[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH08192185A - Biologically nitrifying and denitrifying method - Google Patents

Biologically nitrifying and denitrifying method

Info

Publication number
JPH08192185A
JPH08192185A JP2088395A JP2088395A JPH08192185A JP H08192185 A JPH08192185 A JP H08192185A JP 2088395 A JP2088395 A JP 2088395A JP 2088395 A JP2088395 A JP 2088395A JP H08192185 A JPH08192185 A JP H08192185A
Authority
JP
Japan
Prior art keywords
denitrification
nitrification
tank
oxygen
denitrifying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2088395A
Other languages
Japanese (ja)
Other versions
JP3460745B2 (en
Inventor
Taisuke Toya
泰典 遠矢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Ebara Research Co Ltd
Original Assignee
Ebara Corp
Ebara Research Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp, Ebara Research Co Ltd filed Critical Ebara Corp
Priority to JP02088395A priority Critical patent/JP3460745B2/en
Publication of JPH08192185A publication Critical patent/JPH08192185A/en
Application granted granted Critical
Publication of JP3460745B2 publication Critical patent/JP3460745B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

PURPOSE: To provide an efficient biologically nitrifying and denitrifying method at low cost whose constitution of process is simple and which does not need a hydrogen donor or chemicals for adjusting pH. CONSTITUTION: In a method for biologically nitrifying and denitrifying waste water 1 containing nitrogen compounds including ammoniacal nitrogen, the method comprises a partial nitrifying process 2 wherein the waste water 1 is partially nitrified by means of autrophic nitrifying bacteria under aerobic conditions and a bound oxygen denitrifying process 4 wherein, in the presence of a group of autrophic denitrifying bacteria in which bound oxygen can be utilized, the liquid flowing out of the process 2 is denitrified by turning NH4 -N and NO2 -N and/or NO3 -N in the liquid into N2 gas. A pH adjusting process 3 is preferably provided between the process 2 and the process 4 to circulate a part of the treated liquid flowing out of the process 4 to the process 2 and/or the process 3 (6, 7), to adjust pH.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、生物学的な硝化脱窒素
方法に係り、特にし尿等のアンモニア性窒素を含む窒素
化合物を含有する汚水の生物学的硝化脱窒素方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a biological nitrification denitrification method, and more particularly to a biological nitrification denitrification method for wastewater containing a nitrogen compound containing ammoniacal nitrogen such as human waste.

【0002】[0002]

【従来の技術】河川、海域などの水系、水域、貯水池の
富栄養化を解決するために、例えば、最近、水素生産菌
と水素資化性細菌の共働作用による窒素(硝酸塩)の除
去、化学的方法によるリンの除去技術が研究開発されつ
つあり、窒素(硝酸塩)の除去に関しては評価に値する
研究成果を上げている。しかしながら、現在研究されて
いる多くの処理技術は、既に希釈された水中の窒素の除
去に限定されており、高度の富栄養化ポテンシアルを持
っている底泥からの窒素及びリンの除去、及び此等の有
効利用、処理、処分に関しては追究されていないため
に、これらの処理技術が成功したとしても、単なる対症
療法的な効果しか期待できない。水質汚染を抜本的に解
決するためには、発生源対策が最も効果的であり、経済
効果も顕著であることは万人が認めるところである。こ
のような観点から、発生源対策としての生物学的硝化脱
窒素法が研究開発、商品化され、昭和50年代になって
主として窒素、リン負荷が極めて大きいし尿処理場に適
用され、十分に評価に耐える成果を上げている。
2. Description of the Related Art In order to solve eutrophication of rivers, seas, and other water systems, water bodies, and reservoirs, for example, recently, removal of nitrogen (nitrate) by the synergistic action of hydrogen-producing bacteria and hydrogen-utilizing bacteria, Phosphorus removal technology by chemical methods is being researched and developed, and has achieved research results worthy of evaluation for nitrogen (nitrate) removal. However, many treatment techniques currently being studied are limited to removal of nitrogen in already diluted water, removal of nitrogen and phosphorus from bottom mud having a high eutrophication potential, and this. Since effective use, treatment, and disposal of the above have not been pursued, even if these treatment techniques are successful, only symptomatic treatment effect can be expected. It is accepted by all that the source measures are the most effective and the economic effects are remarkable for drastically solving water pollution. From this point of view, the biological nitrification and denitrification method as a source countermeasure was researched, developed, and commercialized. In the 1950s, it was mainly applied to human waste treatment plants with extremely large nitrogen and phosphorus loads, and was fully evaluated. Has achieved results that endure.

【0003】然し、現行の生物学的硝化脱窒素法の殆ど
全てが、次に示すような技術的問題を抱えており、発生
源対策技術として、より一層の技術的改善が強く要望さ
れている。 生物学的硝化脱窒素法はプロセス内に生物学的特
性、機能が全て異なる自栄養性硝化菌と従属栄養性脱窒
素菌を遅退なく増殖させ、機能を発揮させる必要がある
ために、プロセス構成が複雑であり、運転条件の設定幅
が狭い。 従属栄養性脱窒素菌が硝酸塩及び/又は亜硝酸塩を
還元するエネルギーを獲得するための水素供与体(電子
供与体)が不足する廃水が通常殆どを占め、処理コスト
が高価となる。 処理対策となる各種廃水のアンモニア濃度、及び廃
水自身のpH緩衝能力によっては、自栄養性硝化菌によ
るアンモニアの硝化により混合培養液のpHが低下し、
プロセス内での硝化、脱窒素能力が共に阻害されるの
で、通常、pH調整が必要であり、この手段は当然コス
ト・アップ要因となる。
However, almost all of the current biological nitrification and denitrification methods have the following technical problems, and there is a strong demand for further technical improvement as a source countermeasure technology. . The biological nitrification and denitrification method requires that the autotrophic nitrifying bacteria and heterotrophic denitrifying bacteria, which have different biological characteristics and functions all within the process, be proliferated without delay and the function is exerted. The configuration is complicated and the setting range of operating conditions is narrow. Wastewater lacking hydrogen donors (electron donors) for obtaining energy for the reduction of nitrate and / or nitrite by the heterotrophic denitrifying bacteria usually occupies most of them, resulting in high treatment cost. Depending on the ammonia concentration of various wastewaters as a treatment measure and the pH buffering capacity of the wastewater itself, the pH of the mixed culture solution decreases due to nitrification of ammonia by autotrophic nitrifying bacteria,
Since both nitrification and denitrification ability in the process are impaired, it is usually necessary to adjust the pH, and this means naturally increases the cost.

【0004】[0004]

【発明が解決しようとする課題】本発明は、上記従来技
術の問題点を解決し、プロセス構成が簡単で、水素供与
体やpH調整のための薬剤が必要ない低コストで効率的
な生物学的な硝化脱窒素方法を提供することを課題とす
る。
DISCLOSURE OF THE INVENTION The present invention solves the above-mentioned problems of the prior art, has a simple process configuration, and does not require a hydrogen donor or a chemical agent for pH adjustment, and is a low-cost and efficient biological system. An object of the present invention is to provide a method for nitrifying and denitrifying.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
に、本発明では、アンモニア性窒素を含む窒素化合物を
含有する汚水を生物学的に硝化脱窒素する方法におい
て、前記汚水を好気的条件下で自栄養性硝化菌により部
分的に硝化する部分硝化工程と、前記部分硝化工程の流
出液をNO2 やNO3 等の酸化物中の結合酸素を利用可
能な自栄養性脱窒素菌群の優占下で、該流出液中のNH
4 −NとNO2 −N及び/又はNO3 −NとをN2 ガス
として脱窒素する結合酸素脱窒素工程とで処理すること
としたものである。本発明の生物学的硝化脱窒素方法に
おいて、結合酸素脱窒素工程は、NH4 −NとNO2
N及び/又はNO3 −Nとが混在する液体を微嫌気乃至
嫌気条件下で水温20〜30℃、pH7.0〜8.0の
条件下に置くことにより前記自栄養性脱窒素菌群を優占
させるか、又は前記条件下で増量培養した前記自栄養性
脱窒素菌群を添加するのがよく、また、部分硝化工程
は、NH4 −Nを部分硝化して、NH4 −N/NO2
N比を1.0近傍、NH4 −N/NO3 −N比を1.5
近傍とするのがよい。
In order to solve the above-mentioned problems, the present invention provides a method for biologically nitrifying and denitrifying wastewater containing a nitrogen compound containing ammoniacal nitrogen. A partial nitrification step in which nitrification is partially carried out by an autotrophic nitrifying bacterium under the conditions, and an effluent of the partial nitrification step is an autotrophic denitrifying bacterium capable of utilizing bound oxygen in oxides such as NO 2 and NO 3. NH in the effluent under the predominance of the group
The treatment is performed in a combined oxygen denitrification step of denitrifying 4- N and NO 2 -N and / or NO 3 -N as N 2 gas. In the biological nitrification and denitrification method of the present invention, the combined oxygen denitrification step includes NH 4 —N and NO 2
By placing a liquid containing N and / or NO 3 -N mixed therein under slightly anaerobic or anaerobic conditions at a water temperature of 20 to 30 ° C. and a pH of 7.0 to 8.0, the autotrophic denitrifying bacteria group can be obtained. It is preferable to add the above-mentioned autotrophic denitrifying bacteria group that has been dominantly cultivated or expanded under the above conditions, and in the partial nitrification step, NH 4 -N is partially nitrified to produce NH 4 -N / NO 2
N ratio close to 1.0, the NH 4 -N / NO 3 -N ratio 1.5
It is good to be near.

【0006】また、本発明では、前記部分硝化工程と結
合酸素脱窒素工程との間にpH調整工程を設け、前記結
合酸素脱窒素工程から流出する処理液の一部を、前記部
分硝化工程及び/又はpH調整工程に循環してpH調整
することができ、更に前記結合酸素脱窒素工程からの流
出水から菌体を分離し、分離された菌体の一部を前記部
分硝化工程及び/又はpH調整工程へ返送するのがよ
い。また、本発明の生物学的硝化脱窒素方法とメタン発
酵工程及び/又は水素発酵工程とを組合せ、該発酵工程
で生じたNH4 −Nを前記結合酸素脱窒素工程で脱窒素
することもできる。
Further, in the present invention, a pH adjusting step is provided between the partial nitrification step and the combined oxygen denitrification step, and a part of the treatment liquid flowing out from the combined oxygen denitrification step is treated by the partial nitrification step and the partial nitrification step. It is possible to circulate to the pH adjusting step to adjust the pH, and further to separate the bacterial cells from the effluent from the combined oxygen denitrification step, and to separate a part of the separated bacterial cells from the partial nitrification step and / or It is better to send it back to the pH adjustment step. It is also possible to combine the biological nitrification denitrification method of the present invention with a methane fermentation step and / or a hydrogen fermentation step to denitrogenate NH 4 —N generated in the fermentation step in the combined oxygen denitrification step. .

【0007】上記のように、本発明は自栄養性の硝化菌
と結合酸素を利用できる自栄養性脱窒素菌群(以下、結
合酸素脱窒素菌という)のそれぞれの機能をプロセス内
で合理的に組合せた方法であり、上記の結合酸素脱窒素
菌とは、NO2 やNO3 態の窒素化合物に含まれる結合
性の酸素を利用して脱窒素を行う微生物をいう。本発明
の特徴は、結合酸素脱窒素菌の作用を利用し、水中の還
元態窒素(NH3 )と酸化態窒素(NO2 、NO3 )を
相互利用させて脱窒素を行う点、即ちNOx の結合酸素
によりNH3 を酸化して脱窒素を行う点にあり、それを
可能とし、スムーズに進行させるための諸条件を備えた
方法を提供するものである。
As described above, according to the present invention, the functions of the autotrophic nitrifying bacteria and the group of autotrophic denitrifying bacteria (hereinafter referred to as bound oxygen denitrifying bacteria) that can utilize bound oxygen are rationalized within the process. The combined oxygen denitrifying bacterium described above means a microorganism that performs denitrification by utilizing associative oxygen contained in nitrogen compounds in the NO 2 and NO 3 states. The feature of the present invention is that the action of bound oxygen denitrifying bacteria is utilized to perform denitrification by mutually utilizing reduced nitrogen (NH 3 ) and oxidized nitrogen (NO 2 , NO 3 ) in water, that is, NO. The point is that NH 3 is oxidized by bound oxygen of x to perform denitrification, which makes it possible and provides a method provided with various conditions for smoothly proceeding.

【0008】次に、本発明を詳細に説明する。本発明で
は、まず、処理対策となるアンモニア含有廃水を、図1
の処理系統図に示してあるように部分硝化槽に導入し、
通常、活性汚泥などの混合培養系に野性的に生息してい
る自栄養性硝化菌により部分的に硝化し、次いで、この
槽に連通されているpH調整槽によって、酸性剤及び/
又はアルカリ剤を添加することなく、結合酸素脱窒素処
理水及び菌体分離器によって分離された活性菌体を循環
返送することにより結合酸素脱窒素菌の至適pH範囲と
なるように反応系内の液の循環により自然調整し、同時
に結合酸素脱窒素菌の増殖を促進させることができる。
Next, the present invention will be described in detail. In the present invention, first, the ammonia-containing wastewater as a treatment measure is treated as
Introduced into the partial nitrification tank as shown in the treatment system diagram of
Usually, it is partially nitrified by autotrophic nitrifying bacteria that live in the wild in a mixed culture system such as activated sludge, and then an acidic agent and / or
Or, without adding an alkaline agent, the combined oxygen denitrification treated water and the active bacterial cells separated by the bacterial cell separator are circulated and returned so that the bound oxygen denitrifying bacteria have an optimum pH range within the reaction system. It can be naturally adjusted by circulation of the liquid, and at the same time, the growth of bound oxygen-denitrifying bacteria can be promoted.

【0009】pH調整槽を経由した部分硝化液は、この
槽に連通されている結合酸素脱窒素槽に導入され、野性
的に生息している結合酸素脱窒素菌によりアンモニアを
硝酸及び/又は亜硝酸の窒素と結合している窒素により
酸化して、窒素ガスとして脱窒素するプロセス構成とな
っている。このようなプロセス構成と手段を講ずること
により、自栄養性硝化菌による部分硝化が希望する範囲
で行なわれ、この生物反応の結果としてNH4 −NとN
x −Nが同時に存在する混合培養液がpH調整槽を経
由して結合酸素脱窒素槽に連続的に供給され、結合酸素
脱窒素菌の基質として利用され、その生物反応の結果と
してアンモニアと酸化窒素が同時に除去される。以上の
ように、本発明プロセスはその構成が単純であり、ま
た、pH調整用の薬剤(主としてアルカリ剤)を必要と
せず、さらに、反応系外から有価な水素供与体を添加す
る必要もなく、従って、極めて運転管理が容易で、高効
率、経済的な生物学的硝化脱窒素法である。
The partial nitrification solution that has passed through the pH adjusting tank is introduced into a combined oxygen denitrification tank that is in communication with this tank, and ammonia is converted into nitric acid and / or a suboxide by a combined oxygen denitrifying bacterium that naturally lives. It has a process configuration in which it is oxidized by nitrogen that is combined with the nitrogen of nitric acid and denitrified as nitrogen gas. By taking such a process configuration and means, partial nitrification by autotrophic nitrifying bacteria is performed in a desired range, and as a result of this biological reaction, NH 4 -N and N 4
A mixed culture solution in which O x -N is present at the same time is continuously supplied to a combined oxygen denitrification tank via a pH adjusting tank and is used as a substrate for a combined oxygen denitrifying bacterium, and as a result of its biological reaction, ammonia and Nitric oxide is simultaneously removed. As described above, the process of the present invention has a simple structure, does not require a pH adjusting agent (mainly an alkaline agent), and does not require addition of a valuable hydrogen donor from outside the reaction system. Therefore, it is a biological nitrification denitrification method that is extremely easy to operate and control, highly efficient, and economical.

【0010】次に、本発明の方法の優れた機能及び作用
効果を図1を用いて説明する。ただし、本発明は以下の
説明によって制限されるものではない。また、本発明の
機能、作用効果を説明するにあたり、現在、通常の自栄
養性硝化菌及び従属栄養性脱窒素菌の機能を組合せた生
物学的脱窒素法が最も多用されているし尿処理場を想定
し、基質としてし尿を選定したが、本発明はこれに限定
されるものではなく、アンモニア性窒素等の窒素化合物
を含む各種の汚水にも当然適用される。図1において、
まず、含アンモニア廃水1としてし尿を用いた場合につ
いて説明する。ここではし尿の汚濁負荷は厚生省のし尿
処理施設構造指針に示された表1の数値と推定値を用い
て説明する。
Next, the excellent function and effect of the method of the present invention will be described with reference to FIG. However, the present invention is not limited to the following description. Further, in explaining the functions and effects of the present invention, at present, a biological denitrification method that combines the functions of ordinary autotrophic nitrifying bacteria and heterotrophic denitrifying bacteria is most frequently used. However, the present invention is not limited to this, and is naturally applicable to various sewage containing nitrogen compounds such as ammoniacal nitrogen. In FIG.
First, the case where human waste is used as the ammonia-containing wastewater 1 will be described. Here, the pollutant load of human waste will be described using the numerical values and estimated values of Table 1 shown in the guideline for the structure of human waste treatment facilities of the Ministry of Health and Welfare.

【0011】[0011]

【表1】 [Table 1]

【0012】表1に示した無希釈し尿1は、まず、本発
明プロセスの最前部の工程である部分硝化工程を行う部
分硝化槽2に導入される。この槽2には基質として無希
釈し尿1のBOD(低級脂肪酸を含めて)、NH4 −N
及び還元型硫黄である硫化水素、硫酸塩などが導入され
る。この槽2にはブロワー5により空気(酸素)が供給
され、所謂、好気的条件下で無希釈し尿1に含まれる有
機性汚濁物質が通常の従属栄養性細菌類により分解除去
されると同時に、本発明の脱窒素の対象となるNH4
Nが亜硝酸菌及び硝酸菌の機能により亜硝酸性窒素及び
/又は硝酸性窒素にまで酸化される。無希釈し尿の硝化
は、初発アンモニア濃度、及びそのpH緩衝能の関係か
ら、通常、その硝化型式は硝酸型で安定するので、酸化
窒素の形態はNO3 −Nとして説明する。無希釈し尿の
NH4 −Nは構造指針によれば3,200mg/リット
ルであるが、同時に有機性窒素が1,000mg/リッ
トル含まれているので、これらの有機性窒素の約80%
は生物学的に脱アミノされ、NH4 −Nに転換される。
従って、消化の対象となるNH4 −Nは約4,000m
g/リットルとして説明する。
The undiluted urine 1 shown in Table 1 is first introduced into a partial nitrification tank 2 for carrying out a partial nitrification step which is the frontmost step of the process of the present invention. In this tank 2, undiluted BOD of urine 1 (including lower fatty acids), NH 4 -N
In addition, hydrogen sulfide, which is reduced sulfur, and sulfate are introduced. Air (oxygen) is supplied to the tank 2 by a blower 5, so that organic pollutants contained in the urine 1 that are undiluted under aerobic conditions are decomposed and removed by normal heterotrophic bacteria. , NH 4 which is the subject of denitrification of the present invention
N is oxidized to nitrite nitrogen and / or nitrate nitrogen by the functions of nitrite bacteria and nitrate bacteria. Nitrification of undiluted urine is usually stable in nitric acid form due to the relationship between the initial ammonia concentration and its pH buffering ability, and therefore the form of nitric oxide will be described as NO 3 -N. According to the structural guideline, NH 4 -N in undiluted urine is 3,200 mg / liter, but since it also contains 1,000 mg / liter of organic nitrogen, about 80% of these organic nitrogen is contained.
Is biologically deaminated and converted to NH 4 —N.
Therefore, NH 4 -N, which is the target of digestion, is about 4,000 m
It is described as g / liter.

【0013】この部分硝化槽でのアンモニアの硝酸化に
より混合培養液に水素イオンが放出されるので、混合培
養液のpHは必然的に低下するが、無希釈し尿の場合に
は亜硝酸菌及び硝酸菌が部分硝化槽2での菌体滞留時間
(以下、汚泥令と表現する)として7〜11日の範囲に
維持されていれば、硝酸化は遅退なく進行する。このよ
うな条件下で硝酸化率を支配する因子は混合培養液のp
Hだけであり、循環液により流入NH4 −N濃度が40
0mg/リットル程度に希釈されていれば、硝酸化率を
自由に調整することが可能である。NH4 −NをNO3
−Nの結合酸素により酸化し、窒素ガスとするのに必要
な硝酸化率は約40%であり、この硝酸化率を達成する
に必要なpHは図2からも分かるように大凡6.0近傍
であり、し尿に関しては、特に人為的操作、薬剤添加な
どを加えなくてもpH6.0前後で動的平衡に達する。
Nitrogenation of ammonia in the partial nitrification tank releases hydrogen ions to the mixed culture solution, so that the pH of the mixed culture solution is inevitably lowered, but in the case of undiluted urine, nitrite bacteria and If the nitric acid bacterium is maintained in the range of 7 to 11 days as the cell retention time in the partial nitrification tank 2 (hereinafter referred to as sludge age), nitrification proceeds without delay. Under these conditions, the factor controlling the nitrification rate is p of the mixed culture solution.
H only, and the circulating NH 4 -N concentration is 40 due to the circulating fluid.
If it is diluted to about 0 mg / liter, the nitrification rate can be adjusted freely. NH 4 -N to NO 3
The nitrification rate required to oxidize by -O bound oxygen to form nitrogen gas is about 40%, and the pH required to achieve this nitrification rate is about 6.0 as can be seen from FIG. It is in the vicinity, and for human waste, it reaches a dynamic equilibrium at around pH 6.0 without any artificial manipulation or addition of drugs.

【0014】前述のように、同一の硝酸化率を得るに必
要なpH調整の調整幅はNH4 −N濃度が希薄なほど拡
大されるので、無希釈し尿の高濃度のNH4 −Nを希釈
する目的で結合酸素脱窒素槽4の流出混合培養液の一部
7を、し尿処理量の5〜10倍循環するように考慮され
ている。部分硝化槽2からのpH値が低く、かつ、NH
4 −NとNO3 −Nを含む混合培養液は次のpH調整槽
3に導入される。このpH調整槽3には、pH値が7.
0〜8.0の範囲にある結合酸素脱窒素槽4の流出混合
培養液6が適量循環返送され、プロセス内での液の循環
混合により、アルカリ剤を添加することなく、結合酸素
脱窒素槽4への流出水のpHを7.0〜7.5の範囲と
なるように調整する。
As described above, the adjustment range of pH adjustment required to obtain the same nitrification rate is expanded as the NH 4 -N concentration is diluted, so that a high concentration of NH 4 -N in undiluted urine is used. For the purpose of diluting, it is considered that a part 7 of the mixed culture solution outflowing from the combined oxygen denitrification tank 4 is circulated 5 to 10 times as much as the human waste treatment amount. The pH value from the partial nitrification tank 2 is low and NH
The mixed culture solution containing 4- N and NO 3 -N is introduced into the next pH adjusting tank 3. The pH value of the pH adjusting tank 3 is 7.
An appropriate amount of the outflowing mixed culture solution 6 from the combined oxygen denitrification tank 4 in the range of 0 to 8.0 is circulated and returned, and the mixed oxygen circulated mixture in the process allows the combined oxygen denitrification tank to be added without adding an alkaline agent. The pH of the water discharged to No. 4 is adjusted to be in the range of 7.0 to 7.5.

【0015】pH調整槽3はpH調整の役割と同時に、
結合酸素脱窒素菌を適切なpH条件で増量培養し、結合
酸素脱窒素槽4に送り込む役割を兼ねている。また、処
理水15と分離された濃縮菌体は、菌体返送管16から
分岐されている汚泥分岐管17を経由してpH調整槽3
に適量返送され、的確なpH条件下で馴養されてから結
合酸素脱窒素槽4に導入され、結合酸素脱窒素菌の増殖
を促進する役割を持っている。結合酸素脱窒素槽4で
は、pH条件、基質条件、その他の環境条件が結合酸素
脱窒素菌の増殖に適切に維持されており、この槽での混
合培養系には結合酸素脱窒素菌が可成りの数に達してい
る。この工程で行なわれる結合酸素脱窒素菌による生物
反応が順調に進行するための基質条件、及び環境条件は
前記した通りであるが、大気中から混合培養液に酸素が
混入するとアンモニアの酸化・脱窒素反応が著しく阻害
される。従って、結合酸素脱窒素槽4には酸素の導入を
防止するために密閉式タンクとするか、覆蓋が設けられ
ていることが望ましい。
The pH adjusting tank 3 plays the role of adjusting the pH,
It also has the role of feeding the bound oxygen denitrifying bacterium to the bound oxygen denitrification tank 4 after increasing culture under appropriate pH conditions. In addition, the concentrated bacterial cells separated from the treated water 15 pass through the sludge branch pipe 17 branched from the bacterial cell return pipe 16 and the pH adjusting tank 3
It is introduced into the combined oxygen denitrification tank 4 after being returned to an appropriate amount and acclimated under an appropriate pH condition, and has the role of promoting the growth of the combined oxygen denitrifying bacterium. In the bound oxygen denitrification tank 4, pH conditions, substrate conditions, and other environmental conditions are appropriately maintained for the growth of the bound oxygen denitrifying bacteria. It has reached a reasonable number. The substrate conditions and environmental conditions for the smooth progress of the biological reaction by the bound oxygen denitrifying bacterium carried out in this step are as described above, but when oxygen is mixed into the mixed culture solution from the atmosphere, the oxidation and desorption of ammonia are carried out. Nitrogen reaction is significantly inhibited. Therefore, it is desirable that the combined oxygen denitrification tank 4 be a closed tank or have a cover to prevent the introduction of oxygen.

【0016】また、槽内を攪拌混合し、流入基質と結合
酸素脱窒素菌とを十分に接触させるために槽4から発生
する脱窒素ガス8を発生ガス循環ブロワー9により槽底
部に循環する機構が設けられている(発生した余剰の窒
素ガス10は系外に放出される)。この結合酸素脱窒素
槽4の混合培養液には、基本的には溶存酸素が存在して
はならないが、部分硝化槽2の流出混合液により酸素が
持ち込まれるチャンスがあり、その対応としてpH調整
槽3を経由する方策が講じられているが、それでも酸素
流入の可能性が皆無とは言えない。その対策の一つとし
て、本発明の生物学的硝化脱窒素法と水素発酵法を組合
せた方法を採用する場合には、発生した水素ガス19の
一部を分岐して脱窒素ガス循環経路に導入し、結合酸素
脱窒素槽4内に溶存する酸素を系外に確実に排除する方
法が考慮される。
A mechanism for circulating the denitrifying gas 8 generated from the tank 4 to the bottom of the tank by a generated gas circulation blower 9 so that the inflow substrate and the bound oxygen denitrifying bacteria are sufficiently contacted with each other by stirring and mixing the inside of the tank. Is provided (the generated excess nitrogen gas 10 is released to the outside of the system). Basically, dissolved oxygen should not be present in the mixed culture solution in the combined oxygen denitrification tank 4, but there is a chance that oxygen will be brought into the mixed nitric acid tank 4 outflow mixed solution in the partial nitrification tank 2. Although measures have been taken through the tank 3, the possibility of oxygen inflow cannot be said to be none. As one of the countermeasures, when adopting the method of combining the biological nitrification denitrification method and the hydrogen fermentation method of the present invention, a part of the generated hydrogen gas 19 is branched to a denitrification gas circulation path. A method of surely removing the oxygen introduced and dissolved in the combined oxygen denitrification tank 4 out of the system is considered.

【0017】結合酸素脱窒素槽4には、部分硝化槽2で
pH=6.0近傍で約40%部分硝化され、流入アンモ
ニア濃度を4,000mg/リットルとすると、NH4
−N2,400mg/リットル、NO3 −N1,600
mg/リットルの混合基質を含む混合培養液が流入す
る。後述する式2の硝酸塩の結合酸素によるアンモニア
の酸化・脱窒素の反応式からNH4 −N/NO3 −Nは
1.5であるから、この濃度比で両基質が結合酸素脱窒
素槽4に流入してくれば、化学量論的に過不足なく消費
され、完全に脱窒素されることになる。完全脱窒素され
た結合酸素脱窒素槽4から流出する混合培養液には、溶
存酸素が存在しないことは当然であり、このように無酸
素状態の処理水が外界にそのまま放流されると、自然水
中の溶存酸素を消費し、環境に好ましくない影響を与え
ることが考えられる。従って、結合酸素脱窒素槽4の混
合培養液を、曝気装置を備えた再曝気槽13で一定時間
曝気し、溶存酸素を与えたのちに菌体分離器14に導入
することが良い。この曝気装置は型式を特定しない。
In the combined oxygen denitrification tank 4, about 40% is partially nitrified in the vicinity of pH = 6.0 in the partial nitrification tank 2, and when the inflow ammonia concentration is 4,000 mg / liter, NH 4
-N2,400mg / liter, NO 3 -N1,600
A mixed culture solution containing mg / l of mixed substrate flows in. Since NH 4 —N / NO 3 —N is 1.5 from the reaction formula of the oxidation and denitrification of ammonia by the bound oxygen of the nitrate in the formula 2 described later, the ratio of both substrates is such that the bound oxygen denitrification tank 4 If it flows into, it will be consumed stoichiometrically, and will be completely denitrified. Naturally, dissolved oxygen does not exist in the mixed culture solution flowing out from the completely denitrified combined oxygen denitrification tank 4, and if the anoxic treated water is discharged to the outside as it is, it will naturally It is thought that it consumes dissolved oxygen in water and has an adverse effect on the environment. Therefore, it is preferable that the mixed culture solution in the combined oxygen denitrification tank 4 is aerated for a certain period of time in the re-aeration tank 13 equipped with an aeration device, and after the dissolved oxygen is given, the mixed culture solution is introduced into the bacterial cell separator 14. This aerator is not model specific.

【0018】この菌体分離器14で混合培養液の脱窒素
処理液と有効菌体とに分離し、脱窒素処理液は処理水1
5として自然水系に放流し、有効菌体は菌体返送管16
を経由して部分硝化槽2、及びpH調整槽3に循環返送
し、繰り返し利用される。本発明の生物学的硝化脱窒素
プロセスから発生する余剰菌体(余剰汚泥)18は反応
系から外部に取出し、処理・処分される。また、本発明
で使用される結合酸素脱窒素菌は下記の培養方法により
得られる。即ち、NH4 −NとNO3 −Nを培地組成の
主成分とした人工培地を使用し、一定温度で、かつ、外
気との接触を断ち、30〜40日放置しておくと培地が
次第に白濁し、微生物の増殖が認められた。この微生物
が結合酸素脱窒素菌であることは、次の様に確認され
た。
The microbial cell separator 14 separates the mixed culture solution into a denitrification treatment solution and effective cells, and the denitrification treatment solution is treated water 1
It is discharged into the natural water system as 5, and the effective bacterial cells are bacterial cell return tubes 16
It is circulated and returned to the partial nitrification tank 2 and the pH adjusting tank 3 via the tank and repeatedly used. Excess bacterial cells (excess sludge) 18 generated from the biological nitrification and denitrification process of the present invention are taken out from the reaction system to the outside, treated and disposed. Further, the bound oxygen-denitrifying bacterium used in the present invention can be obtained by the following culture method. That is, when an artificial medium containing NH 4 —N and NO 3 —N as the main components of the medium composition is used and the temperature is kept constant and the contact with the outside air is cut off and left for 30 to 40 days, the medium gradually increases. It became cloudy and microbial growth was observed. The fact that this microorganism is a bound oxygen-denitrifying bacterium was confirmed as follows.

【0019】実験装置はガラス性の有効容積1リットル
の円形リアクターであり、外気との接触を遮断するため
に覆蓋を設け、中心部にパドル式の緩衝攪拌装置を取り
付けた。また、窒素ガス及び炭酸ガスの発生が考えられ
るので、覆蓋から発生ガスを取り出せるようにガス取出
しチューブを取り付け、末端を水封式のガス計量器に挿
入して発生ガス量を測定した。この実験に使用した基礎
培地の成分組成は下記表2に示してあるが、下記表3の
実験条件に示してあるように、有機物を含んだ基礎培
地、及び有機物である酢酸とメタノールを除外した完全
な無機性培地の2種類について、硝酸塩の結合酸素によ
るアンモニアの酸化・脱窒素実験を行なった。また、従
来の生物学的硝化脱窒素法を採用しているし尿処理場、
及び下水処理場の濃縮活性汚泥を、1リットルの培地当
たり固形物重量で2〜3%添加し、当初の実験では培養
液のpHを7.5の一定として、表3に要約してあるよ
うに5種類の実験を行なった。
The experimental apparatus was a glass-made circular reactor having an effective volume of 1 liter, a cover was provided to block contact with the outside air, and a paddle type buffer stirrer was attached to the center. Since nitrogen gas and carbon dioxide gas may be generated, a gas extraction tube was attached so that the generated gas could be taken out from the cover, and the end was inserted into a water-sealing type gas meter to measure the amount of generated gas. The component composition of the basal medium used in this experiment is shown in Table 2 below, but as shown in the experimental conditions in Table 3 below, the basal medium containing organic substances and the organic substances acetic acid and methanol were excluded. Oxidation and denitrification experiments of ammonia by bound oxygen of nitrate were carried out on two types of completely inorganic media. In addition, a human waste treatment plant that uses the conventional biological nitrification and denitrification method,
And concentrated activated sludge from a sewage treatment plant was added in an amount of 2 to 3% by weight of solids per liter of medium, and the pH of the culture solution was kept constant at 7.5 in the initial experiment, as summarized in Table 3. 5 kinds of experiments were conducted.

【0020】それぞれの実験条件における実験結果(ア
ンモニアと硝酸の除去)に関しては表3、及びこれに付
属して記載してあるが、実験条件によってアンモニアの
酸化速度の遅速、及び除去率に格差はあるが、対照実験
(溶存酸素の存在する好気的条件)以外は確実に結合酸
素脱窒素菌群が増殖し、アンモニアを結合酸素により酸
化していることが確認された。ところで、し尿は、本来
濃厚な有機物を含み、この有機物を対象としてメタン発
酵、或いは水素発酵によりメタン、或いは水素など有用
なエネルギーを回収できる。然し、従来の生物学的脱窒
素法はNOx −Nを還元するために多量の水素供与体を
必要とするので、エネルギー回収にメタン発酵法を適用
する場合には、有機物/窒素の比率が極端に大きくなけ
れば、従来の発酵硝化液の生物学的脱窒素法との組合せ
方式は経済的に成り立たない。
The experimental results (removal of ammonia and nitric acid) under the respective experimental conditions are shown in Table 3 and attached thereto. However, there is a difference in the slow oxidation rate of ammonia and the removal rate depending on the experimental conditions. However, except for the control experiment (aerobic condition in which dissolved oxygen is present), it was confirmed that the group of bound-oxygen denitrifying bacteria proliferated and that ammonia was oxidized by bound oxygen. By the way, human waste originally contains a rich organic substance, and useful energy such as methane or hydrogen can be recovered by subjecting this organic substance to methane fermentation or hydrogen fermentation. However, since the conventional biological denitrification method requires a large amount of hydrogen donor for the reduction of NO x -N, when applying methane fermentation energy recovery, the ratio of organic / nitrogen If it is not extremely large, the conventional method of combining the fermented nitrification solution with the biological denitrification method cannot be economically viable.

【0021】また、エネルギー回収に水素発酵法を適用
する場合にも、従属栄養性脱窒素菌は水素供与体として
水素を直接利用できないために、メタン発酵法の適用と
同様に、発酵消化液中に残留している有機物質だけで
は、し尿中に含まれる窒素量に対して水素供与体が絶対
量として不足するために経済的に実用性がない。これに
対して、本発明の自栄養性硝化菌+結合酸素脱窒素菌の
機能の組合せによる生物学的硝化脱窒素法は酸化還元反
応であり、NH4 + の水素が水素供与体となり、NHx
の酸素が電子受容体となり完結するので、水素供与体と
しての有機物を必要としない。従って、本発明方法を前
記のメタン発酵法又は水素発酵法と組合せることによ
り、エネルギー回収が可能なプロセスを構成することが
できる。
Also, when the hydrogen fermentation method is applied to energy recovery, the heterotrophic denitrifying bacterium cannot directly utilize hydrogen as a hydrogen donor, and therefore, as in the case of applying the methane fermentation method, Only the organic substances remaining in the above are economically unpractical because the hydrogen donor is insufficient in absolute amount with respect to the amount of nitrogen contained in human waste. On the other hand, the biological nitrification and denitrification method of the present invention, which is a combination of the functions of the autotrophic nitrifying bacterium and the bound oxygen denitrifying bacterium, is a redox reaction, and NH 4 + hydrogen becomes a hydrogen donor, x
Since the oxygen of 2 becomes an electron acceptor and is completed, an organic substance as a hydrogen donor is not required. Therefore, by combining the method of the present invention with the above-mentioned methane fermentation method or hydrogen fermentation method, a process capable of energy recovery can be constructed.

【0022】[0022]

【作用】以下に、本発明方法の生物学的硝化脱窒素工程
の各構成要因、及び手段の役割について説明する。 (a)部分硝化工程 自然界には、亜硝酸菌、硝酸菌などの自栄養性硝化菌が
ごく一般的に生息しており、窒素化合物を含む廃水の生
物学的水処理プラントの混合培養系にも多数生息してい
る。これらの硝化菌はアンモニアを酸化して硝酸塩及び
/又は亜硝酸塩を生成することによりエネルギーを獲得
しているが、生物反応の結果として酸が生成されるため
に生活環境のpHは低下し、極端な場合にはpH4.0
以下まで低下する。現行の生物学的硝化脱窒素法は、こ
の生物反応により混合培養系のpHが低下し、硝化率が
低減するのを防止するために、アルカリ剤の添加や脱窒
素液を硝化槽に循環する方策が講じられている。
The constituent factors of the biological nitrification and denitrification step of the method of the present invention and the role of the means will be described below. (A) Partial nitrification process Autotrophic nitrifying bacteria such as nitrite bacteria and nitric acid bacteria generally inhabit the natural world, and they are used in mixed culture systems of biological water treatment plants of wastewater containing nitrogen compounds. Also live in large numbers. These nitrifying bacteria acquire energy by oxidizing ammonia to produce nitrates and / or nitrites, but the pH of the living environment decreases due to the production of acids as a result of biological reactions, and If not, pH 4.0
It drops to below. The current biological nitrification and denitrification method circulates the addition of an alkaline agent and the denitrification solution to the nitrification tank to prevent the pH of the mixed culture system from decreasing due to this biological reaction and reducing the nitrification rate. Measures are being taken.

【0023】これに対して、本発明の部分硝化工程で
は、この硝化反応によるpH低下を人為的に制御するこ
となく、逆にpH低下による硝化率の低減を有効に利用
して、混合培養液にNH4 −NとNOx −Nを意識的に
混在せしめ、本発明の最終工程の結合酸素脱窒素工程で
結合酸素によるアンモニアの酸化・脱窒素反応を進行さ
せることを企図したものである。硝化反応の結果として
の混合培養液のpHと硝化率(亜硝酸化率、及び硝酸化
率)の関係は、対象廃水のアンモニア濃度と廃水自身の
pH緩衝能に支配されるが、希釈し尿(アンモニア濃度
400〜600mg/リットル)について、混合培養液
のpHと硝化率の関係、及びアンモニア濃度をパラメー
ターとした両者の関係を示すと図2、図3の通りであ
る。硝化菌でも亜硝酸菌(Nitrosomonas) と硝酸菌 (Ni
trobacter)では増殖に至適なpH値には若干の偏差があ
り、図2に示されるように亜硝酸菌はpH=8.0近
傍、硝酸菌はpH=7.0近傍にあり、従って、混合培
養液のpHと硝化率の関係も当然両者では偏差してく
る。また、混合培養液のpHと硝化率の関係は、アンモ
ニア初濃度によって至適pH範囲の幅が拡大され、例え
ば、図3に示したように希釈し尿の硝酸化率が100%
となるpH範囲は、アンモニア濃度が希薄なほど至適p
H範囲の幅が広くなる。
On the other hand, in the partial nitrification process of the present invention, the pH decrease due to the nitrification reaction is not artificially controlled, but conversely, the decrease in the nitrification rate due to the pH decrease is effectively utilized to make the mixed culture solution. The intention is to consciously mix NH 4 -N and NO x -N with each other and to promote the oxidation / denitrification reaction of ammonia by the bound oxygen in the bound oxygen denitrification step of the final step of the present invention. The relationship between the pH of the mixed culture solution and the nitrification rate (nitrite rate and nitrification rate) as a result of the nitrification reaction is governed by the ammonia concentration of the target wastewater and the pH buffering capacity of the wastewater itself, but the diluted urine ( 2 and 3 show the relationship between the pH of the mixed culture solution and the nitrification rate, and the relationship using the ammonia concentration as a parameter for the ammonia concentration of 400 to 600 mg / liter). Even in nitrifying bacteria, nitrites (Nitrosomonas) and nitrates (Nitrosomonas)
In the case of trobacter), there is a slight deviation in the optimum pH value for growth. As shown in FIG. 2, nitrite bacteria are around pH = 8.0 and nitrate bacteria are around pH = 7.0. The relationship between the pH of the mixed culture solution and the nitrification rate naturally deviates between the two. Further, regarding the relationship between the pH of the mixed culture solution and the nitrification rate, the width of the optimum pH range is expanded by the initial concentration of ammonia. For example, as shown in FIG.
The optimum pH range is as the ammonia concentration decreases.
The width of the H range becomes wider.

【0024】このように、混合培養液のpHと硝化率の
関係は、亜硝酸菌と硝酸菌によって、また幾つかの操作
因子によって偏差してくるが、両硝化形式とも菌体の汚
泥令がある一定値以上であれば、共に100%の硝化率
が得られる。従って、本発明の部分硝化工程における意
識的、人為的な硝化率は、両型式について汚泥令が満足
されていれば、硝化の進行による混合培養液のpH値の
低下が決定因子となる。この関係は前述の通り、必然的
に脱窒素の対象となる廃水のアンモニア濃度とpH緩衝
能に支配されるので、特定の処理すべき廃水について混
合培養液のpHと硝化率の関係を把握し、設定すべき硝
化率に対応するpH値となるうように運転条件を調整す
ればよい。このため、本発明では、部分硝化工程で設定
すべきpH値をより的確とするために、pH値が高い
(通常7.0〜7.5近傍)結合酸素脱窒素槽の混合培
養液を、必要に応じてpH調整とアンモニア濃度を希釈
する目的のために循環返送する方策が講じられている。
As described above, the relationship between the pH of the mixed culture solution and the nitrification rate varies depending on the nitrite bacterium and the nitrate bacterium, and some operating factors. If it is a certain value or more, a nitrification rate of 100% can be obtained. Therefore, if the sludge age is satisfied for both types, the conscious and artificial nitrification rate in the partial nitrification step of the present invention is determined by the decrease in pH value of the mixed culture solution due to the progress of nitrification. As described above, this relationship is inevitably governed by the ammonia concentration and pH buffering capacity of the wastewater subject to denitrification. Therefore, for the particular wastewater to be treated, the relationship between the pH of the mixed culture and the nitrification rate should be understood. The operating conditions may be adjusted so that the pH value corresponds to the nitrification rate to be set. Therefore, in the present invention, in order to more accurately set the pH value to be set in the partial nitrification step, a mixed culture solution of a combined oxygen denitrification tank having a high pH value (usually around 7.0 to 7.5) is used. Measures have been taken to circulate back for the purpose of adjusting the pH and diluting the ammonia concentration as necessary.

【0025】(b)pH調整工程 本工程におけるpH調整槽は、本発明の処理をスムーズ
に進行させるために、前記部分硝化槽と結合酸素脱窒素
槽の間に配備することが好ましい。このpH調整工程
は、次の工程の結合酸素脱窒素槽の混合培養液pHを結
合酸素脱窒素菌が増殖するに必要な最適pH値に出来る
だけ接近させるために設けられた工程である。結合酸素
脱窒素菌の至適pH値は7.0〜8.0の範囲にある。
この工程で結合酸素脱窒素が行なわれると、槽出口での
混合培養液のpH値は前記の数値に到達しているので、
これを前段のpH調整槽に適量循環返送することによ
り、最前部の部分硝化槽から流入してくるpH値の低い
硝化液を中和し、結合酸素脱窒素槽への流入水のpH値
を可及的7.0近傍に調整することを目的とする機能を
この槽に付与している。さらに、このpH調整槽の別の
重要な役割は、結合酸素脱窒素菌が優占種となっている
分離菌体を菌体分離器から適量循環返送し、この槽を経
由して結合酸素脱窒素槽に流下させることにより該菌の
増殖を促進させる効果を助長させることである。このp
H調整槽は、廃水の種類、アンモニア濃度、廃水のpH
緩衝能によっては必ずしも必要不可欠の構成要素ではな
く、場合によっては省略することが出来る。
(B) pH adjusting step In order to smoothly carry out the treatment of the present invention, the pH adjusting tank in this step is preferably provided between the partial nitrification tank and the combined oxygen denitrification tank. This pH adjustment step is a step provided to bring the pH of the mixed culture solution in the combined oxygen denitrification tank of the next step to the optimum pH value necessary for the growth of the combined oxygen denitrifying bacteria as close as possible. The optimum pH value of the bound oxygen denitrifying bacterium is in the range of 7.0 to 8.0.
When combined oxygen denitrification is performed in this step, the pH value of the mixed culture solution at the tank outlet has reached the above-mentioned value,
By circulating and returning an appropriate amount of this to the pH adjusting tank in the previous stage, the nitrification solution with a low pH value flowing in from the foremost partial nitrification tank is neutralized, and the pH value of the inflow water to the combined oxygen denitrification tank is adjusted. This tank is provided with a function aiming to adjust it as close to 7.0 as possible. In addition, another important role of this pH adjusting tank is to circulate and return the separated bacterial cells in which the bound oxygen denitrifying bacteria are the dominant species from the bacterial cell separator in an appropriate amount, and to pass the bound oxygen deoxidant via this tank. The purpose is to promote the effect of promoting the growth of the bacterium by allowing it to flow into a nitrogen tank. This p
The H adjustment tank has different types of wastewater, ammonia concentration, and pH of the wastewater.
It is not always an essential component depending on the buffer capacity, and can be omitted in some cases.

【0026】(c)結合酸素脱窒素工程 本発明方法の結合酸素脱窒素工程には、部分硝化槽で流
入水のアンモニアが部分的に硝化されてNH4 −NとN
x −Nが同時存在する工程流出水が、場合により別途
設けられたpH調整槽により、pHを7.0〜8.0に
調整される工程を経由して導入される。この工程に用い
る結合酸素脱窒素槽は、内溶液である混合培養液に大気
から飛沫同伴により酸素が混入しないように覆蓋を設け
てあり、さらに、混合培養液と流入水を十分に攪拌・混
合するために、この槽で脱窒素反応により発生した窒素
ガスを循環する機構を備えているが、攪拌機及び/又は
攪拌機構は特にガス攪拌に限定されるものではなく、通
常の機械攪拌方式でもその目的は十分に達成される。結
合酸素脱窒素槽における生物反応に関しては後述する
が、ここで行なわれている生物反応が遅退なく進行する
ためには、次の条件が満足されていなければならないこ
とが確認された。
(C) Combined oxygen denitrification step In the combined oxygen denitrification step of the method of the present invention, ammonia in the inflowing water is partially nitrified in the partial nitrification tank to produce NH 4 -N and N 4.
O x -N is step runoff water present simultaneous, the pH adjusting tank provided separately optionally be introduced via a process that is adjusted to pH 7.0 to 8.0. The combined oxygen denitrification tank used in this process is equipped with a cover to prevent oxygen from being mixed into the mixed culture solution, which is an internal solution, from the air by entrainment, and the mixed culture solution and inflow water are sufficiently stirred and mixed. In order to do so, a mechanism for circulating the nitrogen gas generated by the denitrification reaction in this tank is provided, but the stirrer and / or the stirring mechanism are not particularly limited to gas stirring, and even in a normal mechanical stirring method, The purpose is fully achieved. Although the biological reaction in the combined oxygen denitrification tank will be described later, it was confirmed that the following conditions must be satisfied in order for the biological reaction carried out here to proceed without delay.

【0027】 混合培養液のpHが7.0〜8.0、
好ましくは7.0〜7.5の範囲に維持されているこ
と。 流入水にNH4 −N、NOx −Nが同時に存在する
こと。 混合培養液に溶存酸素が含まれず、所謂、anox
icな生活環境であること。 本発明方法では、プロセスの最前部の部分硝化槽で自栄
養性硝化菌により溶存アンモニアを好気的条件下で酸化
するために、部分硝化槽と結合酸素脱窒素槽を直結する
と、多分に溶存酸素が流入する危険性がある。pH調整
槽は、この危険性を防除する機能をも具備しており、さ
らに、本発明の生物学的硝化脱窒素法を水素発酵と組合
せてエネルギー回収を企図するような事例では、発生し
た水素ガスを結合酸素脱窒素槽の攪拌のための窒素ガス
循環経路に一部導入し、溶存酸素をパージさせる方法も
効果的である。結合酸素脱窒素工程において脱窒素のた
めに行なわれる生物反応は次に示す通りであると考えら
れる。
The mixed culture solution has a pH of 7.0 to 8.0,
It is preferably maintained in the range of 7.0 to 7.5. NH 4 -N, the NO x -N are simultaneously present in the influent. Dissolved oxygen is not included in the mixed culture solution, so-called anox
Have an ic living environment. In the method of the present invention, in order to oxidize the dissolved ammonia under aerobic conditions by the autotrophic nitrifying bacterium in the partial nitrification tank at the forefront of the process, if the partial nitrification tank and the bound oxygen denitrification tank are directly connected to each other, it is probably dissolved. There is a risk of oxygen inflow. The pH adjusting tank also has a function of controlling this danger, and in the case where energy recovery is intended by combining the biological nitrification denitrification method of the present invention with hydrogen fermentation, the generated hydrogen is generated. It is also effective to introduce a part of the gas into the nitrogen gas circulation path for stirring in the combined oxygen denitrification tank and purge the dissolved oxygen. The biological reactions performed for denitrification in the combined oxygen denitrification step are considered to be as follows.

【0028】特定の微生物による結合酸素によるNH4
−Nの酸化脱窒素反応 亜硝酸の結合酸素による酸化脱窒素反応 NH4 + +NO2 - → N2 +2H2 O ・・・・(式1) NH4 −N/NO2 −N=1.0 硝酸の結合酸素による酸化脱窒素反応 6NH4 + +4NO3 - → 5N2 +12H2 O ・・・・(式2) NH4 −N/NO3 −N=1.5 上記の生物反応式から容易に理解できるように、NH4
−Nの生物酸化に利用される結合酸素が亜硝酸の場合に
は化学量論的に同量の、硝酸の結合酸素の場合には1.
5倍のNH4 −Nを酸化して窒素ガスに転換することが
出来る。このNH4 −Nの酸化に利用される結合酸素は
何れも部分硝化槽で供給された酸素が窒素に固定され、
この固定された酸素を結合酸素脱窒素槽で再利用するも
のであり、本発明方法のプロセスは極めて合理的、かつ
経済的である。
NH 4 due to bound oxygen by certain microorganisms
Oxidation denitrification reaction by binding oxygen oxidation denitrifying reaction nitrite -N NH 4 + + NO 2 - → N 2 + 2H 2 O ···· ( Equation 1) NH 4 -N / NO 2 -N = 1.0 oxidation denitrification 6NH 4 + + 4NO by binding oxygen and nitric 3 - → 5N 2 + 12H 2 O ···· ( equation 2) NH 4 -N / NO 3 -N = 1.5 readily from the biological reaction formula As you can see, NH 4
When the bound oxygen used for the bio-oxidation of -N is nitrite, the stoichiometric amount is the same, and when the bound oxygen of nitric acid is 1.
It is possible to oxidize 5 times as much NH 4 —N and convert it to nitrogen gas. The combined oxygen used for the oxidation of NH 4 —N is fixed in the nitrogen supplied in the partial nitrification tank,
This fixed oxygen is reused in the combined oxygen denitrification tank, and the process of the method of the present invention is extremely rational and economical.

【0029】化学的エネルギーによりNH4 −Nが亜硝
酸(NO2 −N)の結合酸素によって酸化されること、
即ち、両物質を混合し、100℃以上の熱エネルギーを
加えるとアンモニアは酸化され、窒素ガスとなることが
従来から公知の技術である。然し、前記したように莫大
な熱エネルギーを必要とするので、廃水処理にこの技術
を適用するとしても、化学的脱窒素の対象となるNH4
−N、NOx −Nの濃度が通常希薄なこと、さらに熱容
量の大きい大量の廃水を100℃以上に加熱しなければ
ならないことが最大の障害となり、実用性は全く期待で
きない。本発明者は、たまたま電子工業の生産工場から
排出される下記の廃水についての硝化脱窒素に関する研
究中に、前記の結合酸素による酸化脱窒素が特定の微生
物及び/又は微生物群によって生物学的に行なわれてい
ることを偶然に発見した。
The chemical energy causes NH 4 —N to be oxidized by the bound oxygen of nitrite (NO 2 —N),
That is, it is a conventionally known technique that both substances are mixed and ammonia is oxidized into nitrogen gas when heat energy of 100 ° C. or higher is applied. However, as described above, since enormous heat energy is required, even if this technique is applied to wastewater treatment, NH 4 which is the target of chemical denitrification
The fact that the concentrations of —N and NO x —N are usually low and that a large amount of waste water with a large heat capacity must be heated to 100 ° C. or higher is the biggest obstacle, and practicality cannot be expected at all. The present inventor, while conducting research on nitrifying denitrification of the following wastewater discharged from an electronic industry production plant, happens that the above-mentioned oxidative denitrification by bound oxygen is biologically caused by a specific microorganism and / or microorganism group. I happened to discover what was happening.

【0030】 電子工業廃水の一般的組成 pH: 6.8〜7.1、 NH4 −N: 500〜1,000mg/リットル、 NO3 −N: 700〜1,500mg/リットル、 CH3 COOH: 200〜300mg/リットル、 CH3 OH: 130〜250mg/リットル、 無機塩類: 特に測定していないが、各種の塩類が含まれる、 供試試料としてこの廃水を、たまたま、ほぼ1ヵ月室温
に放置していたところ、廃水が可成り白濁し、微生物の
増殖が認められた。そこで、硝化脱窒素実験開始に先立
って化学組成を再測定したところ、当初の測定値に対し
てNH4 −NとNO3 −Nの濃度が約40〜45%減少
していた。そこで、この電子工業廃水中のアンモニアと
硝酸塩の消失が生物反応によるものであるかどうかを確
認するための実験を行なった。
General composition of electronic industrial wastewater pH: 6.8 to 7.1, NH 4 —N: 500 to 1,000 mg / liter, NO 3 —N: 700 to 1,500 mg / liter, CH 3 COOH: 200 to 300 mg / liter, CH 3 OH: 130 to 250 mg / liter, inorganic salts: Various salts are included, although not particularly measured. As a test sample, this wastewater was left to stand at room temperature for about one month. However, the wastewater became cloudy and the growth of microorganisms was observed. Therefore, when the chemical composition was measured again before the start of the nitrification and denitrification experiment, the concentrations of NH 4 —N and NO 3 —N were reduced by about 40 to 45% with respect to the initially measured values. Therefore, an experiment was conducted to confirm whether the disappearance of ammonia and nitrate in the wastewater of the electronic industry was due to a biological reaction.

【0031】[0031]

【表2】 この培地に、さらにATCC培地480のSolutionCと
SolutionDをそれぞれ1ml/リットル、0及び0.5
ml/リットル添加したものを基礎培地とした。上記の
基礎培地を用いて、5種類の確認実験を行なった結果、
培地中における下記の脱窒素反応は生物反応によるもの
であることが確認された。 6NH4 + +4NO3 - ─────5N2 +12H2
[Table 2] This medium was further mixed with ATCC medium 480 Solution C.
Solution D at 1 ml / liter, 0 and 0.5 respectively
The medium to which ml / liter was added was used as the basal medium. As a result of conducting 5 kinds of confirmation experiments using the above basal medium,
It was confirmed that the following denitrification reaction in the medium was due to a biological reaction. 6NH 4 + + 4NO 3 - ───── 5N 2 + 12H 2 O

【0032】[0032]

【表3】 [Table 3]

【0033】以上の確認実験の結果を要約すると、おお
よそ次の通りである。 実験1〜実験5の結果から、NH4 −N、NOx
Nが培養液(廃水)に同時存在し、溶存酸素が存在しな
ければ、NH4 −Nは硝酸塩及び/又は亜硝酸塩の結合
酸素によって生物学的に酸化され、窒素ガスとなり、脱
窒素される。 前記の基礎培地から酢酸及びメタノールなどの有機
物を削除しても、結合酸素によるアンモニアの酸化反応
は進行する。 以上の事実より、この反応に関与するアンモニア酸化菌
は自栄養性細菌であり、この反応から生活エネルギー
(異化作用)と増殖エネルギー(同化作用)を獲得して
いると考えられる。
The results of the above confirmation experiments are summarized as follows. From the results of Experiment 1 to Experiment 5, NH 4 —N, NO x
If N coexists in the culture solution (wastewater) and there is no dissolved oxygen, NH 4 —N is biologically oxidized by bound oxygen of nitrate and / or nitrite, becomes nitrogen gas, and is denitrified. . Even if organic substances such as acetic acid and methanol are removed from the basal medium, the oxidation reaction of ammonia with bound oxygen proceeds. From the above facts, it is considered that the ammonia-oxidizing bacteria involved in this reaction are autotrophic bacteria and have acquired the living energy (catabolism) and the proliferative energy (anabolism) from this reaction.

【0034】 この自栄養性の結合酸素脱窒素菌(発
明者の仮称)は、NH4 −N、NOx−Nが液体中に混
在し、その他の必須元素が存在すれば自然環境中に野性
菌として生息しているものと考えられる(ただし、溶存
酸素が存在しない環境)。 基礎培地から成分Xを除外した培地(無機性培地)
に、現在稼働中の生物学的脱窒素法を採用しているし尿
処理場及び/又は下水処理場の濃縮活性汚泥を重量とし
て2〜3%添加すると、アンモニアと硝酸塩は急速に消
失した。この事実から、結合酸素脱窒素菌は現行の生物
学的硝化脱窒素法の混合培養系に他の自栄養性硝化菌、
従属栄養性硝化・脱窒素菌(チオスファエラ・パントト
ロファ)(thiosphaera pantotropha))、従属栄養性脱
窒素菌及びその他のBOD酸化菌と共存して脱窒素の一
端を担っていることは確実であると考えられる。
This autotrophic bound oxygen-denitrifying bacterium (provisional name of the inventor) is wild in the natural environment if NH 4 —N and NO x —N are mixed in the liquid and other essential elements are present. It is considered that it inhabits as a bacterium (but in an environment where dissolved oxygen does not exist). Medium excluding component X from basal medium (inorganic medium)
In addition, when 2-3% by weight of concentrated activated sludge of the human sewage treatment plant and / or the sewage treatment plant which employs the biological denitrification method currently in operation is added, ammonia and nitrate rapidly disappeared. From this fact, the bound oxygen-denitrifying bacterium can be added to other autotrophic nitrifying bacteria in the mixed culture system of the current biological nitrifying-denitrifying method,
It is certain that it plays a part in denitrification in coexistence with heterotrophic nitrifying and denitrifying bacteria (thiosphaera pantotropha), heterotrophic denitrifying bacteria and other BOD oxidizing bacteria. it is conceivable that.

【0035】[0035]

【実施例】以下に、本発明を実施例により具体的に説明
するが、本発明はこれらの実施例に限定されるものでは
ない。 実施例1 (a)結合酸素脱窒素菌の増殖とpHとの関係。 本発明では、結合酸素脱窒素菌が増殖するに適したpH
範囲を確認しておく必要がある。表2に示す基礎培地を
用い、し尿系硝化脱窒素汚泥を3g/リットル添加し、
培養液のpHをそれぞれ6.0、7.0、7.5、8.
0及び9.0にリン酸緩衝液で調整し、前記の実験方法
に準じて発生ガス量(N2 +CO2 )を測定し、pH=
7.0に調整した実験でのガス発生量(℃)に対するそ
れぞれの実験でのガス発生量(Gx )の比率を求め、結
合酸素脱窒素菌群の増殖とpHとの関係を求めた。実験
結果を図4に示した。
EXAMPLES The present invention will now be described in detail with reference to examples, but the present invention is not limited to these examples. Example 1 (a) Relationship between the growth of bound oxygen-denitrifying bacteria and pH. In the present invention, a pH suitable for growing bound oxygen denitrifying bacteria
It is necessary to confirm the range. Using the basal medium shown in Table 2, 3 g / liter of night soil-based nitrifying and denitrifying sludge was added,
The pH of the culture solution was 6.0, 7.0, 7.5, and 8.
The amount of evolved gas (N 2 + CO 2 ) was measured according to the above-mentioned experimental method by adjusting the pH to 0 and 9.0 with a phosphate buffer, and pH =
The ratio of the gas generation amount (G x ) in each experiment to the gas generation amount (° C) in the experiment adjusted to 7.0 was determined, and the relationship between the growth of the bound oxygen-denitrifying bacteria group and pH was determined. The experimental results are shown in FIG.

【0036】図4を見れば分かるように、結合酸素脱窒
素菌群の増殖に適するpH範囲を、ガス発生量を指標と
して表現してみると、混合培養液のpHが7.5近傍が
最適であり、大凡7.0〜8.0の範囲にあれば許容範
囲であるが、pHが中性から酸性側及びアルカリ性側に
偏差すると可成りの増殖阻害を受けることが理解でき
る。この実験結果は、装置設計上、及び処理条件設定上
に重要な知見である。 (b)本発明による結合酸素脱窒素菌群によるアンモニ
アの酸化・脱窒実験。 供試し尿の一般的理化学的性状は表4の通りである。菌
体当たりの窒素負荷は現在の生物学的脱窒素法の標準値
と同等の負荷となるように菌体濃度を調整した。なお、
本試料は変質を防止するために、実験期間中5℃以下の
冷蔵庫に保管した。
As can be seen from FIG. 4, when the pH range suitable for the growth of the bound oxygen-denitrifying bacteria group is expressed by using the gas generation amount as an index, the pH of the mixed culture solution is around 7.5 is optimum. It is acceptable if it is in the range of about 7.0 to 8.0, but it can be understood that if the pH deviates from neutral to acidic and alkaline, the growth is considerably inhibited. The results of this experiment are important findings in designing the apparatus and setting the processing conditions. (B) An experiment of oxidizing and denitrifying ammonia by the group of combined oxygen-denitrifying bacteria according to the present invention. Table 4 shows the general physicochemical properties of test urine. The nitrogen load per cell was adjusted so that the nitrogen load was equivalent to the standard value of the current biological denitrification method. In addition,
This sample was stored in a refrigerator at 5 ° C or lower for the duration of the experiment in order to prevent deterioration.

【0037】[0037]

【表4】 (注)*単位は、pH以外は全てmg/リットルで表示してある。 *供試し尿は、1mm目開きスクリーンでろ過した試料である。[Table 4] (Note) * All units are shown in mg / liter except pH. * Test urine is a sample filtered through a 1 mm open screen.

【0038】本実験例では、図1に示した連続処理が可
能な部分硝化槽、pH調整槽、及び結合酸素脱窒素槽
(密閉式構造)より構成されたアクリル製の角型実験装
置を製作した。この直列に連結した本体装置に、さらに
菌体の濃縮分離を目的とした円形の重力式沈殿槽を連結
し、沈殿槽から濃縮菌体を部分硝化槽とpH調整槽に循
環する返送経路を設け、連続処理による結合酸素脱窒素
の実験を行なった。また、流入水のNH4 −N濃度の希
釈と結合酸素脱窒素槽のpHを調整することを目的とし
て、結合酸素脱窒素槽から流出する混合培養液を前記の
2工程に循環するために、それぞれに塩化ビニール配管
を取り付けた。
In this experimental example, an acrylic square-type experimental device composed of a partial nitrification tank, a pH adjusting tank, and a combined oxygen denitrification tank (closed structure) capable of continuous treatment shown in FIG. 1 was manufactured. did. A circular gravity type precipitation tank for the purpose of concentrating and separating the bacterial cells was further connected to the main body device connected in series, and a return path was provided to circulate the concentrated bacterial cells from the precipitation tank to the partial nitrification tank and the pH adjusting tank. , Experiments of combined oxygen denitrification by continuous treatment were performed. Further, in order to dilute the NH 4 —N concentration of the inflow water and adjust the pH of the bound oxygen denitrification tank, in order to circulate the mixed culture solution flowing out of the bound oxygen denitrification tank to the above two steps, Vinyl chloride piping was attached to each.

【0039】結合酸素脱窒素槽には、大気から混合培養
液に酸素が侵入しないように覆蓋を設け、さらに槽内部
の混合培養液を緩衝攪拌するために発生ガスを引き出
し、ブロワーにより槽底部に導入してガス攪拌を行い、
余剰ガスは系外に排出するよう配慮した。また、結合酸
素脱窒素槽の最前部にpH検知器(部分硝化槽にも監視
を目的としてpH検知器を取り付けた)を取り付け、結
合酸素脱窒素槽内溶液のpHを監視すると同時に、混合
培養液循環ポンプと連動させ、混合培養液のpH値が
7.0以下になると循環液量を自動的に調整する機構を
設けた。さらに、結合酸素脱窒素槽内の混合培養液に酸
素が導入されることを監視する目的で、低レベルの溶存
酸素の測定が可能なDOメーターを取り付けたが、部分
硝化槽の曝気ブロワーと連動した自動制御の機構は設け
ず、単に監視に止めた。
The combined oxygen denitrification tank is provided with a cover to prevent oxygen from entering the mixed culture solution from the atmosphere, and the evolved gas is drawn out to buffer and stir the mixed culture solution inside the tank. Introduce and stir gas,
Excessive gas was taken out of the system. In addition, a pH sensor (a pH sensor was also attached to the partial nitrification tank for the purpose of monitoring) was attached to the front of the combined oxygen denitrification tank to monitor the pH of the solution in the combined oxygen denitrification tank, and at the same time, to perform mixed culture. A mechanism for automatically adjusting the amount of circulating liquid when the pH value of the mixed culture became 7.0 or less was provided in association with the liquid circulating pump. Furthermore, in order to monitor the introduction of oxygen into the mixed culture solution in the combined oxygen denitrification tank, a DO meter capable of measuring low levels of dissolved oxygen was installed, but it was linked with the aeration blower in the partial nitrification tank. The automatic control mechanism was not provided, and the monitoring was stopped.

【0040】実験装置仕様、及び実験条件 *処理水温: 25±1℃、 実験装置を全て大型の恒温水槽に設置し、上記の温度で
運転した。 *無希釈し尿注入量(処理量): Q=1リットル/日、 *個々の実験装置、及び実験条件 ・部分硝化槽容積: 2Q=2リットル、 ・pH調整槽: 0.2Q=0.2リットル、 ・結合酸素脱窒素槽: 5Q=5リットル、 ・実験装置の総容積: 7.2Q=7.2リットル、 ・重力沈殿槽容積: 2Q=2リットル、 ・総容積に対するBOD負荷: 約1.2kg/m3 ・日、 ・全汚泥量に対するBOD汚泥負荷: 約0.15kg/kg・日、 ・全汚泥量に対するNH4 −N汚泥負荷: 約0.05kg/kg・日、 ただし、槽内汚泥濃度: 約8,000mg/リットル、 沈殿槽濃縮汚泥濃度: 約15,000mg/リットル、
Experimental device specifications and experimental conditions * Treatment water temperature: 25 ± 1 ° C. All experimental devices were installed in a large-sized constant temperature water tank and operated at the above temperature. * Undiluted urine injection volume (processing volume): Q = 1 liter / day, * Individual experimental equipment and experimental conditions-Partial nitrification tank volume: 2Q = 2 liters-pH adjustment tank: 0.2Q = 0.2 Liters, bound oxygen denitrification tank: 5Q = 5 liters, total volume of experimental equipment: 7.2Q = 7.2 liters, gravity settling tank volume: 2Q = 2 liters, BOD load to total volume: about 1 .2 kg / m 3 · day, BOD sludge load to total sludge amount: about 0.15 kg / kg · day, NH 4 -N sludge load to total sludge amount: about 0.05 kg / kg · day, but tank Internal sludge concentration: Approximately 8,000 mg / liter, Settling tank concentrated sludge concentration: Approximately 15,000 mg / liter,

【0041】 *結合酸素脱窒素槽の流出混合培養液の循環量 ・部分硝化槽2への循環量: 5Q=51/日 ・部分硝化槽への流入水質(計算値): 表5に示す。* Circulation amount of outflowing mixed culture solution of combined oxygen denitrification tank-Circulation amount to partial nitrification tank 2: 5Q = 51 / day-Water quality (calculated value) to inflow to partial nitrification tank:

【0042】[0042]

【表5】 (注)*;単位は、pH以外はmg/リットルで表示。 ・pH調整槽3への循環量: 5Q=51/日、[Table 5] (Note) *; Units are expressed in mg / liter except pH.・ Circulation amount to pH adjusting tank 3: 5Q = 51 / day,

【0043】 *沈殿濃縮汚泥の返送量 ・部分硝化槽2への返送量: 1.2Q=1.21/日、 ・pH調整槽3への返送量: 約0.3〜0.5Q=0.3〜0.51/日、 *沈殿分離槽 ・重力式円形沈殿槽 ・有効容積: 2リットル、 ・濃縮汚泥濃度: 約15,000mg/リットル、 以上の実験装置、及び実験条件によって得られた無希釈
し尿の好気性硝化+結合酸素脱窒素の検証実験の結果を
表6に示した(運転を開始してから約50日後、定常状
態に達してから約1ヵ月間の平均値)。
* Return amount of sedimentation concentrated sludge-Return amount to partial nitrification tank 2: 1.2Q = 1.21 / day-Return amount to pH adjusting tank 3: Approximately 0.3 to 0.5Q = 0 3 to 0.51 / day, * sedimentation separation tank-gravity circular sedimentation tank-effective volume: 2 liters-concentrated sludge concentration: about 15,000 mg / liter, obtained by the above experimental apparatus and experimental conditions The results of the verification experiment of aerobic nitrification of undiluted urine and bound oxygen denitrification are shown in Table 6 (about 50 days after the start of operation, and an average value for about 1 month after reaching a steady state).

【0044】[0044]

【表6】 (注)*;単位は、pH以外は全てmg/リットルで表示してある。 *;分析試料は、全て遠心分離器の分離液(1,500、10分間)。[Table 6] (Note) *; All units are shown in mg / liter except pH. *: All analytical samples are the separation liquid of the centrifuge (1,500, 10 minutes).

【0045】無希釈し尿の好気性自栄養性硝化菌と結合
酸素脱窒素菌の共働作用による硝化脱窒素検証実験の結
果を要約すると次の通りである。 (1)無希釈し尿に含まれるNH4 −N(循環水で希釈
されている)を本発明プロセスにより自栄養性硝化菌と
結合酸素脱窒素菌の共働作用により硝化脱窒素した結
果、表6に示した検証実験結果からも容易に理解できる
ように、従来の自栄養性硝化菌と従属栄養性脱窒素菌の
共働作用による脱窒素機能に十分に比肩し得る処理性能
が得られることが実証された。 (2)部分硝化槽に結合酸素脱窒素槽からの流出混合液
を循環し、流入水のNH4 −Nを400〜600mg/
リットルの濃度範囲となるように希釈することにより、
部分硝化槽流出混合液のpHは5.9〜6.3の範囲で
安定し、NH4 −Nの硝化率はおおよそ40%となり、
結合酸素による脱窒素に好適なNH4 −N/NO3 −N
比となった。し尿の自栄養性硝化菌による硝化形式は硝
酸型で安定した。 (3)結合酸素脱窒素槽のpHは、流出混合液のpH調
整槽への循環で結合酸素脱窒素菌の増殖に好適なpH範
囲となり、かつ、沈殿槽での濃縮汚泥を一部pH調整槽
に循環返送することにより結合酸素脱窒素菌は順調に増
殖して、当初予想した生物反応が行なわれ、アンモニア
の硝酸塩結合酸素による酸化・脱窒素は化学量論的に妥
当な値を示した。
The results of the nitrification and denitrification verification experiment by the synergistic action of the undiluted urine aerobic autotrophic nitrifying bacteria and the bound oxygen denitrifying bacteria are summarized as follows. (1) As a result of nitrification and denitrification of undiluted NH 4 -N (diluted with circulating water) contained in urine by the process of the present invention by the synergistic action of autotrophic nitrifying bacteria and bound oxygen denitrifying bacteria, As can be easily understood from the results of the verification experiment shown in 6, it is possible to obtain a treatment performance sufficiently comparable to the denitrification function due to the synergistic action of conventional autotrophic nitrifying bacteria and heterotrophic denitrifying bacteria. Was demonstrated. (2) The outflowing mixed solution from the combined oxygen denitrification tank is circulated to the partial nitrification tank, and NH 4 —N of the inflow water is 400 to 600 mg /
By diluting to a concentration range of liter,
The pH of the mixed solution discharged from the partial nitrification tank is stable in the range of 5.9 to 6.3, and the nitrification rate of NH 4 —N is about 40%.
NH 4 -N / NO 3 -N suitable for denitrification by bound oxygen
Became a ratio. The nitrification form of human excreta by autotrophic nitrifying bacteria was stable in the nitric acid form. (3) The pH of the combined oxygen denitrification tank is adjusted to a pH range suitable for the growth of combined oxygen denitrifying bacteria by circulating the effluent mixed solution to the pH adjustment tank, and the concentrated sludge in the precipitation tank is partially adjusted in pH. By returning it to the tank in a circulating manner, the bound oxygen denitrifying bacteria grew smoothly, the expected biological reaction was performed, and the oxidation and denitrification of ammonia by nitrate bound oxygen showed a stoichiometrically reasonable value. .

【0046】(4)結合酸素脱窒素菌によるNH4 −N
の硝酸塩結合酸素による酸化・脱窒素反応は、槽内液に
実質的に有機物などの水素供与体が存在しなくても順調
に進行する。この事実は、結合酸素脱窒素菌は自栄養性
脱窒素菌の範疇に属することの証左であり、さらに前記
のアンモニアの酸化反応が発エルゴン反応であることか
ら、該菌はこの反応から生活エネルギーと増殖エネルギ
ーの両方を獲得して生活・増殖することができる。以上
より、本発明プロセスでは脱窒素反応のために有価な有
機物を系外から添加する必要がなく、極めて経済的な生
物学的硝化脱窒素法である。 (5)結合酸素脱窒素槽からの総発生ガス量は可成り変
動したが、大凡4.8〜5.3リットル/日であり、ガ
ス組成は炭酸ガスが15〜18%(最高21%)、残余
は窒素ガスによって占められていた。このことからも、
結合酸素脱窒素槽においては、前記の生物反応式に示し
た生物反応が確実に行なわれていることが証明された。
(4) NH 4 --N by bound oxygen denitrifying bacteria
The oxidation / denitrification reaction by the nitrate-bonded oxygen proceeds smoothly even if a hydrogen donor such as an organic substance is not substantially present in the liquid in the tank. This fact is proof that the bound oxygen denitrifying bacterium belongs to the category of autotrophic denitrifying bacterium, and furthermore, since the above-mentioned ammonia oxidation reaction is an ergonomic reaction, the bacterium has a life energy from this reaction. It is possible to acquire both of breeding energy and livelihood and multiply. From the above, the process of the present invention is a very economical biological nitrification denitrification method because it is not necessary to add valuable organic substances from outside the system for the denitrification reaction. (5) The total amount of gas generated from the combined oxygen denitrification tank fluctuated considerably, but it was about 4.8 to 5.3 liters / day, and the gas composition was 15 to 18% (maximum 21%) of carbon dioxide. , The balance was occupied by nitrogen gas. From this, too
In the combined oxygen denitrification tank, it was proved that the biological reaction shown in the above-mentioned biological reaction formula was reliably performed.

【0047】実施例2 無機性廃水の自栄養性硝化菌と結合酸素脱窒素菌による
硝化・脱窒素実験。工場廃水にはNH4 −Nは濃厚に含
んでいるが、従属栄養性脱窒素菌が必要とする水素供与
体(有機物)が全く存在しない廃水が比較的多い。この
ような廃水から、本発明方法で硝化と結合酸素脱窒素を
行なう場合には、プロセスをより簡潔化するために、自
栄養性硝化菌による硝化を浮遊菌体法ではなく、硝化菌
を特定の付着媒体に担持させる充填塔方式が考えられ
る。この方式は、本来、廃水中に有機物(BOD)が含
まれると、増殖速度の遅速の関係からBOD酸化菌が硝
化菌よりも優先的に付着媒体に付着し、硝化菌の菌体濃
度の維持に負の影響を与えるので充填塔方式の採用は好
ましくないが、BOD成分が存在しない廃水に関しては
この方式を適用することにより装置は簡略化され、かつ
運転管理上も有利である。
Example 2 Experiment of nitrification and denitrification by an autotrophic nitrifying bacterium and a combined oxygen denitrifying bacterium of inorganic waste water. NH 4 -N is contained in the factory wastewater in a high concentration, but there are relatively many wastewaters in which hydrogen donors (organic substances) required by heterotrophic denitrifying bacteria are not present at all. When nitrification and combined oxygen denitrification are carried out from such wastewater by the method of the present invention, nitrification by autotrophic nitrifying bacteria is identified by nitrifying bacteria instead of floating cell method in order to further simplify the process. A packed tower system in which it is supported on the adhering medium is considered. Originally, when wastewater contains organic matter (BOD), this method preferentially attaches BOD-oxidizing bacteria to the attachment medium over nitrifying bacteria because of the slow growth rate, and maintains the cell concentration of nitrifying bacteria. It is not preferable to use the packed column method because it has a negative effect on the temperature. However, for waste water containing no BOD component, applying this method simplifies the equipment and is advantageous in terms of operation management.

【0048】そこで、自栄養性硝化菌によるアンモニア
の部分硝化を充填塔方式で行ない、結合酸素脱窒素を菌
体浮遊法で行なうプロセスを実験装置として組みあげ、
連続式の酸化・脱窒素実験を行なった。基本的なプロセ
スの構成は図1のとおりである。以下に、実験条件を示
す。 *適用培地 表2に示した電子工業廃水の廃水成分から有機物の培地
成分X、及び硝酸カリウムを除外し、一方、窒素成分と
して硫酸アンモニウムをNH4 −Nとして実施例1
(b)のアンモニア性窒素濃度と同じ2,800mg/
リットルとなるように加えた。この培養液のpHは7.
5となるように調整したが、それ以外の成分は表2の培
地成分と全く同じである。
Therefore, a process in which partial nitrification of ammonia by an autotrophic nitrifying bacterium is carried out in a packed column system and bound oxygen denitrification is carried out by a cell suspension method is set up as an experimental device.
A continuous oxidation / denitrification experiment was conducted. The basic process configuration is shown in FIG. The experimental conditions are shown below. * Applicable medium Excluding the medium component X of organic matter and potassium nitrate from the wastewater components of the electronic industrial wastewater shown in Table 2, while using ammonium sulfate as NH 4 —N as the nitrogen component, Example 1
2,800 mg /, which is the same as the ammonia nitrogen concentration in (b)
Added to make it 1 liter. The pH of this culture solution is 7.
It was adjusted to be 5, but the other components are exactly the same as the medium components in Table 2.

【0049】 *充填塔式部分硝化槽 ・菌体付着媒体: 球状の発泡スチロール媒体、 直径・・・3.0〜3.5mmφ、 ・充填塔の媒体付着部分の有効容積: 1.2リットル、 ・充填塔の有効容積に対するNH4 −N容積負荷: 2.3kg/m3 ・日、 ・流入水量(処理量): Q=1リットル/日、 ・流入方式: 上向流方式、 (曝気は廃水の流れと並流方向に空気を流し、酸素を供給) ・流入廃水のNH4 −N希釈のための循環量: 充填塔流出水を5Q=5リットルを流入水に循環返送する。 *pH調整槽 実施例1(b)と全て同じ装置及び実験条件。ただし、 沈殿槽からの濃縮菌体の返送量は1.2Qm3 /日。 *結合酸素脱窒素槽 実施例1(b)と全て同じ装置及び実験条件。* Packing tower type partial nitrification tank-Medium to which bacterial cells are attached: Styrofoam medium, diameter ... 3.0 to 3.5 mmφ-Effective volume of media-adhering portion of packed tower: 1.2 liters,- NH 4 -N volumetric load to the effective volume of the packed column: 2.3 kg / m 3 · day, inflow amount (treatment amount): Q = 1 liter / day, · inflow method: upflow method, (aeration is wastewater flow and co-current direction to the flow of air, circulating volume for NH 4 -N dilution of oxygen supply) - the inflow waste water: circulating returns a packed column effluent to 5Q = 5 liters influent. * PH adjusting tank All the same devices and experimental conditions as in Example 1 (b). However, the amount of concentrated bacterial cells returned from the settling tank was 1.2 Qm 3 / day. * Bound oxygen denitrification tank All the same equipment and experimental conditions as in Example 1 (b).

【0050】実施例2のNH4 −Nを含む電子工業廃水
を、本発明方法により処理した検証実験の結果を要約す
ると次の通りである。 (1)充填塔方式による自栄養性硝化菌の硝化は可成り
高い窒素容積負荷でも順調に行なわれ、硝化によるpH
低下による硝化率はほぼ40%近傍で、実施例1と実質
的に同レベルであった。また硝化形式は硝酸型で安定し
た。 (2)pH調整槽、及び結合酸素脱窒素槽におけるpH
の挙動、NH4 −N、及びNO3 −Nの挙動も実施例1
と実質的に同じであり、特記すべき新たな知見はなかっ
た。最終処理水の水質もほとんど近似しており、そのま
ま外界への放流が可能である。 (3)以上より、本発明プロセスにおける部分硝化槽は
充填塔方式で代替することが可能であり、無機性廃水に
ついては、充填塔方式の適用が経済性、運転操作上から
むしろ好ましい結果を与える。 (4)完全な無機性廃水に関しても、結合酸素脱窒素菌
はNH4 −NをNO3 −Nの結合酸素により抵抗なく酸
化・脱窒素する事実から、結合酸素脱窒素菌は明らかに
自栄養性脱窒素菌であり、水素供与体を必要としないの
で大なる経済効果が期待できる。
The results of verification experiments in which the electronic industrial wastewater containing NH 4 —N of Example 2 was treated by the method of the present invention are summarized as follows. (1) Nitrification of autotrophic nitrifying bacteria by the packed tower method is performed smoothly even with a fairly high nitrogen volume load, and the pH due to nitrification is
The nitrification rate due to the decrease was about 40%, which was substantially the same level as in Example 1. The nitrification type was stable with nitric acid. (2) pH in pH adjusting tank and combined oxygen denitrification tank
Behavior of NH 4 —N, and behavior of NO 3 —N are also shown in Example 1.
Was virtually the same, and there were no new findings to note. The quality of the final treated water is almost similar, and it can be discharged to the outside as it is. (3) From the above, it is possible to substitute the partial nitrification tank in the process of the present invention with a packed tower system, and for inorganic wastewater, the packed tower system gives a rather favorable result from the economical point of view and operation. . (4) Even in the case of completely inorganic wastewater, the bound-oxygen denitrifying bacteria clearly oxidize and denitrify NH 4 -N by the bound oxygen of NO 3 -N. Since it is a sexually denitrifying bacterium and does not require a hydrogen donor, a great economic effect can be expected.

【0051】[0051]

【発明の効果】本発明は、詳述したように、従来とは全
く異なる視点、思想からの発想による革新的な生物学的
硝化脱窒素技術であり、次のような作用効果を有する。 (1)アンモニア性窒素と亜硝酸塩、硝酸塩が混在し、
かつ、溶存酸素が存在しない水環境では、自然の生態系
に野性的に生息している結合酸素脱窒素菌(仮称)が次
第に増殖し、水素供与体が存在しなくても、結合酸素を
有効に利用してアンモニア性窒素を酸化し、脱窒素する
ことが実証された。この結合酸素脱窒素菌の機能を自栄
養性硝化菌の硝化機能と合理的に組合わせることによ
り、従来の硝化菌と従属栄養性脱窒素菌との共働作用に
よる硝化脱窒素に対して、より簡単で、かつ経済的な硝
化脱窒素プロセスを構築することができる。
As described in detail, the present invention is an innovative biological nitrification and denitrification technology based on an idea which is completely different from the conventional viewpoint and idea, and has the following effects. (1) Ammoniacal nitrogen, nitrite and nitrate are mixed,
Moreover, in an aquatic environment in which dissolved oxygen does not exist, bound oxygen denitrifying bacteria (tentative name) that wildly inhabit natural ecosystems gradually grow, and the bound oxygen is effective even if there is no hydrogen donor. It has been proved that it is used to oxidize and denitrify ammoniacal nitrogen. By reasonably combining the function of this bound oxygen-denitrifying bacterium with the nitrifying function of the autotrophic nitrifying bacterium, the nitrifying denitrifying by the synergistic action of the conventional nitrifying bacterium and heterotrophic denitrifying bacterium, A simpler and more economical nitrification denitrification process can be constructed.

【0052】(2)以上の本発明方法では、硝化及び脱
窒素のために外部からpH調整剤を添加する必要はな
く、また、水素供与体の添加も必要としない、極めて経
済効果の高い処理技術であり、閉鎖水域、停滞水域の富
栄養化防止に貢献することができる。 (3)本発明の主役を演じている細菌は全て自栄養性細
菌であり、有機物を含まない無機性廃水から富栄養化原
因物質である窒素化合物を効果的、経済的に除去するこ
とができる。また、有機物(BOD)を含む廃水であっ
ても、これらの汚濁成分は部分硝化槽において、自然発
生的なBOD酸化菌により好気的条件下で完全に除去さ
れる。
(2) In the above-mentioned method of the present invention, it is not necessary to add a pH adjuster from the outside for nitrification and denitrification, and addition of a hydrogen donor is not necessary, which is a highly economical treatment. It is a technology and can contribute to the prevention of eutrophication in closed and stagnant waters. (3) All the bacteria that play the leading role of the present invention are autotrophic bacteria, and can effectively and economically remove nitrogen compounds that are eutrophication-causing substances from organic waste-free inorganic wastewater. . Even in wastewater containing organic matter (BOD), these pollutant components are completely removed by a naturally occurring BOD-oxidizing bacterium in a partial nitrification tank under aerobic conditions.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の生物学的硝化脱窒素法を示す処理系統
図。
FIG. 1 is a processing system diagram showing a biological nitrification denitrification method of the present invention.

【図2】希釈し尿における混合培養液のpHと硝化率の
関係を示すグラフ。
FIG. 2 is a graph showing the relationship between pH and nitrification rate of a mixed culture solution in diluted urine.

【図3】NH4 −N濃度を助変数とした場合の混合培養
液のpHと硝酸化率との関係を示すグラフ。
FIG. 3 is a graph showing the relationship between the pH of a mixed culture solution and the nitrification rate when the NH 4 —N concentration is used as a parameter.

【図4】結合酸素脱窒素菌によるガス発生とpHの関係
を示すグラフ。
FIG. 4 is a graph showing the relationship between gas generation and pH by bound oxygen denitrifying bacteria.

【符号の説明】[Explanation of symbols]

1:含アンモニア廃水、2:部分硝化槽、3:pH調整
槽、4:結合酸素脱窒素槽、5:空気吹込みブロワー、
6:pH調整用混合液循環管、7:希釈用混合液循環
管、8:脱窒素ガス、9:循環ブロワー、10:排出窒
素ガス、11:空気吹込管、12:ガス循環管、13:
再曝気槽、14:菌体分離、15:処理水、16:菌体
返送管、17:分岐管、18:余剰菌体、19:水素ガ
ス。
1: Ammonia-containing wastewater, 2: Partial nitrification tank, 3: pH adjustment tank, 4: Combined oxygen denitrification tank, 5: Air blower blower,
6: pH adjusting mixed liquid circulating pipe, 7: dilution mixed liquid circulating pipe, 8: denitrifying gas, 9: circulating blower, 10: discharged nitrogen gas, 11: air blowing pipe, 12: gas circulating pipe, 13:
Re-aeration tank, 14: Separation of bacterial cells, 15: Treated water, 16: Tube for returning bacterial cells, 17: Branch pipe, 18: Surplus bacterial cells, 19: Hydrogen gas.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 アンモニア性窒素を含む窒素化合物を含
有する汚水を生物学的に硝化脱窒素する方法において、
前記汚水を好気的条件下で自栄養性硝化菌により部分的
に硝化する部分硝化工程と、前記部分硝化工程の流出液
を結合酸素を利用可能な自栄養性脱窒素菌群の優占下
で、該流出液中のNH4 −NとNO2 −N及び/又はN
3 −NとをN2 ガスとして脱窒素する結合酸素脱窒素
工程とで処理することを特徴とする生物学的硝化脱窒素
方法。
1. A method for biologically nitrifying and denitrifying sewage containing a nitrogen compound containing ammoniacal nitrogen, comprising:
Partial nitrification step in which the sewage is partially nitrified by autotrophic nitrifying bacteria under aerobic conditions, and the effluent of the partial nitrification step is dominated by a group of autotrophic denitrifying bacteria that can utilize bound oxygen And NH 4 —N and NO 2 —N and / or N in the effluent
A biological nitrification and denitrification method, which comprises performing treatment with a combined oxygen denitrification step of denitrifying O 3 —N as N 2 gas.
【請求項2】 前記結合酸素脱窒素工程は、NH4 −N
とNO2 −N及び/又はNO3 −Nとが混在する液体を
微嫌気乃至嫌気条件下で水温20〜30℃、pH7.0
〜8.0の条件下に置くことにより前記自栄養性脱窒素
菌群を優占させるか、又は前記条件下で増量培養した前
記自栄養性脱窒素菌群を添加することを特徴とする請求
項1記載の生物学的硝化脱窒素方法。
2. The combined oxygen denitrification process comprises: NH 4 --N
And a mixture of NO 2 —N and / or NO 3 —N are mixed under a slightly anaerobic or anaerobic condition at a water temperature of 20 to 30 ° C. and a pH of 7.0.
Characterized in that the autotrophic denitrifying bacteria group is predominantly placed under the conditions of ˜8.0, or the autotrophic denitrifying bacteria group, which has been subjected to increased culture under the conditions, is added. Item 2. The biological nitrification denitrification method according to Item 1.
【請求項3】 前記部分硝化工程は、NH4 −Nを部分
硝化して、NH4 −N/NO2 −N比を1.0近傍、N
4 −N/NO3 −N比を1.5近傍とすることを特徴
とする請求項1又は2記載の生物学的硝化脱窒素方法。
3. In the partial nitrification step, NH 4 —N is partially nitrified so that the NH 4 —N / NO 2 —N ratio is around 1.0,
Biological nitrification denitrification method according to claim 1 or 2, characterized in that H 4 -N / NO 3 -N ratio is near 1.5.
【請求項4】 前記部分硝化工程と結合酸素脱窒素工程
との間にpH調整工程を設け、前記結合酸素脱窒素工程
から流出する処理液の一部を、前記部分硝化工程及び/
又はpH調整工程に循環してpH調整することを特徴と
する請求項1、2又は3記載の生物学的硝化脱窒素方
法。
4. A pH adjusting step is provided between the partial nitrification step and the bound oxygen denitrification step, and a part of the treatment liquid flowing out from the bound oxygen denitrification step is part of the partial nitrification step and / or
Alternatively, the biological nitrification denitrification method according to claim 1, 2 or 3, wherein the pH is adjusted by circulating the pH adjustment step.
【請求項5】 前記結合酸素脱窒素工程からの流出水か
ら菌体を分離し、分離された菌体の一部を前記部分硝化
工程及び/又は前記pH調整工程へ返送することを特徴
とする請求項1〜4のいずれか1項記載の生物学的硝化
脱窒素方法。
5. The microbial cells are separated from the effluent from the combined oxygen denitrification step, and a part of the separated microbial cells is returned to the partial nitrification step and / or the pH adjusting step. The biological nitrification denitrification method according to any one of claims 1 to 4.
【請求項6】 前記生物学的硝化脱窒素方法とメタン発
酵工程及び/又は水素発酵工程とを組合せ、該発酵工程
で生じたNH4 −Nを前記結合酸素脱窒素工程で脱窒素
することを特徴とする請求項1又は2記載の生物学的硝
化脱窒素方法。
6. A method of combining the biological nitrification denitrification method with a methane fermentation step and / or a hydrogen fermentation step to denitrify NH 4 —N generated in the fermentation step in the combined oxygen denitrification step. The biological nitrification denitrification method according to claim 1 or 2, which is characterized.
JP02088395A 1995-01-17 1995-01-17 Biological nitrification denitrification method and apparatus Expired - Lifetime JP3460745B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02088395A JP3460745B2 (en) 1995-01-17 1995-01-17 Biological nitrification denitrification method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02088395A JP3460745B2 (en) 1995-01-17 1995-01-17 Biological nitrification denitrification method and apparatus

Publications (2)

Publication Number Publication Date
JPH08192185A true JPH08192185A (en) 1996-07-30
JP3460745B2 JP3460745B2 (en) 2003-10-27

Family

ID=12039603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02088395A Expired - Lifetime JP3460745B2 (en) 1995-01-17 1995-01-17 Biological nitrification denitrification method and apparatus

Country Status (1)

Country Link
JP (1) JP3460745B2 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002143888A (en) * 2000-11-09 2002-05-21 Kurita Water Ind Ltd Method for accumulating autotrophic denitrifying microorganism and biological method for removing nitrogen
JP2002224688A (en) * 2000-11-28 2002-08-13 Kurita Water Ind Ltd Denitrifying method and denitrifying apparatus
JP2003033789A (en) * 2001-07-26 2003-02-04 Kurita Water Ind Ltd Method for denitrificaton treatment using living organisms and device therefor
JP2003033786A (en) * 2001-07-26 2003-02-04 Kurita Water Ind Ltd Method and device for denitrification by living organisms
JP2003033785A (en) * 2001-07-26 2003-02-04 Kurita Water Ind Ltd Method and device for denitrification
JP2003039092A (en) * 2001-07-30 2003-02-12 Kurita Water Ind Ltd Biological denitrification treatment method
JP2003047990A (en) * 2001-08-02 2003-02-18 Kurita Water Ind Ltd Biological denitrifier
JP2004230225A (en) * 2003-01-28 2004-08-19 Kurita Water Ind Ltd Method for treating ammonia-containing water
JP2006305555A (en) * 2005-03-29 2006-11-09 Sharp Corp Apparatus and method for treating waste water
JP2007090148A (en) * 2005-09-27 2007-04-12 Hitachi Plant Technologies Ltd Method and apparatus for measuring reaction ratio
JP2007117948A (en) * 2005-10-31 2007-05-17 Ebara Corp Method and apparatus for treating high-concentration organic waste liquid
JP2008149266A (en) * 2006-12-18 2008-07-03 Maezawa Ind Inc Wastewater treatment apparatus
JP2008194620A (en) * 2007-02-13 2008-08-28 Hitachi Plant Technologies Ltd Wastewater treating method and apparatus
JP2010005554A (en) * 2008-06-27 2010-01-14 Ebara Corp Removal apparatus of ammoniacal nitrogen
JP2010274160A (en) * 2009-05-26 2010-12-09 Maezawa Ind Inc Deodorization apparatus
JP2012024723A (en) * 2010-07-26 2012-02-09 Swing Corp Wastewater treating apparatus and wastewater treating method
JP2020175342A (en) * 2019-04-19 2020-10-29 オルガノ株式会社 Water treatment apparatus
US11603327B2 (en) 2018-06-22 2023-03-14 Organo Corporation Water treatment method and water treatment device

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002143888A (en) * 2000-11-09 2002-05-21 Kurita Water Ind Ltd Method for accumulating autotrophic denitrifying microorganism and biological method for removing nitrogen
JP4529277B2 (en) * 2000-11-09 2010-08-25 栗田工業株式会社 Method for collecting autotrophic denitrifying microorganisms and method for biological nitrogen removal
JP2002224688A (en) * 2000-11-28 2002-08-13 Kurita Water Ind Ltd Denitrifying method and denitrifying apparatus
JP2003033789A (en) * 2001-07-26 2003-02-04 Kurita Water Ind Ltd Method for denitrificaton treatment using living organisms and device therefor
JP2003033786A (en) * 2001-07-26 2003-02-04 Kurita Water Ind Ltd Method and device for denitrification by living organisms
JP2003033785A (en) * 2001-07-26 2003-02-04 Kurita Water Ind Ltd Method and device for denitrification
JP2003039092A (en) * 2001-07-30 2003-02-12 Kurita Water Ind Ltd Biological denitrification treatment method
JP2003047990A (en) * 2001-08-02 2003-02-18 Kurita Water Ind Ltd Biological denitrifier
JP2004230225A (en) * 2003-01-28 2004-08-19 Kurita Water Ind Ltd Method for treating ammonia-containing water
JP4613474B2 (en) * 2003-01-28 2011-01-19 栗田工業株式会社 Method for treating ammonia-containing water
JP2006305555A (en) * 2005-03-29 2006-11-09 Sharp Corp Apparatus and method for treating waste water
JP2007090148A (en) * 2005-09-27 2007-04-12 Hitachi Plant Technologies Ltd Method and apparatus for measuring reaction ratio
JP4623295B2 (en) * 2005-09-27 2011-02-02 株式会社日立プラントテクノロジー Method and apparatus for measuring reaction ratio
JP2007117948A (en) * 2005-10-31 2007-05-17 Ebara Corp Method and apparatus for treating high-concentration organic waste liquid
JP4642635B2 (en) * 2005-10-31 2011-03-02 荏原エンジニアリングサービス株式会社 High concentration organic waste liquid treatment method and apparatus
JP2008149266A (en) * 2006-12-18 2008-07-03 Maezawa Ind Inc Wastewater treatment apparatus
JP2008194620A (en) * 2007-02-13 2008-08-28 Hitachi Plant Technologies Ltd Wastewater treating method and apparatus
JP2010005554A (en) * 2008-06-27 2010-01-14 Ebara Corp Removal apparatus of ammoniacal nitrogen
JP2010274160A (en) * 2009-05-26 2010-12-09 Maezawa Ind Inc Deodorization apparatus
JP2012024723A (en) * 2010-07-26 2012-02-09 Swing Corp Wastewater treating apparatus and wastewater treating method
US11603327B2 (en) 2018-06-22 2023-03-14 Organo Corporation Water treatment method and water treatment device
JP2020175342A (en) * 2019-04-19 2020-10-29 オルガノ株式会社 Water treatment apparatus

Also Published As

Publication number Publication date
JP3460745B2 (en) 2003-10-27

Similar Documents

Publication Publication Date Title
JP3460745B2 (en) Biological nitrification denitrification method and apparatus
JP3737410B2 (en) High concentration organic wastewater treatment method and apparatus using biomaker
ES2241113T3 (en) PROCEDURE THAT USES WATER WITH STRONG CONTENT IN AMMONIA FOR THE SELECTION AND ENRICHMENT OF NITRIFYING MICRO-ORGANISMS INTENDED FOR NITRIFICATION OF WASTEWATER.
Qin et al. Aerobic granulation for organic carbon and nitrogen removal in alternating aerobic–anaerobic sequencing batch reactor
US8323487B2 (en) Waste water treatment apparatus
JP5100091B2 (en) Water treatment method
Sakairi et al. Nitrogen removal in seawater using nitrifying and denitrifying bacteria immobilized in porous cellulose carrier
JP4872171B2 (en) Biological denitrification equipment
JP2001293494A (en) Biological nitrogen removing method
Shin et al. The removal of nitrogen using an autotrophic hybrid hollow-fiber membrane biofilm reactor
US20130112617A1 (en) Redox wastewater biological nutrient removal treatment method
JP4302341B2 (en) Biological nitrogen removal method and apparatus
JP2003285096A (en) Simultaneous denitrification and dephosphorization type treatment method for wastewater
JP4570069B2 (en) Method for removing ammonia nitrogen from wastewater
KR20080019975A (en) Wastewater treatment apparatus using hybrid bio-electrochemical sequencing batch reactor combined a biological reactor and an electrode system
JP2003154393A (en) Biological method for removing nitrogen and apparatus therefor
JP4529277B2 (en) Method for collecting autotrophic denitrifying microorganisms and method for biological nitrogen removal
JP2004298841A (en) Method for treating nitrogen-containing wastewater
JP3958900B2 (en) How to remove nitrogen from wastewater
JP3933009B2 (en) Wastewater treatment method
JP4104311B2 (en) How to remove nitrogen from wastewater
JP2000189995A (en) Method and device for removing nitrogen in waste water
JPH05228493A (en) Method for treating waste water using sulfur bacterium and apparatus therefor
KR101179049B1 (en) Nitrite removal processes from waters using sulfur-oxidizing denitrifying bacteria
JP2004255269A (en) Denitrification method and denitrification apparatus

Legal Events

Date Code Title Description
S202 Request for registration of non-exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R315201

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150815

Year of fee payment: 12

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150815

Year of fee payment: 12

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term