[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2005079475A - Multilayer wiring board and manufacturing method thereof - Google Patents

Multilayer wiring board and manufacturing method thereof Download PDF

Info

Publication number
JP2005079475A
JP2005079475A JP2003310623A JP2003310623A JP2005079475A JP 2005079475 A JP2005079475 A JP 2005079475A JP 2003310623 A JP2003310623 A JP 2003310623A JP 2003310623 A JP2003310623 A JP 2003310623A JP 2005079475 A JP2005079475 A JP 2005079475A
Authority
JP
Japan
Prior art keywords
conductive
hole
wiring board
multilayer wiring
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003310623A
Other languages
Japanese (ja)
Other versions
JP4180473B2 (en
Inventor
Shoji Ito
彰二 伊藤
Ryoichi Kishihara
亮一 岸原
Hiroki Hashiba
浩樹 橋場
Satoru Nakao
知 中尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2003310623A priority Critical patent/JP4180473B2/en
Publication of JP2005079475A publication Critical patent/JP2005079475A/en
Application granted granted Critical
Publication of JP4180473B2 publication Critical patent/JP4180473B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enable a conductive substance that is improper for filling up holes to be used for interlayer continuity, to relieve a phenomenon caused by difference in the material characteristics between the conductive substance used for interlayer continuity and an insulating layer, and to suppress the occurrence of ion migration at a boundary section in the insulating layer. <P>SOLUTION: In a multilayer wiring board (8), a through hole (4) passing through an interlayer bonding layer (22) and an insulating base (21) is formed in a base (1) for multilayer wiring boards, where a conductive layer (3) for composing a wiring pattern is provided on one side of the insulating base (21) and the interlayer bonding layer (22) is provided on the other side; and the conductive substance (6) for obtaining the interlayer continuity of the conductive layer (3) is arranged in the through hole (4) for lamination. A conductive composition, where the volume is contracted and hardened by heating, is used as the conductive substance (6), and heating and pressurization are performed in multilayer lamination, thus forming a protective insulating layer (5) by a material for composing the interlayer bonding layer (22) between the conductive substance (6) and the side of the through hole (4). <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

この発明は、多層配線板およびその製造方法に関し、とくに、フレキシブル多層配線板およびその製造方法に関するものである。   The present invention relates to a multilayer wiring board and a manufacturing method thereof, and more particularly to a flexible multilayer wiring board and a manufacturing method thereof.

近年の電子機器は、高周波信号、デジタル化等に加え、小型・軽量化が進み、それにともない、搭載されるプリント配線板においても、小型、高密度実装化が要求され、これらの要求に応えるプリント配線板として、多層配線板が数多く発表されている。   In recent years, electronic devices have become smaller and lighter in addition to high-frequency signals, digitization, etc. Along with this, printed wiring boards to be mounted are also required to be compact and high-density mounting, and prints that meet these requirements Many multilayer wiring boards have been announced as wiring boards.

一般に、多層配線板における層間接続の手段は、スルーホールとバイアホールの2つに大別される。   In general, the means for interlayer connection in a multilayer wiring board is roughly divided into two types, a through hole and a via hole.

スルーホールは、多層積層後の基板に一括で孔あけを施し、この孔(基板貫通孔)にメッキによって、または導電性組成物を充填することによって層間導通部を形成するものである。積層後に一括で孔あけを施すため、工数は少なくて済むが、層間導通部が基板の深さ方向に一直線状になければならないため、配線の自由度が小さく、高密度配線に適しているとはいえない。   The through hole is used to form an interlayer conductive portion by punching the substrate after multilayer lamination in a lump, and filling this hole (substrate through hole) by plating or filling a conductive composition. The number of man-hours can be reduced because the holes are made in a lump after stacking, but the interlayer conduction part must be straight in the depth direction of the substrate, so the degree of freedom of wiring is small and suitable for high-density wiring I can't say that.

一方、バイアホールは、1層1層ごとに層間導通部分を作り込んでいくものであり、とくに、IVH(Interstitial Via Hole)タイプの多層配線板は、配線の高密度化、および配線の自由度の大きさの点で優位性があることから、携帯電話等の小型の電気製品に広く利用されている。その代表的な工法として、松下電子部品社のALIVH工法(非特許文献1参照)や、DTサーキットテクノロジー社のBit工法(非特許文献2参照)などが挙げられる。 On the other hand, a via hole is one in which an interlayer conductive portion is formed for each layer. In particular, an IVH (Interstitial Via Hole) type multilayer wiring board has a higher wiring density and a higher degree of freedom in wiring. Therefore, it is widely used for small electric products such as mobile phones. Typical examples of the construction method include the ALIVH construction method (see Non-Patent Document 1) manufactured by Matsushita Electronic Parts Co., Ltd. and the B 2 it construction method (see Non-Patent Document 2) manufactured by DT Circuit Technology.

これらの工法に共通するのはビルドアップ法であるという点である。ビルドアップ法の場合、コア層からビルドアップ層を1層ずつ逐次積層し、作り上げていく工法であり、層間の位置合わせが容易であるため、IVH多層配線板のほとんどに利用されている。こうした理由から、IVH多層配線板をビルドアップ基板と呼ぶことも多い。   Common to these methods is the build-up method. In the case of the build-up method, the build-up layer is sequentially laminated from the core layer one by one, and is built up. Since the alignment between the layers is easy, it is used for most IVH multilayer wiring boards. For these reasons, IVH multilayer wiring boards are often referred to as build-up boards.

しかし、ビルドアップ工法の場合、1層1層逐次積層していくため、回路形成工程は層数分だけ必要となる。このことは、試作納期の遅延、製造工程数の増加によるコストアップという問題を引き起こしている。   However, in the case of the build-up method, since the layers are sequentially laminated one by one, the circuit forming process is required for the number of layers. This causes problems such as delay in trial delivery and cost increase due to an increase in the number of manufacturing processes.

そこで、最近、回路形成済みの基材複数枚を重ね合わせ、一括で積層貼り合わせを行う一括積層法によるIVH多層配線板の開発が盛んになってきている。その例として、デンソー社による商標名PALAP(非特許文献3参照)などが挙げられる。この工法の場合、製造工程を大きく簡略化できるばかりでなく、不良層はあらかじめ交換除去して、良層だけを積層することができるため、歩留まり向上に大きく貢献する。
「電子材料」1995年10月号、p52−58、中谷誠一等「全層IVH構造を有する樹脂多層基板「ALIVH」」 「エレクトロニクス実装学会誌」Vol.3、No.7(2000)、p563−568、福岡義孝「厚膜・薄膜混成高密度ビルドアップ配線板技術」 「第16回エレクトロニクス実装学術講演大会講演論文集」p67−68、上村力也等「PALAP基板を用いたプリント基板リサイクルシステムの検討」
Therefore, recently, development of an IVH multilayer wiring board by a collective laminating method in which a plurality of substrates on which circuits have been formed is superposed and laminated together is becoming active. As an example thereof, there is a trade name PALAP (see Non-Patent Document 3) by Denso Corporation. In the case of this construction method, not only the manufacturing process can be greatly simplified, but also the defective layer can be replaced and removed in advance and only the good layer can be laminated, which greatly contributes to the yield improvement.
“Electronic Materials” October 1995 issue, p52-58, Seiichi Nakatani et al. “Resin multilayer substrate with all-layer IVH structure“ ALIVH ”” “Journal of Japan Institute of Electronics Packaging” Vol. 3, no. 7 (2000), p563-568, Yoshitaka Fukuoka “Thick film / thin film hybrid high-density build-up wiring board technology” “Proceedings of the 16th Electronics Packaging Conference” p67-68, Rikiya Uemura, etc. “Examination of printed circuit board recycling system using PALAP substrate”

しかしながら、このような多層配線板は各種材料の複合体であるため、各材料の熱的特性、機械的特性をある程度合わせることによって信頼性を確保する必要がある。とくに、絶縁層の材料と層間導通部分の材料との特性を合わせることが重要となるが、実際にはこれらを完全に一致させることは難しい。   However, since such a multilayer wiring board is a composite of various materials, it is necessary to ensure reliability by matching the thermal characteristics and mechanical characteristics of each material to some extent. In particular, it is important to match the characteristics of the material of the insulating layer and the material of the interlayer conductive portion, but in reality, it is difficult to completely match them.

例えば、バイアホールまたはスルーホールを構成する絶縁層の材料と、バイアホールまたはスルーホール内の層間導通材料との線膨張係数の違いによって、熱衝撃試験時に層間導通部分にクラックが入ったり、または、電気抵抗が大きく上昇したりする問題が発生する。   For example, due to the difference in the coefficient of linear expansion between the material of the insulating layer constituting the via hole or the through hole and the interlayer conductive material in the via hole or the through hole, the interlayer conductive portion is cracked during the thermal shock test, or There arises a problem that the electrical resistance is greatly increased.

また、多層配線板の場合、絶縁層を多数重ね合わせた構造をとることになる。そのため、絶縁層の境界部分は、境界以外の絶縁層内部に比べて機械的強度が弱く、そこからイオンマイグレーションが進行しやすいという問題がある。   In the case of a multilayer wiring board, a structure in which a large number of insulating layers are stacked is adopted. Therefore, the boundary portion of the insulating layer has a problem that the mechanical strength is weaker than that inside the insulating layer other than the boundary, and ion migration easily proceeds from there.

また、導電性組成物をバイアホールまたはスルーホールに充填することで層間導通を得る場合、導電性組成物の中には、硬化する際体積収縮するため穴埋め用途には使用できないものが数多くあり、このような導電性組成物は層間導通に使用することができないという問題がある。   In addition, in the case where interlayer conduction is obtained by filling the via hole or through hole with the conductive composition, there are many conductive compositions that cannot be used for filling holes because the volume shrinks when cured. Such a conductive composition has a problem that it cannot be used for interlayer conduction.

この発明の課題は、上記従来のもののもつ問題点を排除して、穴埋め用途には不適な導電性物質を層間導通に使用可能で、層間導通に用いる導電性物質と絶縁層との材料特性の違いに起因する現象を緩和するとともに、絶縁層の境界部分におけるイオンマイグレーションの発生を抑制することのできる多層配線板およびその製造方法を提供することにある。   An object of the present invention is to eliminate the above-mentioned problems of the conventional ones, and to use a conductive substance that is unsuitable for hole filling applications for interlayer conduction, and to improve the material characteristics of the conductive substance and insulating layer used for interlayer conduction. An object of the present invention is to provide a multilayer wiring board that can alleviate the phenomenon caused by the difference and suppress the occurrence of ion migration at the boundary portion of the insulating layer, and a manufacturing method thereof.

この発明は上記課題を解決するものであって、請求項1に係る発明は、配線パターンをなす導電層を片面に備えた絶縁層に層間接着層とともに貫通孔が形成され、この貫通孔内に前記導電層の層間導通を得るための導電性物質が配置される多層配線板において、加熱により体積収縮・硬化する導電性組成物を前記導電性物質として用いることで、前記導電性物質と前記貫通孔の側面との間に前記層間接着層をなす材料による保護絶縁層を形成した多層配線板である。   The present invention solves the above-mentioned problems. In the invention according to claim 1, a through hole is formed together with an interlayer adhesive layer in an insulating layer having a conductive layer forming a wiring pattern on one side, and the through hole is formed in the through hole. In a multilayer wiring board in which a conductive material for obtaining interlayer conduction of the conductive layer is disposed, by using a conductive composition that shrinks and cures a volume by heating as the conductive material, the conductive material and the through-hole are used. It is a multilayer wiring board in which a protective insulating layer made of the material forming the interlayer adhesive layer is formed between the side surfaces of the holes.

この多層配線板によれば、加熱により体積収縮・硬化する導電性組成物を前記導電性物質として使用することができ、また、導電性物質と絶縁層との間に層間接着層をなす材料による保護絶縁層が形成されるため、導電性物質と絶縁層との材料特性の違いに起因する現象を保護絶縁層によって緩和することができる。   According to this multilayer wiring board, a conductive composition that shrinks and hardens when heated can be used as the conductive substance, and also depends on a material that forms an interlayer adhesive layer between the conductive substance and the insulating layer. Since the protective insulating layer is formed, a phenomenon caused by a difference in material characteristics between the conductive material and the insulating layer can be reduced by the protective insulating layer.

請求項2に係る発明は、絶縁性基材の一側面に配線パターンをなす導電層が設けられ、かつ、他側面に層間接着層が設けられた多層配線板用基材に、前記層間接着層および前記絶縁性基材を貫通する貫通孔を形成し、この貫通孔内に前記導電層の層間導通を得るための導電性物質を配置して積層される多層配線板において、前記導電性物質として加熱により体積収縮・硬化する導電性組成物を用いて、多層積層時に加熱加圧されることで、前記導電性物質と前記貫通孔の側面との間に前記層間接着層をなす材料による保護絶縁層を形成した多層配線板である。   According to a second aspect of the present invention, there is provided an interlayer adhesive layer on a substrate for a multilayer wiring board in which a conductive layer forming a wiring pattern is provided on one side surface of an insulating substrate and an interlayer adhesive layer is provided on the other side surface. And a multilayer wiring board in which a through-hole penetrating the insulating base material is formed and a conductive material for obtaining interlayer conduction of the conductive layer is disposed in the through-hole and laminated, Protective insulation with a material that forms the interlayer adhesive layer between the conductive substance and the side surface of the through hole by heating and pressurizing at the time of multilayer lamination using a conductive composition that shrinks and hardens by heating. A multilayer wiring board in which layers are formed.

この多層配線板によれば、加熱により体積収縮・硬化する導電性組成物を前記導電性物質として使用することができ、また、導電性物質と絶縁性基材および層間接着層との間に、層間接着層をなす材料による保護絶縁層が形成されるため、導電性物質と絶縁性基材との材料特性の違いに起因する現象を保護絶縁層によって緩和することができる。   According to this multilayer wiring board, a conductive composition that shrinks and hardens by heating can be used as the conductive substance, and between the conductive substance and the insulating base material and the interlayer adhesive layer, Since the protective insulating layer is formed using the material forming the interlayer adhesive layer, a phenomenon caused by the difference in material characteristics between the conductive substance and the insulating base material can be alleviated by the protective insulating layer.

請求項3に係る発明は、請求項1または2記載の発明において、前記保護絶縁層は前記絶縁層または前記絶縁性基材と前記層間接着層との境界を覆うように形成される多層配線板である。   The invention according to claim 3 is the multilayer wiring board according to claim 1 or 2, wherein the protective insulating layer is formed so as to cover a boundary between the insulating layer or the insulating base material and the interlayer adhesive layer. It is.

この多層配線板によれば、絶縁層または絶縁性基材と層間接着層との境界が、保護絶縁層に覆われることで導電性物質と直接接触せず、保護絶縁層により導電性物質からバリヤされているため、イオンマイグレーションの発生を抑制することができる。   According to this multilayer wiring board, the boundary between the insulating layer or the insulating base material and the interlayer adhesive layer is covered with the protective insulating layer so that it does not come into direct contact with the conductive material. Therefore, the occurrence of ion migration can be suppressed.

請求項4に係る発明は、請求項1〜3のいずれかに記載の発明において、前記保護絶縁層は前記絶縁層または前記絶縁性基材に比べてヤング率の小さい材料で構成される多層配線板である。   A fourth aspect of the present invention is the multilayer wiring according to any one of the first to third aspects, wherein the protective insulating layer is made of a material having a Young's modulus smaller than that of the insulating layer or the insulating base material. It is a board.

この多層配線板によれば、絶縁層または絶縁性基材に比べてヤング率の小さい材料で構成される保護絶縁層が、導電性物質と絶縁層または絶縁性基材との線膨張係数の違いにより発生する応力を緩和し、熱衝撃試験における耐性を向上させることができる。   According to this multilayer wiring board, the protective insulating layer made of a material having a lower Young's modulus than the insulating layer or the insulating base material has a difference in coefficient of linear expansion between the conductive substance and the insulating layer or the insulating base material. Can relieve the stress generated by the heat resistance and improve the resistance in the thermal shock test.

また、この多層配線板によれば、絶縁層または絶縁性基材に比べてヤング率の小さい材料で構成される保護絶縁層が、絶縁層または絶縁性基材と層間接着層との境界を覆うように形成されることで、イオンマイグレーションの発生の抑制と、導電性物質と絶縁層または絶縁性基材との線膨張係数の違いにより発生する応力の緩和とを両立することができる。   According to this multilayer wiring board, the protective insulating layer made of a material having a lower Young's modulus than the insulating layer or the insulating base material covers the boundary between the insulating layer or the insulating base material and the interlayer adhesive layer. By being formed in this manner, it is possible to achieve both suppression of the occurrence of ion migration and relaxation of stress generated due to the difference in linear expansion coefficient between the conductive substance and the insulating layer or the insulating base material.

請求項5に係る発明は、請求項1〜4のいずれかに記載の発明において、前記保護絶縁層は前記絶縁層または前記絶縁性基材に比べて誘電率の低い材料で構成される多層配線板である。   A fifth aspect of the present invention is the multilayer wiring according to any one of the first to fourth aspects, wherein the protective insulating layer is made of a material having a lower dielectric constant than the insulating layer or the insulating substrate. It is a board.

この多層配線板によれば、絶縁層または絶縁性基材に比べて誘電率の低い材料で構成される保護絶縁層が、伝送速度の遅延を回避させることができる。   According to this multilayer wiring board, the protective insulating layer made of a material having a lower dielectric constant than that of the insulating layer or the insulating base material can avoid a delay in transmission speed.

また、この多層配線板によれば、保護絶縁層が、絶縁層または絶縁性基材に比べてヤング率が小さく、かつ誘電率の低い材料で構成されることで、導電性物質と絶縁層または絶縁性基材との線膨張係数の違いにより発生する応力の緩和と、伝送速度の遅延の回避とを両立することができる。   Further, according to this multilayer wiring board, the protective insulating layer is made of a material having a Young's modulus lower than that of the insulating layer or the insulating base and having a low dielectric constant, so that the conductive substance and the insulating layer or It is possible to achieve both relaxation of stress generated due to the difference in linear expansion coefficient from the insulating base material and avoidance of transmission speed delay.

また、この多層配線板によれば、絶縁層または絶縁性基材に比べて誘電率の低い材料で構成される保護絶縁層が、絶縁層または絶縁性基材と層間接着層との境界を覆うように形成されることで、イオンマイグレーションの発生の抑制と、伝送速度の遅延の回避とを両立することができる。   Further, according to this multilayer wiring board, the protective insulating layer made of a material having a lower dielectric constant than the insulating layer or the insulating base material covers the boundary between the insulating layer or the insulating base material and the interlayer adhesive layer. By being formed in this way, it is possible to achieve both suppression of the occurrence of ion migration and avoidance of transmission speed delay.

さらに、この多層配線板によれば、絶縁層または絶縁性基材に比べてヤング率が小さく、かつ誘電率の低い材料で構成される保護絶縁層が、絶縁層または絶縁性基材と層間接着層との境界を覆うように形成されることで、イオンマイグレーションの発生の抑制と、導電性物質と絶縁層または絶縁性基材との線膨張係数の違いにより発生する応力の緩和と、伝送速度の遅延の回避とを共に実現することができる。   Furthermore, according to this multilayer wiring board, the protective insulating layer made of a material having a lower Young's modulus and a lower dielectric constant than the insulating layer or the insulating base material is bonded to the insulating layer or the insulating base material with an interlayer adhesion. It is formed so as to cover the boundary with the layer, thereby suppressing the occurrence of ion migration, relieving the stress generated by the difference in the linear expansion coefficient between the conductive material and the insulating layer or insulating substrate, and the transmission speed It is possible to achieve both avoidance of delay.

請求項6に係る発明は、請求項1〜5のいずれかに記載の発明において、前記絶縁層または前記絶縁性基材はポリイミド等の可撓性樹脂で構成される多層配線板である。   A sixth aspect of the present invention is the multilayer wiring board according to any one of the first to fifth aspects, wherein the insulating layer or the insulating base is made of a flexible resin such as polyimide.

この多層配線板によれば、ポリイミド等の可撓性樹脂で構成される絶縁層または絶縁性基材は、屈曲が容易に行える。とくに、保護絶縁層を絶縁層または絶縁性基材に比べてヤング率の小さい材料で構成することで、屈曲した場合の絶縁層または絶縁性基材からの導電性物質の剥離、および導電性物質の破壊を抑制することができる。   According to this multilayer wiring board, the insulating layer or the insulating substrate made of a flexible resin such as polyimide can be easily bent. In particular, the protective insulating layer is made of a material having a lower Young's modulus than that of the insulating layer or the insulating base material, so that the conductive material is peeled off from the insulating layer or the insulating base material when bent, and the conductive material. Can be prevented from breaking.

請求項7に係る発明は、請求項1〜6のいずれかに記載の発明において、前記導電性物質は、ナノサイズ酸化銀、有機銀化合物、有機溶剤からなる導電性組成物である多層配線板である。   The invention according to claim 7 is the multilayer wiring board according to any one of claims 1 to 6, wherein the conductive substance is a conductive composition comprising nano-sized silver oxide, an organic silver compound, and an organic solvent. It is.

この多層配線板によれば、所要の温度に加熱し、かつ、所要の圧力に加圧することで、酸化銀ナノ粒子の還元と有機銀化合物の分解により、銀粒子間どうしが溶着した構造を得て導電性組成物の体積が半分程度に収縮し、それによって生成される実質的な大きさの間隙に、層間接着層をなす材料による保護絶縁層を形成することができる。   According to this multilayer wiring board, by heating to a required temperature and pressurizing to a required pressure, a structure in which silver particles are welded is obtained by reduction of silver oxide nanoparticles and decomposition of an organic silver compound. Thus, the volume of the conductive composition shrinks to about half, and a protective insulating layer made of a material forming an interlayer adhesive layer can be formed in a gap of a substantial size generated thereby.

請求項8に係る発明は、配線パターンをなす導電層を片面に備えた絶縁層に層間接着層とともに貫通孔が形成され、この貫通孔内に前記導電層の層間導通を得るための導電性物質として加熱により体積収縮・硬化する導電性組成物が配置されることで、前記導電性物質と前記貫通孔の側面との間に前記層間接着層をなす材料による保護絶縁層が形成される多層配線板の製造方法であって、前記絶縁層に前記層間接着層とともに前記貫通孔を形成する工程と、前記貫通孔内に前記導電性物質を充填する工程と、多層配線板を加熱加圧することで、充填した前記導電性物質を体積収縮・硬化させるとともに、前記層間接着層をなす材料を前記導電性物質と前記貫通孔の側面との間に浸入させて前記保護絶縁層を形成する工程と、を含む多層配線板の製造方法である。   According to an eighth aspect of the present invention, a through hole is formed in an insulating layer having a conductive layer forming a wiring pattern on one side together with an interlayer adhesive layer, and the conductive material for obtaining an interlayer conduction of the conductive layer in the through hole Multilayer wiring in which a conductive insulating composition that is contracted and hardened by heating is disposed to form a protective insulating layer made of a material that forms the interlayer adhesive layer between the conductive material and the side surface of the through hole A method of manufacturing a board, the step of forming the through hole together with the interlayer adhesive layer in the insulating layer, the step of filling the conductive material in the through hole, and heating and pressurizing a multilayer wiring board A step of shrinking and curing the filled conductive substance, and forming the protective insulating layer by infiltrating the material forming the interlayer adhesive layer between the conductive substance and the side surface of the through hole; Multi-layer wiring board including It is a manufacturing method.

この多層配線板の製造方法によれば、導電性物質として、1μm以上の金属フィラーを用いた導電性組成物や、ナノ金属粒子を用いて加熱により金属結合が得られるような導電性ペーストなど、あらゆる種類の導電性物質を使用することが可能となる。   According to this method for producing a multilayer wiring board, as a conductive material, a conductive composition using a metal filler of 1 μm or more, a conductive paste that can obtain a metal bond by heating using nano metal particles, All kinds of conductive materials can be used.

また、充填した導電性物質を体積収縮・硬化させる工程と、層間接着層をなす材料を導電性物質と貫通孔の側面との間に浸入させて保護絶縁層を形成する工程とを、1工程で行うことができる。   In addition, a step of shrinking and curing the filled conductive material, and a step of forming a protective insulating layer by infiltrating the material forming the interlayer adhesive layer between the conductive material and the side surface of the through hole are one step. Can be done.

請求項9に係る発明は、絶縁性基材の一側面に配線パターンをなす導電層が設けられ、かつ、他側面に層間接着層が設けられた多層配線板用基材に、前記層間接着層および前記絶縁性基材を貫通する貫通孔が形成され、この貫通孔内に前記導電層の層間導通を得るための導電性物質として加熱により体積収縮・硬化する導電性組成物が配置され、多層積層時に加熱加圧されることで、前記導電性物質と前記貫通孔の側面との間に前記層間接着層をなす材料による保護絶縁層が形成される多層配線板の製造方法であって、前記層間接着層および前記絶縁性基材に前記貫通孔を形成する工程と、前記貫通孔内に前記導電性物質を充填する工程と、多層積層時に加熱加圧することで、充填した前記導電性物質を体積収縮・硬化させるとともに、前記層間接着層をなす材料を前記導電性物質と前記貫通孔の側面との間に浸入させて前記保護絶縁層を形成する工程と、を含む多層配線板の製造方法である。   The invention according to claim 9 is directed to a multilayer wiring board substrate in which a conductive layer forming a wiring pattern is provided on one side surface of an insulating substrate, and an interlayer adhesive layer is provided on the other side surface. And a through-hole penetrating the insulating substrate is formed, and in the through-hole, a conductive composition that shrinks and cures volume by heating is disposed as a conductive substance for obtaining interlayer conduction of the conductive layer, and a multilayer A method of manufacturing a multilayer wiring board in which a protective insulating layer is formed by a material forming the interlayer adhesive layer between the conductive substance and a side surface of the through-hole by being heated and pressurized at the time of lamination, The step of forming the through hole in the interlayer adhesive layer and the insulating substrate, the step of filling the conductive material in the through hole, and heating and pressurizing at the time of multilayer lamination, the filled conductive material While shrinking and curing the volume, A step of forming the protective insulating layer material comprised between the adhesive layer is penetrating between the side surface of the conductive material and the through hole, a method for manufacturing a multilayer wiring board comprising a.

この多層配線板の製造方法によれば、導電性物質として、1μm以上の金属フィラーを用いた導電性組成物や、ナノ金属粒子を用いて加熱により金属結合が得られるような導電性ペーストなど、あらゆる種類の導電性物質を使用することが可能となる。   According to this method for producing a multilayer wiring board, as a conductive material, a conductive composition using a metal filler of 1 μm or more, a conductive paste that can obtain a metal bond by heating using nano metal particles, All kinds of conductive materials can be used.

また、充填した導電性物質を体積収縮・硬化させる工程と、層間接着層をなす材料を導電性物質と貫通孔の側面との間に浸入させて保護絶縁層を形成する工程とを、1工程で行うことができる。しかも、この工程を多層積層時の加熱加圧工程により実現することで、多層積層時の加熱加圧工程とは別に行う導電性物質の体積収縮・硬化工程および保護絶縁層の浸入・形成工程を省略することができる。   In addition, a step of shrinking and curing the filled conductive material, and a step of forming a protective insulating layer by infiltrating the material forming the interlayer adhesive layer between the conductive material and the side surface of the through hole are one step. Can be done. In addition, by realizing this process by the heat and pressure process at the time of multilayer lamination, the conductive material volume shrinkage and curing process and the protective insulating layer infiltration and formation process are performed separately from the heat and pressure process at the time of multilayer lamination. Can be omitted.

この発明は以上のように、配線パターンをなす導電層を片面に備えた絶縁層に層間接着層とともに貫通孔が形成され、この貫通孔内に前記導電層の層間導通を得るための導電性物質が配置される多層配線板において、加熱により体積収縮・硬化する導電性組成物を前記導電性物質として用いることで、前記導電性物質と前記貫通孔の側面との間に前記層間接着層をなす材料による保護絶縁層を形成したので、穴埋め用途には不適な導電性物質を層間導通に使用可能で、層間導通に用いる導電性物質と絶縁層との材料特性の違いに起因する現象を緩和することができ、また、絶縁層の境界部分におけるイオンマイグレーションの発生を抑制することができる効果がある。   As described above, according to the present invention, a through hole is formed together with an interlayer adhesive layer in an insulating layer having a conductive layer forming a wiring pattern on one side, and a conductive substance for obtaining interlayer conduction of the conductive layer in the through hole In the multilayer wiring board in which is disposed, the interlayer adhesive layer is formed between the conductive material and the side surface of the through hole by using, as the conductive material, a conductive composition that shrinks and hardens when heated. Since a protective insulating layer is formed of a material, it is possible to use a conductive substance that is not suitable for hole filling applications for interlayer conduction, and alleviate the phenomenon caused by the difference in material properties between the conductive substance used for interlayer conduction and the insulating layer. In addition, there is an effect that the occurrence of ion migration at the boundary portion of the insulating layer can be suppressed.

この発明の実施の形態を、図面を参照して説明する。
図1、図2は、この発明による多層配線板の一実施形態を示す説明図であり、この多層配線板1をその製造方法とともに説明する。
Embodiments of the present invention will be described with reference to the drawings.
1 and 2 are explanatory views showing an embodiment of a multilayer wiring board according to the present invention. The multilayer wiring board 1 will be described together with a manufacturing method thereof.

まず、図1(a)に示すように、ポリイミド基材(絶縁層)21の片面に銅箔31が接着された片面銅箔付きポリイミド基材11を、出発材料として用意する。   First, as shown to Fig.1 (a), the polyimide base material 11 with the single-sided copper foil in which the copper foil 31 was adhere | attached on the single side | surface of the polyimide base material (insulating layer) 21 is prepared as a starting material.

つぎに、この片面銅箔付きポリイミド基材11に対し、サブトラクティブ法を用いて銅箔31をエッチングすることで、図1(b)に示すように、配線パターンをなす導電層3を片面に備えた回路形成済み配線板12を作製する。   Next, by etching the copper foil 31 using a subtractive method on the polyimide substrate 11 with a single-sided copper foil, the conductive layer 3 forming the wiring pattern is formed on one side as shown in FIG. The circuit-formed wiring board 12 provided is prepared.

この方法に代えて、例えば、両面に銅箔の付かないポリイミド基材を出発材料とし、このポリイミド基材に対してアディティブ法、セミアディティブ法を用いて回路を形成することも可能である。   Instead of this method, for example, it is also possible to use a polyimide base material having no copper foil on both sides as a starting material, and to form a circuit using this additive base material using an additive method or a semi-additive method.

つぎに、図1(c)に示すように、回路形成済み配線板12におけるポリイミド基材21の配線パターンをなす導電層3とは反対側の面に層間接着層22を形成することで、多層配線板用基材1を作製する。   Next, as shown in FIG. 1C, an interlayer adhesive layer 22 is formed on the surface opposite to the conductive layer 3 forming the wiring pattern of the polyimide base material 21 in the circuit-formed wiring board 12, thereby forming a multilayer. A wiring board substrate 1 is prepared.

この層間接着層22としては、熱可塑性ポリイミドに熱硬化性機能を付与したものを使用することができる。これ以外にも、例えば、エポキシ等に代表される熱硬化性の樹脂や、熱可塑性ポリイミド等の熱可塑性樹脂を層間接着層として使用することも可能である。   As the interlayer adhesive layer 22, a thermoplastic polyimide provided with a thermosetting function can be used. In addition to this, for example, a thermosetting resin typified by epoxy or the like, or a thermoplastic resin such as thermoplastic polyimide may be used as the interlayer adhesive layer.

但し、層間接着層22は、ポリイミド基材21に比べてヤング率の小さい材料で構成されることが好ましく、また、ポリイミド基材21に比べて誘電率の低い材料で構成されることが好ましい。   However, the interlayer adhesive layer 22 is preferably made of a material having a lower Young's modulus than the polyimide base material 21 and is preferably made of a material having a lower dielectric constant than the polyimide base material 21.

つぎに、図1(d)に示すように、多層配線板用基材1の導電層3に対応する位置に、層間接着層22およびポリイミド基材21を貫通する貫通孔4を形成する。この貫通孔4はバイアホールであり、UV−YAGレーザによる穴開け加工ののち、プラズマ照射によるソフトエッチを施すことでデスミアを行って形成することができる。   Next, as shown in FIG. 1 (d), a through-hole 4 penetrating the interlayer adhesive layer 22 and the polyimide substrate 21 is formed at a position corresponding to the conductive layer 3 of the multilayer wiring board substrate 1. The through hole 4 is a via hole, and can be formed by performing desmearing by performing soft etching by plasma irradiation after drilling with a UV-YAG laser.

UV−YAGレーザに代えて、例えば、炭酸ガスレーザやエキシマレーザ等によって、より高速で加工することも可能である。また、デスミアの方法として、過マンガン酸塩を使用した湿式デスミアもごく一般的であり、使用可能である。   Instead of the UV-YAG laser, for example, a carbon dioxide laser, an excimer laser, or the like can be used to process at higher speed. Further, as a desmear method, wet desmear using a permanganate is very common and can be used.

図1(d)から、バイアホール4は、ポリイミド基材21および層間接着層22によって形成されていて、バイアホール4内には異種材料(ポリイミド基材21と層間接着層22)の境界23が存在していることがわかる。   From FIG. 1D, the via hole 4 is formed by the polyimide base material 21 and the interlayer adhesive layer 22, and a boundary 23 between different materials (the polyimide base material 21 and the interlayer adhesive layer 22) is present in the via hole 4. You can see that it exists.

つぎに、図1(e)に示すように、多層配線板用基材1のバイアホール4の穴内に導電性物質6を充填する。導電性物質6としては、加熱により体積収縮・硬化する導電性組成物を用いることができる。   Next, as shown in FIG. 1 (e), a conductive substance 6 is filled into the via hole 4 of the multilayer wiring board substrate 1. As the conductive material 6, a conductive composition that shrinks and hardens when heated can be used.

例えば、導電性物質6として、ナノサイズ酸化銀、有機銀化合物、有機溶剤からなる導電性組成物を使用することが可能である。このような導電性組成物の場合、所要の温度、所要の圧力に加熱加圧することで、酸化銀ナノ粒子の還元と有機銀化合物の分解により、銀粒子間どうしが溶着した構造を得て導電性組成物の体積が半分程度に収縮する。   For example, as the conductive material 6, a conductive composition made of nano-sized silver oxide, an organic silver compound, or an organic solvent can be used. In the case of such a conductive composition, by heating and pressing at a required temperature and a required pressure, a structure in which silver particles are welded is obtained by reduction of silver oxide nanoparticles and decomposition of an organic silver compound. The volume of the composition shrinks to about half.

その他、導電性物質6として、1μm以上の金属フィラーを用いた導電性組成物や、ナノ金属粒子を用いて加熱により金属結合が得られるような導電性ペーストなど、あらゆる種類の導電性物質を使用することが可能である。   In addition, as the conductive material 6, all kinds of conductive materials such as a conductive composition using a metal filler of 1 μm or more and a conductive paste capable of obtaining a metal bond by heating using nano metal particles are used. Is possible.

つぎに、図2(f)に示すように、多層配線板用基材1を複数枚(図では2枚)と最下層に回路形成済み配線板12を位置合わせする。すなわち、2枚の多層配線板用基材1a,1bの導電性物質6a,6bが、互いの導電層3a,3bどうしの層間導通をとるとともに、回路形成済み配線板12の導電層3との層間導通もとるように位置合わせする。   Next, as shown in FIG. 2F, a plurality of multilayer wiring board substrates 1 (two in the figure) and the circuit-formed wiring board 12 are aligned to the lowermost layer. In other words, the conductive materials 6a and 6b of the two multilayer wiring board substrates 1a and 1b provide interlayer conduction between the conductive layers 3a and 3b, and the conductive layer 3 of the circuit-formed wiring board 12 and the conductive layers 3 and 3b. Align so that interlayer conduction is established.

この位置合わせには、ピンアラインメント方式を採用することも可能であるが、その場合はピン用の穴を開けるスペースが必要になるため、好ましいとはいえない。そのため、画像認識による位置合わせを採用することが好ましい。   For this alignment, it is possible to adopt a pin alignment method. However, in this case, a space for opening a pin hole is required, which is not preferable. For this reason, it is preferable to employ alignment by image recognition.

つぎに、図2(g)に示すように、これらの多層配線板用基材1a,1bおよび回路形成済み配線板12を重ね合わせ、真空熱プレス機によって、真空度1kPa以下、温度200℃、圧力40kgf/cmの条件で加熱・加圧して接合することで多層配線板8を作製する。 Next, as shown in FIG. 2 (g), these multilayer wiring board substrates 1a and 1b and the circuit-formed wiring board 12 are superposed, and the degree of vacuum is 1 kPa or less, the temperature is 200 ° C., using a vacuum heat press. The multilayer wiring board 8 is produced by heating and pressurizing and joining under the condition of a pressure of 40 kgf / cm 2 .

ナノサイズ酸化銀、有機銀化合物、有機溶剤からなる導電性組成物で構成される導電性物質6は、このときの加熱・加圧により、酸化銀ナノ粒子の還元と有機銀化合物の分解が生じ、銀粒子間どうしが溶着した構造を得て導電性組成物の体積が半分以下にまで収縮して硬化する。   Conductive substance 6 composed of a conductive composition comprising nano-sized silver oxide, organic silver compound, and organic solvent causes reduction of silver oxide nanoparticles and decomposition of organic silver compound by heating and pressurization at this time. A structure in which silver particles are welded together is obtained, and the volume of the conductive composition shrinks to half or less and is cured.

これと同時に、導電性物質6の体積収縮・硬化によって導電性物質6と貫通孔4の側面との間に生成される実質的な大きさの間隙に、このときの加熱・加圧により、層間接着層22をなす材料が浸入して保護絶縁層5が形成される。   At the same time, the gap between the conductive material 6 and the side surface of the through-hole 4 by the volume shrinkage / curing of the conductive material 6 is formed into a substantial gap between the layers by heating and pressing at this time. The protective insulating layer 5 is formed by intrusion of the material forming the adhesive layer 22.

このようにしてできあがった多層配線板8は、図2(g)に示すように、導電性物質6とポリイミド基材21との間に保護絶縁層5が形成されるため、導電性物質6とポリイミド基材21との材料特性の違いに起因する現象を保護絶縁層5によって緩和することができる。   As shown in FIG. 2G, the multilayer wiring board 8 thus completed has a protective insulating layer 5 formed between the conductive material 6 and the polyimide base material 21. The phenomenon caused by the difference in material characteristics from the polyimide base material 21 can be alleviated by the protective insulating layer 5.

また、この多層配線板8は、ポリイミド基材21と層間接着層22との境界23が、保護絶縁層5に覆われることで導電性物質6と直接接触せず、保護絶縁層5により導電性物質6からバリヤされているため、イオンマイグレーションの発生を抑制することができる。   In addition, the multilayer wiring board 8 has a boundary 23 between the polyimide base material 21 and the interlayer adhesive layer 22 that is covered with the protective insulating layer 5 so that it does not come into direct contact with the conductive material 6. Since the barrier is made from the substance 6, the occurrence of ion migration can be suppressed.

また、この多層配線板8は、ポリイミド基材21に比べてヤング率の小さい材料で構成される保護絶縁層5が、導電性物質6とポリイミド基材21との線膨張係数の違いにより発生する応力を緩和し、熱衝撃試験における耐性を向上させることができる。   Further, in this multilayer wiring board 8, the protective insulating layer 5 made of a material having a lower Young's modulus than the polyimide base material 21 is generated due to the difference in linear expansion coefficient between the conductive material 6 and the polyimide base material 21. The stress can be relaxed and the resistance in the thermal shock test can be improved.

また、この多層配線板8は、ポリイミド基材21に比べて誘電率の低い材料で構成される保護絶縁層5が、伝送速度の遅延を回避させることができる。   Further, in this multilayer wiring board 8, the protective insulating layer 5 made of a material having a lower dielectric constant than that of the polyimide base material 21 can avoid a delay in transmission speed.

このようにして作製された多層配線板8を、85℃、85RH%、30Vの条件でマイグレーション試験を実施したところ、バイアピッチが500μmの場合で、1000時間以上経過後も絶縁抵抗が1GΩ以上を維持した。   When the multilayer wiring board 8 thus manufactured was subjected to a migration test under the conditions of 85 ° C., 85 RH%, and 30 V, the insulation resistance was maintained at 1 GΩ or more after 1000 hours or more when the via pitch was 500 μm. did.

これに対し、バイアホール側面に保護絶縁層が形成されていない従来の多層配線板用基材を用いて作製した多層配線板を、比較のため同様のマイグレーション試験を実施したところ、バイアピッチが500μmの場合で、500時間程度で絶縁抵抗が1GΩ以下まで低下した。   On the other hand, when a similar migration test was performed for comparison on a multilayer wiring board produced using a conventional multilayer wiring board base material in which a protective insulating layer was not formed on the side surface of the via hole, the via pitch was 500 μm. In some cases, the insulation resistance decreased to 1 GΩ or less in about 500 hours.

また、バイアホール4側面にポリイミド基材21よりもヤング率の小さい材料の保護絶縁層5が形成されている多層配線板8と、そのような保護絶縁層が形成されていない従来の多層配線板について、有限要素法により、バイアホール側面に発生する応力を比較したところ、保護絶縁層5が形成されている多層配線板8に優位性が認められた。   Also, a multilayer wiring board 8 in which a protective insulating layer 5 made of a material having a Young's modulus smaller than that of the polyimide substrate 21 is formed on the side surface of the via hole 4, and a conventional multilayer wiring board in which such a protective insulating layer is not formed When the stress generated on the side surface of the via hole was compared by the finite element method, superiority was recognized in the multilayer wiring board 8 on which the protective insulating layer 5 was formed.

なお、上記の実施形態では、貫通孔4としてバイアホールを例示したが、これに限定するものでなく、例えば、スルーホールにも適用することが可能である。   In the above embodiment, a via hole is exemplified as the through hole 4, but the present invention is not limited to this, and can be applied to a through hole, for example.

この発明による多層配線板の一実施形態を示す説明図である。It is explanatory drawing which shows one Embodiment of the multilayer wiring board by this invention. この発明による多層配線板の一実施形態を示す説明図である。It is explanatory drawing which shows one Embodiment of the multilayer wiring board by this invention.

符号の説明Explanation of symbols

1 多層配線板用基材
3 導電層
4 貫通孔(バイアホール)
5 保護絶縁層
6 導電性物質
8 多層配線板
21 ポリイミド基材
22 層間接着層
1 Substrate for multilayer wiring board 3 Conductive layer 4 Through hole (via hole)
5 Protective Insulating Layer 6 Conductive Substance 8 Multilayer Wiring Board 21 Polyimide Base Material 22 Interlayer Adhesive Layer

Claims (9)

配線パターンをなす導電層を片面に備えた絶縁層に層間接着層とともに貫通孔が形成され、この貫通孔内に前記導電層の層間導通を得るための導電性物質が配置される多層配線板において、
加熱により体積収縮・硬化する導電性組成物を前記導電性物質として用いることで、前記導電性物質と前記貫通孔の側面との間に前記層間接着層をなす材料による保護絶縁層を形成したことを特徴とする多層配線板。
In a multilayer wiring board in which a through hole is formed together with an interlayer adhesive layer in an insulating layer provided with a conductive layer forming a wiring pattern on one side, and a conductive material for obtaining interlayer conduction of the conductive layer is disposed in the through hole ,
Forming a protective insulating layer made of a material forming the interlayer adhesive layer between the conductive material and the side surface of the through hole by using a conductive composition that shrinks and hardens when heated as the conductive material. A multilayer wiring board characterized by
絶縁性基材の一側面に配線パターンをなす導電層が設けられ、かつ、他側面に層間接着層が設けられた多層配線板用基材に、前記層間接着層および前記絶縁性基材を貫通する貫通孔を形成し、この貫通孔内に前記導電層の層間導通を得るための導電性物質を配置して積層される多層配線板において、
前記導電性物質として加熱により体積収縮・硬化する導電性組成物を用いて、多層積層時に加熱加圧されることで、前記導電性物質と前記貫通孔の側面との間に前記層間接着層をなす材料による保護絶縁層を形成したことを特徴とする多層配線板。
Passing through the interlayer adhesive layer and the insulating substrate through a multilayer wiring board substrate with a conductive layer forming a wiring pattern on one side of the insulating substrate and an interlayer adhesive layer on the other side In the multilayer wiring board that is formed by forming a through hole and laminating a conductive material for obtaining interlayer conduction of the conductive layer in the through hole,
By using a conductive composition that shrinks and cures by heating as the conductive substance, the interlayer adhesive layer is formed between the conductive substance and the side surface of the through hole by being heated and pressurized during multilayer lamination. A multilayer wiring board, wherein a protective insulating layer is formed of a material formed.
前記保護絶縁層は前記絶縁層または前記絶縁性基材と前記層間接着層との境界を覆うように形成されることを特徴とする請求項1または2記載の多層配線板。   The multilayer wiring board according to claim 1, wherein the protective insulating layer is formed so as to cover a boundary between the insulating layer or the insulating base material and the interlayer adhesive layer. 前記保護絶縁層は前記絶縁層または前記絶縁性基材に比べてヤング率の小さい材料で構成されることを特徴とする請求項1〜3のいずれかに記載の多層配線板。   The multilayer wiring board according to claim 1, wherein the protective insulating layer is made of a material having a Young's modulus smaller than that of the insulating layer or the insulating base material. 前記保護絶縁層は前記絶縁層または前記絶縁性基材に比べて誘電率の低い材料で構成されることを特徴とする請求項1〜4のいずれかに記載の多層配線板。   5. The multilayer wiring board according to claim 1, wherein the protective insulating layer is made of a material having a dielectric constant lower than that of the insulating layer or the insulating base material. 前記絶縁層または前記絶縁性基材はポリイミド等の可撓性樹脂で構成されることを特徴とする請求項1〜5のいずれかに記載の多層配線板。   The multilayer wiring board according to claim 1, wherein the insulating layer or the insulating base is made of a flexible resin such as polyimide. 前記導電性物質は、ナノサイズ酸化銀、有機銀化合物、有機溶剤からなる導電性組成物であることを特徴とする請求項1〜6のいずれかに記載の多層配線板。   The multilayer wiring board according to claim 1, wherein the conductive material is a conductive composition comprising nano-sized silver oxide, an organic silver compound, and an organic solvent. 配線パターンをなす導電層を片面に備えた絶縁層に層間接着層とともに貫通孔が形成され、この貫通孔内に前記導電層の層間導通を得るための導電性物質として加熱により体積収縮・硬化する導電性組成物が配置されることで、前記導電性物質と前記貫通孔の側面との間に前記層間接着層をなす材料による保護絶縁層が形成される多層配線板の製造方法であって、
前記絶縁層に前記層間接着層とともに前記貫通孔を形成する工程と、
前記貫通孔内に前記導電性物質を充填する工程と、
多層配線板を加熱加圧することで、充填した前記導電性物質を体積収縮・硬化させるとともに、前記層間接着層をなす材料を前記導電性物質と前記貫通孔の側面との間に浸入させて前記保護絶縁層を形成する工程と、
を含むことを特徴とする多層配線板の製造方法。
A through hole is formed in an insulating layer having a conductive layer forming a wiring pattern on one side together with an interlayer adhesive layer, and the volume shrinks and cures by heating as a conductive material for obtaining interlayer conduction of the conductive layer in the through hole. A method for producing a multilayer wiring board in which a protective insulating layer is formed of a material forming the interlayer adhesive layer between the conductive substance and a side surface of the through-hole by disposing a conductive composition,
Forming the through hole in the insulating layer together with the interlayer adhesive layer;
Filling the through hole with the conductive material;
By heating and pressurizing the multilayer wiring board, the filled conductive substance is contracted and cured in volume, and the material forming the interlayer adhesive layer is infiltrated between the conductive substance and the side surface of the through hole. Forming a protective insulating layer;
A method for producing a multilayer wiring board, comprising:
絶縁性基材の一側面に配線パターンをなす導電層が設けられ、かつ、他側面に層間接着層が設けられた多層配線板用基材に、前記層間接着層および前記絶縁性基材を貫通する貫通孔が形成され、この貫通孔内に前記導電層の層間導通を得るための導電性物質として加熱により体積収縮・硬化する導電性組成物が配置され、多層積層時に加熱加圧されることで、前記導電性物質と前記貫通孔の側面との間に前記層間接着層をなす材料による保護絶縁層が形成される多層配線板の製造方法であって、
前記層間接着層および前記絶縁性基材に前記貫通孔を形成する工程と、
前記貫通孔内に前記導電性物質を充填する工程と、
多層積層時に加熱加圧することで、充填した前記導電性物質を体積収縮・硬化させるとともに、前記層間接着層をなす材料を前記導電性物質と前記貫通孔の側面との間に浸入させて前記保護絶縁層を形成する工程と、
を含むことを特徴とする多層配線板の製造方法。
Passing through the interlayer adhesive layer and the insulating substrate through a multilayer wiring board substrate with a conductive layer forming a wiring pattern on one side of the insulating substrate and an interlayer adhesive layer on the other side A through hole is formed, and a conductive composition that shrinks and hardens by heating as a conductive material for obtaining interlayer conduction of the conductive layer is disposed in the through hole, and is heated and pressurized during multilayer lamination. A method for manufacturing a multilayer wiring board in which a protective insulating layer is formed by a material forming the interlayer adhesive layer between the conductive substance and the side surface of the through hole,
Forming the through hole in the interlayer adhesive layer and the insulating substrate;
Filling the through hole with the conductive material;
By heating and pressurizing at the time of multilayer lamination, the filled conductive material is contracted and cured in volume, and the material forming the interlayer adhesive layer is infiltrated between the conductive material and the side surface of the through hole to protect the material. Forming an insulating layer;
A method for producing a multilayer wiring board, comprising:
JP2003310623A 2003-09-02 2003-09-02 Multilayer wiring board and manufacturing method thereof Expired - Lifetime JP4180473B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003310623A JP4180473B2 (en) 2003-09-02 2003-09-02 Multilayer wiring board and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003310623A JP4180473B2 (en) 2003-09-02 2003-09-02 Multilayer wiring board and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2005079475A true JP2005079475A (en) 2005-03-24
JP4180473B2 JP4180473B2 (en) 2008-11-12

Family

ID=34412444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003310623A Expired - Lifetime JP4180473B2 (en) 2003-09-02 2003-09-02 Multilayer wiring board and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4180473B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007080856A (en) * 2005-09-09 2007-03-29 Fujikura Ltd Multilayer printed wiring board and method of manufacturing same
JP2013038165A (en) * 2011-08-05 2013-02-21 Fujikura Ltd Joining substrate with through wiring
JP2014090041A (en) * 2012-10-30 2014-05-15 Fujikura Ltd Printed wiring board
JP2019176118A (en) * 2018-03-28 2019-10-10 京セラ株式会社 Wiring board

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007080856A (en) * 2005-09-09 2007-03-29 Fujikura Ltd Multilayer printed wiring board and method of manufacturing same
JP2013038165A (en) * 2011-08-05 2013-02-21 Fujikura Ltd Joining substrate with through wiring
JP2014090041A (en) * 2012-10-30 2014-05-15 Fujikura Ltd Printed wiring board
JP2019176118A (en) * 2018-03-28 2019-10-10 京セラ株式会社 Wiring board

Also Published As

Publication number Publication date
JP4180473B2 (en) 2008-11-12

Similar Documents

Publication Publication Date Title
US7151228B2 (en) Laminating double-side circuit board, manufacturing method thereof, and multilayer printed circuit board using same
JP6200178B2 (en) Electronic component built-in substrate and manufacturing method thereof
JPH1145955A (en) Device built-in multilayered printed circuit board and its manufacture
WO2010074121A1 (en) Method for manufacturing printed wiring board
US20060210780A1 (en) Circuit board and production method therefor
JP2002076578A (en) Printed wiring board and manufacturing method therefor
JP2004007006A (en) Multilayer wiring board
KR100734234B1 (en) Multilayer printed circuit board and fabricating method thereof
JP2006294725A (en) Wiring board, multilayered wiring board, and manufacturing method of these
JPH0837380A (en) Multilayred wiring board with terminal
JP4180473B2 (en) Multilayer wiring board and manufacturing method thereof
JP2004273575A (en) Multilayer printed wiring board and its manufacturing method
KR101138542B1 (en) Manufactory method for multi-layer printed circuit board
JP4816343B2 (en) High heat dissipation substrate and manufacturing method thereof
JP4538513B2 (en) Manufacturing method of multilayer wiring board
JP4012022B2 (en) Multilayer wiring substrate, base material for multilayer wiring substrate, and manufacturing method thereof
KR20120019144A (en) Method for manufacturing a printed circuit board
JP2007280996A (en) Multilayer printed-wiring board
JP2007335631A (en) Manufacturing method of laminated wiring board
JP2004363325A (en) Multilayer wiring board and its manufacturing method
JP2005079474A (en) Multilayer wiring board, base therefor, and manufacturing method thereof
JP4803918B2 (en) Manufacturing method of multilayer wiring board
JP4803919B2 (en) Manufacturing method of multilayer wiring board
JPH1041623A (en) Metal core printed circuit board and manufacturing method therefor
JP2507970B2 (en) Method for manufacturing multilayer printed wiring board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060620

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080813

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080819

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080827

R151 Written notification of patent or utility model registration

Ref document number: 4180473

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130905

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term