JP2004125651A - 光学式測距装置 - Google Patents
光学式測距装置 Download PDFInfo
- Publication number
- JP2004125651A JP2004125651A JP2002290963A JP2002290963A JP2004125651A JP 2004125651 A JP2004125651 A JP 2004125651A JP 2002290963 A JP2002290963 A JP 2002290963A JP 2002290963 A JP2002290963 A JP 2002290963A JP 2004125651 A JP2004125651 A JP 2004125651A
- Authority
- JP
- Japan
- Prior art keywords
- data
- light
- reflectance
- light receiving
- electric signal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 30
- 238000000926 separation method Methods 0.000 claims abstract description 14
- 238000004364 calculation method Methods 0.000 claims description 15
- 238000000034 method Methods 0.000 claims description 8
- 230000004907 flux Effects 0.000 claims description 2
- 238000002310 reflectometry Methods 0.000 abstract description 4
- 230000000694 effects Effects 0.000 abstract description 2
- 238000007596 consolidation process Methods 0.000 abstract 3
- 238000005259 measurement Methods 0.000 description 9
- 238000010586 diagram Methods 0.000 description 8
- 238000012937 correction Methods 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
Images
Landscapes
- Automatic Focus Adjustment (AREA)
- Measurement Of Optical Distance (AREA)
- Focusing (AREA)
Abstract
【課題】被写体輝度の影響を除去可能な光学式測距装置を提供する。
【解決手段】光学式測距装置は、光軸方向にある対象物に対して光束を投光する発光素子1を含む投光部と、対象物から戻って来る光束を受光して対応する電気信号を出力する受光素子を含む受光部と、電気信号に基づいて対象物までの距離を算出する演算部11とを備える。受光部は少なくとも二個の受光素子S1,S2を有し、合体モードと分離モードで切り換え可能である。合体モードの時二個の受光素子は個々の受光量の合計に応じた単一の電気信号を出力し、分離モードの時個々の受光量に応じた複数の電気信号を出力する。演算部11は、先ず合体モードで出力される電気信号に基づいて対象物の表面反射率を表わす反射率データを求め、次に分離モードで出力される電気信号に基づいて対象物までの距離を表わす距離データを求め、さらに反射率データに基づいて距離データを補正する。
【選択図】 図1
【解決手段】光学式測距装置は、光軸方向にある対象物に対して光束を投光する発光素子1を含む投光部と、対象物から戻って来る光束を受光して対応する電気信号を出力する受光素子を含む受光部と、電気信号に基づいて対象物までの距離を算出する演算部11とを備える。受光部は少なくとも二個の受光素子S1,S2を有し、合体モードと分離モードで切り換え可能である。合体モードの時二個の受光素子は個々の受光量の合計に応じた単一の電気信号を出力し、分離モードの時個々の受光量に応じた複数の電気信号を出力する。演算部11は、先ず合体モードで出力される電気信号に基づいて対象物の表面反射率を表わす反射率データを求め、次に分離モードで出力される電気信号に基づいて対象物までの距離を表わす距離データを求め、さらに反射率データに基づいて距離データを補正する。
【選択図】 図1
Description
【0001】
【発明の属する技術分野】
本発明はカメラの被写体の距離を光学的に測定する光学式測距装置に関する。より詳しくは、被写体の反射率に依存しない測距方式に関する。
【0002】
【従来の技術】
図5は、光学式測距装置を組み込んだカメラの一例を示す模式的な斜視図である。図示する様に、カメラ5はボディ6とレンズ鏡筒7とを備えている。ボディ6の前面側に投光部1と受光部2とからなる光学式測距装置が取り付けられている。この光学式測距装置は、カメラ5の被写体の光軸方向距離を測定するものであって、測定結果は自動焦点調節などに利用される。
【0003】
【特許文献1】
特許第3187621号
【0004】
図6は、光学式測距装置の一例を示す模式図である。この装置はいわゆるアクティブ三角測距方式に基づいている。図はその基本原理を示すものであり、1は例えば赤外光を発生する投光部、3は投光レンズ、T1,T2は被写体、4は受光レンズ、2は二分割された受光素子S1,S2を有する受光部を各々示す。投光部1の出力光は投光レンズ3で被写体T1又はT2に向けて照射され、被写体T1又はT2で反射された光は受光レンズ4を介して受光部2に入射する。この時、被写体T1,T2までの距離に対応して受光部2に対する入射角が変動するので、受光部2を構成する各々の受光素子S1,S2に対する入射光量の成分比が変動する。そこで、各々の受光素子S1,S2に対する入射光量を比較演算することにより、被写体T1又はT2までの距離を判別することができる。
【0005】
【発明が解決しようとする課題】
アクティブ三角測距方式の装置は、演算方式によって、一対の受光素子の出力比を演算する比演算方式と各受光素子の出力差を演算する差演算方式とに大別される。比演算方式は被写体反射率に関する因子が比演算の過程で分子と分母間である程度相殺されるので、被写体反射率の影響をそれ程受けることなく、多段階の距離判別を行なうことが可能である。それでも、被写体の反射率が大きく異なる場合、測距結果に悪影響を及ぼし、誤差の原因ともなるので、解決すべき課題となっている。一方、差演算方式は比演算方式に比べ回路構成が簡潔である反面、差演算の結果中には被写体反射率に関する因子が残存するので、これが大きな誤差要因となっており、解決すべき課題である。アクティブ三角測距方式は被写体に光束を投光しその反射光を受光して測距を行なう。受光量は被写体反射率に依存している。従って、アクティブ三角測距方式は原理的に被写体反射率に対する依存性を有しており、これを除くことが緊急の解決課題である。
【0006】
【課題を解決するための手段】
上述した従来の技術の課題に鑑み、本発明は比較的簡単な回路構成で被写体反射率の影響を除去可能な光学式測距装置を提供することを目的とする。係る目的を達成するために以下の手段を講じた。即ち本発明は、光軸方向にある対象物に対して光束を投光する発光素子を含む投光部と、該対象物から戻って来る光束を受光して対応する電気信号を出力する受光素子を含む受光部と、該電気信号に基づいて該対象物までの距離を算出する演算部とを備えた光学式測距装置であって、前記受光部は二個以上複数の受光素子を有し、合体モードと分離モードで切り換え可能であり、合体モードの時該複数の受光素子は個々の受光量の合計に応じた単一の電気信号を出力し、分離モードの時個々の受光量に応じた複数の電気信号を出力する。前記演算部は、先ず合体モードで出力される電気信号に基づいて該対象物の表面反射率を表わす反射率データを求め、次に分離モードで出力される電気信号に基づいて該対象物までの距離を表わす距離データを求め、さらに該反射率データに基づいて該距離データを補正して対象物の反射率に依存する誤差を除去することを特徴とする。具体的には、前記演算部は、あらかじめ反射率が既知の基準対象物からサンプリングされた参照反射率データを記憶しており、該参照反射率データに基づいて合体モード時に得られた該電気信号を処理し、もって該対象物の実際の表面反射率を表わす反射率データを算出する。また、前記演算部は、分離モードで出力される少くとも二個の電気信号の差を取った差データ及び和を取った和データを求め、該反射率データで該差データ及び和データを補正し、さらに補正された差データ及び和データの比を取って該距離データを求める。
【0007】
本発明によれば、あらかじめ赤外投光に対する反射率が既知の基準対象物に対し、例えば二分割された受光素子を並列(又は直列)に接続し、見かけ上一つの受光素子として反射光量を測定し、その光量値を装置内に記憶しておく。この処理は光学式測距装置の工場出荷段階前に行なう。赤外光に対する反射率が未知の対象物に対して実際に測距を行なう場合、二分割された受光素子をまず一つの受光素子となる様に接続して、赤外反射光量を測定する。工場出荷段階前に記憶された基準対象物の反射光量値と、実際に測定した対象物の受光量を比較する。これにより、対象物の実際の反射率を推定する。次に二分割した受光素子で測距動作を行ない、例えば各受光素子から出力された電気信号の差演算を行なって対象物までの距離データを得る。この段階で得られた距離データは対象物の反射率の影響が含まれている。そこで、先に推定した対象物の反射率データに基づき、差演算で得られた距離データを補正する。この結果対象物の反射率の影響が除かれた距離データを得ることが可能である。
【0008】
【発明の実施の形態】
以下図面を参照して本発明の実施の形態を詳細に説明する。図1は本発明に係る光学式測距装置の実施形態を示す回路図である。本光学式測距装置は投光部と受光部と演算部とで構成されている。投光部は赤外発光ダイオードからなる発光素子1を含んでおり、光軸方向にある対象物に対して光束を投光する。受光部は対象物から戻って来る光束を受光して対応する電気信号を出力する受光素子を含む。本実施形態では、二分割されたシリコンフォトダイオード(SPD)からなる一対の受光素子S1,S2を用いている。但し本発明はこれに限られるものではなく、SPDに代えて多分割型のポジションセンシティブディテクタ(PSD)を用いてもよい。演算部は受光部から出力された電気信号に基づいて対象物までの距離を算出する。演算部はハードウェア的な演算を行なう回路部分とソフトウェア的な演算を行なう中央演算処理装置(CPU)とを含んでいる。対象物までの距離の算出に必要な加減算などは回路上で行ない、補正演算はCPUで行なう。但し本発明はこれに限られるものではなく、全てソフトウェア上で演算を実行してもよい。
【0009】
上述した様に受光部は二個以上複数の受光素子S1,S2を有し、スイッチSWにより合体モードと分離モードで切り換え可能である。合体モードの時、一対の受光素子S1,S2は個々の受光量の合計に応じた単一の電気信号を出力し、分離モードの時個々の受光量に応じた複数の電気信号を出力する様になっている。合体モードと分離モードの切り換えはスイッチ回路SWを介してCPU11により制御される。
【0010】
引続き図1を参照して本光学式測距装置の回路部分の構成並びに動作を詳細に説明する。尚、理解を容易にする為以下の説明は分離モードを前提としている。受光素子S1は抵抗20及びベース/コレクタ間が短絡されたトランジスタ21の直列回路に接続されており、受光素子S1に光が入射すると、この直列回路には入射光量に対応した光電流I1が流れる。トランジスタ21はベースを共有するトランジスタ22とカレントミラー回路を構成しており、トランジスタ22にはトランジスタ21に流れる電流と等しい電流I1が流れる。
【0011】
受光素子S2は抵抗23及びベース/コレクタ間が短絡されたトランジスタ24の直列回路に接続されており、受光素子S2に光が入射すると、この直列回路には入射光量に応じた光電流I2が流れる。トランジスタ24はベースを共有するトランジスタ25とカレントミラー回路を構成しており、トランジスタ25とトランジスタ26の直列回路にはトランジスタ24に流れる電流と等しい電流I2が流れる。尚、トランジスタ26のベース/コレクタ間にはトランジスタ27が接続されているが、このトランジスタ27は、PNP構成のトランジスタ26の場合は、そのベース電流が実質的に無視できない値であるので、トランジスタ26のベース電流分を補償する為に設けられたものである。そして、トランジスタ26はトランジスタ28とカレントミラー回路を構成しており、トランジスタ28にも同一の電流I2が流れる。
【0012】
トランジスタ22に流れる電流I1はオペアンプ29の逆相入力点に減算電流として流れ、トランジスタ28に流れる電流I2はオペアンプ29の同じく逆相入力点に加算電流として流れる。オペアンプ29の逆相入力点に流れる電流は全てオペアンプ29の帰還抵抗30を流れるので、帰還抵抗30に流れる電流をIaと定義した場合、Ia=I2−I1で表わされる。又、オペアンプ29の正相入力点には電源31から基準電圧Vrefが印加されているので、抵抗30の抵抗値をR30と定義し、オペアンプ29の出力電圧をVaと定義した場合、オペアンプ29の出力電圧Vaは、
Va=Vref−R30×Ia=Vref−R30×(I2−I1)
で与えられる。
【0013】
このオペアンプ29の出力電圧Vaは光電流中の定常光成分(発光ダイオードの発光とは無関係に被写界光に依存して流れる光電流成分)を除去する為のコンデンサ32で除去された後に、オペアンプ33の逆相入力抵抗34に加えられる。オペアンプ33の正相入力点には電源31から基準電圧Vrefが印加されており、オペアンプ33の両入力間のイマジナルショートによってオペアンプ33の逆相入力レベルもVrefと考えられるので、抵抗34の両端に発生する電圧V34は
V34={Vref−R30×(I2−I1)}−Vref
=R30×(I1−I2)で示され、
抵抗R34に流れる電流I34は、
I34=R30×(I1−I2)/R34で示される。
【0014】
電流I34は全て抵抗35を介して流れるが、オペアンプ33の基準電圧はVrefであるので、オペアンプ33の出力電圧Vbは、
Vb=Vref−R35×R30×(I1−I2)/R34
=Vref−k×(I1−I2)で示される値になる。
但し、k=R35×R30/R34である。
【0015】
この様にしてオペアンプ33から出力された電圧Vbはサンプル/ホールド回路(S/H)37でサンプルホールドされ、CPU11に内蔵されたアナログデジタルコンバータ(A/D)に供給される。この様にして、分離モードでは一対の受光素子S1,S2の受光量の差に応じたデータが取り込まれ、CPU11側に送られる。
【0016】
これに対し、合体モードでは一対の受光素子S1,S2に流れる光電流I1,I2がいずれもオペアンプ29の逆相入力点に加算電流として流れる。この加算電流はオペアンプ29及びオペアンプ33で増幅された後、S/H37でサンプルホールドされ、CPU11のA/Dに送られる。従って、合体モードでは受光素子S1,S2によって受光された受光量の加算値(合計値)に応じたデータがCPU11に取り込まれる。
【0017】
図2を参照して、図1に示した光学式測距装置の測距動作を詳細に説明する。まずステップS1でスイッチSWを合体モード側に投入する。続いてステップS2で発光素子1を駆動し、対象物に向けて光束を投光する。ステップS3でS /H37から反射光量値を取り込み、所定のメモリに記録する。この反射光量値は各受光素子S1,S2の受光量の合計に応じた電気信号(I1+I2)に比例した値となっている。尚、本実施形態では、CPU11はあらかじめ反射率が既知の基準対象物からサンプリングされた参照反射率データを記憶しており、この参照反射率データに基づいて、合体モード時に得られた電気信号を処理し、もって対象物の実際の表面反射率を表わす反射率データを算出している。例えば、表面反射率が36%で1mの距離に置かれた基準対象物から合体モード時に得られる電気信号を基準とし、これに基づいて実際の対象物の表面反射率を推定している。
【0018】
次にステップS4で、スイッチSWを分離モード側に投入する。続いてステップS5で発光素子1を駆動する。ステップS6で測距結果を取り込み、距離データとしてCPU内に格納する。前述した様に、分離モードの時受光素子S1,S2の個々の受光量に応じた複数の電気信号が出力され、更に回路部で両者の差分が得られる。ここでCPUは差分演算方式を採用する時には、この差分データをそのまま距離データとして格納する。比演算方式を採用する場合には、この差分データに加え加算データも求めておき、両者の比を取って距離データとする。尚、加算データは合体モードで得られる。この後ステップS7で、距離データを反射率データにより補正し、対象物の表面反射率の影響を除いた真の距離データを求める。
【0019】
図3は図1及び図2を参照して説明した測距方式におけるデータの流れを模式的に表わしたブロック図である。図示する様に、一対の受光素子S1,S2はそれぞれ受光量に応じた電気信号A,Bを出力する。スイッチ回路SWは電気信号A,Bを切り換えて差算回路及び加算回路(20−30)に供給する。差算回路はA−Bを演算し、加算回路はA+Bを求める。尚、この差算回路及び加算回路は図1の回路要素20−30に対応している。A−B及びA+Bは増幅回路33−35で増幅された後、S/H37でサンプルホールドされる。サンプルホールドされたA−B及びA+Bの値はA/D11aを介してCPU11に取り込まれる。
【0020】
CPUは例えば比演算方式で測距データK=(A−B)/(A+B)を算出する。その際、あらかじめ推定した対象物の反射率データrにより、補正を加える。例えば、
K=(A−B)/(A+B)
=r(a−b)/r(a+b)
=(a−b)/(a+b)
として距離データKを求める。反射率rがキャンセルされ、対象物の反射率によらない精度のよい距離データKが得られる。なお、差演算方式の場合には、元の差分データA−Bにかえて補正後の差分データa−bにより距離を求めれば良い。
【0021】
図4は、図3に示した実施例の変形を示す模式的なブロック図である。この実施例は、一対の受光素子S1,S2に直接差算回路及び加算回路が接続されている。これらの演算回路の後段にスイッチ回路SWが接続されている。このスイッチ回路により差算信号及び加算信号を選択し、増幅回路、S/H、A/Dを介しCPUに取り込む。
【0022】
【発明の効果】
以上説明した様に、本発明によれば、あらかじめ赤外光に対する反射率が既知の対象物に対し、二分割された受光素子を並列もしくは直列接続し、見かけ上一つのセンサとして反射光量を測定し、その光量値をCPUのメモリに記憶する。これは、光学式測距装置の工場出荷段階で行なう。赤外光に対して未知の反射率を有する対象物に対し測距を行なう場合、一対の受光素子をまず一つのセンサとなる様に接続して反射光量を測定し、先に記憶された基準値データと比較し当該対象物の反射率を推定する。次に二分割した受光素子で得られた電気信号を差演算して距離データを求める。これには対象物の反射率の影響が含まれているので、これを除去する為先に推定した反射率に基づき、距離データを補正する。係る構成により、回路規模を大きくすることなく、表面反射率に依存しない光学測距装置を得ることができる。
【図面の簡単な説明】
【図1】本発明に係る光学式測距装置の実施形態を示す回路図である。
【図2】図1に示した光学式測距装置の動作説明に供するフローチャートである。
【図3】図1に示した光学式測距装置の動作説明に供するブロック図である。
【図4】図3に示した実施例の変形を示すブロック図である。
【図5】光学式測距装置を内蔵したカメラの一例を示す斜視図である。
【図6】光学式測距の原理を示す模式図である。
【符号の説明】
1・・・投光部、2・・・受光部、11・・・CPU、S1・・・受光素子、S2・・・受光素子、SW・・・スイッチ回路
【発明の属する技術分野】
本発明はカメラの被写体の距離を光学的に測定する光学式測距装置に関する。より詳しくは、被写体の反射率に依存しない測距方式に関する。
【0002】
【従来の技術】
図5は、光学式測距装置を組み込んだカメラの一例を示す模式的な斜視図である。図示する様に、カメラ5はボディ6とレンズ鏡筒7とを備えている。ボディ6の前面側に投光部1と受光部2とからなる光学式測距装置が取り付けられている。この光学式測距装置は、カメラ5の被写体の光軸方向距離を測定するものであって、測定結果は自動焦点調節などに利用される。
【0003】
【特許文献1】
特許第3187621号
【0004】
図6は、光学式測距装置の一例を示す模式図である。この装置はいわゆるアクティブ三角測距方式に基づいている。図はその基本原理を示すものであり、1は例えば赤外光を発生する投光部、3は投光レンズ、T1,T2は被写体、4は受光レンズ、2は二分割された受光素子S1,S2を有する受光部を各々示す。投光部1の出力光は投光レンズ3で被写体T1又はT2に向けて照射され、被写体T1又はT2で反射された光は受光レンズ4を介して受光部2に入射する。この時、被写体T1,T2までの距離に対応して受光部2に対する入射角が変動するので、受光部2を構成する各々の受光素子S1,S2に対する入射光量の成分比が変動する。そこで、各々の受光素子S1,S2に対する入射光量を比較演算することにより、被写体T1又はT2までの距離を判別することができる。
【0005】
【発明が解決しようとする課題】
アクティブ三角測距方式の装置は、演算方式によって、一対の受光素子の出力比を演算する比演算方式と各受光素子の出力差を演算する差演算方式とに大別される。比演算方式は被写体反射率に関する因子が比演算の過程で分子と分母間である程度相殺されるので、被写体反射率の影響をそれ程受けることなく、多段階の距離判別を行なうことが可能である。それでも、被写体の反射率が大きく異なる場合、測距結果に悪影響を及ぼし、誤差の原因ともなるので、解決すべき課題となっている。一方、差演算方式は比演算方式に比べ回路構成が簡潔である反面、差演算の結果中には被写体反射率に関する因子が残存するので、これが大きな誤差要因となっており、解決すべき課題である。アクティブ三角測距方式は被写体に光束を投光しその反射光を受光して測距を行なう。受光量は被写体反射率に依存している。従って、アクティブ三角測距方式は原理的に被写体反射率に対する依存性を有しており、これを除くことが緊急の解決課題である。
【0006】
【課題を解決するための手段】
上述した従来の技術の課題に鑑み、本発明は比較的簡単な回路構成で被写体反射率の影響を除去可能な光学式測距装置を提供することを目的とする。係る目的を達成するために以下の手段を講じた。即ち本発明は、光軸方向にある対象物に対して光束を投光する発光素子を含む投光部と、該対象物から戻って来る光束を受光して対応する電気信号を出力する受光素子を含む受光部と、該電気信号に基づいて該対象物までの距離を算出する演算部とを備えた光学式測距装置であって、前記受光部は二個以上複数の受光素子を有し、合体モードと分離モードで切り換え可能であり、合体モードの時該複数の受光素子は個々の受光量の合計に応じた単一の電気信号を出力し、分離モードの時個々の受光量に応じた複数の電気信号を出力する。前記演算部は、先ず合体モードで出力される電気信号に基づいて該対象物の表面反射率を表わす反射率データを求め、次に分離モードで出力される電気信号に基づいて該対象物までの距離を表わす距離データを求め、さらに該反射率データに基づいて該距離データを補正して対象物の反射率に依存する誤差を除去することを特徴とする。具体的には、前記演算部は、あらかじめ反射率が既知の基準対象物からサンプリングされた参照反射率データを記憶しており、該参照反射率データに基づいて合体モード時に得られた該電気信号を処理し、もって該対象物の実際の表面反射率を表わす反射率データを算出する。また、前記演算部は、分離モードで出力される少くとも二個の電気信号の差を取った差データ及び和を取った和データを求め、該反射率データで該差データ及び和データを補正し、さらに補正された差データ及び和データの比を取って該距離データを求める。
【0007】
本発明によれば、あらかじめ赤外投光に対する反射率が既知の基準対象物に対し、例えば二分割された受光素子を並列(又は直列)に接続し、見かけ上一つの受光素子として反射光量を測定し、その光量値を装置内に記憶しておく。この処理は光学式測距装置の工場出荷段階前に行なう。赤外光に対する反射率が未知の対象物に対して実際に測距を行なう場合、二分割された受光素子をまず一つの受光素子となる様に接続して、赤外反射光量を測定する。工場出荷段階前に記憶された基準対象物の反射光量値と、実際に測定した対象物の受光量を比較する。これにより、対象物の実際の反射率を推定する。次に二分割した受光素子で測距動作を行ない、例えば各受光素子から出力された電気信号の差演算を行なって対象物までの距離データを得る。この段階で得られた距離データは対象物の反射率の影響が含まれている。そこで、先に推定した対象物の反射率データに基づき、差演算で得られた距離データを補正する。この結果対象物の反射率の影響が除かれた距離データを得ることが可能である。
【0008】
【発明の実施の形態】
以下図面を参照して本発明の実施の形態を詳細に説明する。図1は本発明に係る光学式測距装置の実施形態を示す回路図である。本光学式測距装置は投光部と受光部と演算部とで構成されている。投光部は赤外発光ダイオードからなる発光素子1を含んでおり、光軸方向にある対象物に対して光束を投光する。受光部は対象物から戻って来る光束を受光して対応する電気信号を出力する受光素子を含む。本実施形態では、二分割されたシリコンフォトダイオード(SPD)からなる一対の受光素子S1,S2を用いている。但し本発明はこれに限られるものではなく、SPDに代えて多分割型のポジションセンシティブディテクタ(PSD)を用いてもよい。演算部は受光部から出力された電気信号に基づいて対象物までの距離を算出する。演算部はハードウェア的な演算を行なう回路部分とソフトウェア的な演算を行なう中央演算処理装置(CPU)とを含んでいる。対象物までの距離の算出に必要な加減算などは回路上で行ない、補正演算はCPUで行なう。但し本発明はこれに限られるものではなく、全てソフトウェア上で演算を実行してもよい。
【0009】
上述した様に受光部は二個以上複数の受光素子S1,S2を有し、スイッチSWにより合体モードと分離モードで切り換え可能である。合体モードの時、一対の受光素子S1,S2は個々の受光量の合計に応じた単一の電気信号を出力し、分離モードの時個々の受光量に応じた複数の電気信号を出力する様になっている。合体モードと分離モードの切り換えはスイッチ回路SWを介してCPU11により制御される。
【0010】
引続き図1を参照して本光学式測距装置の回路部分の構成並びに動作を詳細に説明する。尚、理解を容易にする為以下の説明は分離モードを前提としている。受光素子S1は抵抗20及びベース/コレクタ間が短絡されたトランジスタ21の直列回路に接続されており、受光素子S1に光が入射すると、この直列回路には入射光量に対応した光電流I1が流れる。トランジスタ21はベースを共有するトランジスタ22とカレントミラー回路を構成しており、トランジスタ22にはトランジスタ21に流れる電流と等しい電流I1が流れる。
【0011】
受光素子S2は抵抗23及びベース/コレクタ間が短絡されたトランジスタ24の直列回路に接続されており、受光素子S2に光が入射すると、この直列回路には入射光量に応じた光電流I2が流れる。トランジスタ24はベースを共有するトランジスタ25とカレントミラー回路を構成しており、トランジスタ25とトランジスタ26の直列回路にはトランジスタ24に流れる電流と等しい電流I2が流れる。尚、トランジスタ26のベース/コレクタ間にはトランジスタ27が接続されているが、このトランジスタ27は、PNP構成のトランジスタ26の場合は、そのベース電流が実質的に無視できない値であるので、トランジスタ26のベース電流分を補償する為に設けられたものである。そして、トランジスタ26はトランジスタ28とカレントミラー回路を構成しており、トランジスタ28にも同一の電流I2が流れる。
【0012】
トランジスタ22に流れる電流I1はオペアンプ29の逆相入力点に減算電流として流れ、トランジスタ28に流れる電流I2はオペアンプ29の同じく逆相入力点に加算電流として流れる。オペアンプ29の逆相入力点に流れる電流は全てオペアンプ29の帰還抵抗30を流れるので、帰還抵抗30に流れる電流をIaと定義した場合、Ia=I2−I1で表わされる。又、オペアンプ29の正相入力点には電源31から基準電圧Vrefが印加されているので、抵抗30の抵抗値をR30と定義し、オペアンプ29の出力電圧をVaと定義した場合、オペアンプ29の出力電圧Vaは、
Va=Vref−R30×Ia=Vref−R30×(I2−I1)
で与えられる。
【0013】
このオペアンプ29の出力電圧Vaは光電流中の定常光成分(発光ダイオードの発光とは無関係に被写界光に依存して流れる光電流成分)を除去する為のコンデンサ32で除去された後に、オペアンプ33の逆相入力抵抗34に加えられる。オペアンプ33の正相入力点には電源31から基準電圧Vrefが印加されており、オペアンプ33の両入力間のイマジナルショートによってオペアンプ33の逆相入力レベルもVrefと考えられるので、抵抗34の両端に発生する電圧V34は
V34={Vref−R30×(I2−I1)}−Vref
=R30×(I1−I2)で示され、
抵抗R34に流れる電流I34は、
I34=R30×(I1−I2)/R34で示される。
【0014】
電流I34は全て抵抗35を介して流れるが、オペアンプ33の基準電圧はVrefであるので、オペアンプ33の出力電圧Vbは、
Vb=Vref−R35×R30×(I1−I2)/R34
=Vref−k×(I1−I2)で示される値になる。
但し、k=R35×R30/R34である。
【0015】
この様にしてオペアンプ33から出力された電圧Vbはサンプル/ホールド回路(S/H)37でサンプルホールドされ、CPU11に内蔵されたアナログデジタルコンバータ(A/D)に供給される。この様にして、分離モードでは一対の受光素子S1,S2の受光量の差に応じたデータが取り込まれ、CPU11側に送られる。
【0016】
これに対し、合体モードでは一対の受光素子S1,S2に流れる光電流I1,I2がいずれもオペアンプ29の逆相入力点に加算電流として流れる。この加算電流はオペアンプ29及びオペアンプ33で増幅された後、S/H37でサンプルホールドされ、CPU11のA/Dに送られる。従って、合体モードでは受光素子S1,S2によって受光された受光量の加算値(合計値)に応じたデータがCPU11に取り込まれる。
【0017】
図2を参照して、図1に示した光学式測距装置の測距動作を詳細に説明する。まずステップS1でスイッチSWを合体モード側に投入する。続いてステップS2で発光素子1を駆動し、対象物に向けて光束を投光する。ステップS3でS /H37から反射光量値を取り込み、所定のメモリに記録する。この反射光量値は各受光素子S1,S2の受光量の合計に応じた電気信号(I1+I2)に比例した値となっている。尚、本実施形態では、CPU11はあらかじめ反射率が既知の基準対象物からサンプリングされた参照反射率データを記憶しており、この参照反射率データに基づいて、合体モード時に得られた電気信号を処理し、もって対象物の実際の表面反射率を表わす反射率データを算出している。例えば、表面反射率が36%で1mの距離に置かれた基準対象物から合体モード時に得られる電気信号を基準とし、これに基づいて実際の対象物の表面反射率を推定している。
【0018】
次にステップS4で、スイッチSWを分離モード側に投入する。続いてステップS5で発光素子1を駆動する。ステップS6で測距結果を取り込み、距離データとしてCPU内に格納する。前述した様に、分離モードの時受光素子S1,S2の個々の受光量に応じた複数の電気信号が出力され、更に回路部で両者の差分が得られる。ここでCPUは差分演算方式を採用する時には、この差分データをそのまま距離データとして格納する。比演算方式を採用する場合には、この差分データに加え加算データも求めておき、両者の比を取って距離データとする。尚、加算データは合体モードで得られる。この後ステップS7で、距離データを反射率データにより補正し、対象物の表面反射率の影響を除いた真の距離データを求める。
【0019】
図3は図1及び図2を参照して説明した測距方式におけるデータの流れを模式的に表わしたブロック図である。図示する様に、一対の受光素子S1,S2はそれぞれ受光量に応じた電気信号A,Bを出力する。スイッチ回路SWは電気信号A,Bを切り換えて差算回路及び加算回路(20−30)に供給する。差算回路はA−Bを演算し、加算回路はA+Bを求める。尚、この差算回路及び加算回路は図1の回路要素20−30に対応している。A−B及びA+Bは増幅回路33−35で増幅された後、S/H37でサンプルホールドされる。サンプルホールドされたA−B及びA+Bの値はA/D11aを介してCPU11に取り込まれる。
【0020】
CPUは例えば比演算方式で測距データK=(A−B)/(A+B)を算出する。その際、あらかじめ推定した対象物の反射率データrにより、補正を加える。例えば、
K=(A−B)/(A+B)
=r(a−b)/r(a+b)
=(a−b)/(a+b)
として距離データKを求める。反射率rがキャンセルされ、対象物の反射率によらない精度のよい距離データKが得られる。なお、差演算方式の場合には、元の差分データA−Bにかえて補正後の差分データa−bにより距離を求めれば良い。
【0021】
図4は、図3に示した実施例の変形を示す模式的なブロック図である。この実施例は、一対の受光素子S1,S2に直接差算回路及び加算回路が接続されている。これらの演算回路の後段にスイッチ回路SWが接続されている。このスイッチ回路により差算信号及び加算信号を選択し、増幅回路、S/H、A/Dを介しCPUに取り込む。
【0022】
【発明の効果】
以上説明した様に、本発明によれば、あらかじめ赤外光に対する反射率が既知の対象物に対し、二分割された受光素子を並列もしくは直列接続し、見かけ上一つのセンサとして反射光量を測定し、その光量値をCPUのメモリに記憶する。これは、光学式測距装置の工場出荷段階で行なう。赤外光に対して未知の反射率を有する対象物に対し測距を行なう場合、一対の受光素子をまず一つのセンサとなる様に接続して反射光量を測定し、先に記憶された基準値データと比較し当該対象物の反射率を推定する。次に二分割した受光素子で得られた電気信号を差演算して距離データを求める。これには対象物の反射率の影響が含まれているので、これを除去する為先に推定した反射率に基づき、距離データを補正する。係る構成により、回路規模を大きくすることなく、表面反射率に依存しない光学測距装置を得ることができる。
【図面の簡単な説明】
【図1】本発明に係る光学式測距装置の実施形態を示す回路図である。
【図2】図1に示した光学式測距装置の動作説明に供するフローチャートである。
【図3】図1に示した光学式測距装置の動作説明に供するブロック図である。
【図4】図3に示した実施例の変形を示すブロック図である。
【図5】光学式測距装置を内蔵したカメラの一例を示す斜視図である。
【図6】光学式測距の原理を示す模式図である。
【符号の説明】
1・・・投光部、2・・・受光部、11・・・CPU、S1・・・受光素子、S2・・・受光素子、SW・・・スイッチ回路
Claims (3)
- 光軸方向にある対象物に対して光束を投光する発光素子を含む投光部と、
該対象物から戻って来る光束を受光して対応する電気信号を出力する受光素子を含む受光部と、
該電気信号に基づいて該対象物までの距離を算出する演算部とを備えた光学式測距装置であって、
前記受光部は二個以上複数の受光素子を有し、合体モードと分離モードで切り換え可能であり、合体モードの時該複数の受光素子は個々の受光量の合計に応じた単一の電気信号を出力し、分離モードの時個々の受光量に応じた複数の電気信号を出力し、
前記演算部は、先ず合体モードで出力される電気信号に基づいて該対象物の表面反射率を表わす反射率データを求め、次に分離モードで出力される電気信号に基づいて該対象物までの距離を表わす距離データを求め、さらに該反射率データに基づいて該距離データを補正して対象物の反射率に依存する誤差を除去することを特徴とする光学式測距装置。 - 前記演算部は、あらかじめ反射率が既知の基準対象物からサンプリングされた参照反射率データを記憶しており、該参照反射率データに基づいて合体モード時に得られた該電気信号を処理し、もって該対象物の実際の表面反射率を表わす反射率データを算出することを特徴とする請求項1記載の光学式測距装置。
- 前記演算部は、分離モードで出力される少くとも二個の電気信号の差を取った差データ及び和を取った和データを求め、該反射率データで該差データ及び和データを補正し、さらに補正された差データ及び和データの比を取って該距離データを求めることを特徴とする請求項1記載の光学式測距装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002290963A JP2004125651A (ja) | 2002-10-03 | 2002-10-03 | 光学式測距装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002290963A JP2004125651A (ja) | 2002-10-03 | 2002-10-03 | 光学式測距装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004125651A true JP2004125651A (ja) | 2004-04-22 |
Family
ID=32282684
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002290963A Pending JP2004125651A (ja) | 2002-10-03 | 2002-10-03 | 光学式測距装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2004125651A (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007033096A (ja) * | 2005-07-25 | 2007-02-08 | Keyence Corp | 三角測距式光電センサー |
JP2009014360A (ja) * | 2007-06-29 | 2009-01-22 | Sunx Ltd | 反射型光電センサ |
WO2021154037A1 (ko) * | 2020-01-31 | 2021-08-05 | 주식회사 유진로봇 | 3d 라이다 기반의 대상 물체 인식 방법, 장치 및 그를 이용한 이동체 |
-
2002
- 2002-10-03 JP JP2002290963A patent/JP2004125651A/ja active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007033096A (ja) * | 2005-07-25 | 2007-02-08 | Keyence Corp | 三角測距式光電センサー |
JP2009014360A (ja) * | 2007-06-29 | 2009-01-22 | Sunx Ltd | 反射型光電センサ |
WO2021154037A1 (ko) * | 2020-01-31 | 2021-08-05 | 주식회사 유진로봇 | 3d 라이다 기반의 대상 물체 인식 방법, 장치 및 그를 이용한 이동체 |
KR20210098187A (ko) * | 2020-01-31 | 2021-08-10 | 주식회사 유진로봇 | 3d 라이다 기반의 대상 물체 인식 방법, 장치 및 그를 이용한 이동체 |
KR102343445B1 (ko) * | 2020-01-31 | 2021-12-27 | 주식회사 유진로봇 | 3d 라이다 기반의 대상 물체 인식 방법, 장치 및 그를 이용한 이동체 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0474648B2 (ja) | ||
JP5310680B2 (ja) | 変位センサ | |
JPH07174549A (ja) | 測距装置 | |
JPH049609A (ja) | 受光装置 | |
JP2004125651A (ja) | 光学式測距装置 | |
JPH0313565B2 (ja) | ||
JP2000284337A (ja) | 振れ検出装置及びブレ補正カメラ | |
JP2638607B2 (ja) | 測距装置 | |
JP2007155356A (ja) | 測距装置および測距方法 | |
JP2942593B2 (ja) | 被写体距離検出装置 | |
JP3694018B2 (ja) | 測距装置 | |
JP3796083B2 (ja) | 測距装置 | |
JP3187621B2 (ja) | アクティブ三角測距装置 | |
JP2002341238A (ja) | 測距装置のための調整装置 | |
JP3140454B2 (ja) | 動体測距装置 | |
JPH0618259A (ja) | カメラの測距装置 | |
JP3236095B2 (ja) | 測距装置 | |
JP3077998B2 (ja) | 移動速度検出装置 | |
JP2731159B2 (ja) | カメラの多点測距装置 | |
JP3041028B2 (ja) | 被写体の動体検知装置 | |
JP2024070647A (ja) | 3次元形状計測装置および3次元形状計測方法 | |
JPH11281882A (ja) | 測距装置 | |
JPH0575461A (ja) | 信号処理装置 | |
JPH0511173A (ja) | 測距装置 | |
JP2002098525A (ja) | 測距装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Effective date: 20050930 Free format text: JAPANESE INTERMEDIATE CODE: A621 |
|
A977 | Report on retrieval |
Effective date: 20070413 Free format text: JAPANESE INTERMEDIATE CODE: A971007 |
|
A131 | Notification of reasons for refusal |
Effective date: 20070424 Free format text: JAPANESE INTERMEDIATE CODE: A131 |
|
A02 | Decision of refusal |
Effective date: 20070821 Free format text: JAPANESE INTERMEDIATE CODE: A02 |