[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2005002414A - Method of recovering noble metal in solution - Google Patents

Method of recovering noble metal in solution Download PDF

Info

Publication number
JP2005002414A
JP2005002414A JP2003167355A JP2003167355A JP2005002414A JP 2005002414 A JP2005002414 A JP 2005002414A JP 2003167355 A JP2003167355 A JP 2003167355A JP 2003167355 A JP2003167355 A JP 2003167355A JP 2005002414 A JP2005002414 A JP 2005002414A
Authority
JP
Japan
Prior art keywords
platinum
noble metal
solution
metal
eluent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003167355A
Other languages
Japanese (ja)
Other versions
JP4169640B2 (en
Inventor
Akira Cho
亮 張
Hidetsugu Nakamura
英嗣 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maezawa Industries Inc
Original Assignee
Maezawa Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maezawa Industries Inc filed Critical Maezawa Industries Inc
Priority to JP2003167355A priority Critical patent/JP4169640B2/en
Publication of JP2005002414A publication Critical patent/JP2005002414A/en
Application granted granted Critical
Publication of JP4169640B2 publication Critical patent/JP4169640B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of recovering noble metals in a solution by which particularly expensive platinum can efficiently be recovered in such a manner that it is separated from the other noble metals. <P>SOLUTION: An adsorption stage wherein a solution comprising noble metal elements is contacted with a chelating material to allow noble metals in the solution to be adsorbed; and a first elution stage where the chelating material with the noble metals adsorbed in the adsorption stage is contacted with a platinum elution liquid comprising perchlorate, so that the platinum in the noble metals adsorbed on the chelating material is eluted into the platinum elution liquid are performed to recover the platinum into the platinum elution liquid. Further, a second elution stage wherein the chelating material after the first elution stage is contacted with a metal elution liquid to elute the noble metals into the metal elution liquid is performed, so that the noble metals other than the platinum are recovered into the metal elution liquid. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、溶液中の貴金属の回収方法に関し、詳しくは、溶液中に含まれている白金、パラジウム、金等の複数の貴金属の中から、特に白金を効率よく分離して回収する方法に関する。
【0002】
【従来の技術】
金、白金、銀等の貴金属は、耐食性に優れ、光沢を有することから装飾品として用いられ、さらに近年は、触媒としての用途も拡大している。これらの貴金属は、貴重な資源であることから、廃棄物や廃液からこれらの貴金属を回収して再利用することが望ましい。このため、従来から、様々な状態にある廃棄物や廃液から貴金属を回収するための技術が提案されてきている。例えば、貴金属を高濃度で含む廃液からは電解により貴金属を回収し、貴金属を低濃度で含む廃液からはキレート系イオン交換樹脂を利用して貴金属を回収することが提案されている(例えば、特許文献1参照。)。
【0003】
【特許文献1】
特開2001−279343号公報
【0004】
【発明が解決しようとする課題】
また、複数の貴金属を含む溶液中から特定の貴金属を分離回収することも行われているが、いずれの場合も多大な手間を要するものであり、溶液中の貴金属含有量が数十ppm程度の場合は、回収コストに大きな問題があった。
【0005】
そこで本発明は、溶液中の貴金属を回収するにあたり、特に高価な白金を他の貴金属から分離して効率よく回収することができる溶液中の貴金属の回収方法を提供することを目的としている。
【0006】
【課題を解決するための手段】
上記目的を達成するため、本発明の溶液中の貴金属の回収方法は、貴金属元素を含有する溶液から貴金属を回収する方法において、前記溶液をキレート材に接触させて溶液中の貴金属を前記キレート材に吸着させる吸着工程と、該吸着工程で貴金属を吸着した前記キレート材を過塩素酸塩を含む白金溶離液に接触させて前記キレート材に吸着した貴金属の中の白金を前記白金溶離液中に溶出させる第1溶離工程とを含むことを特徴としている。
【0007】
さらに、本発明の溶液中の貴金属の回収方法は、前記第1溶離工程を終えた前記キレート材を金属溶離液に接触させて貴金属を前記金属溶離液中に溶出させる第2溶離工程を含むことを特徴としている。また、前記吸着工程の前段で溶液中の金元素を溶液中から除去する金除去工程を行うこと、さらに、前記金属溶離液が、チオシアン酸塩、チオ尿素、鉱酸及び希王水のいずれか少なくとも一種であること、前記キレート材がイミノジ酢酸又はN−メチル−D−グルカミン又はポリエチレンイミンからなる官能基を有する群から選択される少なくとも一種のキレート官能基を有することを特徴としている。
【0008】
【発明の実施の形態】
図1は、本発明方法によって原液中に溶解している貴金属を白金と白金以外の貴金属とに分離して回収するために使用する貴金属回収装置の一例を示す概略構成図である。この貴金属回収装置は、原液をキレート材に接触させて吸着工程を行う貴金属吸着槽11と、該貴金属吸着槽11で混合状態となった前記キレート材と原液(処理液)とを分離する第1分離槽12と、該第1分離槽12で分離した前記キレート材を過塩素酸塩を含む白金溶離液に接触させて第1溶離工程を行う第1溶離槽13と、該第1溶離槽13で白金を溶出した後のキレート材と前記白金溶離液とを分離する第2分離槽14と、該第2分離槽14で分離した前記キレート材を金属溶離液に接触させて第2溶離工程を行う第2溶離槽15と、該第2溶離槽15で貴金属を溶出した後のキレート材と前記金属溶離液とを分離する第3分離槽16とを備えている。
【0009】
前記貴金属吸着槽11、第1溶離槽13及び第2溶離槽15は、撹拌機を有する完全混合槽を用いているが、キレート材と各液との接触方式は任意であり、充填筒を使用して下向流又は上向流で行うこともできる。また、固液分離を行う前記各分離槽12,14,16は、前記キレート材を各液から分離できれば、任意の固液分離手段が使用可能で、例えば、フィルター、膜分離、遠心分離等を用いることができ、これらを組み合わせて用いることもできる。さらに、この固液分離は、前記貴金属吸着槽11、第1溶離槽13及び第2溶離槽15の内部に適当な固液分離手段を組み合わせることにより、各分離槽を設けずに吸着槽や各溶離槽内で行うこともできる。
【0010】
貴金属の回収に使用するキレート材は、少なくとも原液中に含まれている貴金属、特に白金を吸着する能力を有するキレート材が用いられている。このキレート材には、原液の性状や貴金属の濃度等の条件に応じて各種のものを使用可能であるが、少なくとも導入されたキレート官能基はイミノジ酢酸又はN−メチル−D−グルカミン又はポリエチレンイミンからなる官能基を有する群から選択される少なくとも一種のキレート官能基を有することが好ましい。キレート官能基が導入される母材として、ポリスチレン等の合成樹脂や、セルロースなどの天然繊維を用いることができる。キレート材の形状は、粉、短繊維、糸切れ、顆粒及びビーズのいずれでもよい。取り扱い性や吸着能力等を考慮すると繊維状のものが最も適している。一例として、特開2000−169828号公報に記載された分子構造を有するものが好適であり、また天然繊維又は再生繊維を母材として用い、それにキレート官能基が導入されたものが特に好ましい。
【0011】
前記貴金属吸着槽11には、原液導入経路21から貴金属を溶存した原液が導入されるとともに、キレート材導入経路22から前記キレート材が導入され、原液とキレート材とを接触させる吸着工程が行われる。この吸着工程におけるpHは、原液の性状やキレート材の種類等の条件によって異なるが、通常はpH0〜3の範囲で行うことが好ましいため、必要に応じてpH調整剤注入経路23から塩酸や水酸化ナトリウム等のpH調整剤を注入して槽内の液のpHを貴金属の吸着に適したpHに調節して前記吸着工程を行う。この吸着工程では、貴金属を含む原液とキレート材とが接触することにより、原液中の貴金属がキレート材に吸着されて原液中から除去される。
【0012】
貴金属吸着槽11で所定の吸着工程を終えた原液(処理液)とキレート材との混合物は、貴金属吸着槽11から第1分離槽12に送られ、吸着工程で貴金属を吸着した前記キレート材と貴金属が除去された原液(処理液)とが分離し、分離した処理液は処理液流出経路24から導出され、分離したキレート材は第1分離槽12から第1溶離槽13に送られる。
【0013】
第1溶離槽13には、白金溶離液導入経路25から過塩素酸塩を含む白金溶離液が導入され、貴金属を吸着した前記キレート材と前記白金溶離液とを接触させる第1溶離工程が行われ、前記キレート材に吸着した貴金属の中の白金を前記白金溶離液中に溶出させる。白金溶離液中の前記過塩素酸塩の濃度は、キレート材の種類や貴金属の吸着量によって異なるが、通常は、0.01〜3M程度が適当であり、濃度が低すぎると白金を十分に溶出させることが困難となり、濃度を高くしても溶出効果はほとんど向上しない。
【0014】
第1溶離槽13の第1溶離工程でキレート材から溶出した白金を溶解した状態の白金溶離液と、白金以外の貴金属を吸着した状態のキレート材とからなる混合物は、第1溶離槽13から第2分離槽14に送られ、前記白金溶離液とキレート材とが分離される。分離した白金溶離液は、白金を溶解した状態で白金溶離液導出経路26から導出され、分離したキレート材は第2分離槽14から第2溶離槽15に送られる。
【0015】
第2溶離槽15では、金属溶離液導入経路27から金属溶離液が導入され、白金以外の貴金属を吸着した状態のキレート材と金属溶離液とを接触させる第2溶離工程が行われ、前記キレート材に吸着した白金以外の貴金属を前記金属溶離液中に溶出させる。この第2溶離工程で使用する金属溶離液は、キレート材に吸着している金属(貴金属)の種類や量、キレート材の種類に応じてキレート材から金属を溶離可能なものを選択することができるが、通常は、チオシアン酸塩、チオ尿素、鉱酸及び希王水のいずれかを用いればよく、これらを適当な順序で前記キレート材に接触させ、複数の金属を別々に溶出させることも可能である。
【0016】
第2溶離槽15での第2溶離工程を終えた金属溶離液とキレート材との混合物は、第2溶離槽15から第3分離槽16に送られ、白金以外の金属を溶解した状態の金属溶離液と、前記吸着工程で吸着した各種金属を溶出させた後のキレート材とが分離される。分離した金属溶離液は、各種金属を溶解した状態で金属溶離液導出経路28から導出され、分離したキレート材は、金属を吸着していない状態でキレート材循環経路29に導出された後、前記キレート材導入経路22を通って前記貴金属吸着槽11に循環し、吸着工程で再使用される。
【0017】
一方、前記白金溶離液導出経路26に導出した白金溶離液は、該白金溶離液中の白金濃度に応じた後処理が行われ、例えば、白金溶離液中の白金濃度がある程度高い場合には、電解処理によって白金を回収することができる。さらに、前記金属溶離液導出経路28に導出した金属溶離液に対しても、溶解している金属の種類に応じた処理が行われ、各金属に適した状態で回収することができる。
【0018】
また、このような工程を経て白金を回収するに当たり、原液中に比較的高濃度で金が含まれている場合は、吸着工程を行う前にあらかじめ金元素を除去する前処理を施すことが好ましい。すなわち、吸着工程でキレート材に吸着した金に過塩素酸塩が接触すると、金元素が固体の金に変化し、循環使用するキレート材に混入して蓄積される状態となる。この固体の金は、処理液や溶離液に少しずつ移動するので、処理液に混入した場合は金の回収率が低下し、また、白金溶離液中に混入した場合には回収する白金の不純物となる。吸着工程前の原液からの金の除去は、一般的な公知の方法で行うことができ、例えば、pH調節等によって容易に行うことができる。
【0019】
【実施例】
キレート材として、キレスト(株)製のキレストファイバーGRYを使用し、複数の貴金属元素を含む溶液から貴金属を除去するとともに、白金を分別して回収する実験を行った。実験用の原液には、貴金属元素として、金、インジウム、ガリウム、パラジウム、ロジウム及び白金をそれぞれ20ppm溶解させ、pH1.0に調整した水溶液を使用した。
【0020】
内径6mmのオープンカラムに約1gのキレート材(キレストファイバーGRY)を充填し、このカラムに、流速約100ml/hで前記原液を1.2リットル導入して吸着工程を行った。このとき、カラムから流出する液をプラズマ発光分析装置で分析し、各元素の濃度を測定した。その結果を図2に示す。なお、図2は原液導入量と導出液中の各貴金属元素の濃度との関係を示す図であって、縦軸は初期濃度(C0)に対する測定濃度(C)の割合(濃度比:C/C0)であり、横軸は原液導入量[ml]である。
【0021】
この結果から、インジウム、ガリウム及びロジウムは、キレート材に吸着せずにカラムを通過していることがわかる。また、金は300mlで、パラジウムは360mlでそれぞれ破過点に至っており、白金は900mlで破過点に至っていることがわかる。なお、金及びパラジウムの破過点以降の濃度が初期濃度以上になっているのは、キレート材から脱着した金及びパラジウムが含まれているためである。
【0022】
次に、カラム内に50mlの蒸留水を導入したキレート材を洗浄した後、カラム内に1Mの過塩素酸ナトリウム水溶液(白金溶離液)を約110ml/hで200ml導入して第1溶離工程を行い、カラムから流出した液中の各元素の濃度を測定した。その結果を図3に示す。なお、図3は、白金溶離液導入量と導出液中の各貴金属元素の濃度との関係を示す図であって、縦軸は各貴金属元素の濃度[ppm]であり、横軸は白金溶離液の導入量[ml]である。
【0023】
この結果から、キレート材に吸着した白金が1Mの過塩素酸ナトリウム水溶液に短時間で溶離しており、金及びパラジウムはほとんど溶離していないことがわかる。カラムから流出した白金溶離液における初期の20mlには、前記貴金属成分中における白金の占める割合が初期の16.6%から94.9%に上昇し、白金が精製されていることがわかる。
【0024】
【発明の効果】
以上説明したように、本発明の溶液中の貴金属の回収方法によれば、貴金属元素を微量に含有する溶液から貴金属を回収するにあたり、特に高価な白金を効率よく分離して回収することができる。
【図面の簡単な説明】
【図1】貴金属回収装置の一例を示す概略構成図である。
【図2】実施例の吸着工程における原液導入量と導出液中の各貴金属元素の濃度比との関係を示す図である。
【図3】実施例の第1溶離工程における白金溶離液導入量と導出液中の各貴金属元素の濃度との関係を示す図である。
【符号の説明】
11…貴金属吸着槽、12…第1分離槽、13…第1溶離槽、14…第2分離槽、15…第2溶離槽、16…第3分離槽、21…原液導入経路、22…キレート材導入経路、23…pH調整剤注入経路、24…処理液流出経路、25…白金溶離液導入経路、26…白金溶離液導出経路、27…金属溶離液導入経路、28…金属溶離液導出経路、29…キレート材循環経路
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for recovering a noble metal in a solution, and more particularly to a method for efficiently separating and recovering platinum from a plurality of noble metals such as platinum, palladium, and gold contained in a solution.
[0002]
[Prior art]
Precious metals such as gold, platinum and silver are used as decorative products because of their excellent corrosion resistance and gloss, and in recent years, their use as catalysts has also expanded. Since these noble metals are valuable resources, it is desirable to collect and reuse these noble metals from waste or liquid waste. For this reason, conventionally, techniques for recovering noble metals from wastes and waste liquids in various states have been proposed. For example, it has been proposed to recover noble metal by electrolysis from a waste liquid containing a high concentration of noble metal and to recover the noble metal from a waste liquid containing a low concentration of noble metal using a chelate ion exchange resin (for example, patents). Reference 1).
[0003]
[Patent Document 1]
JP-A-2001-279343
[Problems to be solved by the invention]
In addition, a specific noble metal is also separated and recovered from a solution containing a plurality of noble metals, but in any case, it requires a lot of labor, and the noble metal content in the solution is about several tens of ppm. In that case, there was a big problem with the recovery cost.
[0005]
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a method for recovering a noble metal in a solution that can separate and recover an expensive platinum from other noble metals efficiently when recovering the noble metal in the solution.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, a method for recovering a noble metal in a solution according to the present invention is a method for recovering a noble metal from a solution containing a noble metal element, wherein the solution is brought into contact with a chelating material to convert the noble metal in the solution to the chelating material. An adsorption process for adsorbing the precious metal in the adsorption process, and contacting the chelating material adsorbed with the precious metal in the adsorption process with a platinum eluent containing perchlorate so that platinum in the precious metal adsorbed on the chelating material is contained in the platinum eluent. And a first elution step for elution.
[0007]
Furthermore, the method for recovering a noble metal in the solution of the present invention includes a second elution step in which the chelating material that has finished the first elution step is brought into contact with a metal eluent to elute the noble metal into the metal eluent. It is characterized by. Further, performing a gold removal step of removing gold elements in the solution from the solution before the adsorption step, and further, the metal eluent is any one of thiocyanate, thiourea, mineral acid and dilute aqua regia. It is at least one, and the chelating material has at least one chelate functional group selected from the group having a functional group consisting of iminodiacetic acid, N-methyl-D-glucamine or polyethyleneimine.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a schematic configuration diagram showing an example of a noble metal recovery device used for separating and recovering noble metal dissolved in a stock solution by platinum and noble metals other than platinum by the method of the present invention. The precious metal recovery apparatus is configured to separate a precious metal adsorption tank 11 that performs an adsorption process by bringing a stock solution into contact with a chelate material, and a chelate material that is mixed in the precious metal adsorption tank 11 and a stock solution (treatment liquid). A separation tank 12, a first elution tank 13 that performs a first elution step by bringing the chelate material separated in the first separation tank 12 into contact with a platinum eluent containing perchlorate, and the first elution tank 13 A second separation tank 14 for separating the chelate material after the platinum is eluted from the platinum eluent, and the chelate material separated in the second separation tank 14 is brought into contact with a metal eluent to perform a second elution step. A second elution tank 15 to be performed, and a third separation tank 16 for separating the chelate material after the precious metal is eluted in the second elution tank 15 and the metal eluent are provided.
[0009]
The noble metal adsorption tank 11, the first elution tank 13 and the second elution tank 15 use a complete mixing tank having a stirrer, but the contact method between the chelating material and each liquid is arbitrary, and a filling cylinder is used. Thus, it can be carried out in a downward or upward flow. The separation tanks 12, 14, and 16 that perform solid-liquid separation can use any solid-liquid separation means as long as the chelating material can be separated from each liquid. For example, filters, membrane separation, centrifugation, and the like can be used. These can be used, and these can also be used in combination. Further, this solid-liquid separation is performed by combining an appropriate solid-liquid separation means in the noble metal adsorption tank 11, the first elution tank 13, and the second elution tank 15, so that the adsorption tank and the It can also be carried out in an elution tank.
[0010]
As the chelating material used for recovering the noble metal, a chelating material having an ability to adsorb at least the noble metal contained in the stock solution, particularly platinum, is used. As this chelating material, various materials can be used depending on conditions such as the properties of the stock solution and the concentration of the noble metal. At least the chelating functional group introduced is iminodiacetic acid, N-methyl-D-glucamine, or polyethyleneimine. It preferably has at least one chelate functional group selected from the group having a functional group consisting of As a base material into which a chelate functional group is introduced, a synthetic resin such as polystyrene or a natural fiber such as cellulose can be used. The shape of the chelating material may be any of powder, short fibers, thread breaks, granules and beads. In consideration of handling properties and adsorption capacity, fibrous materials are most suitable. As an example, those having a molecular structure described in JP-A No. 2000-169828 are suitable, and those using a natural fiber or regenerated fiber as a base material and having a chelate functional group introduced therein are particularly preferred.
[0011]
In the noble metal adsorption tank 11, a stock solution in which a noble metal is dissolved is introduced from the stock solution introduction path 21, and the chelate material is introduced from the chelate material introduction path 22, and an adsorption process is performed in which the stock solution and the chelate material are brought into contact with each other. . Although the pH in this adsorption step varies depending on conditions such as the properties of the stock solution and the type of chelating material, it is usually preferable to carry out in the range of pH 0 to 3, so that hydrochloric acid or water can be supplied from the pH adjuster injection path 23 as necessary. The adsorption step is performed by injecting a pH adjusting agent such as sodium oxide to adjust the pH of the liquid in the tank to a pH suitable for adsorption of the noble metal. In this adsorption step, when the stock solution containing the noble metal and the chelating material come into contact, the noble metal in the stock solution is adsorbed by the chelating material and removed from the stock solution.
[0012]
The mixture of the undiluted solution (treatment solution) and the chelating material that has finished the predetermined adsorption process in the noble metal adsorption tank 11 is sent from the noble metal adsorption tank 11 to the first separation tank 12, and the chelate material that adsorbs the noble metal in the adsorption process and The stock solution from which the precious metal has been removed (processing solution) is separated, the separated processing solution is led out from the processing solution outflow path 24, and the separated chelating material is sent from the first separation tank 12 to the first elution tank 13.
[0013]
In the first elution tank 13, a platinum eluent containing perchlorate is introduced from the platinum eluent introduction path 25, and a first elution step is performed in which the chelating material that has adsorbed a noble metal and the platinum eluent are brought into contact with each other. The platinum in the noble metal adsorbed on the chelating material is eluted in the platinum eluent. The concentration of the perchlorate in the platinum eluent varies depending on the type of chelating material and the amount of precious metal adsorbed. Usually, about 0.01 to 3M is appropriate. If the concentration is too low, the platinum is sufficient. It becomes difficult to elute, and even if the concentration is increased, the elution effect is hardly improved.
[0014]
A mixture composed of a platinum eluent in which platinum eluted from the chelate material in the first elution step of the first elution tank 13 is dissolved and a chelate material in a state where a precious metal other than platinum is adsorbed is removed from the first elution tank 13. It is sent to the second separation tank 14 and the platinum eluent and the chelating material are separated. The separated platinum eluent is led out from the platinum eluent outlet path 26 in a state where platinum is dissolved, and the separated chelating material is sent from the second separation tank 14 to the second elution tank 15.
[0015]
In the second elution tank 15, a metal eluent is introduced from the metal eluent introduction path 27, and a second elution step is performed in which the chelate material in a state where a precious metal other than platinum is adsorbed is brought into contact with the metal eluent. Precious metals other than platinum adsorbed on the material are eluted in the metal eluent. The metal eluent used in the second elution step may be selected from those capable of eluting metal from the chelate material according to the type and amount of metal (noble metal) adsorbed on the chelate material and the type of chelate material. However, usually, any of thiocyanate, thiourea, mineral acid and dilute aqua regia may be used, and these may be contacted with the chelating agent in an appropriate order to elute a plurality of metals separately. Is possible.
[0016]
The mixture of the metal eluent and the chelating material that has finished the second elution step in the second elution tank 15 is sent from the second elution tank 15 to the third separation tank 16 to dissolve the metal other than platinum. The eluent and the chelating material after the various metals adsorbed in the adsorption step are eluted are separated. The separated metal eluent is led out from the metal eluent lead-out path 28 in a state where various metals are dissolved, and the separated chelate material is led out to the chelate material circulation path 29 in a state where no metal is adsorbed, It circulates in the noble metal adsorption tank 11 through the chelate material introduction path 22 and is reused in the adsorption process.
[0017]
On the other hand, the platinum eluent led out to the platinum eluent lead-out path 26 is subjected to post-treatment according to the platinum concentration in the platinum eluent. For example, when the platinum concentration in the platinum eluent is high to some extent, Platinum can be recovered by electrolytic treatment. Further, the metal eluent led out to the metal eluent lead-out path 28 is also processed according to the type of the dissolved metal, and can be recovered in a state suitable for each metal.
[0018]
In addition, when recovering platinum through such a process, if the stock solution contains gold at a relatively high concentration, it is preferable to perform a pretreatment to remove the gold element in advance before performing the adsorption process. . That is, when perchlorate comes into contact with the gold adsorbed on the chelate material in the adsorption process, the gold element changes to solid gold, and is mixed and accumulated in the chelate material used in circulation. Since this solid gold moves little by little to the processing solution and eluent, the gold recovery rate decreases when mixed in the processing solution, and the platinum impurities recovered when mixed in the platinum eluent. It becomes. The removal of gold from the stock solution before the adsorption step can be performed by a generally known method, and can be easily performed by adjusting the pH, for example.
[0019]
【Example】
As a chelating material, Kirest Fiber GRY manufactured by Kirest Co., Ltd. was used, and while removing the noble metal from the solution containing a plurality of noble metal elements, an experiment was conducted for separating and collecting platinum. For the experimental stock solution, an aqueous solution in which 20 ppm each of gold, indium, gallium, palladium, rhodium and platinum were dissolved and adjusted to pH 1.0 was used as a noble metal element.
[0020]
An open column having an inner diameter of 6 mm was filled with about 1 g of a chelating material (Cyrest fiber GRY), and 1.2 liters of the stock solution was introduced into this column at a flow rate of about 100 ml / h to perform an adsorption step. At this time, the liquid flowing out from the column was analyzed with a plasma emission analyzer, and the concentration of each element was measured. The result is shown in FIG. FIG. 2 is a graph showing the relationship between the stock solution introduction amount and the concentration of each noble metal element in the derived solution, and the vertical axis represents the ratio of the measured concentration (C) to the initial concentration (C0) (concentration ratio: C / C0), and the horizontal axis represents the amount of stock solution introduced [ml].
[0021]
From this result, it can be seen that indium, gallium and rhodium pass through the column without being adsorbed on the chelate material. In addition, it can be seen that gold reached 300 ml, palladium reached 360 ml and reached the breakthrough point, and platinum reached 900 ml. The reason why the concentration after the breakthrough point of gold and palladium is equal to or higher than the initial concentration is that gold and palladium desorbed from the chelating material are included.
[0022]
Next, after washing the chelating material into which 50 ml of distilled water was introduced into the column, 200 ml of 1M sodium perchlorate aqueous solution (platinum eluent) was introduced into the column at about 110 ml / h to carry out the first elution step. The concentration of each element in the liquid flowing out from the column was measured. The result is shown in FIG. FIG. 3 is a graph showing the relationship between the amount of platinum eluent introduced and the concentration of each noble metal element in the derived liquid, wherein the vertical axis represents the concentration of each noble metal element [ppm], and the horizontal axis represents platinum elution. The amount of liquid introduced [ml].
[0023]
From this result, it can be seen that platinum adsorbed on the chelating material elutes in a 1M sodium perchlorate aqueous solution in a short time, and gold and palladium are hardly eluted. In the initial 20 ml of the platinum eluent flowing out from the column, the proportion of platinum in the noble metal component increased from 16.6% to 94.9%, indicating that the platinum was purified.
[0024]
【The invention's effect】
As described above, according to the method for recovering a noble metal in a solution of the present invention, when recovering a noble metal from a solution containing a trace amount of a noble metal element, particularly expensive platinum can be efficiently separated and recovered. .
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram showing an example of a noble metal recovery apparatus.
FIG. 2 is a diagram showing the relationship between the amount of the stock solution introduced in the adsorption step of the example and the concentration ratio of each noble metal element in the derived solution.
FIG. 3 is a graph showing the relationship between the amount of platinum eluent introduced and the concentration of each noble metal element in the derived liquid in the first elution step of the example.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 11 ... Precious metal adsorption tank, 12 ... 1st separation tank, 13 ... 1st elution tank, 14 ... 2nd separation tank, 15 ... 2nd elution tank, 16 ... 3rd separation tank, 21 ... Stock solution introduction path, 22 ... Chelate Material introduction path, 23... PH adjuster injection path, 24... Treatment liquid outflow path, 25... Platinum eluent introduction path, 26. 29 ... Chelating material circulation path

Claims (5)

貴金属元素を含有する溶液から貴金属を回収する方法において、前記溶液をキレート材に接触させて溶液中の貴金属を前記キレート材に吸着させる吸着工程と、該吸着工程で貴金属を吸着した前記キレート材を過塩素酸塩を含む白金溶離液に接触させて前記キレート材に吸着した貴金属の中の白金を前記白金溶離液中に溶出させる第1溶離工程とを含むことを特徴とする溶液中の貴金属の回収方法。In the method of recovering a noble metal from a solution containing a noble metal element, an adsorption step of bringing the solution into contact with a chelating material to adsorb the noble metal in the solution to the chelating material, and the chelating material that adsorbs the noble metal in the adsorption step A first elution step in which platinum in the noble metal adsorbed on the chelating material in contact with a platinum eluent containing perchlorate is eluted into the platinum eluent. Collection method. 前記第1溶離工程を終えた前記キレート材を金属溶離液に接触させて貴金属を前記金属溶離液中に溶出させる第2溶離工程を含むことを特徴とする請求項1記載の溶液中の貴金属の回収方法。The precious metal in the solution according to claim 1, further comprising a second elution step of bringing the chelate material that has finished the first elution step into contact with a metal eluent to elute the precious metal into the metal eluent. Collection method. 前記吸着工程の前段で、溶液中の金元素を溶液中から除去する金除去工程を行うことを特徴とする請求項1又は2記載の溶液中の貴金属の回収方法。The method for recovering a noble metal in a solution according to claim 1 or 2, wherein a gold removing step for removing gold element in the solution from the solution is performed before the adsorption step. 前記金属溶離液は、チオシアン酸塩、チオ尿素、鉱酸及び希王水のいずれか少なくとも一種であることを特徴とする請求項2記載の溶液中の貴金属の回収方法。3. The method for recovering a noble metal in a solution according to claim 2, wherein the metal eluent is at least one of thiocyanate, thiourea, mineral acid, and dilute aqua regia. 前記キレート材は、イミノジ酢酸又はN−メチル−D−グルカミン又はポリエチレンイミンからなる官能基を有する群から選択される少なくとも一種のキレート官能基を有することを特徴とする請求項1又は2記載の溶液中の貴金属の回収方法。The solution according to claim 1 or 2, wherein the chelating material has at least one chelating functional group selected from the group having a functional group consisting of iminodiacetic acid, N-methyl-D-glucamine, or polyethyleneimine. Method for recovering precious metals.
JP2003167355A 2003-06-12 2003-06-12 Method for recovering precious metals in solution Expired - Lifetime JP4169640B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003167355A JP4169640B2 (en) 2003-06-12 2003-06-12 Method for recovering precious metals in solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003167355A JP4169640B2 (en) 2003-06-12 2003-06-12 Method for recovering precious metals in solution

Publications (2)

Publication Number Publication Date
JP2005002414A true JP2005002414A (en) 2005-01-06
JP4169640B2 JP4169640B2 (en) 2008-10-22

Family

ID=34093181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003167355A Expired - Lifetime JP4169640B2 (en) 2003-06-12 2003-06-12 Method for recovering precious metals in solution

Country Status (1)

Country Link
JP (1) JP4169640B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006193763A (en) * 2005-01-11 2006-07-27 Kazuhiro Niizawa Method for separating and recovering noble metal
US7687663B2 (en) 2004-11-12 2010-03-30 Monsanto Technology Llc Recovery of noble metals from aqueous process streams
WO2012121496A2 (en) * 2011-03-09 2012-09-13 (주)알티아이엔지니어링 Method for recovering platinum group metals from industrial waste containing platinum group metals
KR101392179B1 (en) 2013-02-08 2014-05-08 강희남 Recovery method of platinum group metal and apparatus for recovering platinum group metal
WO2017126355A1 (en) 2016-01-20 2017-07-27 ハイモ株式会社 Iminodiacetic acid type chelate resin and method for producing same
KR102118413B1 (en) * 2019-10-15 2020-06-03 한국지질자원연구원 Polyethyleneimine-grafted nanocellulose shaped body, preparation thereof, andselective adsorbent using the same for platinum group metals

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7687663B2 (en) 2004-11-12 2010-03-30 Monsanto Technology Llc Recovery of noble metals from aqueous process streams
JP2006193763A (en) * 2005-01-11 2006-07-27 Kazuhiro Niizawa Method for separating and recovering noble metal
WO2012121496A2 (en) * 2011-03-09 2012-09-13 (주)알티아이엔지니어링 Method for recovering platinum group metals from industrial waste containing platinum group metals
WO2012121496A3 (en) * 2011-03-09 2012-11-15 (주)알티아이엔지니어링 Method for recovering platinum group metals from industrial waste containing platinum group metals
KR101224503B1 (en) * 2011-03-09 2013-02-04 (주)알티아이엔지니어링 Method for recovering platinum group matals from platinum group matals industrial waste
CN103502484A (en) * 2011-03-09 2014-01-08 Rti化学工程有限公司 Method for recovering platinum group metals from industrial waste containing platinum group metals
KR101392179B1 (en) 2013-02-08 2014-05-08 강희남 Recovery method of platinum group metal and apparatus for recovering platinum group metal
WO2017126355A1 (en) 2016-01-20 2017-07-27 ハイモ株式会社 Iminodiacetic acid type chelate resin and method for producing same
US10364303B2 (en) 2016-01-20 2019-07-30 Hymo Corporation Iminodiacetic acid type chelate resin and method for producing same
KR102118413B1 (en) * 2019-10-15 2020-06-03 한국지질자원연구원 Polyethyleneimine-grafted nanocellulose shaped body, preparation thereof, andselective adsorbent using the same for platinum group metals

Also Published As

Publication number Publication date
JP4169640B2 (en) 2008-10-22

Similar Documents

Publication Publication Date Title
CN107002168B (en) A kind of METAL EXTRACTION method of the leaching simultaneously in hygrometric state solid and absorption
CN100497676C (en) Solid phase extraction process for extracting and separating palladium
RU2386709C1 (en) Separation and exrtaction method of precious metals
AU2013360015B2 (en) A process, method and plant for recovering scandium
JPWO2014157225A1 (en) Rare earth element adsorbent and recovery method thereof
Zhou et al. Development of a fixed‐bed column with cellulose/chitin beads to remove heavy‐metal ions
Zhang et al. Defluoridation in fixed bed column filled with Zr (IV)-loaded garlic peel
Yahorava et al. Ion exchange technology for the efficient recovery of precious metals from waste and low-grade streams
JP4169640B2 (en) Method for recovering precious metals in solution
CN106731008B (en) Composition and method for eluting antimony and bismuth from solid phase
CN113278815B (en) Method for recovering gold by using adsorption resin
JP4353731B2 (en) Method for removing arsenic in solution
JP3896423B2 (en) Method for recovering palladium from palladium-containing liquid
Xiong et al. Adsorption behavior of Pd (II) from aqueous solutions by D201 resin
JP6653778B1 (en) Method and apparatus for recovering catalytic metal from aqueous solution containing catalytic metal co-precipitated with tin
JP2005008455A (en) Method for separating and recovering iron and manganese which coexist in water
JP6205290B2 (en) Method for recovering gold or silver from cyanic waste liquid containing gold or silver
AU2008283739B2 (en) Enrichment process for a PGM-metals containing stream
JP2016151062A (en) METHOD FOR REMOVING IMPURITY ELEMENT FROM Pt-CONTAINING SOLUTION AND METHOD FOR RECOVERING Pt USING THE SAME
Hubicki et al. Studies of the selective removal of microquantities of platinum (IV) ions from model chloride solutions onto ion exchangers containing functional tertiary amine and polyamine groups
JPH0533071A (en) Method for separating and refining rhodium from aqueous solution
RU2087565C1 (en) Method of recovering precious metals from ion-exchange resins containing gold, silver, and platinum metals
KR20100002481U (en) Recovery of palladium from waste solution of palladium plating
JP4885149B2 (en) Method for separating and recovering precious metals
CN110578063B (en) Method for separating and extracting palladium by using polystyrene-benzoxazole thioether resin

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080430

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080624

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080715

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080805

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4169640

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120815

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130815

Year of fee payment: 5

EXPY Cancellation because of completion of term