WO2012121496A2 - Method for recovering platinum group metals from industrial waste containing platinum group metals - Google Patents
Method for recovering platinum group metals from industrial waste containing platinum group metals Download PDFInfo
- Publication number
- WO2012121496A2 WO2012121496A2 PCT/KR2012/001219 KR2012001219W WO2012121496A2 WO 2012121496 A2 WO2012121496 A2 WO 2012121496A2 KR 2012001219 W KR2012001219 W KR 2012001219W WO 2012121496 A2 WO2012121496 A2 WO 2012121496A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- platinum group
- group metal
- platinum
- metal ions
- recovering
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B7/00—Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
- C22B7/006—Wet processes
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B11/00—Obtaining noble metals
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B3/00—Extraction of metal compounds from ores or concentrates by wet processes
- C22B3/20—Treatment or purification of solutions, e.g. obtained by leaching
- C22B3/42—Treatment or purification of solutions, e.g. obtained by leaching by ion-exchange extraction
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D15/00—Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/90—Regeneration or reactivation
- B01J23/96—Regeneration or reactivation of catalysts comprising metals, oxides or hydroxides of the noble metals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J38/00—Regeneration or reactivation of catalysts, in general
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J38/00—Regeneration or reactivation of catalysts, in general
- B01J38/02—Heat treatment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J41/00—Anion exchange; Use of material as anion exchangers; Treatment of material for improving the anion exchange properties
- B01J41/04—Processes using organic exchangers
- B01J41/05—Processes using organic exchangers in the strongly basic form
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B11/00—Obtaining noble metals
- C22B11/04—Obtaining noble metals by wet processes
- C22B11/042—Recovery of noble metals from waste materials
- C22B11/044—Recovery of noble metals from waste materials from pyrometallurgical residues, e.g. from ashes, dross, flue dust, mud, skim, slag, sludge
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B3/00—Extraction of metal compounds from ores or concentrates by wet processes
- C22B3/20—Treatment or purification of solutions, e.g. obtained by leaching
- C22B3/22—Treatment or purification of solutions, e.g. obtained by leaching by physical processes, e.g. by filtration, by magnetic means, or by thermal decomposition
- C22B3/24—Treatment or purification of solutions, e.g. obtained by leaching by physical processes, e.g. by filtration, by magnetic means, or by thermal decomposition by adsorption on solid substances, e.g. by extraction with solid resins
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B7/00—Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Definitions
- the present invention relates to a method for separating and recovering a platinum group metal from various industrial wastes containing platinum group metals.
- Platinum group matals are platinum (Pt) and ruthenium transition metals.
- Platinum group metals have a very high melting temperature, excellent corrosion resistance to chemical erosion, and have unique chemical properties such as reduction catalysis.
- platinum group metals are used as catalysts for automobiles and petrochemical industries in addition to the electric electronics industry such as platinum group metal circuits. These catalysts and components are degraded over time, and eventually discarded at the end of their useful life.
- platinum group metals are expensive and imported in their entirety, it is economically beneficial to recover and reuse them. Rather, it can play a large role in the effective use of resources.
- a conventional method for recovering a platinum group metal is to remove the platinum group metal ion selectively extracted using a stripping agent after extracting a solvent of a mixed platinum group ion solution using a selective extracting agent after leaching.
- a method of reducing metal ions to a platinum group metal form using a reducing agent has been used.
- the extraction agent, stripping agent, and reducing agent used for each platinum group metal are different, and there is a problem that the recovery efficiency is very low due to a very complicated and long process.
- the extraction agent having selectivity for the platinum group is very expensive and has good selectivity. There is also a problem that the extraction efficiency is very low.
- the present invention is much simpler and more by-product than the conventional method for recovering the platinum group metal.
- the purpose of the present invention is to provide a method for recovering a new platinum group metal, which does not occur and has a very high recovery efficiency.
- a method for recovering the platinum group metal from the waste of the present invention for achieving the above object includes (a) dissolving and leaching the platinum group metal-containing waste; and (b) using a platinum group using an adsorbent in the leached waste. Adsorbing metal ions; and (c) recovering the platinum group metal ions in the form of metal by sintering the adhesive agent.
- the platinum dissolved in the ash can be recovered in the form of ions in the solution, and ruthenium that is not dissolved in the metal form can be further separated and recovered. have. Through this step, platinum can be recovered separately from ions and ruthenium into metals.
- the step of recovering the platinum group metal ions attached to the adsorbent with a desorption agent to a high concentration platinum group metal ion mixed solution may be performed.
- the present invention provides a new method for recovering a platinum group metal, which is much simpler than the conventional method for recovering a platinum group metal, almost no by-products are generated, and a recovery efficiency is also very high.
- 1 is a flow chart for separating, concentrating and recovering a platinum group metal according to the present invention.
- FIG. 2 is a graph showing the adsorption performance of platinum group metal ions using ion exchange resin in leachate.
- 3 to 6 are SEM photographs and EDX analysis graphs at each step according to the present invention.
- 1 is a flow chart for separating, concentrating and recovering a platinum group metal according to the present invention.
- the present invention relates to an industrial waste (fuel cell stack) containing platinum group metals (platinum (Pt), ruthenium (Ru), osmium (Os), rhodium (Rh), iridium (Ir), palladium (Pd)).
- Platinum group is leached from an automobile catalyst, a chemical catalyst, an electron scrap, etc. (leaching step), and the platinum group metal ion in the leaching liquid is adsorbed to the adsorbent (adsorption step).
- the platinum group metal ions attached to the adsorbent can be desorbed and recovered with a high concentration of platinum group metal ion mixed solution (desorption step), and the adsorbents with platinum group metal ions are incinerated ( ⁇ ⁇ , ashing) may be used to recover the platinum group metal ions in the metallic form (ashing process).
- platinum dissolved in the ash process which is dissolved as a platinum group metal after the incineration process, is recovered as a high concentration of platinum ions, and insoluble ruthenium can be separated into a metal form (dissolution process).
- the present invention is largely classified into three types. First, a technique for recovering high concentration platinum group metal ions using an adsorbent from a low concentration platinum group metal ion leachate. Second, the technology to recover the platinum group metal ions in the form of platinum group metal. Third, the present invention relates to a technique for separating each platinum group metal from the platinum group mixed metal recovered in the form of platinum group metal.
- the recovery techniques of the existing platinum group metals mentioned in the prior art are different extractants, stripping agents, and reducing agents used for each platinum group metal, and are very complicated and long processes, and the recovery efficiency is very low. Extraction efficiency is very low due to very expensive and poor selectivity, while the present invention is a very simple process compared to the existing platinum group recovery process, almost no by-products are generated and the recovery efficiency is also very high.
- wastewater containing platinum group metals is crushed and screened, followed by aqua regia.
- Platinum group metals that are poorly soluble in acids are dissolved by hydrochloric acid in the presence of an oxidizing agent.
- Oxidizing agents include nitric acid, hydrogen peroxide, chlorine gas, hypochlorous acid (H0C1), and sodium hypochlorite (NaOCl).
- concentrations of the platinum group metals (platinum (Pt) and ruthenium (Ru)) in the leachate in which the fuel cell stack is leached with the leachate (7M hydrochloric acid (HC1 5M sodium hypochlorite (NaOCl)) are shown in Table 1.
- the platinum group metal complex is preferably negatively charged. It shows ionicity.
- platinum group metal ions in the leachate are adsorbed by using a cohesive agent, and an adsorbent is preferably used such as an ion exchange resin, activated carbon, and a biosorbent material.
- Figure 2 shows the adsorption performance of platinum group metal ions using the ion exchange resin in the leachate as an example, the ion exchange resin used to adsorb the platinum group metal ion of the leachate is a strong base anion exchange resin Amberjet-4400 (C1). ) was used.
- the reaction vessel of the ion exchange resin is quaternary amine, which has a positive charge in aqueous solution. It is possible to adsorb and recover the ion exchange resin by the platinum group metal ions and the electrostatic attraction in the platinum group metal leaching aqueous solution.
- the platinum group metal ions attached to the adsorbent are desorbed with the desorbent and recovered as a highly concentrated platinum group metal ion mixed solution.
- the desorption process can be used alone or in strong acid (hydrochloric acid, nitric acid and sulfuric acid) or in a mixed solution of thiourea and strong acid.
- the platinum group metal is present in the metal form (metal lie form) on the surface of the ash, so that the metal form can be recovered.
- Platinum group metals such as platinum (Pt) and ruthenium (RU) are mixed on the surface of the ashed ash, and when dissolved using a solvent that selectively dissolves platinum, platinum is not dissolved in the form of ions in the solution. Ruthenium can be recovered separately in the form of a metal.
- the solution may include one or more of hydrochloric acid, nitric acid, sulfuric acid, and cyanide (CN) depending on the type of the platinum group metal.
- Table 2 shows the removal efficiency of the platinum group metal in the leachate using the ion exchange resin and the recovery efficiency of the platinum group metal after incineration.
- Araberjet-4400 (C1) was used as the strong basic anion exchange resin.
- the adsorption amount in Table 2 indicates the amount of platinum group metal adsorbed by the adsorption material.
- the removal efficiency is the efficiency of removing the platinum group metal from the platinum group metal leach solution.
- the recovery efficiency is the efficiency in which the platinum group metal is adsorbed after adsorption on the adsorbent to recover the platinum group metal. Such adsorption amount, removal efficiency, and recovery efficiency can be calculated through Equation 1 below.
- Recovery efficiency (%) Weight of metal attached to the cohesive agent () -X100 Looking at Table 2, if more ion exchange resins are used, 100% of the platinum group metal ions in the leachate can be removed, but they are adsorbed on the ion exchange resin. The platinum group metal ions present are reduced, resulting in poor recovery efficiency.
- Tables 3 and 6 show the results of SEM and EDX analysis at each step according to the present invention.
- EDX analysis of a fuel cell waste stack containing platinum group metals showed 95: 5 ⁇ .% Of platinum and ruthenium, indicating that the platinum and ruthenium contents decreased significantly after leaching the stack. It can be seen that the intensity of EDX is rarely analyzed, and chloride ion used as a leaching agent after stack leaching is analyzed.
- EDX which has been analyzed after incineration of ion exchange resins containing platinum group metal ions, has a much higher platinum and ruthenium content compared to the adsorption of ion exchange resins in leachate.
- 7 and 8 are graphs showing the results of XPS analysis according to an embodiment of the present invention.
- platinum group metal ions in the leachate is present in the form of ions, and platinum group metals (metallic Pt and Ru 3 ⁇ 4) are reliably present on the ash surface of the ash exchanged after adsorption. This analysis indicates that platinum in the ionic form does not exist.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Mechanical Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Geology (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- Geochemistry & Mineralogy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Analytical Chemistry (AREA)
- Manufacture And Refinement Of Metals (AREA)
- Processing Of Solid Wastes (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
Abstract
The present invention leaches platinum groups from industrial waste containing platinum group metals (platinum (Pt), ruthenium (Ru), osmium (Os), rhodium (Rh), iridium (Ir), palladium (Pd)), adsorbs onto an absorbent platinum group metal ions inside a leachate, desorbs the platinum group metal ions attached to the adsorbent using a desorbent to recover high concentration platinum group metal ion mixed solution, and also, recover the platinum group metal ions in the metallic form by ashing the adsorbent having the platinum group metal ions attached thereto. In addition, the platinum dissolved through a dissolving process from the ash mixed with the platinum group metals after the ashing process can be recovered as high concentration platinum ion, and undissolved ruthenium can be isolated in a metallic form.
Description
【명세서】 【Specification】
【발명의 명칭】 [Name of invention]
백금족 금속 함유산업폐기물로부터 백금족 금속을 회수하는 방법 【기술분야】 Method of recovering platinum group metals from industrial wastes containing platinum group metals
<ι> 본 발명은 백금족 금속 {platinum group matals}이 함유된 각종 산업폐기물로 부터 백금족 금속을 분리하여 회수하는 방법에 관한 것이다. The present invention relates to a method for separating and recovering a platinum group metal from various industrial wastes containing platinum group metals.
<2> <2>
【배경기술】 Background Art
<3> 백금족 금속 {platinum group matals}은 전이금속 중 백금 (Pt), 루테늄 <3> Platinum group matals are platinum (Pt) and ruthenium transition metals.
(Ru), 오스뮴 (0s), 로듐 (Rh), 이리듐 (Ir), 팔라듐 (Pd)을 말한다. 백금족 금속은 용 해온도가 매우 높고, 화학적 침식에 대한 내식성이 뛰어날 뿐만 아니라, 환원 촉매 작용 등 독특한 화학적 특성을 갖고 있다. (Ru), osmium (0s), rhodium (Rh), iridium (Ir), palladium (Pd). Platinum group metals have a very high melting temperature, excellent corrosion resistance to chemical erosion, and have unique chemical properties such as reduction catalysis.
<4> 백금족 금속의 세계 년 평균 생산량은 200 톤 정도로서, 90이상이 남아프리 카공화국과 구 소련에서 생산되고 있으며, 캐나다가 약 6, 남미, 미국, 호주 일본 등지에서 소량 생산되고 있다. 이들 백금족 금속은 백금족 금속 회로 등의 전기전 자산업 분야 외에 자동차용 촉매와 석유화학공업용 촉매로 이용되고 있다. 이들 촉 매와 부품은 사용하는 시간이 경과함에 따라 그 성능이 저하되고 최종적으로 수명 을 다하여 폐기되지만, 특히 백금족 금속은 고가이며 전량을 수입하고 있기 때문에 이를 회수하여 재이용하는 것이 경제적으로 크게 이로울 뿐만 아니라, 자원의 유효 한 활용에 큰 역할을 할 수 있다. The world's average annual production of platinum group metals is around 200 tonnes, more than 90 of which are produced in South Africa and the former Soviet Union, with Canada producing a small amount in about 6, South America, the United States, Australia and Japan. These platinum group metals are used as catalysts for automobiles and petrochemical industries in addition to the electric electronics industry such as platinum group metal circuits. These catalysts and components are degraded over time, and eventually discarded at the end of their useful life. However, since platinum group metals are expensive and imported in their entirety, it is economically beneficial to recover and reuse them. Rather, it can play a large role in the effective use of resources.
<5> 종래 백금족 금속의 회수 방법은 침출 후 흔합되어 있는 백금족 이온 용액을 선택성이 있는 추출제를 사용하여 용매추출을 한 후 선택적으로 추출된 백금족 금 속이온을 탈거제를 이용하여 탈거를 하고 백금족 금속이온을 환원제를 사용하여 백 금족 금속형태로 환원시켜 주는 방법이 이용되고 있다. 그러나, 백금족 금속마다 사용되는 추출제, 탈거제, 환원제가 다르며 매우 복잡하고 긴 공정으로 회수 효율 이 매우 낮다는 문제가 있으며, 또한 종래 기술에서 백금족에 선택성을 갖는 추출 제는 매우 고가이고 선택성이 좋지 않아 추출효율이 매우 낮은 문제도 있다. <5> A conventional method for recovering a platinum group metal is to remove the platinum group metal ion selectively extracted using a stripping agent after extracting a solvent of a mixed platinum group ion solution using a selective extracting agent after leaching. A method of reducing metal ions to a platinum group metal form using a reducing agent has been used. However, the extraction agent, stripping agent, and reducing agent used for each platinum group metal are different, and there is a problem that the recovery efficiency is very low due to a very complicated and long process. Also, in the prior art, the extraction agent having selectivity for the platinum group is very expensive and has good selectivity. There is also a problem that the extraction efficiency is very low.
<6> <6>
【발명의 상세한 설명】 [Detailed Description of the Invention]
【기술적 과제】 [Technical problem]
<7> 본 발명은 종래 백금족 금속의 회수 방법보다고 매우 단순하고 부산물이 거
의 발생하지 않으며 회수효율도 매우 높은 새로운 백금족 금속의 회수 방법을 제공 하고자 하는 것을 그 목적으로 한다. <7> The present invention is much simpler and more by-product than the conventional method for recovering the platinum group metal. The purpose of the present invention is to provide a method for recovering a new platinum group metal, which does not occur and has a very high recovery efficiency.
<8> <8>
【기술적 해결방법】 Technical Solution
<9> 전술한 목적을 달성하기 위한 본 발명의 폐기물로부터 백금족 금속을 회수하 는 방법은, (a) 백금족 금속 함유 폐기물을 용해하여 침출하는 단계, (b) 침출된 폐기물에서 흡착제를 이용하여 백금족 금속이온을 흡착하는 단계, (c) 상기 홉착제 를 회화 (灰化, ashing)하여 상기 백금족 금속이온을 금속형태로 회수하는 단계를 포함하여 이루어진다. <9> A method for recovering the platinum group metal from the waste of the present invention for achieving the above object includes (a) dissolving and leaching the platinum group metal-containing waste; and (b) using a platinum group using an adsorbent in the leached waste. Adsorbing metal ions; and (c) recovering the platinum group metal ions in the form of metal by sintering the adhesive agent.
<10> <10>
<11> *이로써, 매우 단순한 공정으로 금속형태로 백금족 금속을 회수할 수 있다. This makes it possible to recover the platinum group metal in the form of metal in a very simple process.
<12> 또한, 상기 (c) 단계 후에, 재 (ash)를 용해하여 용해되는 백금은 용액 내 이 온형태로 회수하고 용해되지 않는 루테늄은 금속형태로 각각 분리하여 회수하는 단 계를 더 진행될 수 있다. 이 단계를 통하여 백금은 이온형태로 루테늄은 금속형태 로 각각 분리하여 회수할 수 있다. In addition, after the step (c), the platinum dissolved in the ash can be recovered in the form of ions in the solution, and ruthenium that is not dissolved in the metal form can be further separated and recovered. have. Through this step, platinum can be recovered separately from ions and ruthenium into metals.
<13> 또한, 상기 (b) 단계 후에 , 흡착제에 붙어 있는 백금족 금속이온을 탈착제로 탈착하여 고농도 백금족 금속이온 흔합용액으로 회수하는 단계가 진행될 수도 있 다. In addition, after the step (b), the step of recovering the platinum group metal ions attached to the adsorbent with a desorption agent to a high concentration platinum group metal ion mixed solution may be performed.
<14> <14>
【유리한 효과】 Advantageous Effects
<15> 본 발명은 종래 백금족 금속의 회수 방법보다고 매우 단순하고 부산물이 거 의 발생하지 않으며 회수효율도 매우 높은 새로운 백금족 금속의 회수 방법을 제공 한다. The present invention provides a new method for recovering a platinum group metal, which is much simpler than the conventional method for recovering a platinum group metal, almost no by-products are generated, and a recovery efficiency is also very high.
<16> <16>
【도면의 간단한 설명】 [Brief Description of Drawings]
<17> 도 1은 본 발명에 따른 백금족 금속의 분리, 농축, 회수 공정도이다. 1 is a flow chart for separating, concentrating and recovering a platinum group metal according to the present invention.
<18> 도 2는 침출액에서 이온교환수지를 이용한 백금족 금속이온의 흡착성능을 나 타내는 그래프이다. FIG. 2 is a graph showing the adsorption performance of platinum group metal ions using ion exchange resin in leachate.
<19> 도 3 〜 도 6은 본 발명에 따른 각 단계에서의 SEM 사진 및 EDX 분석 그래프 이다. 3 to 6 are SEM photographs and EDX analysis graphs at each step according to the present invention.
<20> 도 7 및 도 8은 본 발명에 따른 각 단계에서의 XPS 분석 그래프이다. 7 and 8 are XPS analysis graphs at each step according to the present invention.
<21>
【발명의 실시를 위한 최선의 형태】 <21> [Best form for implementation of the invention]
<22> 이하, 첨부된 도면을 참조하여 본 발명에 따른 바람직한 실시예를 상세하게 설명한다. Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.
<23> 도 1은 본 발명에 따른 백금족 금속의 분리, 농축, 회수 공정도이다. 1 is a flow chart for separating, concentrating and recovering a platinum group metal according to the present invention.
<24> 본 발명은 백금족 금속 (백금 (Pt), 루테늄 (Ru), 오스뮴 (Os), 로듐 (Rh), 이리 듐 (Ir), 팔라듐 (Pd))을 함유한 산업 폐기물 (연료전지 스택, 자동차 촉매, 화학촉 매, 전자스크랩 등)로부터 백금족을 침출하여 (침출공정), 침출액 내 백금족 금속이 온을 흡착제에 흡착한다 (흡착공정). The present invention relates to an industrial waste (fuel cell stack) containing platinum group metals (platinum (Pt), ruthenium (Ru), osmium (Os), rhodium (Rh), iridium (Ir), palladium (Pd)). Platinum group is leached from an automobile catalyst, a chemical catalyst, an electron scrap, etc. (leaching step), and the platinum group metal ion in the leaching liquid is adsorbed to the adsorbent (adsorption step).
<25> 흡착공정 후 흡착제에 붙어 있는 백금족 금속이온을 탈착제로 탈착하여 고농 도 백금족 금속이온 흔합용액으로 회수할 수 있으며 (탈착공정), 또한, 백금족 금속 이온이 붙어 있는 흡착제를 회화 (灰化, ashing)하여 백금족 금속이온을 금속형태 (Metallic form)로 회수할 수도 있다 (회화공정). 또한, 회화공정 후 백금족 금속으 로 흔합되어 있는 재 (Ash)로부터 용해과정을 통해 용해되는 백금은 고농도의 백금 이온으로 회수되고 용해되지 않는 루테늄은 금속형태로 분리할 수 있다 (용해 공정 ). <25> After the adsorption process, the platinum group metal ions attached to the adsorbent can be desorbed and recovered with a high concentration of platinum group metal ion mixed solution (desorption step), and the adsorbents with platinum group metal ions are incinerated (灰 化 , ashing) may be used to recover the platinum group metal ions in the metallic form (ashing process). In addition, platinum dissolved in the ash process, which is dissolved as a platinum group metal after the incineration process, is recovered as a high concentration of platinum ions, and insoluble ruthenium can be separated into a metal form (dissolution process).
<26> 이러한 본 발명은 크게 3가지로 첫째, 저농도의 백금족 금속이온 침출액으로 부터 흡착제를 이용하여 고농도 백금족 금속이온으로 회수하는 기술. 둘째, 백금족 금속이온을 백금족 금속형태로 회수하는 기술. 셋째, 백금족 금속형태로 회수된 백 금족 흔합금속으로부터 각 백금족 금속을 분리하는 기술에 관한 것이다. The present invention is largely classified into three types. First, a technique for recovering high concentration platinum group metal ions using an adsorbent from a low concentration platinum group metal ion leachate. Second, the technology to recover the platinum group metal ions in the form of platinum group metal. Third, the present invention relates to a technique for separating each platinum group metal from the platinum group mixed metal recovered in the form of platinum group metal.
<27> 종래기술에서 언급한 기존 백금족 금속의 회수 기술은 백금족 금속마다사용 되는 추출제, 탈거제, 환원제가 다르며 매우 복잡하고 긴 공정으로 회수 효율이 매 우 낮고, 백금족에 선택성을 갖는 추출제는 매우 고가이고 선택성이 좋지 않아 추 출효율이 매우 낮은데 반해, 본 발명은 기존 백금족 회수공정과 비교하여 매우 단 순한 공정이고 부산물이 거의 발생하지 않고 회수효율도 매우 높다. The recovery techniques of the existing platinum group metals mentioned in the prior art are different extractants, stripping agents, and reducing agents used for each platinum group metal, and are very complicated and long processes, and the recovery efficiency is very low. Extraction efficiency is very low due to very expensive and poor selectivity, while the present invention is a very simple process compared to the existing platinum group recovery process, almost no by-products are generated and the recovery efficiency is also very high.
<28> 이하에서는 본 발명의 일실시예에 따라 상세히 설명한다. Hereinafter will be described in detail according to an embodiment of the present invention.
<29> 침출공정에서는, 백금족 금속을 함유한 폐기물을 분쇄하고 선별한 후 왕수 In the leaching process, wastewater containing platinum group metals is crushed and screened, followed by aqua regia.
(aqua regia), 염산, 할로겐화합물, 가용성염 형성 등을 이용하여 용해하여 침출시 킨다. 산에 난용성인 백금족 금속은 산화제의 존재하에 염산에 의해 용해된다. 산 화제로는 질산, 과산화수소, 염소가스, 하이포염소산 (H0C1), 차염소산소다 (NaOCl) 등이 있다. 일실시예로서 연료전지 스택을 침출액 (7M 염산 (HC1 5M 차염소산소다 (NaOCl))으로 침출한 침출액 내 백금족 금속 (백금 (Pt), 루테늄 (Ru))의 농도를 표 1 에서 보여주고 있다. 상기 백금족 금속 착화합물은 전하를 러는데 바람직하게는 음
이온성을 나타낸다. It is dissolved by leaching with aqua regia, hydrochloric acid, halogenated compounds, and soluble salts. Platinum group metals that are poorly soluble in acids are dissolved by hydrochloric acid in the presence of an oxidizing agent. Oxidizing agents include nitric acid, hydrogen peroxide, chlorine gas, hypochlorous acid (H0C1), and sodium hypochlorite (NaOCl). As an example, the concentrations of the platinum group metals (platinum (Pt) and ruthenium (Ru)) in the leachate in which the fuel cell stack is leached with the leachate (7M hydrochloric acid (HC1 5M sodium hypochlorite (NaOCl)) are shown in Table 1. The platinum group metal complex is preferably negatively charged. It shows ionicity.
<31> 흡착공정에서는 침출액 내 백금족 금속이온을 홉착제를 이용하여 흡착시키는 데, 흡착제로는 이온교환수지, 활성탄, 생체흡착소재 등 이용되는 것이 바람직하 다. In the adsorption process, platinum group metal ions in the leachate are adsorbed by using a cohesive agent, and an adsorbent is preferably used such as an ion exchange resin, activated carbon, and a biosorbent material.
<32> 도 2는 일실시예로서 침출액에서 이온교환수지를 이용한 백금족 금속이온의 흡착성능을 나타내고 있는데, 침출액의 백금족 금속이온 흡착에 사용한 이온교환수 지는 강염기성 음이온교환수지로 Amberjet-4400(C1)를 사용하였다. 이온교환수지의 반웅기는 quaternary amine으로 수용액에서 양전하를 띄고 있다. 백금족 금속 침출 수용액에서 음전하를 띄고 있는 백금족 금속이온과 정전기적 인력에 의해 이온교환 수지에 흡착하여 회수할수 있게 된다. Figure 2 shows the adsorption performance of platinum group metal ions using the ion exchange resin in the leachate as an example, the ion exchange resin used to adsorb the platinum group metal ion of the leachate is a strong base anion exchange resin Amberjet-4400 (C1). ) Was used. The reaction vessel of the ion exchange resin is quaternary amine, which has a positive charge in aqueous solution. It is possible to adsorb and recover the ion exchange resin by the platinum group metal ions and the electrostatic attraction in the platinum group metal leaching aqueous solution.
<33> 탈착공정에서는 흡착제에 붙어 있는 백금족 금속이온을 탈착제로 탈착하여 고농도로 농축된 백금족 금속이온 흔합용액으로 회수되게 된다. 상기 탈착공정은 강산 (염산, 질산 및 황산) 단독으로 사용되거나 thiourea와 강산의 흔합용액에 넣 어 탈착할 수 있다. In the desorption process, the platinum group metal ions attached to the adsorbent are desorbed with the desorbent and recovered as a highly concentrated platinum group metal ion mixed solution. The desorption process can be used alone or in strong acid (hydrochloric acid, nitric acid and sulfuric acid) or in a mixed solution of thiourea and strong acid.
<34> 한편 회화공정을 통해 백금족 금속이온이 붙어 있는 흡착제를 연소시켜 재로 만들게 되면 재 표면에는 백금족 금속이 금속형태 (metal lie form)로 존재하게 되어 금속형태로 회수가 가능하다. On the other hand, when the adsorbents attached with platinum group metal ions are burned to ashes through the incineration process, the platinum group metal is present in the metal form (metal lie form) on the surface of the ash, so that the metal form can be recovered.
<35> 회화된 재 표면에는 백금 (Pt), 루테늄 (RU) 등의 백금족 금속이 흔합되어 있 는데 이를 백금을 선택적으로 용해하는 용해제를 사용하여 용해하면 백금은 용해액 내의 이온형태로 용해되지 않은 루테늄은 금속형태로 분리하여 회수할 수 있다. 상 기 용해액으로는 상기 백금족 금속의 종류에 따라 염산, 질산, 황산 및 시안 (CN) 중 하나 이상을 포함할 수 있다. Platinum group metals such as platinum (Pt) and ruthenium (RU) are mixed on the surface of the ashed ash, and when dissolved using a solvent that selectively dissolves platinum, platinum is not dissolved in the form of ions in the solution. Ruthenium can be recovered separately in the form of a metal. The solution may include one or more of hydrochloric acid, nitric acid, sulfuric acid, and cyanide (CN) depending on the type of the platinum group metal.
<36> 표 2는 이온교환수지를 이용한 침출액 내 백금족 금속의 제거효율 및 회화 후 백금족 금속의 회수효율을 나타내고 있다. 이온교환수지는 강염기성 음이온교환 수지로 Araberjet-4400(C1)를 사용하였다. Table 2 shows the removal efficiency of the platinum group metal in the leachate using the ion exchange resin and the recovery efficiency of the platinum group metal after incineration. Araberjet-4400 (C1) was used as the strong basic anion exchange resin.
<37> 【표 2】
분석항목 Pt Ru 흡착체 o s/L) 3 6 7 3 6 7 침출액 초기농도 (me/L) 181.25 181.25 181.25 37.14 37.14 37.14 흡착 후 농도 (ms/L) 21.51 16.21 9.42 8.95 8.11 7.06 홉착량 (ms/g) 26.62 20.63 11.46 4.70 3.63 2.01 제거효움 (¾) 88.1 91.1 94.8 75.9 78.2 81.0 회화후 용해액 436.42 420.26 425.21 8.28 7.98 7.78 농도 (ms/L) <37> [Table 2] Analysis item Pt Ru adsorbent o s / L) 3 6 7 3 6 7 leachate initial concentration (me / L) 181.25 181.25 181.25 37.14 37.14 37.14 After the adsorption density (ms / L) 21.51 16.21 9.42 8.95 8.11 7.06 hop chakryang (ms / g) 26.62 20.63 11.46 4.70 3.63 2.01 Removal efficacy (¾) 88.1 91.1 94.8 75.9 78.2 81.0 After incineration solution 436.42 420.26 425.21 8.28 7.98 7.78 Concentration (ms / L)
회수 효율 (¾) 91.1 84.9 82.5 9.8 9.2 8.6 상기 표 2에서 흡착량은 흡착소재에 의해 백금족 금속이 흡착된 양을 나타낸 다. 또한 제거효율은 백금족 금속 침출액으로부터 백금족 금속을 제거한 효율이다. 또한 회수효율은 백금족 금속이 흡착제에 흡착 후 회화하여 백금족 금속을 회수한 효율이다ᅳ 이러한 흡착량, 제거효율 및 회수효율은 다음의 수학식 1을 통해 계산될 수 있다. Recovery Efficiency (¾) 91.1 84.9 82.5 9.8 9.2 8.6 The adsorption amount in Table 2 indicates the amount of platinum group metal adsorbed by the adsorption material. Further, the removal efficiency is the efficiency of removing the platinum group metal from the platinum group metal leach solution. In addition, the recovery efficiency is the efficiency in which the platinum group metal is adsorbed after adsorption on the adsorbent to recover the platinum group metal. Such adsorption amount, removal efficiency, and recovery efficiency can be calculated through Equation 1 below.
(초기금속농도一최종금속농도 )(mff ) (Initial Metal Concentration 一 Final Metal Concentration) (m ff )
제거효율 (% xioo Removal efficiency (% xioo
초기금속농도 재 속의금속무게 ( ) Metal weight in the initial metal concentration ash ()
회수효율 (%) 홉착제에홉착된금속무게 ( ) -X100 표 2를 살펴보면 이온교환수지를 더 많은 양 사용하면 침출액에 존재하는 백 금족 금속이온을 100% 제거할 수 있으나 이온교환수지에 흡착되어 있는 백금족 금 속이온이 줄어들어 회수 효율이 떨어지게 된다. Recovery efficiency (%) Weight of metal attached to the cohesive agent () -X100 Looking at Table 2, if more ion exchange resins are used, 100% of the platinum group metal ions in the leachate can be removed, but they are adsorbed on the ion exchange resin. The platinum group metal ions present are reduced, resulting in poor recovery efficiency.
표 3 및 도 3 〜 도 6은 본 발명에 따른 각 단계에서의 SEM사진 및 EDX분석 한 결과를 나타낸 것이다. Tables 3 and 6 show the results of SEM and EDX analysis at each step according to the present invention.
<44> 백금족 금속 (백금, 루테늄)이 포함되어 있는 연료전지 폐 스택의 EDX 분석 결과 백금과 루테늄이 95:5 ^.%로 존재하는데, 스택을 침출 후 백금과 루테늄의 함량이 매우 줄어들었음을 알 수 있으며 (EDX의 intensity를 보면 거의 분석이 안되 는 수준임), 스택 침출 후 침출제로 사용한 chloride 이온이 분석됨을 알 수 있다. <44> EDX analysis of a fuel cell waste stack containing platinum group metals (platinum, ruthenium) showed 95: 5 ^.% Of platinum and ruthenium, indicating that the platinum and ruthenium contents decreased significantly after leaching the stack. It can be seen that the intensity of EDX is rarely analyzed, and chloride ion used as a leaching agent after stack leaching is analyzed.
<45> 스택 침출액 백금족 금속이온을 이온교환수지에 흡착 후 EDX분석 결과 침출 하지 않은 연료전지 스택과 비교하여 매우 강한 강도 (intensity)로 백금과 루테늄 이 존재하는 것이 나타나고 있다. Stack Leachate After the adsorption of platinum group metal ions onto the ion exchange resin, EDX analysis shows that platinum and ruthenium are present in a very strong intensity compared to the non-leached fuel cell stack.
<46> 백금족 금속이온을 흡착한 이온교환수지를 회화 후 분석한 EDX의 경우 침출 액에서 이온교환수지 흡착한 과와 비교하여 매우 높은 백금, 루테늄 함량을 나타내 고 있다. EDX, which has been analyzed after incineration of ion exchange resins containing platinum group metal ions, has a much higher platinum and ruthenium content compared to the adsorption of ion exchange resins in leachate.
<47> 도 7 및 도 8은 본 발명의 일실시예에 따른 XPS 분석 결과를 나타낸 그래프 이다. 7 and 8 are graphs showing the results of XPS analysis according to an embodiment of the present invention.
<48> 침출액 내 백금족 금속이온을 흡착한 이온교환수지 표면에 존재하는 백금은 이온형태로 존재하며, 흡착 후 회화한 이온교환수지 재 (Ash) 표면에는 백금족 금속 (Metallic Pt와 Ru ¾)이 확실하게 분석되고 이온형태의 백금은 존재하지 않는 것을 나타내고 있다. Platinum on the surface of the ion exchange resin adsorbed platinum group metal ions in the leachate is present in the form of ions, and platinum group metals (metallic Pt and Ru ¾) are reliably present on the ash surface of the ash exchanged after adsorption. This analysis indicates that platinum in the ionic form does not exist.
<49> 또한, 회화 후 백금을 용해한 재의 경우 금속형태의 백금이 완전히 용해되어 없어지고 루테늄은 Ru 0X로 용해되지 않은 것으로 나타나고 있어, 백금족 금속흔합 재로부터 백금과 루테늄을 분리하여 회수할 수 있음을 알 수 있다. 즉, 백금은 이
온형태로 루테늄은 금속형태로 분리하여 회수할 수 있다. In addition, in the case of the ash dissolved platinum after incineration, the metal form of platinum completely dissolved and ruthenium did not appear to be dissolved by Ru 0 X. Thus , platinum and ruthenium can be separated and recovered from the platinum group metal mixture. It can be seen. In other words, platinum is In the on form, ruthenium can be separated and recovered in metal form.
<50> <50>
<51> 이상과 같이 도면과 명세서에서 최적 실시 예가 개시되었다. 여기서 특정한 용어들이 사용되었으나, 이는 단지 본 발명을 설명하기 위한 목적에서 사용된 것이 지 의미 한정이나 특허청구범위에 기재된 본 발명의 범위를 제한하기 위하여 사용 된 것은 아니다. 그러므로 본 기술 분야의 통상의 지식을 가진 자라면 이로부터 다 양한 변형 및 균등한 타 실시 예가 가능하다는 점을 이해할 것이다. 따라서 본 발 명의 진정한 기술적 보호 범위는 첨부된 특허청구범위의 기술적 사상에 의해 정해 져야 할 것이다. As described above, an optimal embodiment has been disclosed in the drawings and the specification. Although specific terms have been used herein, they are used only for the purpose of describing the present invention and are not intended to limit the scope of the present invention as defined in the meaning or claims. Therefore, those skilled in the art will understand that various modifications and equivalent other embodiments are possible. Therefore, the true technical protection scope of the present invention should be defined by the technical spirit of the appended claims.
<52>
<52>
Claims
【청구의 범위】 [Range of request]
【청구항 11 [Claim 11
(a) 백금족 금속 함유 폐기물을 용해하여 침출하는 단계 (a) dissolving and leaching platinum group metal containing wastes
(b) 침출된 폐기물에서 흡착제를 이용하여 백금족 금속이온을 홉착하는 단계 (b) adsorbing platinum group metal ions using an adsorbent in the leached waste;
(c) 상기 백금족 금속이온을 흡착한 홉착제를 회화 (灰化, ashing)하여 상기 백금족 금속이온을 금속형 태로 회수하는 단계 (c) recovering the platinum group metal ions in a metal form by sintering the adsorbent adsorbing the platinum group metal ions.
를 포함하는 것을 특징으로 하는 백금족 금속 함유 산업폐기물로부터 백금족 금속을 회수하는 방법 . A method for recovering the platinum group metal from the platinum group metal-containing industrial waste, characterized in that it comprises a.
【청구항 2] [Claim 2]
제 1항에 있어서 , The method of claim 1,
상기 (c) 단계 후에 , After step (c),
재 (ash)를 용해하여 용해되는 백금은 용액 내 이온형 태로 회수하고 용해되지 않는 루테늄은 금속형 태로 각각 분리하여 회수하는 단계 Platinum, which is dissolved by melting ash, is recovered in an ionic form in a solution, and ruthenium that is not dissolved is recovered in a metal form.
를 더 포함하는 백금족 금속 함유 산업폐기물로부터 백금족 금속을 회수하는 방법 . A method for recovering the platinum group metal from the platinum group metal-containing industrial waste further comprising.
【청구항 3】 [Claim 3]
제 1항에 있어서, The method of claim 1,
상기 (b) 단계 후에, After the step (b),
흡착제에 붙어 있는 백금족 금속이온을 탈착제로 탈착하여 고농도 백금족 금 속이온 흔합용액으로 회수하는 단계 Desorption of the platinum group metal ion attached to the adsorbent with a desorbent to recover the high concentration platinum group metal ion mixed solution
를 더 포함하는 백금족 금속 함유 산업폐기물로부터 백금족 금속을 회수하는 방법 .
A method for recovering the platinum group metal from the platinum group metal-containing industrial waste further comprising.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201280012351.3A CN103502484A (en) | 2011-03-09 | 2012-02-17 | Method for recovering platinum group metals from industrial waste containing platinum group metals |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2011-0021116 | 2011-03-09 | ||
KR20110021116A KR101224503B1 (en) | 2011-03-09 | 2011-03-09 | Method for recovering platinum group matals from platinum group matals industrial waste |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2012121496A2 true WO2012121496A2 (en) | 2012-09-13 |
WO2012121496A3 WO2012121496A3 (en) | 2012-11-15 |
Family
ID=46798622
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2012/001219 WO2012121496A2 (en) | 2011-03-09 | 2012-02-17 | Method for recovering platinum group metals from industrial waste containing platinum group metals |
Country Status (3)
Country | Link |
---|---|
KR (1) | KR101224503B1 (en) |
CN (1) | CN103502484A (en) |
WO (1) | WO2012121496A2 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101392179B1 (en) | 2013-02-08 | 2014-05-08 | 강희남 | Recovery method of platinum group metal and apparatus for recovering platinum group metal |
KR101454645B1 (en) | 2013-02-20 | 2014-10-27 | 한국생산기술연구원 | Method for quantitative analysis of metals from spent catalyst of exhaust gas consecration system |
KR101452809B1 (en) * | 2013-04-22 | 2014-10-22 | (주)알티아이엔지니어링 | Method of preparing platinum catalyst supported on carbon black for fuel cell using a recycled platinum from spent catalyst |
KR101579498B1 (en) * | 2015-02-24 | 2015-12-22 | (주) 유천테크 | Method for recovering palladium of waste pastes containing palladium |
CN108579695A (en) * | 2018-01-22 | 2018-09-28 | 江苏欣诺科催化剂有限公司 | A kind of adsorbent and desorption method of absorption iridium |
CN112029998B (en) * | 2020-08-27 | 2022-03-18 | 湖南高鑫铂业有限公司 | Method for recovering platinum group metal from granular waste catalyst by combination of dissolution, absorption and desorption |
CN113957244A (en) * | 2021-10-26 | 2022-01-21 | 中钢集团南京新材料研究院有限公司 | Method for enriching platinum group metal in platinum-containing feed liquid |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20030036749A (en) * | 2000-09-05 | 2003-05-09 | 존슨 맛쎄이 퍼블릭 리미티드 컴파니 | Recovery of Metals by Incineration of Metal Containing Basic Ion Exchange Resin |
KR20030041841A (en) * | 2001-11-21 | 2003-05-27 | 쉬플리 캄파니, 엘.엘.씨. | A method for recovering catalytic metals |
JP2005002414A (en) * | 2003-06-12 | 2005-01-06 | Maezawa Ind Inc | Method of recovering noble metal in solution |
KR20100113678A (en) * | 2009-04-14 | 2010-10-22 | 전북대학교산학협력단 | Recovery method of valuableness metals |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1038199C (en) * | 1994-11-30 | 1998-04-29 | 核工业北京化工冶金研究院 | Recovery of platinum family elements from waste catalysts |
-
2011
- 2011-03-09 KR KR20110021116A patent/KR101224503B1/en not_active IP Right Cessation
-
2012
- 2012-02-17 CN CN201280012351.3A patent/CN103502484A/en active Pending
- 2012-02-17 WO PCT/KR2012/001219 patent/WO2012121496A2/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20030036749A (en) * | 2000-09-05 | 2003-05-09 | 존슨 맛쎄이 퍼블릭 리미티드 컴파니 | Recovery of Metals by Incineration of Metal Containing Basic Ion Exchange Resin |
KR20030041841A (en) * | 2001-11-21 | 2003-05-27 | 쉬플리 캄파니, 엘.엘.씨. | A method for recovering catalytic metals |
JP2005002414A (en) * | 2003-06-12 | 2005-01-06 | Maezawa Ind Inc | Method of recovering noble metal in solution |
KR20100113678A (en) * | 2009-04-14 | 2010-10-22 | 전북대학교산학협력단 | Recovery method of valuableness metals |
Also Published As
Publication number | Publication date |
---|---|
KR20120103082A (en) | 2012-09-19 |
CN103502484A (en) | 2014-01-08 |
WO2012121496A3 (en) | 2012-11-15 |
KR101224503B1 (en) | 2013-02-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2012121496A2 (en) | Method for recovering platinum group metals from industrial waste containing platinum group metals | |
Zupanc et al. | Sustainable and selective modern methods of noble metal recycling | |
US7067090B2 (en) | Recovery of platinum group metals | |
Bui et al. | Facile recovery of gold from e-waste by integrating chlorate leaching and selective adsorption using chitosan-based bioadsorbent | |
JP5539942B2 (en) | Method for separating iron and aluminum | |
CN108642503B (en) | Method for removing fluorine and chlorine ions from high-concentration industrial waste acid | |
US6551378B2 (en) | Recovery of precious metals from low concentration sources | |
RU2674272C2 (en) | Method of extracting gold | |
JP2632576B2 (en) | Desorption method of gold iodine complex from ion exchange resin | |
Xia et al. | Sustainable technologies for the recycling and upcycling of precious metals from e-waste | |
US8475749B2 (en) | Process for recovery of noble metals from functionalised, noble metal-containing adsorption materials | |
WO2013129017A1 (en) | Method for recovering gold adsorbed on activated carbon and gold manufacturing process using same | |
Rocky et al. | Comprehensive insights into aqua regia-based hybrid methods for efficient recovery of precious metals from secondary raw materials | |
Anand et al. | Recycling of precious metal gold from waste electrical and electronic equipments (WEEE): A review | |
Kinas et al. | On the path of recovering platinum-group metals and rhenium: A review on the recent advances in secondary-source and waste materials processing | |
Kim et al. | Recovery and Isolation Strategies of Platinum, Palladium, and Rhodium from Spent Automotive Catalyst Leachate Using a Polyethylene-Imine-Grafted Cellulose Nanofibril Aerogel | |
Miroshnichenko | Sorption recovery of platinum metals from compound solutions | |
CN108950232B (en) | Method for green recovery of palladium from palladium-containing waste | |
CA2738382C (en) | Method for aqueous gold thiosulfate extraction using copper-cyanide pretreated carbon adsorption | |
JP2006348359A (en) | Metal recovery method | |
JP7221768B2 (en) | Activated carbon pretreatment method and metal recovery method | |
CA2653392A1 (en) | Improved method to remove antimony from copper electrolytes | |
KR20190036607A (en) | Method for separating and recovering silver, platinum metals and heavy metals from industrial waste | |
JP6399352B2 (en) | Methods for separating and recovering platinum group elements | |
JP5799340B2 (en) | Method for recovering precious metals from liquid containing precious metals |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12754918 Country of ref document: EP Kind code of ref document: A2 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12754918 Country of ref document: EP Kind code of ref document: A2 |