JP2004282086A - ディスプレイスクリーンを製造する方法と真空プラズマ処理用の装置 - Google Patents
ディスプレイスクリーンを製造する方法と真空プラズマ処理用の装置 Download PDFInfo
- Publication number
- JP2004282086A JP2004282086A JP2004093357A JP2004093357A JP2004282086A JP 2004282086 A JP2004282086 A JP 2004282086A JP 2004093357 A JP2004093357 A JP 2004093357A JP 2004093357 A JP2004093357 A JP 2004093357A JP 2004282086 A JP2004282086 A JP 2004282086A
- Authority
- JP
- Japan
- Prior art keywords
- plasma
- chamber
- dust
- workpiece
- processing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/4401—Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/54—Apparatus specially adapted for continuous coating
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S414/00—Material or article handling
- Y10S414/135—Associated with semiconductor wafer handling
Landscapes
- Chemical & Material Sciences (AREA)
- Metallurgy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Vapour Deposition (AREA)
- Plasma Technology (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
- ing And Chemical Polishing (AREA)
- Physical Vapour Deposition (AREA)
Abstract
【課題】 プラズマ支援される真空コーティングプロセスのコーティング率を高めると共に、加工される表面の品質を向上させる。
【解決手段】 相互に上下となるように間隔をとって水平に向きを定められた複数のスクリーン工作物のセットをロックチャンバの中へ同時に導入し、次に、同時に処理ステーションへ搬出して同時に処理した後に同時にロックチャンバへ搬出する。そのために、相互に上下となるように且つ垂直な一直線上に整列するように積み重ねられた二つ以上の基板担体と、二つ以上の担体のそれぞれに整合してそれらを密閉可能に閉じ得る少なくとも二つ以上の操作開口部とを有する少なくとも一つの処理ステーションと、操作開口部を介して処理ステーションに連通すると共に一つの移送装置を備えている真空プラズマ処理用の装置を使用する。
【選択図】 図2
【解決手段】 相互に上下となるように間隔をとって水平に向きを定められた複数のスクリーン工作物のセットをロックチャンバの中へ同時に導入し、次に、同時に処理ステーションへ搬出して同時に処理した後に同時にロックチャンバへ搬出する。そのために、相互に上下となるように且つ垂直な一直線上に整列するように積み重ねられた二つ以上の基板担体と、二つ以上の担体のそれぞれに整合してそれらを密閉可能に閉じ得る少なくとも二つ以上の操作開口部とを有する少なくとも一つの処理ステーションと、操作開口部を介して処理ステーションに連通すると共に一つの移送装置を備えている真空プラズマ処理用の装置を使用する。
【選択図】 図2
Description
本発明は、真空プラズマ処理用の装置によってディスプレイスクリーンを製造する方法と、それに使用される真空プラズマ処理用の装置に関するものである。
特に半導体を製造する場合、そのためにプラズマ支援の方法、特にプラズマ支援のコーティング方法、その中でも特に、プラズマ支援の化学的な蒸発分離方法(略語PECVD方法として知られる)などプラズマ支援の反応性コーティング方法が、特にHFプラズマ(1から100MHz)により支援されて使用されるが、このような半導体を製造する場合に、処理される工作物表面が障害粒子、特に塵あるいは粉末粒子によって汚染されることを絶対的に防止しなければならない。この種の汚染堆積を防止することは上述の加工方法における重要な問題である。
この問題は現在まで、あらゆる手段を用いてこの種の加工プロセスの間、塵ないし粉末の形成を減少させるように取り組まれて来た。上述の塵あるいは粉末の形成を阻止することはできないので、一度発生した粉末ないし一度発生した塵をできる限り効果的に、処理上有効なプラズマ放電空間から除去する、すなわち上述の処理上有効なプラズマ放電空間内で塵ないし粉末のない状態を得ようとする試みがなされて来た。これに関しては下記の特許文献1および2を参照することができる。さらに、特許文献3〜8に記載された従来技術があることも示しておく。
本発明の目的は、コーティング率とその場合に特にプラズマ支援される真空コーティングプロセスのコーティング率を増加させ、その際に加工される表面の表面品質を減少させることがなく、むしろ向上させることである。その場合に代表的な圧力領域は10-2mbarと10mbarの間、好ましくは10-1mbarと1mbarの間である。求めようとする効果は、例えば反応性のスパッター エッチング加工プロセスの場合でも見極め可能に生じるが、提示された課題は特にコーティングプロセスにおいて解決され、その場合に特に反応性のプラズマ支援された、特に高周波プラズマ支援の反応性コーティング方法、いわゆる高周波PECVD方法において解決される。
本発明の基礎は、プラズマ放電内の塵ないし粉末粒子によって電気的な供給エネルギの結合が著しく高まること、およびそれによって加工率、特にコーティング率が高められ、同時に層応力および層の細かさなど層品質が改良されるという認識である。もちろんこのことは、塵あるいは粉末粒子が加工される表面上に堆積することが絶対にない間だけである。
提示された課題は、請求項1に記載されたディスプレイスクリーンを製造するための方法と、請求項2に記載された真空プラズマ処理用の装置によって解決される。本発明による方法および装置は、特にHF−PECVD方法に向けられているが、基本的にDCあるいはACプラズマ方法あるいはAC+DC混合形式においても使用することができる。
塵ないし粉末をできる限り完全に加工上有効なプラズマ放電領域から除去するという、従来から知られているエッチングとは異なり、本発明によれば冒頭で述べたコーティング率とコーティング品質に関する利点を維持するために、プラズマ放電内に意図して塵を捕捉したままにしておく。しかし、プラズマ放電内に存在する塵ないし粉末の密度が、加工される表面に粒子の堆積が開始される値以下に抑えられるように配慮される。
単位体積当りの塵の粒子量および/または塵の粒子の大きさとそれに伴って塵の密度とその分布は、本発明によって制御して調節される。これは、好ましくは前もっての調査に基づいてそれぞれの処理プロセスに関して最適であることが発見された基準としての比に基づいて行われる。本発明の視点のもとで、プラズマ放電空間内の塵密度を支配するという課題が解決される。
プラズマ放電空間内に力の場を形成し、それを所望に制御することによって、望む範囲で塵ないし粉末をプラズマ放電空間の処理上有効な領域から、まず処理上有効でない空間部分へ除去して、塵ないし粉末を必要に応じて前述の空間部分からさらに除去することができる。
好ましくは、粒子堆積なしで塵の密度をほぼ一定に維持することによる加工率および、上述のように特にコーティング率の増加は塵の密度を支配することによって、すなわち粒子の堆積の危険を生じさせる余剰粉末あるいは余剰な塵を上述の力の場を形成し、それに対応して駆動することによって処理上有効なプラズマ放電領域から除去することによって行われる。上述の力の場は好ましくは圧力勾配を形成することによって実現され、その場合に力の場は静電的および/または熱的に、すなわち伝熱装置を利用することによっても形成することができる。
上述の塵ないし粉末密度を上述の意味で支配することができ、それによって冒頭で述べた課題が解決されるプラズマチャンバ、すなわち、処理ステーションは、請求項1および2の文言に示す特徴を有する。
本発明において提案されている方法および装置は、特に、プロセスに含まれる粉末形成が比較的際立っているプラズマ支援の反応性の処理プロセスに適している。これらのプロセスのうちで本発明による方法は特にPECVDコーティング方法に適している。特に上述の方法は、高周波プラズマが連続的あるいは少なくともときどき脈動して使用される高周波プラズマ支援の加工方法に適している。
本発明において提案されている方法および装置は、特に、プロセスに含まれる粉末形成が比較的際立っているプラズマ支援の反応性の処理プロセスに適している。これらのプロセスのうちで本発明による方法は特にPECVDコーティング方法に適している。特に上述の方法は、高周波プラズマが連続的あるいは少なくともときどき脈動して使用される高周波プラズマ支援の加工方法に適している。
上述の方法はさらに、ほぼ平坦で大面積の工作物を均一に処理するのに適しており、従ってその広がりのために、塵をできる限り完全に処理上有効な放電空間から除去しようとする従来の方法では塵の問題の支配がきわめて限定的にしか実現できなかったような工作物を処理するのに適している。
以下、本発明を図面を用いて説明する。
本明細書において「プラズマチャンバ」という表現は排気された空間領域を意味し、その中で自動的なプラズマ放電が維持され、それがDC放電、AC放電、ACとDCの混合プラズマ放電であろうと、また高周波放電であろうと、連続的に維持され、あるいは少なくともときどき脈動される。これについては前述の特許文献7並びに8を参照することができ、これらは本明細書に統合された構成部分であることを明示する。その場合にプラズマチャンバを好ましくは少なくとも部分的に隔壁で仕切ることができる。典型的にはプラズマチャンバ内には10-2mbarから10mbar、好ましくは10-1mbarから1mbarの圧力が維持される。
本明細書において「プラズマチャンバ」という表現は排気された空間領域を意味し、その中で自動的なプラズマ放電が維持され、それがDC放電、AC放電、ACとDCの混合プラズマ放電であろうと、また高周波放電であろうと、連続的に維持され、あるいは少なくともときどき脈動される。これについては前述の特許文献7並びに8を参照することができ、これらは本明細書に統合された構成部分であることを明示する。その場合にプラズマチャンバを好ましくは少なくとも部分的に隔壁で仕切ることができる。典型的にはプラズマチャンバ内には10-2mbarから10mbar、好ましくは10-1mbarから1mbarの圧力が維持される。
図1には例としてかつ好ましい実施例としてプラズマチャンバ1の縦断面が概略図示されている。チャンバの上方の領域には平坦に延びる電極3が設けられており、電極にはDC、ACあるいはACとDCの混合が給電され、その場合にACの中には特にまたHFが含まれ、かつAC+DC混合供給の中には特にまた脈動するDCないし脈動するHF給電も含まれるものとする。HFの中には1から100MHzの周波数領域が含まれるものとする。図示の実施例においては平坦な電極3は平坦に分配された流出開口部5を有し、この流出開口部を通して少なくとも反応ガス成分を有するガスGがプラズマ放電空間PLへ供給される。
プラズマチャンバ1の床7内には好ましい実施例においては、基板を載置するための駆動装置11を有する昇降機構9が設けられている。昇降機構には例えば駆動装置11と共に上下動する3つのタペット13が設けられ、これらは概略図示するように、駆動装置11と同期して駆動され、かつ、例えば、ばねベローズ15によって周囲に対して密封されている。また、タペット13を、沈み込んで自動シールするように形成することもできる。
例示する好ましい種類のプラズマチャンバは以下に説明する装置の基本要素であって、装置は必ずしもそうである必要はないが、しかし好ましくはプラズマ支援で工作物を化学的に蒸発分離コーティングする、PECVDの略称で知られた装置であり、その場合に特に高周波プラズマによって支援される。
例示する好ましい種類のプラズマチャンバは以下に説明する装置の基本要素であって、装置は必ずしもそうである必要はないが、しかし好ましくはプラズマ支援で工作物を化学的に蒸発分離コーティングする、PECVDの略称で知られた装置であり、その場合に特に高周波プラズマによって支援される。
図2には装置の最小構造が概略図示されている。装置は、すでに述べたように最小構造において、互いに重なり合ったプラズマチャンバ1のスタック(積み重ね)20を有する。プラズマチャンバは図2(a)から(d)に概略図示されており、かつ図1を用いて説明したように構成されている。
プラズマチャンバ1の側方にはそれぞれ操作開口部17が設けられており、従って操作開口部は操作開口部の積み重ねを形成し、かつすべて共通の真空室23に連通している。プラズマチャンバ1の外側にある真空室23は移送空間23T を形成する。その中に移送装置25が設けられており、移送装置は好ましくはフォーク状支持体として形成された多数の水平の支持体27を有する。設けられている水平な支持体27の数は、スタック20に設けられているプラズマチャンバ1の数に等しい。支持体27は、矢印Hで示すように、好ましくは同期して、水平に移動し、図示のように例えば、好ましくは水平方向Hに駆動されて双方向に移動する共通の支持体ツリー29に取り付けられることによって、水平に移動する。この水平の前進ないし後退によって好ましくは平坦な工作物31がプラズマチャンバ1の操作開口部17を通して、図2(b)から(d)に示すように、プラズマチャンバ内へ挿入され、ないしはプラズマチャンバから取り出される。
スタック20のすべてのプラズマチャンバ1内へ工作物31を搬入するために、図2(a)においては移送装置25は右へ移動され、図2(b)に示す位置へ達する。その後図1を用いて示したタペット13を有する昇降機構9が持ち上げられて、かつすべてのプラズマチャンバ11内で同時に工作物31を支持体27から下ろす。これが図2(b)において矢印Vで概略図示されている。
スタック20のすべてのプラズマチャンバ1内へ工作物31を搬入するために、図2(a)においては移送装置25は右へ移動され、図2(b)に示す位置へ達する。その後図1を用いて示したタペット13を有する昇降機構9が持ち上げられて、かつすべてのプラズマチャンバ11内で同時に工作物31を支持体27から下ろす。これが図2(b)において矢印Vで概略図示されている。
図1に示すタペット13を有する昇降機構9によって工作物31を下ろして、図2(c)に示す相対位置へ達した後に、支持体27を有する移送装置25が図2(c)に示す方向へ水平に復帰され、その後図2(d)に示すように工作物31は図1に示す昇降装置9が下降することによってその処理位置へ下降する。
上述のように工作物31を支持体27に関して垂直に相対移動させることは、すべての支持体27がチャンバ1内で同期して下降され、ないしは工作物を回収するために持ち上げられ、かつ工作物がプラズマ室内の固定の載置台上に加工のために載置されることによっても実現できることは言うまでもない。
上述のように工作物31を支持体27に関して垂直に相対移動させることは、すべての支持体27がチャンバ1内で同期して下降され、ないしは工作物を回収するために持ち上げられ、かつ工作物がプラズマ室内の固定の載置台上に加工のために載置されることによっても実現できることは言うまでもない。
処理装置の最小構成においては、すでに説明したように、処理装置はプラズマチャンバのスタック20を有する真空空間領域を有し、さらに、内部に移送装置25が設けられ、かつ内部で移動する移送空間部分23T を有し、さらに図2(a)に示すようにロックチャンバ30を有し、ロックチャンバは概略図示するように移送空間部分23T に対して第1のロック弁32を有し、かつ装置周囲に対して他のロック弁34を有する。ロックチャンバ内にはこれから処理する工作物および/またはすでに処理された工作物を一時貯蔵するマガジン36が設けられている。
プラズマチャンバ1のスタック20と共にロックチャンバ30内のマガジン36を操作するために、移送装置25は水平方向Hないし−Hに移動できるだけでなく、さらにωで示すように垂直軸を中心に駆動されて回転することができ、それによって支持体27をロックチャンバ30に関する操作位置へ回転移動させることができる。
すでに説明したように、スタック20のプラズマチャンバ1は好ましくはPECVD処理チャンバである。それぞれ実施しようとする処理プロセスに従って、プラズマチャンバ1の操作開口部17は工作物処理の間移送空間23T に対して閉鎖されず、あるいは単にプラズマチャンバ1の内部と移送空間23T 間の圧力段差だけが調節され、あるいはプラズマチャンバ1は工作物処理の間真空密に閉鎖される。最後のものは特にPECVD処理に当てはまる。
図3には、工作物処理の間上述の操作開口部17を真空密に、あるいは単に移送空間23T に対して圧力段差を設けて閉鎖するための実施例が概略図示されている。そのために±V方向に駆動されて垂直移動可能なブラインドスライダ38が設けられており、このブラインドスライダにはスタック20に設けられた操作開口部17に対応して格子状に形成されたハッチ開口部39が設けられており、ハッチ開口部は図3(b)に示すようにブラインドスライダが開放された状態においてはプラズマチャンバ1の操作開口部17と整合する。支持体27はこの位置においてスタック20のチャンバ1を操作することができる。
ブラインドスライダ38にはさらに水平方向に駆動されて移動する閉鎖プレート41と蛇腹でカプセル化されたタペットと駆動装置43が設けられている。
チャンバ1内の操作空間を閉鎖するために、ブラインドスライダ38は図3(a)に示す位置へ垂直に移動され、その後閉鎖プレート41が右へ移動されて、プラズマチャンバ1の操作開口部17が真空密に閉鎖され、あるいは移動空間23T と前述のチャンバ1内の操作空間間に圧力段差が形成される。
チャンバ1内の操作空間を閉鎖するために、ブラインドスライダ38は図3(a)に示す位置へ垂直に移動され、その後閉鎖プレート41が右へ移動されて、プラズマチャンバ1の操作開口部17が真空密に閉鎖され、あるいは移動空間23T と前述のチャンバ1内の操作空間間に圧力段差が形成される。
図4には、図2を用いて示した最小構成に基づいて、2つのプラズマチャンバスタック20aと20b、移送空間領域23T およびロックチャンバ30を有する他の構成の装置が概略図示されている。図4(a)から(e)に示すシーケンスを用いてこの種の装置の好ましい駆動を特にPECVD処理プロセスに関して説明する。
図4(a)に示す駆動相において2つのプラズマチャンバスタック20aと20b内の工作物がPECVD処理され、そのために、図3を用いて説明したように、プラズマチャンバ1の処理空間と移送空間23T 間に少なくとも圧力段差が形成されている。図2(a)に示すロック弁32は開放しており、ロック弁34は周囲に対して閉鎖されている。
図4(a)に示す駆動相において2つのプラズマチャンバスタック20aと20b内の工作物がPECVD処理され、そのために、図3を用いて説明したように、プラズマチャンバ1の処理空間と移送空間23T 間に少なくとも圧力段差が形成されている。図2(a)に示すロック弁32は開放しており、ロック弁34は周囲に対して閉鎖されている。
図3(b)に示すように、処理プロセスの終了後に図2(a)に示す移送装置25によってスタック20a、20bから工作物が好ましくは順次に搬出され、処理された工作物がロックチャンバ30内のマガジン36内へ載置される。後述するように、マガジン36は好ましくは装置において全体として処理できる工作物と同じマガジン区画を有し、すなわち図4に示すように2つのプラズマチャンバスタックが設けられている場合には、2つのスタックに全体として設けられているプラズマチャンバ1と同じマガジン区画が設けられる。
図4(c)に示すように、ロック弁32は移送空間23T に対して閉鎖され、ロック弁34は開放されており、マガジン36内の処理された工作物は処理すべき工作物と入れ替えられる。このマガジンの積み替え期間の間スタックのプラズマチャンバ1は、洗浄エッチングされ、好ましくはHFプラズマエッチングされる。その際に、洗浄ガスおよび洗浄ガスとエッチングされた層との反応生成物が洗浄エッチングされたプラズマチャンバ1から移送空間23T 内へ進入するのを防止するために、好ましくは、図3を用いて説明したような装置を用いてプラズマチャンバ1と移送空間23T 間に圧力段差が形成され、移送空間23T 内へ例えば窒素などの中性ガスが、移送空間23T からプラズマチャンバ1へ圧力勾配が発生するように送入される。それによって、洗浄ガスが移送空間23T 内へ進入するのが防止される。チャンバ1自体は洗浄エッチングの間にポンピング排気される。
この期間の間にマガジン36に加工すべき工作物が装填される。これが、図4(d)に示すように、次のステップにおいて洗浄されたスタックのプラズマチャンバへ分配される。
この期間の間にマガジン36に加工すべき工作物が装填される。これが、図4(d)に示すように、次のステップにおいて洗浄されたスタックのプラズマチャンバへ分配される。
洗浄エッチングステップによってプラズマチャンバ1の壁と電極面はかなり激しく加熱される。この熱は好ましくはステップ4(e)に示すように、プラズマチャンバ1内に新しく装填された工作物を予熱するために用いられる。位相4(d)に示すように工作物の分配は真空内で行われるので、プラズマチャンバ1の上述の洗浄エッチングの際に加熱された部分の熱の逃げは比較的わずかである。新しく加工すべき工作物がプラズマチャンバ1内に装填され、図3に関する説明に従って少なくとも圧力段差を介して移送空間23Tから分離された後に、熱伝導ガス、例えば水素またはヘリウムがプラズマチャンバ1内へ、前述の暖められたチャンバ部分と今度チャンバ内へ搬入された工作物間にかなりの熱伝導が生じるような圧力の下で送入される。
工作物をこのように予熱した後に(工作物が加工開始前に標準大気にさらされていた場合には予熱によって脱ガスされる)、工作物は位相4(a)に示すようコーティング、特にPECVDコーティングされる。
図示の装置において好ましい実施例では、すべてのプラズマチャンバ1は別々に、特に洗浄エッチングのため、および工作物の加熱脱ガスのためにポンピングされる。
図示の装置において好ましい実施例では、すべてのプラズマチャンバ1は別々に、特に洗浄エッチングのため、および工作物の加熱脱ガスのためにポンピングされる。
図5に概略図示するように、反応性の処理プロセスのために、特に好ましいPECVD方法のために図5(a)に示すように、少なくとも1つのスタックのすべてのプラズマチャンバ1には中央の反応ガス供給装置から供給され、その際にスタックのすべてのチャンバ1が均一に反応ガスを供給されることが保証される。このことは、例えば比較的大体積の圧力分配室50からすべてのチャンバ1へ同一のガス流距離51が設けられることによって行われる。
図5(b)に示すように、同期して駆動されるので、少なくとも1つのスタックのすべてのチャンバ1も中央のポンプ装置によって同期してポンピングされる。
少なくとも1つのスタックのすべてのプラズマチャンバにおいて維持されるプラズマ放電の電気的な供給も経済的な理由から中央のジェネレータユニットから行われ、図5(c)に示すように高周波プラズマが維持される好ましい場合には中央の適応ネットワークと場合によってはチャンバ固有の等化ネットワーク(チャンバ固有の誘導性によって示される)を有する中央のHFジェネレータから行われ、それによってチャンバに関する異なる高周波出力比を等化することができる。
少なくとも1つのスタックのすべてのプラズマチャンバにおいて維持されるプラズマ放電の電気的な供給も経済的な理由から中央のジェネレータユニットから行われ、図5(c)に示すように高周波プラズマが維持される好ましい場合には中央の適応ネットワークと場合によってはチャンバ固有の等化ネットワーク(チャンバ固有の誘導性によって示される)を有する中央のHFジェネレータから行われ、それによってチャンバに関する異なる高周波出力比を等化することができる。
上述の装置においてプラズマチャンバ1内のプロセスが監視され、開ループ制御あるいは閉ループ制御される場合には、これも好ましくは中央のユニットを介して行われ、誘導ユニットは必要に応じて個々のチャンバに、それがマルチプレクスシステムであろうと、固定の順序であろうと、あるいは変化する順序であろうと、それぞれスタックチャンバにおける要請に応じて接続される。
このことが図5(d)に、中央のプラズマ放出モニタを用いてプラズマ放電を監視する例を用いて図示されている。
このことが図5(d)に、中央のプラズマ放出モニタを用いてプラズマ放電を監視する例を用いて図示されている。
図6には図2(a)に示すマガジンチャンバ30内のマガジン36の好ましい実施例が概略的に図示されている。マガジン36は多数のマガジン載置部37を有し、マガジン載置部は同期して処理される工作物の数に少なくとも相当し、好ましくは工作物の通過を容易にするために2倍に相当する高さを有する。図2(a)を用いて示したように、工作物用の載置面と支持体27間で次のことによって相対移動が行われる。すなわち、プラズマチャンバ1に図1を用いて説明したような昇降装置9が設けられて、それによって支持体27が垂直に搬入ないし搬出動作を行わず、それによって図6に示すようにマガジン36は好ましくは全体として双方向矢印±Vで示すように垂直に移動され、それによってそれぞれ支持体27から工作物を収容し、ないしは工作物を支持体27へ引き渡すことができる。
ここまでは新しい種類の装置構造とその駆動について、特に高周波PECVDコーティングに関して説明して来た。
次に、特に上述の装置に関連して、装置固有の手段と共に使用することができ、それによってプラズマコーティングプロセスのコーティング率とその品質が著しく改良される方法について説明する。これから説明する方法ないしそれに対応する装置の特徴は原則的にプラズマコーティングプロセスに適しており、それは冒頭で定義した種類のDC、ACあるいはACとDCの混合プラズマプロセスであってもよい。しかし次の実施例は、特にHF−PECVD方法のような反応性の高周波プラズマ支援のコーティングプロセスに適している。しかしまた例えばHFイオンプレーティングプロセスについても当てはまる。すでに説明したように、HFというのは好ましくは1から100MHzまでの周波数領域と考えられる。
もちろん、以下においてこの種のHFプラズマ支援の反応性プロセスを詳しく説明する場合には、上述の方法はこの種のプロセスに限定して考えられるものではない。
次に、特に上述の装置に関連して、装置固有の手段と共に使用することができ、それによってプラズマコーティングプロセスのコーティング率とその品質が著しく改良される方法について説明する。これから説明する方法ないしそれに対応する装置の特徴は原則的にプラズマコーティングプロセスに適しており、それは冒頭で定義した種類のDC、ACあるいはACとDCの混合プラズマプロセスであってもよい。しかし次の実施例は、特にHF−PECVD方法のような反応性の高周波プラズマ支援のコーティングプロセスに適している。しかしまた例えばHFイオンプレーティングプロセスについても当てはまる。すでに説明したように、HFというのは好ましくは1から100MHzまでの周波数領域と考えられる。
もちろん、以下においてこの種のHFプラズマ支援の反応性プロセスを詳しく説明する場合には、上述の方法はこの種のプロセスに限定して考えられるものではない。
図7の上方部分(A)には、例えば図1、2で説明した種類のプラズマチャンバが概略図示されている。平坦なHF電極60は同時に少なくとも反応ガスG用の平坦に分配されたガスノズル装置を形成し、反応ガスはプラズマ放電空間PLへノズルを通じて供給される。HF電極60に対向して工作物支持体電極62が公知のように配置されている。DC電位関係については、チャンバハウジング63および/または工作物支持体電極62を通常のように基準電位、例えばアース電位に接続できることはもちろんである。当業者はこれについてのあらゆる変形例を知っている。
工作物支持体電極62において工作物を反応性プラズマコーティングする場合に、プラズマ放電内に塵が形成され、その密度がρsで表される。プラズマ放電内の塵は非常に多数の源からもたらされ、主としてコーティングプロセス自体からもたらさるが、チャンバ内への工作物の搬入およびそれからの搬出の間の機械的な摩耗などによってももたらされる。しかし原則的に塵密度ρsは反応性コーティングプロセスの間に増加する。このことが図7の下方部分(B)に例えばほぼ連続的に上昇する塵密度(a)で図示されている。
適当な対抗処置をとらないと塵は時間が経つにつれてプラズマから脱落して反応空間に落下する。それによって層が塵の粒子で汚染される(層欠陥)。
さらに反応容器の特性が変化し、それによってプロセスのドリフトがもたらされる。従って塵を伴うプロセスを有する現在の生産装置は要請される層の欠陥のなさに達せず、要請される洗浄時間と生産時間との小さい比(生産有効性、equipment availability)にも達しない。
さらに反応容器の特性が変化し、それによってプロセスのドリフトがもたらされる。従って塵を伴うプロセスを有する現在の生産装置は要請される層の欠陥のなさに達せず、要請される洗浄時間と生産時間との小さい比(生産有効性、equipment availability)にも達しない。
現在まで、塵の発生は完全には阻止できないので、それを出来る限り少なくし、発生した塵をコーティング空間からできるだけ完全に除去する努力がなされて来ている。それによってもちろん層品質の損失は覚悟しなければならない。
プラズマ放電内と特に高周波放電内に存在する塵が電気エネルギ及び特に高周波エネルギの結合を著しく増大させること、および原則的に「塵の多い」プラズマ、特にHFプラズマ内でコーティング率、特に反応性コーティングプロセスのコーティング率が著しく増大することが知られている。それによって上述の方法において率に関する損失も覚悟される。これはもちろん、プラズマ放電内の塵密度が限界値を越えない間だけである。塵密度が上述の限界値を越えると、塵粒子がより大きな塵小片となること、ないしはそれが生成しつつある層上に堆積することを考慮しなければならない。このことは大体において阻止しなければならず、特に半導体製造および平坦でアクティブなディスプレイスクリーンを形成する場合には阻止しなければならない。
プラズマ放電内と特に高周波放電内に存在する塵が電気エネルギ及び特に高周波エネルギの結合を著しく増大させること、および原則的に「塵の多い」プラズマ、特にHFプラズマ内でコーティング率、特に反応性コーティングプロセスのコーティング率が著しく増大することが知られている。それによって上述の方法において率に関する損失も覚悟される。これはもちろん、プラズマ放電内の塵密度が限界値を越えない間だけである。塵密度が上述の限界値を越えると、塵粒子がより大きな塵小片となること、ないしはそれが生成しつつある層上に堆積することを考慮しなければならない。このことは大体において阻止しなければならず、特に半導体製造および平坦でアクティブなディスプレイスクリーンを形成する場合には阻止しなければならない。
従って新しい種類の認識は、プラズマ放電空間内、特に高周波プラズマ放電空間内の塵を、特に反応性のプラズマ支援コーティングプロセスのために排除せず、その密度を所定のレベルρmaxに、ないしはそれ以下に抑えることに基づいている。従って単位体積当りの塵粒子の数および/またはその大きさとそれに伴って塵密度とその分布が制御されて調節される。これは予め行った調査によってそれぞれの処理プロセスについて最適であることが発見された比に基づいて行われる。これが図7の下方(B)にカーブ(b)で概略的に図示されている。
これは図7(A)に示すように原則的に、プラズマ放電によって粒子の横の流れWρが制御して発生され、横力の場を形成することによって、それに伴って余剰粒子がプラズマ放電のコーティング上有効な領域から移送されて、さらに必要に応じて除去されることによって実現される。
これは図7(A)に示すように原則的に、プラズマ放電によって粒子の横の流れWρが制御して発生され、横力の場を形成することによって、それに伴って余剰粒子がプラズマ放電のコーティング上有効な領域から移送されて、さらに必要に応じて除去されることによって実現される。
図7(A)に示すように、この種の力の場を発生させる好ましい実施例は、横のガスの流れによって横の粒子の流れを発生させることにある。これは横方向の圧力勾配を実現させることによって得られる。概略図示するように、そのために側方においてガスが送入され、かつガスが送入と対向して吸引される。横方向の圧力勾配を形成することに加えて、あるいはその代わりに静電的な勾配および/または熱的な勾配を使用して、コーティング上有効なプラズマ放電空間内の塵密度を所定の値を越えて上昇しないようにすることができる。
図7の下方(B)には、送入されたガス量mG'がどのように駆動されるかが特性(c)として実質的に示されている。
図7の下方(B)には、送入されたガス量mG'がどのように駆動されるかが特性(c)として実質的に示されている。
放電空間内の塵密度を上述のように制御するために、前実験によっていつ並びにどの位の大きさの力の場を発生させるべきかを定めることは元より可能ではあるが、好ましくは実施例においては、例えば図7(A)に概略図示する検出器65を用いて光の反射あるいは吸収を測定することによってプラズマ内の現在の塵密度を求めて、求めた値を目標値Fρと比較して、力の場(図7によれば圧力勾配)を閉ループ制御で調節して、塵密度を所望のレベルに調節することができる。塵密度はプラズマインピーダンスに著しい影響を与えるので、この種の閉ループ制御をこのインピーダンスの測定を介して行うこともできる。
横方向のガスの流れを利用する場合に、好ましくは単位時間当り噴射されるガス量を、図7(A)の操作ユニット67で示すように、操作することによって調節が行われる。
横方向のガスの流れを利用する場合に、好ましくは単位時間当り噴射されるガス量を、図7(A)の操作ユニット67で示すように、操作することによって調節が行われる。
もちろん、余剰塵粒子をコーティング領域から移動させるために用いられる力の場を間欠的に印加することも可能である。すなわち図7の場合には横方向の流れWをもたらす、以下で洗浄ガスと称されるガスGsを脈動するように送入することができる。
すでに説明したように、この方法は特に反応性HFプラズマコーティングプロセスの場合に優れていることが明らかにされている。それはこの種のプロセスにおいて、また特に反応プロセスにおいてプラズマ放電内でプロセス内在の粉末ないし塵の形成が行われるからである。図7(A)に示すように洗浄ガスGsを用いて横の流れWが形成される場合には、好ましくは洗浄ガスとして中性のプラズマ作業ガス、例えばアルゴンまたはHeなど、あるいは層構造に必要でないガス、例えばH2 が使用される。層構造に著しく関与するガスを洗浄ガスとして使用することは、層分布に望ましくない影響を与える可能性がある。
重要なことは、塵ないし粉末はプラズマ放電が燃焼している間プラズマ放電内に捕捉されて留まることを認識することである。従ってプラズマ処理プロセスあるいは一般的にプラズマ放電が停止された場合に、放電内に残留している塵が処理チャンバ内に堆積するのを阻止しようとする場合には、好ましくは次のように行われる。
重要なことは、塵ないし粉末はプラズマ放電が燃焼している間プラズマ放電内に捕捉されて留まることを認識することである。従ってプラズマ処理プロセスあるいは一般的にプラズマ放電が停止された場合に、放電内に残留している塵が処理チャンバ内に堆積するのを阻止しようとする場合には、好ましくは次のように行われる。
−反応ガスの代わりに中性のガスが送入され、それによって、層形成プロセスを所定の時間に停止しようとする場合には、それに以降の層形成が阻止される。中性のプラズマをさらに駆動することによって塵はプラズマ放電内になおも捕捉されて、「洗浄される」。その場合に中性のプラズマ内では層形成は劇的に減少する。
−維持される反応ガスプラズマ放電内あるいは上述の中性の放電内で横の力の場が増大され、「洗浄ガス流」が好ましい場合には洗浄ガス流は送入されるガス量の増大および/または吸引出力の増大によって増強される。
−プラズマ強度を連続的に減少させることができ、その場合に放電が中断することはない。それによって塵の落下として作用するプラズマ放電の効果がだんだんと減少され、それによって上述の力の場による塵粒子の去る方向への移動が容易になる。
同時に放電強度を減少させ、かつ横方向のポンプ出力および/または送入される洗浄ガス量を増大させることによって、図7(A)に示す電極62上方のコーティングゾーンからの塵粒子の最大の去る方向への流動が得られる。
原則的に本発明により使用される力の場はプラズマ放電を脈動するように駆動することによって支援することができる。それによってプラズマの塵落下作用が減少され、余剰の塵を所望に搬出することが容易になる。このことはコーティングプロセスが停止している場合だけでなく、コーティングプロセス自体の間にも当てはまる。
原則的に本発明により使用される力の場はプラズマ放電を脈動するように駆動することによって支援することができる。それによってプラズマの塵落下作用が減少され、余剰の塵を所望に搬出することが容易になる。このことはコーティングプロセスが停止している場合だけでなく、コーティングプロセス自体の間にも当てはまる。
重要なことは、プロセスが停止されている場合にその中で集められた塵が除去されるまで、プラズマ放電を維持することである。
この認識によって、さらに好ましい駆動方法が得られ、それによればプラズマチャンバ内のプラズマ放電は、例えば工作物が搬入され、ないしは処理された工作物が搬出される場合にも維持される。
この認識によって、さらに好ましい駆動方法が得られ、それによればプラズマチャンバ内のプラズマ放電は、例えば工作物が搬入され、ないしは処理された工作物が搬出される場合にも維持される。
反応性コーティングプロセスに関して有効でない、従ってこれに関して中性のガス内のプラズマ放電はそのままで、それが未コーティングの工作物であろうと、コーティング済みであろうとあるいはプラズマチャンバにおいてであろうと、例えば水素プラズマを維持することによって、エッチング洗浄を行うために使用することができる。その場合に、基板上に堆積した粒子がプラズマ放電によって捕捉されて「洗浄排除」できることが重要である。
従って例えば処理プロセスの最終相において、例えば放電とプラズマチャンバの新しい装填の間、H2 洗浄プラズマを維持することができる。エッチングの際にプラズマチャンバ内の塵はじゃまになるので、その場合には形成された横の力の場が最大に調節される。
従って例えば処理プロセスの最終相において、例えば放電とプラズマチャンバの新しい装填の間、H2 洗浄プラズマを維持することができる。エッチングの際にプラズマチャンバ内の塵はじゃまになるので、その場合には形成された横の力の場が最大に調節される。
反応性のコーティングプロセスの高周波プラズマ放電内で上述の方法を、反応容器内で塵の堆積なしで欠陥のないα−Si−層を形成するために使用することによって、コーティング率は係数2.5だけ増大され、同時に層応力は係数2.5だけ減少し、その場合にコーティング率の増大によって層純度は係数で約2だけ増大した。これは、同一のプラズマチャンバにおいて冒頭で説明した、塵密度を最小にする公知の技術を用いて、すなわち低い圧力と小さい出力におけるプロセス作業点を選択することによってもたらされたコーティングと比較したものである。すなわち上述の公知の技術(塵の形成を最小にする)を使用した場合には、コーティング率はα−Si−層で≦4オングストローム/sec、層応力は>5・109 dyn/cm2 であり、それに対して本発明によれば率は10オングストローム/secで層応力は<2・109 dyn/cm2 である。
すでに説明したように、横の力の場の好ましい実現形態は、図7(A)に示すように、プラズマ放電を通して横方向のガスの流れを実現することにある。
図8には、吸引側で上述の力の場ないしは上述の圧力勾配を形成するための多数の変形例(a)から(e)が図示されている。
図8には、吸引側で上述の力の場ないしは上述の圧力勾配を形成するための多数の変形例(a)から(e)が図示されている。
図8(a)によれば、処理空間ないしは放電空間からのガスの吸引は、電気的に定義された電位、例えばアース電位に接続されたプラズマチャンバ1の壁に形成された狭いスリット69を通して行われる。スリットの幅は、プラズマがスリットを通して流出しないような寸法にされ、好ましくは2から4mmである。好ましくは図7(A)を用いて説明した横の流れが同図に記載されたガスの横送入によってさらに著しく支援され、それは図8(b)から(e)の実施例においても効果的に行われる。
図8(b)によれば、吸引スリット71は電極60の端縁の領域に設けられている。これは他の好ましい原理に基づくものである。プラズマ放電にエネルギを供給する電気的な場が最大となるところで塵密度が最大になることが知られている。このことは端縁および尖端などの電位を供給される面の場合にそうであることが知られている。従って図8(b)に示すように電極60の端縁領域の、従って電場の強さが増大することによって増大した塵密度が存在する領域にあるスリットを用いて吸引を行うことが提案されている。
この方法が図8(c)に示すように、電極60と相手側電極62の端縁領域で両側に吸引スリット71aと71bが設けられることによって、さらに徹底して行われる。
図8(d)に示す実施例の場合には横方向のガス速度は、延長されたプラズマ放電領域に円錐状にだんだんと狭くなるスリット73が形成されることによって増大され、それによって横の流れの効果が増大する。
図8(d)に示す実施例の場合には横方向のガス速度は、延長されたプラズマ放電領域に円錐状にだんだんと狭くなるスリット73が形成されることによって増大され、それによって横の流れの効果が増大する。
図8(e)によれば、吸引スリット77が設けられているプラズマチャンバ1の壁領域75は電気的に浮動電位で駆動される。それによって、塵の粒子を放電から引き出す場合に塵粒子が克服すべきポテンシャルバリヤが減少される。というのは浮動的に駆動される壁部分の電位は電極60と62の電位間の中間電位に調節されるからである。
他の自明の方法は、吸引スリットにふるいを設けることであって、それによってプラズマがスリットから流出することなく、スリット開口部とそれに伴ってポンプ断面を増大させることができる。
さらに、図示のガス吸引の特徴を組み合わせることもが可能であることも自明である。
さらに、図示のガス吸引の特徴を組み合わせることもが可能であることも自明である。
図9には、例えば上述のプラズマ反応容器スタックを有する新しい種類の装置構造を振り返って、上述の認識を考慮してプラズマチャンバ1への工作物31の搬入とそれからの搬出をどのように好ましく行うかが図示されている。
図9(a)によれば、工作物31(図2a)はタペット13を有する昇降機構9上に載置される。
図9(a)によれば、工作物31(図2a)はタペット13を有する昇降機構9上に載置される。
図9(b)によれば、図3に示す移送空間23T に関して好ましくは閉鎖プレート41を用いて少なくとも圧力段差が形成された後に、続いて(圧力段差が形成されたらすぐに)、プラズマチャンバ1内で中性のプラズマが点火される。その際に非反応性のガス、たとえばアルゴンおよび/または図示のように水素が送入される。その際にすでに説明したように、工作物は特に脱ガスのために加熱もされる。吸引Aは開始されている。
例えば図9(c)に示すように工作物が機械的に下降される際に形成された塵はさらに維持されている中性のプラズマ内に捕捉されて、Aで示す中性ガスの横の流れによって吸引される。図9(d)に示すように工作物が下降されている場合には、反応ガスの送入は好ましくはガスシャワーを形成するHF電極60によっても、図示のように側方の洗浄ガス送入によっても開始される。続くコーティングプロセスの間に、図7を用いて説明したように、プラズマ放電内の塵密度は消滅されるのではなく、所定の程度を越えないように制御される。
コーティングプロセスの終了後に図9(e)に示すように、反応ガスあるいは中性のガスの横の流れが増大され、あるいはすでに説明したように、中性のプラズマ放電(図示せず)へ移行する。重要なことは図9(f)に示すように、コーティングされた工作物を持ち上げる間も塵を捕捉したプラズマ放電が維持されることであり、それは中性のプラズマ放電としてであっても、あるいはコーティングプロセスを所定の時点で終了させない場合には、さらに反応プラズマ放電としてであってもよい。
図9(g)に示すように、その後工作物31はプラズマチャンバ1から除去され、その際にこの駆動相においては、場合によっては図9(a)および図9(b)に示す駆動相の場合と同様に、好ましくはプラズマ放電が点線で示すように維持され、これは反応性のプラズマ放電ではなく、中性のプラズマ放電であって、特に塵粒子をさらに捕捉するためと、チャンバを洗浄エッチングするために、特に水素のプラズマ放電が維持される。
その後、図9(a)と9(g)に記載されているように、その後水素が一方で送入されて、他方で吸引されるので、プラズマ内に捕捉された塵はこの相においてできる限り完全に除去される。
横の流れを形成する上述のガス吸引に加えて、例えば電極60において反応ガス送入開口部と同様に分配して、さらに吸引を行うことができる。分配されたガスの送入および/または吸引を所望に設計することによって、必要に応じて処理の均一性を最適にすることができる。
上述の装置と上述の方法は特に平坦でアクティブなディスプレイスクリーンを製造するのに適している。
横の流れを形成する上述のガス吸引に加えて、例えば電極60において反応ガス送入開口部と同様に分配して、さらに吸引を行うことができる。分配されたガスの送入および/または吸引を所望に設計することによって、必要に応じて処理の均一性を最適にすることができる。
上述の装置と上述の方法は特に平坦でアクティブなディスプレイスクリーンを製造するのに適している。
1…プラズマチャンバ
3…電極
5…流出開口部
9…昇降機構
11…駆動機構
13…タペット
20…スタック
23…真空室
23T …移送空間部分
25…移送装置
27…フォーク式支持体
30…ロックチャンバ
31…工作物
32,34…ロック弁
36…マガジン
37…マガジン載置部
41…閉鎖プレート
43…駆動装置
50…圧力分配室
60…HF電極
62…工作物支持体電極
65…検出器
67…操作ユニット
69,71,73,77…吸引スリット
PL…プラズマ放電空間
G…ガス
Wρ…粒子の横の流れ
3…電極
5…流出開口部
9…昇降機構
11…駆動機構
13…タペット
20…スタック
23…真空室
23T …移送空間部分
25…移送装置
27…フォーク式支持体
30…ロックチャンバ
31…工作物
32,34…ロック弁
36…マガジン
37…マガジン載置部
41…閉鎖プレート
43…駆動装置
50…圧力分配室
60…HF電極
62…工作物支持体電極
65…検出器
67…操作ユニット
69,71,73,77…吸引スリット
PL…プラズマ放電空間
G…ガス
Wρ…粒子の横の流れ
Claims (2)
- 相互に上下となるように間隔をとって水平に向きを定められた複数のスクリーン工作物からなるセットを少なくとも一つの搬入のためのロックチャンバの中へ同時に導入する段階と、
水平に向きを定められた複数の前記スクリーン工作物を上下の間隔を残しながら同時に前記少なくとも一つのロックチャンバから処理ステーションへ搬出する段階と、
上下の間隔を残しながら水平に向きを定められた複数の前記セットのスクリーン工作物を同時に前記処理ステーションにおいて処理する段階と、
前記複数のスクリーン工作物を、まだ上下の間隔を残し且つ水平に向きを定められたままで同時に前記処理ステーションから少なくとも一つの搬出のためのロックチャンバへ搬出する段階と、そして、
前記スクリーン工作物を前記搬出のためのロックチャンバから取り出す段階と
からなることを特徴とする、真空処理設備によって平坦でアクティブなディスプレイスクリーンを製造するための方法。 - 相互に上下となるように且つ垂直な一直線上に整列するように積み重ねられた少なくとも二つの基板担体と、更に、共通の一直線上において垂直に整列すると共に実質的に水平に並んで前記少なくとも二つの担体のそれぞれに整合して、それらを密閉可能に閉じ得る少なくとも二つの操作開口部とを有する少なくとも一つの処理ステーションと、
前記操作開口部を介して前記ステーションに連通すると共に一つの移送装置を備えている移送チャンバとからなり、
前記移送装置は前記移送チャンバ内の垂直な軸線の回りに回転駆動可能であると共に少なくとも二つの基板支持体を備えており、これらの基板支持体は垂直に整列していると共に水平に延びて前記少なくとも二つの担体のそれぞれに実質的に整合していて、前記軸線に関して半径方向に移動可能であることを特徴とする真空プラズマ処理用の装置。
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CH01344/93A CH687987A5 (de) | 1993-05-03 | 1993-05-03 | Verfahren zur Erhoehung der Beschichtungsrate in einem Plasmaentladungsraum und Plasmakammer. |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP09437594A Division JP3683599B2 (ja) | 1993-05-03 | 1994-05-06 | コーティング率を高める方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004282086A true JP2004282086A (ja) | 2004-10-07 |
Family
ID=4208289
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP09437594A Expired - Lifetime JP3683599B2 (ja) | 1993-05-03 | 1994-05-06 | コーティング率を高める方法 |
JP2004093357A Pending JP2004282086A (ja) | 1993-05-03 | 2004-03-26 | ディスプレイスクリーンを製造する方法と真空プラズマ処理用の装置 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP09437594A Expired - Lifetime JP3683599B2 (ja) | 1993-05-03 | 1994-05-06 | コーティング率を高める方法 |
Country Status (5)
Country | Link |
---|---|
US (2) | US5693238A (ja) |
JP (2) | JP3683599B2 (ja) |
CH (1) | CH687987A5 (ja) |
DE (2) | DE4412902B4 (ja) |
FR (1) | FR2705104B1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008520825A (ja) * | 2004-11-24 | 2008-06-19 | オー・ツェー・エリコン・バルザース・アクチェンゲゼルシャフト | 超大面積基板用真空処理チャンバ |
JP2016009724A (ja) * | 2014-06-23 | 2016-01-18 | 東京エレクトロン株式会社 | 成膜装置および成膜方法 |
Families Citing this family (44)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH687987A5 (de) * | 1993-05-03 | 1997-04-15 | Balzers Hochvakuum | Verfahren zur Erhoehung der Beschichtungsrate in einem Plasmaentladungsraum und Plasmakammer. |
JP3315238B2 (ja) * | 1994-02-10 | 2002-08-19 | 富士写真フイルム株式会社 | 感光材料用支持体の真空処理用シール方法及び装置 |
TW376547B (en) * | 1997-03-27 | 1999-12-11 | Matsushita Electric Ind Co Ltd | Method and apparatus for plasma processing |
DE19713637C2 (de) * | 1997-04-02 | 1999-02-18 | Max Planck Gesellschaft | Teilchenmanipulierung |
JP3343200B2 (ja) * | 1997-05-20 | 2002-11-11 | 東京エレクトロン株式会社 | プラズマ処理装置 |
CH692741A5 (de) * | 1997-07-08 | 2002-10-15 | Unaxis Trading Ltd C O Balzers | Verfahren zur Herstellung in Vakuum oberflächenbehandelter Werkstücke und Vakuumbehandlungsanlage zu dessen Durchführung |
US6391377B1 (en) * | 1997-07-08 | 2002-05-21 | Unaxis Balzers Aktiengesellschaft | Process for vacuum treating workpieces, and corresponding process equipment |
TW589391B (en) * | 1997-07-08 | 2004-06-01 | Unaxis Trading Ag | Process for vacuum treating workpieces, and corresponding process equipment |
JPH11264071A (ja) * | 1998-03-18 | 1999-09-28 | Matsushita Electron Corp | 薄膜の形成方法 |
DE19814871A1 (de) | 1998-04-02 | 1999-10-07 | Max Planck Gesellschaft | Verfahren und Vorrichtung zur gezielten Teilchenmanipulierung und -deposition |
US6127271A (en) * | 1998-04-28 | 2000-10-03 | Balzers Hochvakuum Ag | Process for dry etching and vacuum treatment reactor |
EP1089949B1 (en) * | 1998-06-26 | 2002-09-18 | Unaxis Trading AG | Heat conditioning process |
US6342132B1 (en) | 1999-10-29 | 2002-01-29 | International Business Machines Corporation | Method of controlling gas density in an ionized physical vapor deposition apparatus |
AU2001279189A1 (en) * | 2000-08-08 | 2002-02-18 | Tokyo Electron Limited | Plasma processing method and apparatus |
US6514870B2 (en) * | 2001-01-26 | 2003-02-04 | Applied Materials, Inc. | In situ wafer heat for reduced backside contamination |
AU2003277790A1 (en) * | 2002-11-15 | 2004-06-15 | Unaxis Balzers Ag | Apparatus for vacuum treating two dimensionally extended substrates and method for manufacturing such substrates |
US20060249370A1 (en) * | 2003-09-15 | 2006-11-09 | Makoto Nagashima | Back-biased face target sputtering based liquid crystal display device |
KR100549273B1 (ko) * | 2004-01-15 | 2006-02-03 | 주식회사 테라세미콘 | 반도체 제조장치의 기판홀더 |
FR2869451B1 (fr) * | 2004-04-21 | 2006-07-21 | Alcatel Sa | Enveloppe de transport a protection par effet thermophorese |
DE102004060377A1 (de) * | 2004-12-15 | 2006-06-29 | MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. | Verfahren und Vorrichtung zum Betrieb einer Plasmaeinrichtung |
DE102005055093A1 (de) * | 2005-11-18 | 2007-05-24 | Aixtron Ag | CVD-Vorrichtung mit elektrostatischem Substratschutz |
US20070205096A1 (en) * | 2006-03-06 | 2007-09-06 | Makoto Nagashima | Magnetron based wafer processing |
DE202006007937U1 (de) | 2006-05-18 | 2007-09-20 | Strämke, Siegfried, Dr.-Ing. | Plasmabehandlungsanlage |
US8454810B2 (en) | 2006-07-14 | 2013-06-04 | 4D-S Pty Ltd. | Dual hexagonal shaped plasma source |
US20090077804A1 (en) * | 2007-08-31 | 2009-03-26 | Applied Materials, Inc. | Production line module for forming multiple sized photovoltaic devices |
US20100047954A1 (en) * | 2007-08-31 | 2010-02-25 | Su Tzay-Fa Jeff | Photovoltaic production line |
JP2009130229A (ja) * | 2007-11-27 | 2009-06-11 | Semiconductor Energy Lab Co Ltd | 半導体装置の作製方法 |
US8030655B2 (en) * | 2007-12-03 | 2011-10-04 | Semiconductor Energy Laboratory Co., Ltd. | Thin film transistor, display device having thin film transistor |
US7910929B2 (en) * | 2007-12-18 | 2011-03-22 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device |
JP5527966B2 (ja) * | 2007-12-28 | 2014-06-25 | 株式会社半導体エネルギー研究所 | 薄膜トランジスタ |
US20090188603A1 (en) * | 2008-01-25 | 2009-07-30 | Applied Materials, Inc. | Method and apparatus for controlling laminator temperature on a solar cell |
US8338317B2 (en) | 2011-04-06 | 2012-12-25 | Infineon Technologies Ag | Method for processing a semiconductor wafer or die, and particle deposition device |
CN103060774A (zh) * | 2011-10-24 | 2013-04-24 | 北京北方微电子基地设备工艺研究中心有限责任公司 | 腔室装置及具有其的基片处理设备 |
NL2008208C2 (en) * | 2012-01-31 | 2013-08-01 | Univ Delft Tech | Spark ablation device. |
EP2654070A1 (fr) | 2012-04-16 | 2013-10-23 | INDEOtec SA | Réacteur plasma de type capacitif pour le dépôt de films minces |
DE102013225608A1 (de) | 2013-12-11 | 2015-06-11 | Apo Gmbh Massenkleinteilbeschichtung | Vorrichtung und Verfahren zur Oberflächenbehandlung von Kleinteilen mittels Plasma |
DE102014204159B3 (de) * | 2014-03-06 | 2015-06-18 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Hochfrequenzelektrodenvorrichtung |
US10113236B2 (en) * | 2014-05-14 | 2018-10-30 | Applied Materials, Inc. | Batch curing chamber with gas distribution and individual pumping |
DE102015119369A1 (de) | 2015-11-10 | 2017-05-11 | INP Leipniz-Institut für Plalsmaforschung und Technologie e.V. | Vorrichtung, System und Verfahren zur Behandlung eines Gegenstandes mit Plasma |
EP3421638A1 (de) * | 2017-06-28 | 2019-01-02 | Meyer Burger (Germany) GmbH | Vorrichtung zur hochtemperatur-cvd mit einer stapelanordnung aus gasverteilern und aufnahmeplatten |
DE102018132700A1 (de) | 2018-12-18 | 2020-06-18 | Krones Ag | Vorrichtung und Verfahren zum Beschichten und insbesondere Plasmabeschichten von Behältnissen |
GB2582948B (en) * | 2019-04-10 | 2021-12-08 | Thermo Fisher Scient Bremen Gmbh | Plasma source chamber for a spectrometer |
GB2592853B (en) * | 2019-09-12 | 2022-04-13 | Thermo Fisher Scient Ecublens Sarl | A spark stand and method of maintenance |
CN215925072U (zh) * | 2020-09-24 | 2022-03-01 | 株式会社国际电气 | 基板处理装置 |
Family Cites Families (42)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS565977A (en) * | 1979-06-29 | 1981-01-22 | Hitachi Ltd | Automatic evaporation apparatus |
JPS5763677A (en) * | 1980-10-03 | 1982-04-17 | Hitachi Ltd | Continuous vacuum treating device |
JPS5889944A (ja) * | 1981-11-26 | 1983-05-28 | Canon Inc | プラズマcvd装置 |
US4381965A (en) * | 1982-01-06 | 1983-05-03 | Drytek, Inc. | Multi-planar electrode plasma etching |
US4512283A (en) * | 1982-02-01 | 1985-04-23 | Texas Instruments Incorporated | Plasma reactor sidewall shield |
JPS59168641A (ja) * | 1983-03-15 | 1984-09-22 | Nec Corp | 反応性スパツタエツチング装置 |
JPS59181619A (ja) * | 1983-03-31 | 1984-10-16 | Toshiba Corp | 反応性イオンエツチング装置 |
JPS6015917A (ja) * | 1983-07-08 | 1985-01-26 | Hitachi Ltd | 分子線エピタキシ装置 |
US4579618A (en) * | 1984-01-06 | 1986-04-01 | Tegal Corporation | Plasma reactor apparatus |
US4668365A (en) * | 1984-10-25 | 1987-05-26 | Applied Materials, Inc. | Apparatus and method for magnetron-enhanced plasma-assisted chemical vapor deposition |
US4614639A (en) * | 1985-04-26 | 1986-09-30 | Tegal Corporation | Compound flow plasma reactor |
US4664938A (en) * | 1985-05-06 | 1987-05-12 | Phillips Petroleum Company | Method for deposition of silicon |
FR2589168B1 (fr) * | 1985-10-25 | 1992-07-17 | Solems Sa | Appareil et son procede d'utilisation pour la formation de films minces assistee par plasma |
US4668338A (en) * | 1985-12-30 | 1987-05-26 | Applied Materials, Inc. | Magnetron-enhanced plasma etching process |
JPS62192580A (ja) * | 1986-02-19 | 1987-08-24 | Seiko Epson Corp | スパツタ装置 |
JPS634064A (ja) * | 1986-06-24 | 1988-01-09 | Mitsubishi Electric Corp | 真空薄膜形成装置 |
JPS6332849A (ja) * | 1986-07-23 | 1988-02-12 | Nec Corp | 半導体製造装置 |
US5000113A (en) * | 1986-12-19 | 1991-03-19 | Applied Materials, Inc. | Thermal CVD/PECVD reactor and use for thermal chemical vapor deposition of silicon dioxide and in-situ multi-step planarized process |
JPH04504923A (ja) * | 1987-05-20 | 1992-08-27 | プレイナー システムス インコーポレーテッド | 多色tfelパネルの形成方法 |
JPS63303060A (ja) * | 1987-05-30 | 1988-12-09 | Tokuda Seisakusho Ltd | 真空処理装置 |
FR2621930B1 (fr) * | 1987-10-15 | 1990-02-02 | Solems Sa | Procede et appareil pour la production par plasma de couches minces a usage electronique et/ou optoelectronique |
JPH01125821A (ja) * | 1987-11-10 | 1989-05-18 | Matsushita Electric Ind Co Ltd | 気相成長装置 |
DD274830A1 (de) * | 1988-08-12 | 1990-01-03 | Elektromat Veb | Vorrichtung zur gasphasenbearbeitung von scheibenfoermigen werkstuecken |
JPH07105357B2 (ja) * | 1989-01-28 | 1995-11-13 | 国際電気株式会社 | 縦型cvd拡散装置に於けるウェーハ移載方法及び装置 |
AT397707B (de) * | 1989-09-25 | 1994-06-27 | Zumtobel Ag | Leuchte für eine leuchtstofflampe |
EP0419930B1 (en) * | 1989-09-26 | 1994-12-07 | Applied Materials, Inc. | Particulate contamination prevention scheme |
US5102496A (en) * | 1989-09-26 | 1992-04-07 | Applied Materials, Inc. | Particulate contamination prevention using low power plasma |
US5367139A (en) * | 1989-10-23 | 1994-11-22 | International Business Machines Corporation | Methods and apparatus for contamination control in plasma processing |
JPH03153027A (ja) * | 1989-11-10 | 1991-07-01 | Seiko Epson Corp | エッチング方法及びエッチング装置 |
US5000682A (en) * | 1990-01-22 | 1991-03-19 | Semitherm | Vertical thermal processor for semiconductor wafers |
US5298720A (en) * | 1990-04-25 | 1994-03-29 | International Business Machines Corporation | Method and apparatus for contamination control in processing apparatus containing voltage driven electrode |
US5269847A (en) * | 1990-08-23 | 1993-12-14 | Applied Materials, Inc. | Variable rate distribution gas flow reaction chamber |
DE4031770A1 (de) * | 1990-10-06 | 1992-04-09 | Leybold Ag | Vorrichtung zur vermeidung von staubbildung |
JPH08977B2 (ja) * | 1991-08-22 | 1996-01-10 | 日新電機株式会社 | プラズマcvd法及び装置 |
DE9113860U1 (de) * | 1991-11-07 | 1992-01-23 | Leybold AG, 6450 Hanau | Vorrichtung zum Beschichten von vorzugsweise flachen, etwa plattenförmigen Substraten |
US5302237A (en) * | 1992-02-13 | 1994-04-12 | The United States Of America As Represented By The Secretary Of Commerce | Localized plasma processing |
US5328555A (en) * | 1992-11-24 | 1994-07-12 | Applied Materials, Inc. | Reducing particulate contamination during semiconductor device processing |
US5286337A (en) * | 1993-01-25 | 1994-02-15 | North American Philips Corporation | Reactive ion etching or indium tin oxide |
US5350454A (en) * | 1993-02-26 | 1994-09-27 | General Atomics | Plasma processing apparatus for controlling plasma constituents using neutral and plasma sound waves |
CH687986A5 (de) * | 1993-05-03 | 1997-04-15 | Balzers Hochvakuum | Plasmabehandlungsanlage und Verfahren zu deren Betrieb. |
CH687987A5 (de) * | 1993-05-03 | 1997-04-15 | Balzers Hochvakuum | Verfahren zur Erhoehung der Beschichtungsrate in einem Plasmaentladungsraum und Plasmakammer. |
US5456796A (en) * | 1993-06-02 | 1995-10-10 | Applied Materials, Inc. | Control of particle generation within a reaction chamber |
-
1993
- 1993-05-03 CH CH01344/93A patent/CH687987A5/de not_active IP Right Cessation
-
1994
- 1994-04-14 DE DE4412902A patent/DE4412902B4/de not_active Expired - Lifetime
- 1994-04-14 DE DE4447977A patent/DE4447977B4/de not_active Expired - Lifetime
- 1994-05-02 FR FR9405316A patent/FR2705104B1/fr not_active Expired - Lifetime
- 1994-05-03 US US08/237,432 patent/US5693238A/en not_active Expired - Lifetime
- 1994-05-06 JP JP09437594A patent/JP3683599B2/ja not_active Expired - Lifetime
-
1999
- 1999-08-24 US US09/379,742 patent/US6533534B2/en not_active Expired - Fee Related
-
2004
- 2004-03-26 JP JP2004093357A patent/JP2004282086A/ja active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008520825A (ja) * | 2004-11-24 | 2008-06-19 | オー・ツェー・エリコン・バルザース・アクチェンゲゼルシャフト | 超大面積基板用真空処理チャンバ |
JP2016009724A (ja) * | 2014-06-23 | 2016-01-18 | 東京エレクトロン株式会社 | 成膜装置および成膜方法 |
Also Published As
Publication number | Publication date |
---|---|
JP3683599B2 (ja) | 2005-08-17 |
CH687987A5 (de) | 1997-04-15 |
FR2705104B1 (fr) | 1997-08-08 |
DE4447977B4 (de) | 2009-09-10 |
FR2705104A1 (fr) | 1994-11-18 |
DE4412902A1 (de) | 1994-11-10 |
US6533534B2 (en) | 2003-03-18 |
JPH06346245A (ja) | 1994-12-20 |
DE4412902B4 (de) | 2007-02-08 |
US5693238A (en) | 1997-12-02 |
US20010003272A1 (en) | 2001-06-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2004282086A (ja) | ディスプレイスクリーンを製造する方法と真空プラズマ処理用の装置 | |
JP4057568B2 (ja) | 真空設備によって平坦でアクティブなディスプレイスクリーンを製造するための方法 | |
KR102580991B1 (ko) | 갭 충진에서 증착 및 에칭을 위한 장치 및 방법 | |
KR100297284B1 (ko) | 처리장치및드라이크리닝방법 | |
US9299575B2 (en) | Gas-phase tungsten etch | |
EP1108263B1 (en) | Elevated stationary uniformity ring | |
KR102505902B1 (ko) | 개선된 금속 콘택 랜딩 구조 | |
US10550469B2 (en) | Plasma excitation for spatial atomic layer deposition (ALD) reactors | |
WO2005103323A1 (en) | Method and apparatus for forming a metal layer | |
KR19990007131A (ko) | 성막 장치의 세정 처리 방법 | |
TWI755852B (zh) | 排斥網及沉積方法 | |
TW201618210A (zh) | 半導體處理用大氣電漿設備 | |
US11948813B2 (en) | Showerhead device for semiconductor processing system | |
US20100247804A1 (en) | Biasable cooling pedestal | |
JP2021141308A (ja) | クリーニング方法およびプラズマ処理装置 | |
EP1078389A1 (en) | Reduction of metal oxide in dual frequency plasma etch chamber | |
US20070227450A1 (en) | Plasma Cvd Equipment | |
KR20090051984A (ko) | 기판 처리 장치 | |
US20020192984A1 (en) | Method for manufacturing semiconductor device, method for processing substrate, and substrate processing apparatus | |
JP2016162794A (ja) | 真空処理装置 | |
KR100851237B1 (ko) | 기판 처리 방법 | |
JP3681998B2 (ja) | 処理装置及びドライクリーニング方法 | |
JP2004225162A (ja) | 成膜方法 | |
JP7515556B2 (ja) | 基板処理装置とそれを含む基板接合システム及びそれを用いた基板処理方法 | |
KR20200041999A (ko) | 질화물 에칭을 위한 표면 보수 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040928 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20041222 |
|
A602 | Written permission of extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A602 Effective date: 20050111 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20050524 |