005-04-05 | Aluminum alloy casting material for heat treatment excelling in heat conduction and process for producing the same |
EP05728404.4A EP1736561B1 (en) | 2004-04-05 | 2005-04-05 | Aluminum alloy casting material for heat treatment excelling in heat conduction and process for producing the same |
EP10182479A EP2281909B1 (en) | 2004-04-05 | 2005-04-05 | Manufacturing method of an aluminium alloy cast heat sink having a complex structure or a thin walled protion with excellent thermal conductivity |
EP10182491A EP2275584B1 (en) | 2004-04-05 | 2005-04-05 | Manufacturing method for cast aluminium heat sinks |
KR1020067019220A KR20060130658A (en) | 2004-04-05 | 2005-04-05 | Aluminum alloy casting material for heat treatment excelling in heat conduction and process for producing the same |
US11/547,257 US20110132504A1 (en) | 2004-04-05 | 2005-04-05 | Aluminum Alloy Casting Material for Heat Treatment Excelling in Heat Conduction and Process for Producing the Same |
US13/342,625 US8936688B2 (en) | 2004-04-05 | 2012-01-03 | Aluminum alloy casting material for heat treatment excelling in heat conduction and process for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004111496A JP4341453B2 (en) | 2004-04-05 | 2004-04-05 | Aluminum alloy casting excellent in thermal conductivity and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005290527A JP2005290527A (en) | 2005-10-20 |
JP4341453B2 true JP4341453B2 (en) | 2009-10-07 |
Family
ID=35323789
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004111496A Expired - Fee Related JP4341453B2 (en) | 2004-04-05 | 2004-04-05 | Aluminum alloy casting excellent in thermal conductivity and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4341453B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107532268A (en) * | 2015-04-28 | 2018-01-02 | 联合工程公司 | System and method for being heat-treated to aluminium alloy castings |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5414310B2 (en) * | 2009-03-06 | 2014-02-12 | 日産自動車株式会社 | Heat sink for automotive high-power components, heat sink unit using the same, and method for manufacturing heat sink for automotive high-power components |
JP6140605B2 (en) * | 2013-12-26 | 2017-05-31 | 本田技研工業株式会社 | Al alloy casting and manufacturing method thereof |
JP6860768B2 (en) * | 2016-02-05 | 2021-04-21 | 学校法人 芝浦工業大学 | Manufacturing method of aluminum alloy for casting, aluminum alloy member, and aluminum alloy member |
-
2004
- 2004-04-05 JP JP2004111496A patent/JP4341453B2/en not_active Expired - Fee Related
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107532268A (en) * | 2015-04-28 | 2018-01-02 | 联合工程公司 | System and method for being heat-treated to aluminium alloy castings |
CN107532268B (en) * | 2015-04-28 | 2019-12-03 | 联合工程公司 | System and method for being heat-treated to aluminium alloy castings |
US11408062B2 (en) | 2015-04-28 | 2022-08-09 | Consolidated Engineering Company, Inc. | System and method for heat treating aluminum alloy castings |
Also Published As
Publication number | Publication date |
---|---|
JP2005290527A (en) | 2005-10-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8936688B2 (en) | Aluminum alloy casting material for heat treatment excelling in heat conduction and process for producing the same | |
JP5146767B2 (en) | Magnesium alloy for casting and method for producing magnesium alloy casting | |
WO2009122869A1 (en) | Cu-Ni-Si-Co COPPER ALLOY FOR ELECTRONIC MATERIAL AND PROCESS FOR PRODUCING THE SAME | |
JP5506806B2 (en) | Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same | |
JP5703881B2 (en) | High strength magnesium alloy and method for producing the same | |
JP2002180159A (en) | Copper alloy containing silver | |
JP2008081762A (en) | Cu-Cr-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL | |
JP7038823B2 (en) | Cu-Co-Si-Fe-P copper alloy with excellent bending workability and its manufacturing method | |
US11002498B2 (en) | Aluminum alloy fin material for heat exchanger excellent in strength, electrical conductivity, and brazeability, method for manufacturing aluminum alloy fin material for heat exchanger, and heat exchanger comprising aluminum alloy fin material for heat exchanger | |
JP6247225B2 (en) | Aluminum fin alloy and manufacturing method thereof | |
WO2012043170A1 (en) | Cu-Co-Si-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL AND METHOD FOR PRODUCING SAME | |
JP6229130B2 (en) | Cast aluminum alloy and casting using the same | |
JP3908987B2 (en) | Copper alloy excellent in bendability and manufacturing method thereof | |
JP6617012B2 (en) | Aluminum alloy fin material for heat exchangers excellent in strength, conductivity and brazing properties, and heat exchanger provided with the aluminum alloy fin materials for heat exchangers | |
JP4341453B2 (en) | Aluminum alloy casting excellent in thermal conductivity and method for producing the same | |
JP4487615B2 (en) | Method for producing cast aluminum alloy material with excellent thermal conductivity | |
TWI718319B (en) | Aluminum alloy plastically worked part and production method thereof | |
JP2001020027A (en) | Al-Mg-Si-Cu ALLOY SHEET EXCELLENT IN CORROSION RESISTANCE AND FORMABILITY, AND ITS MANUFACTURE | |
JP7472318B2 (en) | Aluminum alloys and aluminum alloy castings | |
JP7449367B2 (en) | Die-cast aluminum alloy, aluminum alloy die-cast material and manufacturing method thereof | |
JP3951921B2 (en) | Manufacturing method of aluminum alloy processed material of 58.1IACS% or more | |
JP2002226932A (en) | Aluminum alloy for heat sink having excellent strength and thermal conductivity and production method therefor | |
JP7073068B2 (en) | Al-Cu-Mg-based aluminum alloy and Al-Cu-Mg-based aluminum alloy material | |
WO2016136781A1 (en) | Heat-resistant magnesium alloy | |
JP6802689B2 (en) | Precipitation hardening copper alloy and its manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060628 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090310 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090508 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090616 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090629 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120717 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4341453 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120717 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130717 Year of fee payment: 4 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |