JPH0533071A - Method for separating and refining rhodium from aqueous solution - Google Patents
Method for separating and refining rhodium from aqueous solutionInfo
- Publication number
- JPH0533071A JPH0533071A JP21427591A JP21427591A JPH0533071A JP H0533071 A JPH0533071 A JP H0533071A JP 21427591 A JP21427591 A JP 21427591A JP 21427591 A JP21427591 A JP 21427591A JP H0533071 A JPH0533071 A JP H0533071A
- Authority
- JP
- Japan
- Prior art keywords
- resin
- resin tower
- adsorbed
- aqueous solution
- tower
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Manufacture And Refinement Of Metals (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、多種多様の不純物を共
存するRh含有液から貴金属吸着用キレート樹脂を用いて
Rhを分離、精製する方法に関する。The present invention relates to the use of a chelating resin for adsorbing a noble metal from a Rh-containing liquid in which various impurities coexist.
The present invention relates to a method for separating and purifying Rh.
【0002】[0002]
【従来の技術】例えば銀電解スライムなどのような、P
t、Pd、Rh、Au、Bi、Te、Pb、Cuなどの種々の金属元素
を含む溶液からRhを回収する方法として、従来は、
1) ギ酸を添加し、Rh元素を還元し沈殿させて、主にCu
元素との分離を目的としたギ酸還元法、
2) 亜硝酸ナトリウムを添加して液性を中性にし、Rh以
外の元素を沈澱させる方法、などが公知である。2. Description of the Related Art P, such as silver electrolytic slime,
As a method for recovering Rh from a solution containing various metal elements such as t, Pd, Rh, Au, Bi, Te, Pb, and Cu, conventionally, 1) formic acid was added to reduce Rh element to precipitate it. , Mainly Cu
Formic acid reduction method for the purpose of separation from elements, 2) a method of adding sodium nitrite to make the liquid neutral and precipitating elements other than Rh are known.
【0003】[0003]
【発明が解決しようとする課題】しかし、上記 1) の方
法は、Rhが還元され沈殿する際に、Cu、Au、Pt、Pdなど
の元素がRhの沈殿物に混入してしまうため、この還元沈
殿させる操作を何度も繰り返し行わなければRhの粗分離
ができない。However, in the method of 1) above, elements such as Cu, Au, Pt, and Pd are mixed in the precipitate of Rh when Rh is reduced and precipitated. Rh cannot be roughly separated unless the operation of reducing and precipitating is repeated many times.
【0004】一方、 2) の方法は、Rhを回収しようとす
る混合液中にCu、Pdなどの元素が高い含有率で存在する
場合には、Cu、Pdなどの元素とともにRhも共沈してしま
い収率が低かったり、また、溶解、固液分離、固体の移
動など人手のかかる工程が多く、自動化したり省力化す
るのが困難である。On the other hand, in the method 2), when elements such as Cu and Pd are present at a high content in the mixed solution from which Rh is to be recovered, Rh is also coprecipitated together with the elements such as Cu and Pd. The yield is low, and many labor-intensive steps such as dissolution, solid-liquid separation, and solid movement are difficult, and it is difficult to automate or save labor.
【0005】最近、各種の貴金属吸着用キレート樹脂が
市販されているが、これらの樹脂は、Pt、Pd及びRhの白
金族金属元素やAu元素などをすべて吸着してしまい、Rh
のみを選択的に吸着分離することができるものはない。
さらに、従来これらのキレート樹脂から吸着金属を溶離
させる効果的な方法がなく、樹脂を焼くことによって吸
着金属を回収するほかないためRhの精製分離度は不十分
である上に、コストが高くなってしまう。Recently, various kinds of chelate resins for adsorbing noble metals are commercially available. However, these resins adsorb all platinum group metal elements such as Pt, Pd and Rh, Au elements, etc.
There is nothing that can be selectively adsorbed and separated.
Furthermore, there is no effective method to elute the adsorbed metal from these chelate resins, and the adsorbed metal must be recovered by baking the resin, so the purification separation of Rh is insufficient and the cost becomes high. Will end up.
【0006】そこで本発明の課題は、上述のようなRhが
他の金属とともに溶解している溶液からRhを分離、精製
する方法であって、Rhを高い比率でかつ高い収率で分離
することができ、経済的にも有利な方法を提供すること
である。[0006] Therefore, an object of the present invention is a method for separating and purifying Rh from a solution in which Rh is dissolved with other metals as described above, and to separate Rh in a high ratio and a high yield. And to provide an economically advantageous method.
【0007】[0007]
【課題を解決するための手段】すなわち本発明は、Pd、
Pt、Au、Bi、Te、PbおよびCuからなる群から選ばれる少
なくとも1種の元素およびRhを含有する水溶液からRhを
分離、精製する方法であって、(1) 前記水溶液を遊離の
塩酸濃度が1mol/l以上に調整した後、貴金属吸着用キ
レート樹脂を充填した第一の樹脂塔に通液させ、これに
より、(1-a) まず、前記水溶液中のRh、Pd、Pt、Au、Bi
およびPbをキレート樹脂に吸着させ、(1-b) 次に、前記
水溶液の通液を継続することによりキレート樹脂に吸着
されたPt、Pd、AuおよびBiの大部分をRhに置換させるこ
とにより、キレート樹脂上の吸着金属中のRh比率を高
め、同時に溶離したPt、Pd、AuおよびBiを第一の樹脂塔
から溶出させ、(1-c) 上記のサブ工程(1-a) および(1-
b) を通じて、キレート樹脂に吸着しないTeおよびCuを
第一の樹脂塔から溶出させて分離する、ことからなる工
程;および(2) 工程(1) を経た第一の樹脂塔に温度25℃
以上、濃度1.0 mol/l以上の硫酸酸性水溶液を通液し、
これにより第一の樹脂塔からRhを溶離、溶出させる工
程、を有するRhの分離、精製方法を提供するものであ
る。Means for Solving the Problems That is, the present invention is based on Pd,
A method of separating and purifying Rh from an aqueous solution containing at least one element selected from the group consisting of Pt, Au, Bi, Te, Pb and Cu, and Rh, comprising: (1) free hydrochloric acid concentration of the aqueous solution; Is adjusted to 1 mol / l or more and then passed through a first resin tower filled with a chelating resin for adsorbing a noble metal, whereby (1-a) first, Rh, Pd, Pt, Au in the aqueous solution is Bi
By adsorbing Pb and Pb to the chelate resin, (1-b), by substituting Rh for most of Pt, Pd, Au, and Bi adsorbed on the chelate resin by continuing to pass the aqueous solution. The ratio of Rh in the adsorbed metal on the chelate resin is increased, and Pt, Pd, Au and Bi, which are simultaneously eluted, are eluted from the first resin tower, and (1-c) the above sub-steps (1-a) and ( 1-
b) through the steps of eluting and separating Te and Cu which are not adsorbed to the chelate resin from the first resin tower; and (2) a temperature of 25 ° C. in the first resin tower that has passed through step (1).
Above, pass the sulfuric acid acidic aqueous solution with a concentration of 1.0 mol / l or more,
This provides a method of separating and purifying Rh, which comprises a step of eluting Rh from the first resin tower and eluting it.
【0008】工程(1)
使用する貴金属吸着用キレート樹脂は、例えば、スミキ
レートMC−10(商品名、住友化学社製)、スミカイオ
ンKA−890 (商品名、住友化学社製)、ユニセレック
スUR−3900(商品名、ユニチカ社製)、ダイヤイオン
(商品名、三菱油化社製)などが挙げられる。The chelating resin for adsorbing the noble metal used in the step (1) is, for example, SUMICHELE MC-10 (trade name, manufactured by Sumitomo Chemical Co., Ltd.), SUMIKAION KA-890 (trade name, manufactured by Sumitomo Chemical Co., Ltd.), UNICEREX UR-. 3900 (trade name, manufactured by Unitika), Diaion (trade name, manufactured by Mitsubishi Petrochemical Co., Ltd.) and the like.
【0009】この工程では、TeおよびCuは基本的に吸着
されず、その他の金属は吸着される。処理対象であるP
d、Pt、Au、Bi、Te、PbおよびCuの少なくとも一種を不
純物として含み、Rhを含有する水溶液は、本発明の方法
で処理するに当り、遊離の塩酸濃度が1mol/l以上が好
ましく、より好ましくは3mol/l以上に調整される。遊
離の塩酸の濃度が低すぎると、Rhのキレート樹脂への吸
着率が非常に低くなってしまう。Rhその他の金属を含む
塩酸酸性溶液をキレート樹脂を充填した第一の樹脂塔に
通液する際の条件としては、SVが1〜5の範囲であるこ
とが好ましい。In this step, Te and Cu are basically not adsorbed, but other metals are adsorbed. P to be processed
An aqueous solution containing at least one of d, Pt, Au, Bi, Te, Pb and Cu as an impurity, and containing Rh has a free hydrochloric acid concentration of preferably 1 mol / l or more when treated by the method of the present invention, It is more preferably adjusted to 3 mol / l or more. If the concentration of free hydrochloric acid is too low, the adsorption rate of Rh on the chelate resin will be extremely low. The conditions for passing the acidic hydrochloric acid solution containing Rh and other metals through the first resin tower filled with the chelate resin are preferably such that SV is in the range of 1 to 5.
【0010】工程(1) の初めの段階〔サブ工程(1-a) 〕
では、TeとCu以外の金属はキレート樹脂に吸着される。
TeとCuは、吸着されずに第一の樹脂塔から流出する。工
程(1) の次の段階〔サブ工程(1-b)〕では、Rhイオンが
塩酸酸性下では他の不純物元素に比べて前記のキレート
樹脂に対して相対的に強い吸着性を有するため、一旦キ
レート樹脂に吸着され金属のうちPt、Pd、AuおよびBiは
溶離し、Rhに置換される。通液の経過とともにこの置換
は進行するので、吸着金属中のRhの比率は高まり、一方
溶離したPt、Pd、AuおよびBiは先に樹脂塔から溶出さ
れ、分離される。こうして、RhのPt、Pd、AuおよびBiか
らの分離が進行する。First stage of step (1) [sub-step (1-a)]
Then, metals other than Te and Cu are adsorbed by the chelate resin.
Te and Cu flow out of the first resin tower without being adsorbed. In the next step (sub-step (1-b)) of the step (1), Rh ions have relatively strong adsorptivity for the chelate resin as compared with other impurity elements under acidic conditions with hydrochloric acid, Once adsorbed on the chelating resin, Pt, Pd, Au and Bi among the metals are eluted and replaced with Rh. Since this substitution proceeds with the passage of liquid, the ratio of Rh in the adsorbed metal increases, while the eluted Pt, Pd, Au and Bi are eluted from the resin tower first and separated. Thus, the separation of Rh from Pt, Pd, Au and Bi proceeds.
【0011】しかし、サブ工程(1-b) が進行し一定時間
経過すると、Rhの吸着率が低下し始め、第一樹脂塔の下
部からRhが流出し始める。このRhが失われないように、
回収するために、この工程(1) を行う際には、第一の樹
脂塔の下端に貴金属吸着用キレート樹脂を充填した第二
の樹脂塔を直列に接続した状態で行うのが好ましい。こ
れにより第一樹脂塔から第一の樹脂塔から溶出するRhを
第二の樹脂塔に吸着させ、回収することができる。However, when the sub-step (1-b) progresses and a certain period of time elapses, the adsorption rate of Rh starts to decrease and Rh starts to flow out from the lower part of the first resin tower. So as not to lose this Rh,
In order to recover, when performing this step (1), it is preferable that the lower end of the first resin tower is connected in series with the second resin tower filled with the chelating resin for adsorbing the noble metal. As a result, Rh eluted from the first resin tower from the first resin tower can be adsorbed to the second resin tower and recovered.
【0012】工程(2)
この工程では、第一の樹脂塔に、温度25℃以上、濃度1.
0 mol/l以上の硫酸酸性水溶液を通液される。工程(1)
を経た第一の樹脂塔のキレート樹脂にはRhが濃縮された
状態で吸着されている。硫酸酸性水溶液を通液させるこ
とにより第一の樹脂塔からRhが溶離する。こうして、Rh
が分離、精製される。 Step (2) In this step, a temperature of 25 ° C. or higher and a concentration of 1.
An aqueous solution of 0 mol / l sulfuric acid is passed. Process (1)
After passing through, the chelating resin of the first resin tower is adsorbed with Rh in a concentrated state. Rh is eluted from the first resin column by passing an acidic aqueous sulfuric acid solution. Thus, Rh
Are separated and purified.
【0013】使用される硫酸酸性水溶液は、温度が25℃
以上、好ましくは30℃以上であり、硫酸濃度1.0 mol/l
以上であり、好ましくは 1.5〜3.0 mol/lである。Rhは
塩素と錯イオン形成してキレート樹脂に吸着されている
ため、硫酸酸性水溶液が溶離液として適する。温度が25
℃未満ではRhの溶離が起こりがたい。The temperature of the acidic sulfuric acid solution used is 25 ° C.
Above, preferably above 30 ℃, sulfuric acid concentration 1.0 mol / l
It is above, and preferably 1.5 to 3.0 mol / l. Since Rh forms a complex ion with chlorine and is adsorbed on the chelate resin, a sulfuric acid acidic aqueous solution is suitable as an eluent. Temperature is 25
Rh is less likely to elute below ℃.
【0014】なお、工程(2) において前記の硫酸酸性水
溶液を通液する前に、好ましくは、まず、工程(1) を経
た第一の樹脂塔に、まず温度30℃以上、好ましくは50℃
以上の水を通液し、これにより第一の樹脂塔からPbを溶
出させる。しかる工程を実施したのち、工程(2) を実施
する。かかる工程を追加すれば、Pbの分離が可能であ
る。上記の追加工程で通液される水の温度が30℃未満で
あると、Pbの溶出が困難である。Before passing the aqueous sulfuric acid solution in the step (2), preferably, first, the temperature in the first resin column after the step (1) is set to 30 ° C. or higher, preferably 50 ° C.
The above water is passed through, whereby Pb is eluted from the first resin tower. After performing the appropriate steps, step (2) is performed. If such a step is added, Pb can be separated. If the temperature of the water passed in the above additional step is lower than 30 ° C., it is difficult to elute Pb.
【0015】[0015]
【実施例】実施例1
(a) キレート樹脂スミキレートMC−10(商品名、住友
化学社製)1000mlを、濃度が1.5 mol/lの硫酸水溶液5
lに分散させたものを調製した。この樹脂を内径50mm
φ、長さ 700mmの塩化ビニル製パイプ内に詰めたもの
(以下、樹脂塔という)を2本用意した。これらを直列
に連結した(以下、通液の際に、溶液が流入する側の樹
脂塔(A) を第一樹脂塔、溶液が流出する側の樹脂塔(B)
を第二樹脂塔という)。上記、連結された樹脂塔に、銀
電解スライム処理工程で発生し、既にPdおよびPtの溶媒
抽出処理を終えた遊離の塩酸濃度が6.0 mol/lに調整し
たRh含有溶液(以下、元液という)を、第一樹脂塔(A)
の頂部からSV=1.0 の条件で48時間通液した。なお、元
液の含有金属濃度は表1の通りであった。 Example 1 (a) Chelate resin Sumichelate MC-10 (trade name, manufactured by Sumitomo Chemical Co., Ltd.) 1000 ml was added to a sulfuric acid aqueous solution 5 having a concentration of 1.5 mol / l.
What was dispersed in 1 was prepared. This resin has an inner diameter of 50 mm
Two pipes (hereinafter referred to as a resin tower) packed in a vinyl chloride pipe of φ and 700 mm in length were prepared. These were connected in series (hereinafter, at the time of liquid passage, the resin tower (A) on the solution inflow side is the first resin tower, and the resin tower (B) on the solution outflow side)
Is called the second resin tower). The Rh-containing solution (hereinafter referred to as the original solution) in which the free hydrochloric acid concentration generated in the silver electrolytic slime treatment step and having already undergone the solvent extraction treatment of Pd and Pt was adjusted to 6.0 mol / l in the connected resin tower ) Is the first resin tower (A)
The solution was passed from the top of the flask under the condition of SV = 1.0 for 48 hours. The metal concentration of the original solution was as shown in Table 1.
【0016】(b) 次に、第一樹脂塔(A) 内に残っている
Rh含有溶液を押し出すため、濃度が6.0 mol/lの塩酸水
溶液を、SV=1.0 の条件で6時間通液し先の流出した液
と合わせた。こうして、第二樹脂塔(B) から流出した液
(以下、塩酸流出液という)全体の含有金属成分濃度を
測定したところ、表1に示す通りであった。(B) Next, remaining in the first resin tower (A)
In order to extrude the Rh-containing solution, an aqueous solution of hydrochloric acid having a concentration of 6.0 mol / l was passed for 6 hours under the condition of SV = 1.0 and was combined with the above-mentioned outflowing liquid. In this way, the concentration of metal components contained in the entire liquid (hereinafter referred to as hydrochloric acid outflow liquid) flowing out from the second resin tower (B) was measured, and the results are shown in Table 1.
【0017】(c) その後、第一樹脂塔(A) を第二樹脂塔
(B) から切り離し、温度50℃の純水を第一樹脂塔(A) に
SV=1.0 の条件で20時間通液して第一樹脂塔(A) 内のPb
を溶出させた。この際に第一樹脂塔(A) から流出した液
(以下、純水溶出液という)の含有金属成分を測定した
ところ、表1に示す通りであった。(C) Thereafter, the first resin tower (A) is replaced with the second resin tower.
Separated from (B), deionized water with a temperature of 50 ° C was placed in the first resin tower (A).
Pb in the first resin tower (A) after passing 20 hours under the condition of SV = 1.0
Was eluted. At this time, the metal components contained in the liquid flowing out from the first resin tower (A) (hereinafter referred to as pure water eluate) were measured and the results are shown in Table 1.
【0018】(d) 次に、温度40℃、濃度が1.5 mol/lの
硫酸水溶液を、SV=1.0 の条件で24時間第一樹脂塔(A)
に通液し、Rhを溶離させた。この際の溶出液(以下、硫
酸溶出液という)の含有金属濃度を測定したところ、表
1に示す通りであった。(D) Next, a sulfuric acid aqueous solution having a temperature of 40 ° C. and a concentration of 1.5 mol / l was used for 24 hours under the condition of SV = 1.0 for the first resin tower (A).
Rh was eluted. The metal concentration of the eluate (hereinafter referred to as sulfuric acid eluate) at this time was measured, and the results were as shown in Table 1.
【0019】なお、表1において、ロジウム比率とは、
溶液に含まれるRhの量:xと、そのRh量にその他の元素
の量を合計した量:yとの比率:x/yを表す。Rh回収
率とは、以下に示される式:
Rh回収率= [(元液中のRh量−塩酸溶出液中のRh量−純
水溶出液中のRh量)/元液中のRh量 ]×100
(式中、Rh量とは、金属Rhとしての量である。)で算出
される。In Table 1, the rhodium ratio is
The ratio of the amount of Rh contained in the solution: x and the amount of the total amount of other elements to the amount of Rh: y: x / y. The Rh recovery rate is represented by the following formula: Rh recovery rate = [(Rh amount in original solution-Rh amount in hydrochloric acid eluate-Rh amount in pure water eluate) / Rh amount in original solution] × 100 (In the formula, the Rh amount is the amount as metal Rh.).
【0020】[0020]
【表1】 [Table 1]
【0021】表1の結果が示すように、Rh比率は元液で
は28.4%であるが、硫酸溶出液中では85.6%に高まっ
た。Rh回収率は94.0%であった。As shown by the results in Table 1, the Rh ratio was 28.4% in the original solution, but increased to 85.6% in the sulfuric acid eluate. The Rh recovery rate was 94.0%.
【0022】実施例2
実施例1で使用した第一樹脂塔として用いた樹脂塔(A)
を実施例1で第二樹脂塔として使用した樹脂塔(B) の後
ろに取り付け、交換した。この連結樹脂塔に実施例1と
同様にして元液をSV=1.0 の条件で30時間通液した。 Example 2 Resin tower (A) used as the first resin tower used in Example 1
Was attached to the back of the resin tower (B) used as the second resin tower in Example 1 and replaced. In the same manner as in Example 1, the original liquid was passed through this connected resin tower for 30 hours under the condition of SV = 1.0.
【0023】上記の通液が終了後、第一樹脂塔(B) 内に
残っている元液を押し出すため、濃度が6.0 mol/lの塩
酸溶液をSV=1.0 で6時間通液して、塩酸溶出液を得
た。その後、第一樹脂塔(B) を第二樹脂塔(A) から切り
離し、第一樹脂塔(B) に温度50℃の純水をSV=1.0 の条
件で15時間通液した。さらに、温度40℃、濃度が1.5 mo
l/lの硫酸をSV=1.0 で24時間第二樹脂塔(A) に通液し
たところ、溶離したRhが含まれる硫酸溶出液を得た。得
られた塩酸溶出液、純粋溶出液及び硫酸溶出液の含有金
属の濃度を測定したところ、表2に示す結果を得た。After completion of the above-mentioned passage, in order to push out the original solution remaining in the first resin tower (B), a hydrochloric acid solution having a concentration of 6.0 mol / l was passed at SV = 1.0 for 6 hours, A hydrochloric acid eluate was obtained. Then, the first resin tower (B) was separated from the second resin tower (A), and pure water at a temperature of 50 ° C. was passed through the first resin tower (B) under the condition of SV = 1.0 for 15 hours. Furthermore, the temperature is 40 ° C and the concentration is 1.5 mo.
When 1 / l sulfuric acid was passed through the second resin column (A) at SV = 1.0 for 24 hours, a sulfuric acid eluate containing the eluted Rh was obtained. The concentrations of metals contained in the obtained hydrochloric acid eluate, pure eluate and sulfuric acid eluate were measured, and the results shown in Table 2 were obtained.
【0024】[0024]
【表2】 [Table 2]
【0025】表2に示されるように、Rh比率は元液では
28.4%であったが、硫酸溶出液では86.6%に高まった。
また、Rh回収率は89.6%と高かった。As shown in Table 2, the Rh ratio is
It was 28.4%, but it increased to 86.6% in the sulfuric acid eluate.
The Rh recovery rate was as high as 89.6%.
【0026】[0026]
【発明の効果】本発明のRhを分離方法は、Rhを他の不純
金属から高率でかつ高い収率で分離するすることがで
き、回収されたRh中の不純物の含有率が少ない。使用さ
れるキレート樹脂は再利用を繰り返すことができ、経済
的にも有利である。また、本発明の方法は、機械により
省力化、自動化にも適している。この方法は、例えば、
銀電解スライム処理工程などによって発生するRhその他
種々の金属を含む溶液からRhを分離、精製するのに有用
である。INDUSTRIAL APPLICABILITY According to the method for separating Rh of the present invention, Rh can be separated from other impure metals at a high rate and a high yield, and the content of impurities in the recovered Rh is small. The chelating resin used can be reused repeatedly, which is economically advantageous. The method of the present invention is also suitable for labor saving and automation by a machine. This method, for example,
It is useful for separating and purifying Rh from a solution containing Rh and other various metals generated by the step of silver electrolytic slime treatment.
Claims (7)
る群から選ばれる少なくとも1種の元素およびRhを含有
する水溶液からRhを分離、精製する方法であって、 (1) 前記水溶液を遊離の塩酸濃度が1mol/l以上に調整
した後、貴金属吸着用キレート樹脂を充填した第一の樹
脂塔に通液させ、これにより、 (1-a) まず、前記水溶液中のRh、Pd、Pt、Au、Biおよび
Pbをキレート樹脂に吸着させ、 (1-b) 次に、前記水溶液の通液を継続することによりキ
レート樹脂に吸着されたPt、Pd、AuおよびBiの大部分を
Rhに置換させることにより、キレート樹脂上の吸着金属
中のRh比率を高め、同時に溶離したPt、Pd、AuおよびBi
を第一の樹脂塔から溶出させ、 (1-c) 上記のサブ工程(1-a) および(1-b) を通じて、キ
レート樹脂に吸着しないTeおよびCuを第一の樹脂塔から
溶出させて分離する、 ことからなる工程;および (2) 工程(1) を経た第一の樹脂塔に温度25℃以上、濃度
1.0 mol/l以上の硫酸酸性水溶液を通液し、これにより
第一の樹脂塔からRhを溶離、溶出させる工程、を有する
Rhの分離、精製方法。1. A method for separating and purifying Rh from an aqueous solution containing Rh and at least one element selected from the group consisting of Pd, Pt, Au, Bi, Te, Pb and Cu, comprising: (1) After adjusting the concentration of free hydrochloric acid to 1 mol / l or more, the aqueous solution is passed through a first resin tower filled with a chelating resin for adsorbing a noble metal, whereby (1-a) first, Rh in the aqueous solution is , Pd, Pt, Au, Bi and
Pb is adsorbed on the chelate resin, (1-b) Next, by continuing the passage of the aqueous solution, most of Pt, Pd, Au and Bi adsorbed on the chelate resin are adsorbed.
By substituting with Rh, the ratio of Rh in the adsorbed metal on the chelate resin was increased, and Pt, Pd, Au and Bi that coeluted were simultaneously eluted.
Is eluted from the first resin tower, and (1-c) Te and Cu, which are not adsorbed on the chelate resin, are eluted from the first resin tower through the above sub-steps (1-a) and (1-b). A step consisting of separating; and (2) a temperature of 25 ° C. or higher in the first resin tower which has passed through step (1), a concentration
Having a step of passing 1.0 mol / l or more acidic aqueous sulfuric acid solution, and thereby eluting Rh from the first resin tower.
Rh separation and purification method.
において、前記水溶液の遊離の塩酸濃度が3mol/lに調
整される方法。2. The method according to claim 1, wherein the step (1)
In the method, the concentration of free hydrochloric acid in the aqueous solution is adjusted to 3 mol / l.
で使用される硫酸酸性水溶液の濃度が 1.5〜3.0 mol/l
である方法。3. The method according to claim 1, wherein the step (2)
The concentration of the acidic aqueous sulfuric acid solution used in is 1.5 to 3.0 mol / l
How to be.
で使用される硫酸酸性水溶液の温度が30℃以上である方
法。4. The method according to claim 1, wherein the step (2)
The method in which the temperature of the acidic aqueous sulfuric acid solution used in is 30 ° C or higher.
を経た第一の樹脂塔に工程(2) において前記の硫酸酸性
水溶液を通液する前に、まず温度30℃以上の水を通液
し、これにより第一の樹脂塔からPbを溶出させる工程を
実施したのち、工程(2) を実施する方法。5. The method according to claim 1, wherein the step (1)
Before passing the sulfuric acid acidic aqueous solution in the step (2) into the first resin tower that has passed through, first pass water having a temperature of 30 ° C. or higher, thereby eluting Pb from the first resin tower. The method of carrying out step (2) after carrying out step.
程(2) の前に通液される水の温度が50℃以上である方
法。6. The method according to claim 5, wherein the temperature of water passed through before the step (2) is 50 ° C. or higher.
(1) を、前記第一の樹脂塔の下端に貴金属吸着用キレー
ト樹脂を充填した第二の樹脂塔を直列に接続した状態で
行い、これにより該工程(1) において第一の樹脂塔から
溶出するRhを第二の樹脂塔に吸着させ、回収する方法。7. The method of claim 1, wherein the steps
(1) is performed in a state where the lower end of the first resin tower is connected in series with a second resin tower filled with a chelating resin for adsorbing a noble metal, whereby the step (1) is performed from the first resin tower. A method in which the eluted Rh is adsorbed on the second resin tower and collected.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21427591A JPH0533071A (en) | 1991-07-31 | 1991-07-31 | Method for separating and refining rhodium from aqueous solution |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21427591A JPH0533071A (en) | 1991-07-31 | 1991-07-31 | Method for separating and refining rhodium from aqueous solution |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0533071A true JPH0533071A (en) | 1993-02-09 |
Family
ID=16653039
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21427591A Pending JPH0533071A (en) | 1991-07-31 | 1991-07-31 | Method for separating and refining rhodium from aqueous solution |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0533071A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08224328A (en) * | 1995-12-14 | 1996-09-03 | Sumitomo Rubber Ind Ltd | Ball striking tool |
WO1998046312A1 (en) | 1997-04-16 | 1998-10-22 | Sumitomo Rubber Industries, Ltd. | Golf club head |
JP2002535053A (en) * | 1999-01-25 | 2002-10-22 | スポルディング、スポーツ、ワールドワイド、インク | Golf ball and manufacturing method thereof |
US7281417B2 (en) | 2002-04-11 | 2007-10-16 | The Yokohama Rubber Co., Ltd. | Method for evaluating quality of golf club head, method for conducting quality control of golf club head, method for manufacturing golf club head and golf club, golf club head, and golf club |
JP2013104064A (en) * | 2011-11-10 | 2013-05-30 | Sumitomo Metal Mining Co Ltd | Method for separating and recovering platinum group element |
CN109385525A (en) * | 2018-11-09 | 2019-02-26 | 云南大学 | A method of with polystyrene-tributyl season phosphine resin separating platinum, rhodium from alkaline cyanide liquid |
RU2797800C1 (en) * | 2022-04-26 | 2023-06-08 | Акционерное общество "Уральские Инновационные Технологии" | Rhodium refining method |
-
1991
- 1991-07-31 JP JP21427591A patent/JPH0533071A/en active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08224328A (en) * | 1995-12-14 | 1996-09-03 | Sumitomo Rubber Ind Ltd | Ball striking tool |
WO1998046312A1 (en) | 1997-04-16 | 1998-10-22 | Sumitomo Rubber Industries, Ltd. | Golf club head |
JP2002535053A (en) * | 1999-01-25 | 2002-10-22 | スポルディング、スポーツ、ワールドワイド、インク | Golf ball and manufacturing method thereof |
US7281417B2 (en) | 2002-04-11 | 2007-10-16 | The Yokohama Rubber Co., Ltd. | Method for evaluating quality of golf club head, method for conducting quality control of golf club head, method for manufacturing golf club head and golf club, golf club head, and golf club |
JP2013104064A (en) * | 2011-11-10 | 2013-05-30 | Sumitomo Metal Mining Co Ltd | Method for separating and recovering platinum group element |
CN109385525A (en) * | 2018-11-09 | 2019-02-26 | 云南大学 | A method of with polystyrene-tributyl season phosphine resin separating platinum, rhodium from alkaline cyanide liquid |
CN109385525B (en) * | 2018-11-09 | 2020-05-12 | 云南大学 | Method for separating platinum and rhodium from alkaline cyanide solution by using polystyrene-tributyl quaternary phosphine resin |
RU2797800C1 (en) * | 2022-04-26 | 2023-06-08 | Акционерное общество "Уральские Инновационные Технологии" | Rhodium refining method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4144311B2 (en) | Methods for separating and recovering platinum group elements | |
RU2353684C2 (en) | Method of joint separation of platinum metal | |
JP5454461B2 (en) | Method for recovering selenium from copper electrolytic slime | |
JP2013508566A (en) | Precious metal recovery method | |
JPH07187618A (en) | Refining of concentrated sulfuric acid solution | |
JP2005523992A (en) | Gold collection method | |
JP5984020B2 (en) | Methods for separating and recovering platinum group elements | |
JP2019173063A (en) | Recovery method of nickel and cobalt from solution | |
JPH0533071A (en) | Method for separating and refining rhodium from aqueous solution | |
CN104651615A (en) | Method for recovering silver and palladium from waste | |
JP3975901B2 (en) | Iridium separation and purification method | |
EP1019551A1 (en) | Separation of platinum group metals | |
JP3309794B2 (en) | Method for separating and removing platinum and palladium | |
JP5786661B2 (en) | Methods for separating and recovering platinum group elements | |
JP3733598B2 (en) | Method for recovering platinum group elements | |
JP2010174336A (en) | METHOD OF RECOVERING Ru AND/OR Ir FROM SOLUTION CONTAINING PLATINUM GROUP | |
JP3896423B2 (en) | Method for recovering palladium from palladium-containing liquid | |
JP2941073B2 (en) | Method for separating platinum group metals | |
JP4506041B2 (en) | Methods for removing osmium and ruthenium from nickel chloride solutions. | |
JP6933151B2 (en) | How to recover selenium from copper electrolytic slime | |
JP6399352B2 (en) | Methods for separating and recovering platinum group elements | |
JP2016151062A (en) | METHOD FOR REMOVING IMPURITY ELEMENT FROM Pt-CONTAINING SOLUTION AND METHOD FOR RECOVERING Pt USING THE SAME | |
JPH04141533A (en) | Method for recovering noble metal | |
RU2111272C1 (en) | Platinum metal isolation procedure | |
JP7183748B2 (en) | Method for recovering selenium from copper electrolytic slime |