[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2004193393A - Compound light emitting element - Google Patents

Compound light emitting element Download PDF

Info

Publication number
JP2004193393A
JP2004193393A JP2002360542A JP2002360542A JP2004193393A JP 2004193393 A JP2004193393 A JP 2004193393A JP 2002360542 A JP2002360542 A JP 2002360542A JP 2002360542 A JP2002360542 A JP 2002360542A JP 2004193393 A JP2004193393 A JP 2004193393A
Authority
JP
Japan
Prior art keywords
light emitting
emitting element
semiconductor light
phosphor
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002360542A
Other languages
Japanese (ja)
Inventor
Tomio Inoue
登美男 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2002360542A priority Critical patent/JP2004193393A/en
Publication of JP2004193393A publication Critical patent/JP2004193393A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Led Device Packages (AREA)
  • Led Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a compound light emitting element in which the whole temperature rise is suppressed and chrominance of a chip can be uniformized. <P>SOLUTION: The element has a semiconductor light emitting element 3 where an upper side is made the main light take-out face 2, a sub-mount element 4 mounting the semiconductor light emitting element 3, and a resin 6 which comprises a phosphor converting the emission wavelength of the semiconductor light emitting element 3 into another wavelength, and is applied by covering only an upper face of the semiconductor light emitting element 3 arranged on the sub-mount element 4. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、光透過性基板上に形成された半導体膜で構成される発光ダイオード、発光レーザーダイオード等の半導体発光素子と、この半導体発光素子の発光波長を他の波長に変換する蛍光物質を含有した樹脂部とを有する複合発光素子に関する。
【0002】
【従来の技術】
発光波長を蛍光物質を用いて波長変換する技術は、かなり以前から広く知られている。例えば、ネオン管のガラスの内壁面に蛍光物質を塗布し、オレンジ色の発光を緑色光に変換したものや、GaAsの赤外光発光の発光ダイオードで、モールド樹脂内に蛍光物質を混ぜて、赤外光を緑色光に変換するものなどがよく知られている。最近では、青色発光のGaN系化合物半導体発光素子(GaN・LED素子)に蛍光物質を用いて白色に発光させる白色LEDランプが製品化されている。
【0003】
図2に示すように、従来のGaN系の白色複合発光素子70は、サブマウント素子71の上にGaN系の青色LED72をフリップチップ実装し、それを覆うようにYAG系の蛍光体73をスクリーン印刷した複合発光素子である。
【0004】
この白色複合発光素子70は、青色LED72のサファイア基板天面上の蛍光体73を研削して厚み(t1)を調整することにより白色の色度が制御される。例えば、この白色の色度座標(0.3,0.3)近傍での厚みt1は、t1<30μmとなる。一方、青色LED72の側面の蛍光体の厚み(t2)は、天面の蛍光体の厚み(t1)より厚くなっている。
【0005】
なお、このような発光素子として、例えば、特許文献1に示すものがある。
【0006】
【特許文献1】
特開2000−208822号公報(第2−7頁、第1図)
【0007】
【発明が解決しようとする課題】
しかしながら、チップの色度は、蛍光体73の厚みによって異なるため、図2に斜線で示す蛍光体73の外周部は黄色味がかった色になっている。すなわち、図2(B)のa方向から見ると青色発光の成分と蛍光物質によって波長変換された黄色の成分が混色して白く見えるが、b方向から見ると蛍光物質の層が厚くなるので黄色がかって見える。したがって、全体としての色度は黄緑方向にずれ、これを是正するためには天面の蛍光体73の厚みをt1よりさらに薄くする必要が生じる。この場合、蛍光体ペーストの濃度にも依存するが、天面の蛍光体厚みは20μm以下になる。そして、厚みが薄いので、厚みのばらつきが色度のばらつきに大きく影響するという問題がある。
【0008】
また、蛍光体73としては、一般にYAG系蛍光体が用いられている。サブマウント素子71の上に青色LED72を実装したままの青色複合発光素子と、その上を蛍光体ペーストで更に覆った白色複合発光素子70とでは、発光時の温度分布がかなり異なり、例えばIF=20mA通電時では、蛍光体ペーストで覆った方が、覆わない方よりも(温度分布の最大値で)約20℃弱ほど温度が高くなる。このとき最も温度が高い部分は、蛍光体ペーストの部分である。この原因は、蛍光体ペーストの放熱性が悪いことにも起因しているが、YAG系蛍光体の発光量子効率が28%と悪いことにも原因がある。
【0009】
すなわち、LEDチップの青色光を吸収して励起されたエネルギーは、光に変換される割合が28%で、残りが熱などになって放出されるためである。このように青色LEDの周囲を蛍光体で覆うことは、青色LEDの温度を上げてしまい、発光効率の低下や信頼性を悪くするという問題もある。
【0010】
そこで、本発明は、全体の温度上昇を抑え、チップの色度を均一化させる複合発光素子を提供することを目的とする。
【0011】
【課題を解決するための手段】
本発明の複合発光素子においては、蛍光物質を含有する樹脂部を、上面のみに塗布したものである。
【0012】
この発明によれば、全体の温度上昇を抑えながらチップの色度を均一化させる複合発光素子が得られる。
【0013】
【発明の実施の形態】
本発明の請求項1に記載の発明は、上側を主光取り出し面とした半導体発光素子と、前記半導体発光素子を搭載したサブマウント素子と、前記半導体発光素子の発光波長を他の波長に変換する蛍光物質を含有するとともに、前記サブマウント素子の上に配置された前記発光素子の上面のみを覆って塗布されている樹脂部とを有する複合発光素子であり、温度が上昇しやすい樹脂部を上面のみに塗布して側面には塗布しないので、素子の温度上昇が抑えられるという作用を有する。
【0014】
以下、本発明の実施の形態について、図1を用いて説明する。
【0015】
(実施の形態1)
図1(A)は本発明の第1の実施の形態の複合発光素子の平面図、(B)は同複合発光素子の正面図を示す。
【0016】
図1において複合発光素子1は、上側を主光取り出し面2とした青色発光の半導体発光素子の一例であるGaN・LED素子3と、GaN・LED素子3を搭載したサブマウント素子4と、サブマウント素子4の上に配置されたGaN・LED素子3の上面(主光取り出し面2)を覆って塗布されている樹脂部6を備えている。
【0017】
GaN・LED素子3は、上から見て1辺0.3mm程度の正方形状に形成され、サファイア基板の上面に、GaNバッファ層と、n型GaN層と、n型AlGaN層と、InGaNのSQW層と、p型AlGaN層と、p型GaN層とが順に積層された量子井戸構造を有している。n型GaN層の上面は、下段部と上段部とからなる階段状に形成されており、下段部におけるn型GaN層の上面上には、VとAlよりなるn電極が形成されている。また、上段部におけるn型GaN層の上面に、上述のn型AlGaN層と、InGaNのSQW層と、p型AlGaN層と、p型GaN層とが順に積層されている。そして、p型GaN層の上面には、RhとAuよりなるp電極が形成されている。このGaN・LED素子3は絶縁性のサファイア基板を用いて構成されているため、両電極はともに、サファイア基板の上面側のエピ面上に形成されている。
【0018】
サブマウント素子4は、平面視して0.4mm×0.6mm程度の長方形状に形成され、GaN・LED素子3は、Siダイオード素子からなるサブマウント素子4上に重なるように搭載される。GaN・LED素子3は、透光性のサファイア基板を上面に向けてこれを主光取り出し面2としている。また、下面に設けたp電極及びn電極でサブマウント素子4のn電極及びp電極にそれぞれマイクロバンプ7を介してそれぞれ電気的に接続していると共に、電極とマイクロバンプとの溶着により固定されている。さらにサブマウント素子4のp電極上の一部にはボンディングパッド部が形成されており、裏面電極とボンディングパッド部とで外部部材に接続される構造となっている。また、GaN・LED素子3の青色光の発光波長をその補色の黄緑色の波長に変換する蛍光物質を含有した樹脂が、GaN・LED素子3の主光取り出し面2のみを覆うように塗布され、平板状に形成されている。塗布の方法は、パターニングが可能なスクリーン印刷が最適である。それ以外に、例えば、ディスペンサーによるポッティングの方法でも可能である。塗布された樹脂は、乾燥して樹脂部6を構成する。
【0019】
蛍光体を含む樹脂が側面に全くない場合、蛍光体ペーストの濃度にも依存するが、天面の蛍光体の厚みは30μm程度で、樹脂部6を通過した光の色度座標x値は0.4近傍になる。この場合の天面の蛍光体の厚みのばらつきがプラスマイナス1.5μmのとき、色度xのばらつきはプラスマイナス0.009となっている。
【0020】
一方、側面に樹脂を設け、この側面の厚みを天面の厚みより大きくしたときは、天面の厚みが20μm以下で、色度座標x値が0.3近傍になる。この場合の厚みのばらつきがプラスマイナス1.5μmのとき、色度xのばらつきはプラスマイナス0.018となっている。
【0021】
従って、側面の樹脂部6の厚みを小さくすることによって、色度のばらつきが小さくなり、また、側面の樹脂が全くない状態では、色度のばらつきが約半分になる。
【0022】
また、温度が高くなる樹脂部6がGaN・LED素子3の側面から離反することになり、GaN・LED素子3の温度上昇が防止される。
【0023】
【発明の効果】
以上のように本発明によれば、温度が上昇しやすい樹脂部を上面のみに塗布して側面には塗布しないので、素子の温度上昇が抑えられる。
【図面の簡単な説明】
【図1】(A)は本発明の第1の実施の形態の複合発光素子の平面図
(B)は同複合発光素子の正面図
【図2】(A)は従来の複合発光素子の平面図
(B)は同複合発光素子の正断面図
【符号の説明】
1 複合発光素子
2 主光取り出し面
3 GaN・LED素子(半導体発光素子)
4 サブマウント素子
6 樹脂部
7 マイクロバンプ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention includes a semiconductor light-emitting device such as a light-emitting diode and a light-emitting laser diode formed of a semiconductor film formed on a light-transmitting substrate, and a fluorescent substance that converts the emission wavelength of the semiconductor light-emitting device to another wavelength. The present invention relates to a composite light-emitting device having a resin portion formed as described above.
[0002]
[Prior art]
The technique of converting the emission wavelength using a fluorescent substance has been widely known for a long time. For example, a fluorescent substance is applied to the inner wall surface of a glass of a neon tube, and an orange light is converted into green light, or a GaAs infrared light emitting light emitting diode, and a fluorescent substance is mixed in a mold resin. Those that convert infrared light into green light are well known. Recently, a white LED lamp that emits white light using a fluorescent substance in a GaN-based compound semiconductor light emitting device (GaN LED device) that emits blue light has been commercialized.
[0003]
As shown in FIG. 2, a conventional GaN-based white composite light-emitting element 70 has a GaN-based blue LED 72 flip-chip mounted on a submount element 71, and a YAG-based phosphor 73 is screened so as to cover it. This is a printed composite light emitting device.
[0004]
In the white composite light emitting device 70, the chromaticity of white is controlled by grinding the phosphor 73 on the top surface of the sapphire substrate of the blue LED 72 and adjusting the thickness (t1). For example, the thickness t1 near the white chromaticity coordinates (0.3, 0.3) is t1 <30 μm. On the other hand, the thickness (t2) of the phosphor on the side surface of the blue LED 72 is larger than the thickness (t1) of the phosphor on the top surface.
[0005]
In addition, as such a light emitting element, for example, there is an element shown in Patent Document 1.
[0006]
[Patent Document 1]
JP-A-2000-208822 (pages 2 to 7, FIG. 1)
[0007]
[Problems to be solved by the invention]
However, since the chromaticity of the chip differs depending on the thickness of the phosphor 73, the outer peripheral portion of the phosphor 73 shown in oblique lines in FIG. 2 has a yellowish color. That is, when viewed from the direction a in FIG. 2B, the blue light-emitting component and the yellow component wavelength-converted by the fluorescent substance are mixed and appear white, but when viewed from the direction b, the fluorescent substance layer becomes thicker, so that the yellow color becomes yellow. It looks bitter. Therefore, the chromaticity as a whole shifts in the yellow-green direction, and in order to correct this, it is necessary to make the thickness of the phosphor 73 on the top surface smaller than t1. In this case, although it depends on the concentration of the phosphor paste, the thickness of the phosphor on the top surface is 20 μm or less. Since the thickness is small, there is a problem that the variation in the thickness greatly affects the variation in the chromaticity.
[0008]
As the phosphor 73, a YAG phosphor is generally used. The temperature distribution at the time of light emission is considerably different between the blue composite light-emitting element in which the blue LED 72 is mounted on the submount element 71 and the white composite light-emitting element 70 in which the blue LED 72 is further covered with a phosphor paste. At the time of applying a current of 20 mA, the temperature covered by the phosphor paste becomes higher by about 20 ° C or less (at the maximum value of the temperature distribution) than that not covered by the phosphor paste. At this time, the portion having the highest temperature is the portion of the phosphor paste. This is due to the poor heat dissipation of the phosphor paste, but also to the poor emission quantum efficiency of the YAG-based phosphor of 28%.
[0009]
That is, the energy excited by absorbing the blue light of the LED chip is converted into light at a rate of 28%, and the rest is released as heat or the like. Covering the periphery of the blue LED with the phosphor as described above raises the temperature of the blue LED, and also causes a problem that the luminous efficiency is reduced and the reliability is deteriorated.
[0010]
Therefore, an object of the present invention is to provide a composite light emitting device that suppresses a rise in temperature as a whole and makes the chromaticity of a chip uniform.
[0011]
[Means for Solving the Problems]
In the composite light emitting device of the present invention, a resin portion containing a fluorescent substance is applied only on the upper surface.
[0012]
According to the present invention, it is possible to obtain a composite light-emitting device that makes the chromaticity of a chip uniform while suppressing the overall temperature rise.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
The invention according to claim 1 of the present invention is directed to a semiconductor light emitting element having a main light extraction surface on the upper side, a submount element having the semiconductor light emitting element mounted thereon, and converting an emission wavelength of the semiconductor light emitting element to another wavelength. And a resin portion coated only on the upper surface of the light emitting element disposed on the submount element, the resin portion having a temperature that tends to rise. Since it is applied only to the upper surface and not to the side surfaces, it has the effect of suppressing the temperature rise of the element.
[0014]
Hereinafter, an embodiment of the present invention will be described with reference to FIG.
[0015]
(Embodiment 1)
FIG. 1A is a plan view of the composite light emitting device according to the first embodiment of the present invention, and FIG. 1B is a front view of the composite light emitting device.
[0016]
In FIG. 1, a composite light emitting element 1 includes a GaN LED element 3 which is an example of a blue light emitting semiconductor light emitting element having a main light extraction surface 2 on the upper side, a submount element 4 on which the GaN LED element 3 is mounted, and a sub light emitting element. The GaN LED device 3 includes a resin portion 6 applied over the upper surface (main light extraction surface 2) of the GaN LED device 3 disposed on the mount device 4.
[0017]
The GaN LED element 3 is formed in a square shape having a side of about 0.3 mm when viewed from above, and a GaN buffer layer, an n-type GaN layer, an n-type AlGaN layer, and an InGaN SQW are formed on the upper surface of the sapphire substrate. It has a quantum well structure in which a layer, a p-type AlGaN layer, and a p-type GaN layer are sequentially stacked. The upper surface of the n-type GaN layer is formed in a staircase composed of a lower portion and an upper portion, and an n-electrode made of V and Al is formed on the upper surface of the n-type GaN layer in the lower portion. On the upper surface of the n-type GaN layer in the upper stage, the above-described n-type AlGaN layer, an InGaN SQW layer, a p-type AlGaN layer, and a p-type GaN layer are sequentially stacked. A p-electrode made of Rh and Au is formed on the upper surface of the p-type GaN layer. Since the GaN LED element 3 is formed using an insulating sapphire substrate, both electrodes are formed on the epi-surface on the upper surface side of the sapphire substrate.
[0018]
The submount element 4 is formed in a rectangular shape of about 0.4 mm × 0.6 mm in plan view, and the GaN LED element 3 is mounted so as to overlap the submount element 4 made of a Si diode element. The GaN LED element 3 has a translucent sapphire substrate facing upward, and this is used as the main light extraction surface 2. Further, the p-electrode and the n-electrode provided on the lower surface are electrically connected to the n-electrode and the p-electrode of the submount element 4 via the microbumps 7, respectively, and are fixed by welding the electrodes and the microbumps. ing. Further, a bonding pad portion is formed on a part of the p-electrode of the submount element 4, and the back electrode and the bonding pad portion are connected to an external member. In addition, a resin containing a fluorescent substance that converts the emission wavelength of blue light of the GaN LED element 3 to a complementary yellow-green wavelength is applied so as to cover only the main light extraction surface 2 of the GaN LED element 3. , Formed in a flat plate shape. The most suitable coating method is screen printing capable of patterning. In addition, for example, a potting method using a dispenser is also possible. The applied resin is dried to form the resin portion 6.
[0019]
When the resin containing the phosphor is completely absent on the side surface, the thickness of the phosphor on the top surface is about 30 μm, and the chromaticity coordinate x value of the light passing through the resin portion 6 is 0, although it depends on the concentration of the phosphor paste. .4. In this case, when the variation in the thickness of the phosphor on the top surface is ± 1.5 μm, the variation in the chromaticity x is ± 0.009.
[0020]
On the other hand, when a resin is provided on the side surface and the thickness of the side surface is made larger than the thickness of the top surface, the thickness of the top surface is 20 μm or less and the chromaticity coordinate x value is around 0.3. When the thickness variation in this case is ± 1.5 μm, the chromaticity x variation is ± 0.018.
[0021]
Therefore, by reducing the thickness of the resin portion 6 on the side surface, the chromaticity variation is reduced, and when there is no resin on the side surface, the chromaticity variation is reduced to about half.
[0022]
In addition, the resin portion 6 having a high temperature separates from the side surface of the GaN LED element 3, and the temperature rise of the GaN LED element 3 is prevented.
[0023]
【The invention's effect】
As described above, according to the present invention, the resin portion, whose temperature tends to rise, is applied only to the upper surface and not to the side surface, so that the temperature rise of the element can be suppressed.
[Brief description of the drawings]
FIG. 1A is a plan view of a composite light emitting device according to a first embodiment of the present invention; FIG. 1B is a front view of the composite light emitting device; FIG. FIG. 2B is a front sectional view of the composite light emitting device.
Reference Signs List 1 composite light-emitting element 2 main light extraction surface 3 GaN LED element (semiconductor light-emitting element)
4 Submount element 6 Resin part 7 Micro bump

Claims (1)

上側を主光取り出し面とした半導体発光素子と、
前記半導体発光素子を搭載したサブマウント素子と、
前記半導体発光素子の発光波長を他の波長に変換する蛍光物質を含有するとともに、前記サブマウント素子の上に配置された前記半導体発光素子の上面のみを覆って塗布されている樹脂部とを有する複合発光素子。
A semiconductor light emitting element having the upper side as a main light extraction surface,
A submount element on which the semiconductor light emitting element is mounted,
A resin portion containing a fluorescent substance that converts the emission wavelength of the semiconductor light emitting element to another wavelength, and having a resin portion applied so as to cover only the upper surface of the semiconductor light emitting element disposed on the submount element. Composite light emitting device.
JP2002360542A 2002-12-12 2002-12-12 Compound light emitting element Pending JP2004193393A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002360542A JP2004193393A (en) 2002-12-12 2002-12-12 Compound light emitting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002360542A JP2004193393A (en) 2002-12-12 2002-12-12 Compound light emitting element

Publications (1)

Publication Number Publication Date
JP2004193393A true JP2004193393A (en) 2004-07-08

Family

ID=32759594

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002360542A Pending JP2004193393A (en) 2002-12-12 2002-12-12 Compound light emitting element

Country Status (1)

Country Link
JP (1) JP2004193393A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013531367A (en) * 2010-05-04 2013-08-01 州 蔡 LED light source and manufacturing method thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09153645A (en) * 1995-11-30 1997-06-10 Toyoda Gosei Co Ltd Group-iii nitride semiconductor light-emitting device
JPH11510968A (en) * 1996-06-11 1999-09-21 フィリップス エレクトロニクス ネムローゼ フェンノートシャップ Visible light emitting display including ultraviolet light emitting diode and ultraviolet excited visible light emitting phosphor and method of manufacturing the device
JP2000002222A (en) * 1998-06-17 2000-01-07 Kotobuki Corp Fastening device
JP2000208822A (en) * 1999-01-11 2000-07-28 Matsushita Electronics Industry Corp Semiconductor light-emitting device
JP2002043633A (en) * 2000-07-25 2002-02-08 Stanley Electric Co Ltd White light emitting diode
JP2002289925A (en) * 2001-03-23 2002-10-04 Citizen Electronics Co Ltd Light-emitting diode
JP2002305328A (en) * 2001-04-09 2002-10-18 Nichia Chem Ind Ltd Light emitting element
JP2002344021A (en) * 2001-05-16 2002-11-29 Nichia Chem Ind Ltd Light-emitting device
JP2003101074A (en) * 2001-09-26 2003-04-04 Stanley Electric Co Ltd Light-emitting device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09153645A (en) * 1995-11-30 1997-06-10 Toyoda Gosei Co Ltd Group-iii nitride semiconductor light-emitting device
JPH11510968A (en) * 1996-06-11 1999-09-21 フィリップス エレクトロニクス ネムローゼ フェンノートシャップ Visible light emitting display including ultraviolet light emitting diode and ultraviolet excited visible light emitting phosphor and method of manufacturing the device
JP2000002222A (en) * 1998-06-17 2000-01-07 Kotobuki Corp Fastening device
JP2000208822A (en) * 1999-01-11 2000-07-28 Matsushita Electronics Industry Corp Semiconductor light-emitting device
JP2002043633A (en) * 2000-07-25 2002-02-08 Stanley Electric Co Ltd White light emitting diode
JP2002289925A (en) * 2001-03-23 2002-10-04 Citizen Electronics Co Ltd Light-emitting diode
JP2002305328A (en) * 2001-04-09 2002-10-18 Nichia Chem Ind Ltd Light emitting element
JP2002344021A (en) * 2001-05-16 2002-11-29 Nichia Chem Ind Ltd Light-emitting device
JP2003101074A (en) * 2001-09-26 2003-04-04 Stanley Electric Co Ltd Light-emitting device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013531367A (en) * 2010-05-04 2013-08-01 州 蔡 LED light source and manufacturing method thereof
KR101621811B1 (en) * 2010-05-04 2016-05-17 조우 차이 LED light source and Manufacturing Method Thereof

Similar Documents

Publication Publication Date Title
US7935978B2 (en) Light emitting device and method for manufacturing the same
US20190267516A1 (en) Thin film light emitting diode
JP5377985B2 (en) Semiconductor light emitting device
US7414271B2 (en) Thin film led
TWI633679B (en) Standing transparent mirrorless light emitting diode
JP5528794B2 (en) AC drive type light emitting device
JP2000208822A (en) Semiconductor light-emitting device
JP2007242856A (en) Chip-type semiconductor light emitting device
JP4678391B2 (en) Lighting equipment
JP2010219562A (en) Illumination apparatus
JP2009088299A (en) Light-emitting element and light-emitting device provided with the element
JP3725413B2 (en) Semiconductor light emitting device
JP2010092897A (en) Semiconductor light-emitting apparatus
JP2001298216A (en) Surface-mounting semiconductor light-emitting device
JP2001217461A (en) Compound light-emitting device
JP2001177157A (en) Semiconductor light emitting device
JP2000150966A (en) Semiconductor light emitting device and manufacture thereof
JP2005311395A (en) Manufacturing method of semiconductor light-emitting device
JP5484544B2 (en) Light emitting device
JP2006032949A (en) Light emitting device using deep ultraviolet radiation
JP2007324630A (en) Semiconductor light-emitting device
JP2004193393A (en) Compound light emitting element
KR100450514B1 (en) White light emitting diode
JP3412601B2 (en) Method for manufacturing semiconductor light emitting device
WO2013027413A1 (en) Protection element and light emitting device using same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051028

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20051114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080520

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080520

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080924