[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2013027413A1 - Protection element and light emitting device using same - Google Patents

Protection element and light emitting device using same Download PDF

Info

Publication number
WO2013027413A1
WO2013027413A1 PCT/JP2012/005313 JP2012005313W WO2013027413A1 WO 2013027413 A1 WO2013027413 A1 WO 2013027413A1 JP 2012005313 W JP2012005313 W JP 2012005313W WO 2013027413 A1 WO2013027413 A1 WO 2013027413A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
electrode
emitting element
semiconductor substrate
light
Prior art date
Application number
PCT/JP2012/005313
Other languages
French (fr)
Japanese (ja)
Inventor
直哉 友田
良幸 則光
中原 光一
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to US14/234,956 priority Critical patent/US20140159061A1/en
Publication of WO2013027413A1 publication Critical patent/WO2013027413A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/58Structural electrical arrangements for semiconductor devices not otherwise provided for, e.g. in combination with batteries
    • H01L23/60Protection against electrostatic charges or discharges, e.g. Faraday shields
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • H01L25/167Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits comprising optoelectronic devices, e.g. LED, photodiodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/483Containers
    • H01L33/486Containers adapted for surface mounting

Definitions

  • the present invention relates to a protection element for protecting a light emitting element from a high voltage such as static electricity by being mounted in parallel with the light emitting element and a light emitting device using the same.
  • the light emitting element When a high voltage with a reverse polarity is applied to the light emitting element, the light emitting element may be destroyed, and thus a protective element may be connected to the light emitting element.
  • a light emitting element and a Zener diode which is an example of a protection element, are mounted side by side on an element mounting surface of a printed wiring board, and the light emitting element and the Zener diode are mounted by a sealing resin. It is sealed.
  • a wiring pattern for connecting a light emitting element and a Zener diode in parallel is provided on a printed wiring board.
  • Patent Document 1 a protection element described in Patent Document 1 is known.
  • a flip chip type light emitting element is conductively mounted on a submount element (Si diode element), which is a protective element, via an Au micro bump, and contains a fluorescent material around the light emitting element.
  • a composite light emitting device covered with resin is described.
  • the p-type semiconductor region of the Si diode element is provided with a p-electrode that is connected to the light-emitting element and has a bonding pad portion to which a wire is connected.
  • an n electrode connected to the light emitting element is provided in the n-type semiconductor region of the Si diode element.
  • a back electrode connected to the n-type semiconductor region is formed.
  • This composite light-emitting element is connected via a back electrode by mounting the composite light-emitting element on an external member or the like provided with a lead on an insulating substrate, and connected via a wire and a bonding pad portion.
  • the present disclosure can provide a protective element that can uniformly irradiate the light from the light emitting element to the surroundings while protecting the light emitting element, and a light emitting device using the protective element.
  • One aspect of the protection element according to the present disclosure is provided on a semiconductor substrate, a mounting surface on the semiconductor substrate on which a flip-chip mounting type light emitting element is mounted, and a connection electrode connected to an electrode of the light emitting element;
  • a protection circuit connected to the light emitting element via the connection electrode, and provided on the surface opposite to the mounting surface of the semiconductor substrate, connected to the corresponding connection electrode, and connected to the electrode of the mounting substrate And a back electrode.
  • the protection element of the present disclosure since wiring with a wire is not necessary, it is not necessary to seal the entire wiring destination including the semiconductor substrate and the protection element after wiring, and one protection element equipped with a light emitting element is provided. It can be treated as a light emitting device. Therefore, the protective element of the present disclosure can uniformly irradiate the light from the light emitting element to the surroundings while protecting the light emitting element, and can be downsized.
  • FIG. 1 is a sectional view showing a light emitting device according to an embodiment.
  • 2 is a plan view showing a protection element of the light emitting device shown in FIG.
  • FIG. 3 is a bottom view showing the protective element shown in FIG. 4 is a diagram showing a circuit configuration of the light emitting device shown in FIG.
  • An exemplary protective element is provided on a semiconductor substrate, a mounting surface of the semiconductor substrate on which a flip-chip mounting type light emitting element is mounted, a connection electrode connected to an electrode of the light emitting element, and a connection electrode provided on the semiconductor substrate.
  • a protection circuit connected to the light emitting element via the semiconductor substrate, a back surface electrode provided on the surface opposite to the mounting surface of the semiconductor substrate, connected to the corresponding connection electrode, and connected to the electrode of the mounting substrate. I have.
  • the protection circuit prevents the light from traveling from the light emitting element. Can be prevented.
  • the bottom electrode can be conductively connected to the mounting substrate, the wire can be prevented from obstructing the progress of light from the light emitting element.
  • the protective element on which the light emitting element is mounted can be handled as one light emitting device.
  • the exemplary protection element may further include a through-hole electrode that connects the connection electrode and the bottom electrode.
  • connection electrode and the bottom electrode By connecting the connection electrode and the bottom electrode via the through-hole electrode, after forming a plurality of protection circuits on the wafer, the connection electrode, the bottom electrode and the through-hole electrode corresponding to each protection circuit are in the wafer state.
  • a large number of protective elements can be obtained by forming and dicing in FIG.
  • the semiconductor substrate may be a silicon substrate.
  • the silicon substrate can be easily flatter than, for example, a ceramic substrate, and the optical axis is less likely to shift when a light emitting element is mounted.
  • the protection circuit may include a Zener diode, a diode, or a varistor.
  • the light emitting element can be appropriately protected.
  • An exemplary light emitting device includes an exemplary protective element, a light emitting element mounted on the protective element, a phosphor that emits light when excited by light from the light emitting element, and a resin sealing portion that seals the light emitting element. It has.
  • the light emitting device can be protected by providing the light emitting device in which the light emitting device is sealed by the resin sealing portion containing the phosphor that is excited by the light from the light emitting device and emits light.
  • a light emitting device of various colors can be obtained by mixing the light emission color of the light emitting element and the light emission color of the phosphor.
  • the light emitting device 1 can be used as an illumination device for a strobe of a mobile phone.
  • the light emitting device 1 is conductively mounted by interposing a conductive adhesive material such as solder on wiring patterns 2a and 2b for supplying power to a mounting substrate (mounting substrate) 2 built in a mobile phone.
  • the light emitting device 1 includes a light emitting element 10 and a protection element 20.
  • the light emitting element 10 is a flip chip mounting type light emitting diode (LED) in which a semiconductor layer is laminated on a light transmissive substrate and an electrode for supplying power is formed.
  • the light emitting element 10 can be an LED that emits blue light.
  • a GaN substrate is provided as the substrate.
  • an N-GaN layer that is an n-type layer, a light emitting layer, and a P-GaN layer that is a p-type layer are stacked as semiconductor layers.
  • a buffer layer may be provided between the GaN substrate and the N-GaN layer.
  • the n-type dopant for the N-GaN layer Si, Ge, or the like can be suitably used.
  • the light emitting layer contains at least Ga and N, and a desired light emission wavelength can be obtained by containing an appropriate amount of In as necessary.
  • the light emitting layer may have a single-layer structure, but for example, may have a multi-quantum well structure in which at least a pair of InGaN layers and GaN layers are alternately stacked.
  • the luminance can be further improved by forming the light emitting layer with a multi-quantum well structure.
  • the light emitting element 10 of the present embodiment is an LED that does not have an optical waveguide, but may be a laser diode or a superluminescent diode that has an optical waveguide.
  • the P-GaN layer is laminated directly on the light emitting layer or via a semiconductor layer containing at least Ga and N. Further, Mg or the like is suitably used as the p-type dopant for the P-GaN layer.
  • a cathode electrode 11 and an anode electrode 12 are formed.
  • the cathode electrode 11 is an n-electrode provided in a region on the N-GaN layer obtained by etching a P-GaN layer, a light emitting layer, and a part of the N-GaN layer.
  • the cathode electrode 11 is formed by laminating an Al layer, a Ti layer, and an Au layer.
  • the anode electrode 12 is a p-electrode laminated on the remaining etched P-GaN layer.
  • the anode electrode 12 is formed by laminating a Ni layer and an Ag layer.
  • the anode electrode 12 functions as a reflective electrode by including an Ag layer having a high reflectance.
  • the light emitting element 10 is mounted on the protective element 20 via the bump B.
  • the bump B can be a plated bump.
  • the protection element 20 has a semiconductor substrate 24 on which a protection circuit 243 is formed.
  • the semiconductor substrate 24 is provided on the surface on the light emitting element 10 side, and a pair of connection electrodes 21 that are electrically connected to the light emitting element 10, and a pair of bottom electrode 22 that is provided on the surface on the mounting substrate side and is electrically connected to the substrate, A pair of through-hole electrodes 23 for connecting the connection electrode 21 and the bottom electrode 22 is provided.
  • the protective element 20 is sealed with a resin sealing portion 25.
  • the protection element 20 is, for example, a Zener diode.
  • connection electrode 21 is provided on the mounting surface 241 of the semiconductor substrate 24 and includes a cathode side electrode 211 connected to the cathode electrode 11 of the light emitting element 10 and an anode side electrode 212 connected to the anode electrode 12.
  • the connection electrode 21 is provided at a position corresponding to the cathode electrode 11 and the anode electrode 12 of the light emitting element 10, and the light emitting element 10 can be electrically connected to the light emitting element by mounting the light emitting element 10 at a predetermined position.
  • the cathode side electrode 211 is formed in a U shape along the periphery of the semiconductor substrate 24.
  • the anode side electrode 212 is provided in the central region and the peripheral region which are vacated by the cathode side electrode 211 formed in a U-shape.
  • the positions and shapes of the cathode side electrode 211 and the anode side electrode 212 may be appropriately changed according to the positions and shapes of the cathode electrode 11 and the anode electrode 12 of the light emitting element 10 to be mounted.
  • the bottom electrode 22 is provided on the back surface 242 opposite to the mounting surface 241 of the semiconductor substrate 24, and includes a negative electrode 221 and a positive electrode 222.
  • the negative electrode 221 and the positive electrode 222 are each formed in a rectangular shape, and are disposed on one side and the other side of the back surface 242 of the semiconductor substrate 24. What is necessary is just to change suitably the position and shape of the bottom face electrode 22 according to the position and shape of the electrode of the mounting board
  • the through-hole electrode 23 is disposed at each corner of the four corners of the semiconductor substrate 24 and connects the connection electrode 21 provided on the mounting surface 241 and the bottom electrode 22 provided on the back surface 242.
  • the through hole electrode 23 includes a negative electrode side through hole electrode 231 connecting the cathode electrode 211 and the negative electrode 221, and a positive electrode through hole electrode 232 connecting the anode electrode 212 and the positive electrode 222. .
  • the semiconductor substrate 24 is formed of a rectangular silicon substrate.
  • a p-type semiconductor region 2432 and an n-type semiconductor region 2431 are formed in the semiconductor substrate 24, and a protection circuit including a Zener diode or the like is formed.
  • the semiconductor substrate 24 may be formed by forming a plurality of p-type semiconductor regions 2432 and n-type semiconductor regions 2431 on a silicon substrate in a wafer state, and dividing them into pieces by a dicer.
  • the resin sealing portion 25 is made of resin and is formed on the mounting surface 241 of the semiconductor substrate 24.
  • the resin sealing portion 25 includes a first sealing portion 251 and a second sealing portion 252.
  • the first sealing portion 251 is formed so as to cover the entire light emitting element 10.
  • the first sealing portion 251 can be formed of a light transmissive resin such as a silicon resin or an epoxy resin, for example.
  • the first sealing portion 251 may contain a phosphor that emits light that is excited by light from the light emitting element 10 and wavelength-converted.
  • yttrium aluminum garnet (YAG) phosphor and silicate phosphor can be used as the phosphor. If the phosphor emits light in yellow that is a complementary color of blue, the first sealing portion 251 can emit light in white in which blue and yellow are mixed. In order to enhance the color rendering properties of white light, it is possible to use a combination of a red phosphor and a green phosphor, or a combination of a red phosphor and a yellow phosphor.
  • the 2nd sealing part 252 is formed so that the 1st sealing part 251 whole may be covered.
  • the second sealing portion 252 can be formed of a light transmissive resin such as a silicon resin or an epoxy resin.
  • the first sealing portion 251 can be formed by, for example, a screen printing method.
  • a protective circuit and each electrode are formed in advance, and light is emitted on a semiconductor substrate 24 in a wafer state on which the light emitting element 10 is mounted.
  • a printing plate having an opening corresponding to the element 10 may be disposed, and a resin material containing a phosphor may be filled into the opening and molded.
  • the second sealing is performed so that the outer shape covering the first sealing portion 251 is substantially rectangular.
  • a portion 252 can be formed.
  • the light emitting element 10 since the light emitting element 10 is mounted on the protection element 20, the light emitting element 10 is connected to the Zener diode ZD, which is the protection element 20, as shown in FIG. It is the structure connected in parallel.
  • the protection element 20 is a Zener diode formed by an n-type semiconductor region 2431 and a p-type semiconductor region 2432.
  • the protection circuit may be a diode or a varistor.
  • the protection element 20 includes the light-emitting element 10 so that the light-emitting element 10 and the Zener diode ZD are connected in parallel.
  • the resistance element is connected in series with the light-emitting element 10
  • the Zener diode is connected in parallel with the light-emitting element 10 and the resistance element connected in series. It is good also as a protection element of the structure connected.
  • the light emitting device 1 mounted on the mounting substrate 2 does not need to be wired from the protective element 20.
  • the entire protective element 20 on which the light emitting element 10 is mounted can be used without being resin-sealed. Therefore, since resin sealing for protecting the wires is unnecessary, for example, the sealing process can be reduced in the product assembly process, so that the number of steps can be reduced and the cost can be suppressed.
  • the light emitting device 1 Since the light emitting device 1 has the light emitting element 10 mounted on the mounting surface 241 of the protective element 20, there is no wire or other electrical component that obstructs the progress of light from the light emitting element 10. For this reason, since the light from the light emitting element 10 can be uniformly irradiated to the circumference
  • the semiconductor substrate 24 is not limited to a silicon substrate.
  • the silicon substrate for example, is less likely to bend than a ceramic substrate or the like, and has excellent flatness. Therefore, the first sealing portion 251 is less likely to be bent, and the thickness of the first sealing portion 251 is uniform. Easy to do. For this reason, the density
  • Silicon has a higher thermal conductivity than ceramics (Al 2 O 3 , LTCC (Low Temperature Co-fired Ceramics)) and the like. Therefore, by using the semiconductor substrate 24 as a silicon substrate, the heat from the light emitting element 10 can be efficiently transferred from the bottom electrode 22 to the mounting substrate 2 through the semiconductor substrate 24. Thereby, the effect which suppresses deterioration of the light emitting element 10 is also acquired.
  • ceramics Al 2 O 3 , LTCC (Low Temperature Co-fired Ceramics)
  • the pair of connection electrodes 21 and the pair of bottom electrodes 22 can be connected by forming side electrodes on the side surfaces of the semiconductor substrate 24.
  • the through-hole electrode 23 can be formed in a wafer state before being singulated. For this reason, there is an advantage that the manufacturing process is easy because there is no need for a process such as plating after the semiconductor substrate 24 is separated.
  • the lighting device can be similarly used for other lighting devices.
  • the mounting substrate is the mounting substrate, the light emitting device may be mounted on a lead frame or the like instead of the mounting substrate.
  • the present disclosure can uniformly irradiate the light from the light emitting element to the surroundings while protecting the light emitting element, and can be downsized. Therefore, the light emitting element is mounted and connected in parallel with the light emitting element. This is suitable for a protective element that protects the light emitting element from a high voltage such as static electricity and a light emitting device using the protective element.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Led Device Packages (AREA)

Abstract

A protection element (10) is provided with a semiconductor substrate (24), a connecting electrode (21), a rear surface electrode (22), and a protection circuit. The connecting electrode (21) is provided on a mounting surface (241) for having a flip chip-type light emitting element (10) mounted thereon, said mounting surface being a surface of the semiconductor substrate (24), and the connecting electrode is connected to an electrode of the light emitting element (10). The protection circuit is provided on the semiconductor substrate (24), and is connected to the light emitting element (10) via the connecting electrode (21). The rear surface electrode (22) is provided on a surface (242) of the semiconductor substrate (24), said surface being on the reverse side of the mounting surface (241), and the rear surface electrode is connected to the corresponding connecting electrode (21), and is connected to an electrode of a base body (2) having the element mounted thereon.

Description

保護素子及びこれを用いた発光装置Protective element and light emitting device using the same
 本発明は、発光素子が搭載されると共に、この発光素子と並列接続されることで発光素子を静電気などの高電圧から保護する保護素子及びこれを用いた発光装置に関する。 The present invention relates to a protection element for protecting a light emitting element from a high voltage such as static electricity by being mounted in parallel with the light emitting element and a light emitting device using the same.
 発光素子は、電球や蛍光灯と比べて消費電流が小さく、長寿であり、小型であることから、電球や蛍光灯に代わる光源として、需要が増大している。 Demand for light-emitting elements is increasing as a light source to replace light bulbs and fluorescent lamps because they consume less current, have a longer life, and are smaller than light bulbs and fluorescent lamps.
 発光素子に逆極性で高電圧が印加されると破壊を起こすことから、発光素子には保護素子が接続されることがある。 When a high voltage with a reverse polarity is applied to the light emitting element, the light emitting element may be destroyed, and thus a protective element may be connected to the light emitting element.
 例えば、従来の発光装置は、プリント配線基板の素子搭載面の上に、発光素子と保護素子の一例であるツェナーダイオードとを横方向に並べて搭載し、封止樹脂により発光素子とツェナーダイオードとを封止している。この発光装置では、プリント配線基板に発光素子とツェナーダイオードとを並列接続する配線パターンが設けられている。 For example, in a conventional light emitting device, a light emitting element and a Zener diode, which is an example of a protection element, are mounted side by side on an element mounting surface of a printed wiring board, and the light emitting element and the Zener diode are mounted by a sealing resin. It is sealed. In this light emitting device, a wiring pattern for connecting a light emitting element and a Zener diode in parallel is provided on a printed wiring board.
 また、特許文献1に記載された保護素子が知られている。特許文献1には、フリップチップ型の発光素子が、保護素子であるサブマウント素子(Siダイオード素子)上に、Auマイクロバンプを介して導通搭載され、発光素子の周りを、蛍光物質を含有した樹脂で覆った複合発光素子が記載されている。このSiダイオード素子のp型半導体領域には、発光素子と接続し、ワイヤが接続されるボンディングパッド部が形成されたp電極が設けられている。Siダイオード素子のn型半導体領域には、発光素子と接続するn電極が設けられている。また、n型半導体領域に接続する裏面電極が形成されている。 Further, a protection element described in Patent Document 1 is known. In Patent Document 1, a flip chip type light emitting element is conductively mounted on a submount element (Si diode element), which is a protective element, via an Au micro bump, and contains a fluorescent material around the light emitting element. A composite light emitting device covered with resin is described. The p-type semiconductor region of the Si diode element is provided with a p-electrode that is connected to the light-emitting element and has a bonding pad portion to which a wire is connected. In the n-type semiconductor region of the Si diode element, an n electrode connected to the light emitting element is provided. A back electrode connected to the n-type semiconductor region is formed.
 この複合発光素子は、絶縁性基板にリードが設けられた外部部材などに、複合発光素子を搭載することで裏面電極を介して接続され、ワイヤとボンディングパッド部を介在させて接続される。 This composite light-emitting element is connected via a back electrode by mounting the composite light-emitting element on an external member or the like provided with a lead on an insulating substrate, and connected via a wire and a bonding pad portion.
特開2001-15817号公報Japanese Patent Laid-Open No. 2001-15817
 しかし、発光素子と保護素子とをプリント配線基板の上に並べて配置した従来の発光装置では、発光素子の光の進行を保護素子が邪魔をしてしまうため、発光素子からの光を周囲に均一に照射させることができない。 However, in a conventional light emitting device in which a light emitting element and a protective element are arranged side by side on a printed wiring board, since the protective element interferes with the progress of the light of the light emitting element, the light from the light emitting element is uniform around Can not be irradiated.
 また、特許文献1に記載の発光装置では、ワイヤを介在させて外部部材と接続されるため、ワイヤが発光素子からの光の進行を邪魔するため、発光素子からの光を周囲に均一に照射させることができない。また、ワイヤを保護するためにさらに樹脂にて封止する必要があり、小型化の阻害要因となるだけでなく、製造に手間を要し、コストが増大する。 In addition, in the light emitting device described in Patent Document 1, since the wire is connected to an external member via a wire, the wire obstructs the progress of light from the light emitting element. I can't let you. Further, in order to protect the wire, it is necessary to further seal with a resin, which not only becomes an obstacle to downsizing, but also requires labor for manufacturing and increases costs.
 そこで本開示は、発光素子を保護しつつ、発光素子からの光を周囲に均一に照射させることができ、小型化を図ることができる保護素子及びこれを用いた発光装置を提供できるようにする。 Thus, the present disclosure can provide a protective element that can uniformly irradiate the light from the light emitting element to the surroundings while protecting the light emitting element, and a light emitting device using the protective element. .
 本開示に係る保護素子の一態様は、半導体基板と、半導体基板における、フリップチップ実装型の発光素子を搭載する搭載面に設けられ、発光素子の電極と接続される接続電極と、半導体基板に設けられ、接続電極を介して発光素子と接続される保護回路と、半導体基板の搭載面と反対側の面に設けられ、対応する接続電極と接続されており、実装用基体の電極と接続される裏面電極とを備えている。 One aspect of the protection element according to the present disclosure is provided on a semiconductor substrate, a mounting surface on the semiconductor substrate on which a flip-chip mounting type light emitting element is mounted, and a connection electrode connected to an electrode of the light emitting element; A protection circuit connected to the light emitting element via the connection electrode, and provided on the surface opposite to the mounting surface of the semiconductor substrate, connected to the corresponding connection electrode, and connected to the electrode of the mounting substrate And a back electrode.
 本開示の保護素子によれば、ワイヤによる配線が必要ないので、配線した後に半導体基板や保護素子を含めた配線先全体を封止する必要がなく、発光素子を搭載した保護素子を1個の発光装置として扱うことができる。したがって、本開示の保護素子は、発光素子を保護しつつ、発光素子からの光を周囲に均一に照射させることができ、小型化を図ることができる。 According to the protection element of the present disclosure, since wiring with a wire is not necessary, it is not necessary to seal the entire wiring destination including the semiconductor substrate and the protection element after wiring, and one protection element equipped with a light emitting element is provided. It can be treated as a light emitting device. Therefore, the protective element of the present disclosure can uniformly irradiate the light from the light emitting element to the surroundings while protecting the light emitting element, and can be downsized.
図1は一実施形態に係る発光装置を示す断面図FIG. 1 is a sectional view showing a light emitting device according to an embodiment. 図2は図1に示す発光装置の保護素子を示す平面図2 is a plan view showing a protection element of the light emitting device shown in FIG. 図3は図2に示す保護素子を示す底面図FIG. 3 is a bottom view showing the protective element shown in FIG. 図4は図1に示す発光装置の回路構成を示す図4 is a diagram showing a circuit configuration of the light emitting device shown in FIG.
 例示の保護素子は、半導体基板と、半導体基板における、フリップチップ実装型の発光素子を搭載する搭載面に設けられ、発光素子の電極と接続される接続電極と、半導体基板に設けられ、接続電極を介して発光素子と接続される保護回路と、半導体基板の搭載面と反対側の面に設けられ、対応する接続電極と接続されており、実装用基体の電極と接続される裏面電極とを備えている。 An exemplary protective element is provided on a semiconductor substrate, a mounting surface of the semiconductor substrate on which a flip-chip mounting type light emitting element is mounted, a connection electrode connected to an electrode of the light emitting element, and a connection electrode provided on the semiconductor substrate. A protection circuit connected to the light emitting element via the semiconductor substrate, a back surface electrode provided on the surface opposite to the mounting surface of the semiconductor substrate, connected to the corresponding connection electrode, and connected to the electrode of the mounting substrate. I have.
 例示の保護素子によれば、発光素子は搭載面に設けられた接続電極により、保護回路が形成された半導体基板に搭載されるので、保護回路が発光素子からの光の進行を邪魔することを防止することができる。また、底面電極により実装用基体に導通接続することができるため、ワイヤが発光素子からの光の進行を邪魔することを防止することができる。また、ワイヤによる配線が必要ないので、配線した後に配線先を含めて全体を封止する必要がないため、発光素子を搭載した保護素子を1個の発光装置として扱うことができる。 According to the exemplary protection element, since the light emitting element is mounted on the semiconductor substrate on which the protection circuit is formed by the connection electrode provided on the mounting surface, the protection circuit prevents the light from traveling from the light emitting element. Can be prevented. In addition, since the bottom electrode can be conductively connected to the mounting substrate, the wire can be prevented from obstructing the progress of light from the light emitting element. Further, since there is no need for wiring by wires, it is not necessary to seal the whole including the wiring destination after wiring, and thus the protective element on which the light emitting element is mounted can be handled as one light emitting device.
 例示の保護素子は、接続電極と、底面電極とを接続するスルーホール電極をさらに備えていてもよい。 The exemplary protection element may further include a through-hole electrode that connects the connection electrode and the bottom electrode.
 接続電極と底面電極とをスルーホール電極を介して接続する構成とすることにより、ウェハに複数の保護回路を形成した後、各保護回路に対応する接続電極、底面電極及びスルーホール電極をウェハ状態において形成して、ダイシングすることにより、保護素子を多数個取りすることができる。 By connecting the connection electrode and the bottom electrode via the through-hole electrode, after forming a plurality of protection circuits on the wafer, the connection electrode, the bottom electrode and the through-hole electrode corresponding to each protection circuit are in the wafer state. A large number of protective elements can be obtained by forming and dicing in FIG.
 例示の保護素子において、半導体基板は、シリコン基板であってもよい。 In the illustrated protection element, the semiconductor substrate may be a silicon substrate.
 シリコン基板は、例えばセラミック基板よりも平坦性を高くすることが容易であり、発光素子を搭載したときに、光軸のずれが発生しにくい。 The silicon substrate can be easily flatter than, for example, a ceramic substrate, and the optical axis is less likely to shift when a light emitting element is mounted.
 例示の保護素子において、保護回路は、ツェナーダイオード、ダイオード又はバリスタを含む構成とすることができる。 In the illustrated protection element, the protection circuit may include a Zener diode, a diode, or a varistor.
 このようにすれば、発光素子を適切に保護することができる。 In this way, the light emitting element can be appropriately protected.
 例示の発光装置は、例示の保護素子と、保護素子に搭載された発光素子と、発光素子からの光に励起されて発光する蛍光体が含有され、発光素子を封止する樹脂封止部とを備えている。 An exemplary light emitting device includes an exemplary protective element, a light emitting element mounted on the protective element, a phosphor that emits light when excited by light from the light emitting element, and a resin sealing portion that seals the light emitting element. It has.
 例示の発光装置によれば、発光素子からの光に励起されて発光する蛍光体を含有した樹脂封止部により発光素子を封止した発光装置とすることにより、発光素子を保護することができると共に、発光素子の発光色と蛍光体の発光色とが混色することにより様々な色の発光装置とすることができる。 According to the illustrated light emitting device, the light emitting device can be protected by providing the light emitting device in which the light emitting device is sealed by the resin sealing portion containing the phosphor that is excited by the light from the light emitting device and emits light. At the same time, a light emitting device of various colors can be obtained by mixing the light emission color of the light emitting element and the light emission color of the phosphor.
 (一実施形態)
 一実施形態に係る保護素子及び発光装置について、図面に基づいて説明する。発光装置1は、例えば、図1に示すように、携帯電話のストロボ用の照明装置として用いることができる。発光装置1は、例えば携帯電話に内蔵される実装基板(実装用基体)2の電源供給用の配線パターン2a,2bに半田などの導電性接着材を介在させて導通搭載される。
(One embodiment)
A protection element and a light emitting device according to an embodiment will be described with reference to the drawings. For example, as shown in FIG. 1, the light emitting device 1 can be used as an illumination device for a strobe of a mobile phone. For example, the light emitting device 1 is conductively mounted by interposing a conductive adhesive material such as solder on wiring patterns 2a and 2b for supplying power to a mounting substrate (mounting substrate) 2 built in a mobile phone.
 図1から図3に示すように、発光装置1は、発光素子10と、保護素子20とを備えている。 As shown in FIGS. 1 to 3, the light emitting device 1 includes a light emitting element 10 and a protection element 20.
 発光素子10は、光透過性を有する基板に半導体層が積層され、電源を供給する電極が形成されたフリップチップ実装型の発光ダイオード(LED)である。例えば、発光素子10は青色光を発光するLEDとすることができる。 The light emitting element 10 is a flip chip mounting type light emitting diode (LED) in which a semiconductor layer is laminated on a light transmissive substrate and an electrode for supplying power is formed. For example, the light emitting element 10 can be an LED that emits blue light.
 本実施形態では、基板としてGaN基板が設けられている。GaN基板上には、半導体層として、n型層であるN-GaN層と、発光層と、p型層であるP-GaN層とが積層されている。GaN基板とN-GaN層との間にバッファ層を設けてもよい。N-GaN層へのn型ドーパントとしては、Si又はGe等を好適に用いることができる。発光層は、少なくともGaとNとを含み、必要に応じて適量のInを含ませることで、所望の発光波長を得ることができる。また、発光層としては、1層構造とすることもできるが、例えば、InGaN層とGaN層を交互に少なくとも一対積層した多量子井戸構造とすることも可能である。発光層を多量子井戸構造とすることで、さらに輝度を向上させることができる。本実施形態の発光素子10は、光導波路を有していないLEDであるが、光導波路を有するレーザダイオード又はスーパールミネッセントダイオード等であってもよい。 In this embodiment, a GaN substrate is provided as the substrate. On the GaN substrate, an N-GaN layer that is an n-type layer, a light emitting layer, and a P-GaN layer that is a p-type layer are stacked as semiconductor layers. A buffer layer may be provided between the GaN substrate and the N-GaN layer. As the n-type dopant for the N-GaN layer, Si, Ge, or the like can be suitably used. The light emitting layer contains at least Ga and N, and a desired light emission wavelength can be obtained by containing an appropriate amount of In as necessary. The light emitting layer may have a single-layer structure, but for example, may have a multi-quantum well structure in which at least a pair of InGaN layers and GaN layers are alternately stacked. The luminance can be further improved by forming the light emitting layer with a multi-quantum well structure. The light emitting element 10 of the present embodiment is an LED that does not have an optical waveguide, but may be a laser diode or a superluminescent diode that has an optical waveguide.
 P-GaN層は、発光層の上に直接あるいは少なくともGaとNを含んだ半導体層を介して積層されたものである。また、P-GaN層へのp型ドーパントとしては、Mg等が好適に用いられる。 The P-GaN layer is laminated directly on the light emitting layer or via a semiconductor layer containing at least Ga and N. Further, Mg or the like is suitably used as the p-type dopant for the P-GaN layer.
 半導体層には、カソード電極11とアノード電極12とが形成されている。カソード電極11は、P-GaN層と発光層とN-GaN層の一部とをエッチングしたN-GaN層上の領域に設けられている、n電極である。カソード電極11は、Al層とTi層とAu層とが積層されて形成されている。 In the semiconductor layer, a cathode electrode 11 and an anode electrode 12 are formed. The cathode electrode 11 is an n-electrode provided in a region on the N-GaN layer obtained by etching a P-GaN layer, a light emitting layer, and a part of the N-GaN layer. The cathode electrode 11 is formed by laminating an Al layer, a Ti layer, and an Au layer.
 アノード電極12は、エッチングされた残余のP-GaN層上に積層されている、p電極である。アノード電極12は、Ni層とAg層とを積層することで形成されている。アノード電極12は、反射率が高いAg層を含むことで反射電極として機能する。 The anode electrode 12 is a p-electrode laminated on the remaining etched P-GaN layer. The anode electrode 12 is formed by laminating a Ni layer and an Ag layer. The anode electrode 12 functions as a reflective electrode by including an Ag layer having a high reflectance.
 発光素子10は、バンプBを介して保護素子20に搭載されている。例えば、バンプBはメッキバンプとすることができる。 The light emitting element 10 is mounted on the protective element 20 via the bump B. For example, the bump B can be a plated bump.
 保護素子20は、保護回路243が形成された半導体基板24を有している。半導体基板24は、発光素子10側の面に設けられ、発光素子10と導通させる一対の接続電極21と、実装用の基体側の面に設けられ、基体と導通させる一対の底面電極22と、接続電極21と底面電極22とを接続するための一対のスルーホール電極23とを有している。保護素子20は、樹脂封止部25により封止されている。保護素子20は例えばツェナーダイオードである。 The protection element 20 has a semiconductor substrate 24 on which a protection circuit 243 is formed. The semiconductor substrate 24 is provided on the surface on the light emitting element 10 side, and a pair of connection electrodes 21 that are electrically connected to the light emitting element 10, and a pair of bottom electrode 22 that is provided on the surface on the mounting substrate side and is electrically connected to the substrate, A pair of through-hole electrodes 23 for connecting the connection electrode 21 and the bottom electrode 22 is provided. The protective element 20 is sealed with a resin sealing portion 25. The protection element 20 is, for example, a Zener diode.
 接続電極21は、半導体基板24の搭載面241に設けられ、発光素子10のカソード電極11と接続されるカソード側電極211とアノード電極12と接続されるアノード側電極212とから構成されている。接続電極21は、発光素子10のカソード電極11とアノード電極12とに対応する位置に設けられており、発光素子10を所定位置に搭載することにより、発光素子と導通接続することができる。 The connection electrode 21 is provided on the mounting surface 241 of the semiconductor substrate 24 and includes a cathode side electrode 211 connected to the cathode electrode 11 of the light emitting element 10 and an anode side electrode 212 connected to the anode electrode 12. The connection electrode 21 is provided at a position corresponding to the cathode electrode 11 and the anode electrode 12 of the light emitting element 10, and the light emitting element 10 can be electrically connected to the light emitting element by mounting the light emitting element 10 at a predetermined position.
 図2に示すように、カソード側電極211は、半導体基板24の周縁に沿ってコ字状に形成されている。アノード側電極212は、コ字状に形成されたカソード側電極211によって空いた中央領域と周縁領域とに設けられている。カソード側電極211及びアノード側電極212の位置及び形状は、搭載する発光素子10のカソード電極11及びアノード電極12の位置及び形状に応じて適宜変更すればよい。 As shown in FIG. 2, the cathode side electrode 211 is formed in a U shape along the periphery of the semiconductor substrate 24. The anode side electrode 212 is provided in the central region and the peripheral region which are vacated by the cathode side electrode 211 formed in a U-shape. The positions and shapes of the cathode side electrode 211 and the anode side electrode 212 may be appropriately changed according to the positions and shapes of the cathode electrode 11 and the anode electrode 12 of the light emitting element 10 to be mounted.
 図3に示すように、底面電極22は、半導体基板24の搭載面241とは反対側となる裏面242に設けられ、負極側電極221と正極側電極222とから構成されている。負極側電極221と正極側電極222とは、それぞれ長方形状に形成され、半導体基板24の裏面242の一方側と他方側とに配置されている。底面電極22の位置及び形状は、搭載される実装基板2の電極の位置及び形状に応じて適宜変更すればよい。 As shown in FIG. 3, the bottom electrode 22 is provided on the back surface 242 opposite to the mounting surface 241 of the semiconductor substrate 24, and includes a negative electrode 221 and a positive electrode 222. The negative electrode 221 and the positive electrode 222 are each formed in a rectangular shape, and are disposed on one side and the other side of the back surface 242 of the semiconductor substrate 24. What is necessary is just to change suitably the position and shape of the bottom face electrode 22 according to the position and shape of the electrode of the mounting board | substrate 2 mounted.
 スルーホール電極23は、半導体基板24の四隅のそれぞれの角部に配置され、搭載面241に設けられた接続電極21と裏面242に設けられた底面電極22とを接続する。スルーホール電極23は、カソード側電極211と負極側電極221を接続する負極側スルーホール電極231と、アノード側電極212と正極側電極222を接続する正極側スルーホール電極232とから構成されている。 The through-hole electrode 23 is disposed at each corner of the four corners of the semiconductor substrate 24 and connects the connection electrode 21 provided on the mounting surface 241 and the bottom electrode 22 provided on the back surface 242. The through hole electrode 23 includes a negative electrode side through hole electrode 231 connecting the cathode electrode 211 and the negative electrode 221, and a positive electrode through hole electrode 232 connecting the anode electrode 212 and the positive electrode 222. .
 半導体基板24は、矩形状のシリコン基板により形成されている。半導体基板24には、p型半導体領域2432とn型半導体領域2431とが形成されており、ツェナーダイオード等を含む保護回路が構成されている。半導体基板24は、ウェハ状態のシリコン基板に、複数のp型半導体領域2432とn型半導体領域2431とを形成して、ダイサーにより分割して個片化することにより形成すればよい。 The semiconductor substrate 24 is formed of a rectangular silicon substrate. A p-type semiconductor region 2432 and an n-type semiconductor region 2431 are formed in the semiconductor substrate 24, and a protection circuit including a Zener diode or the like is formed. The semiconductor substrate 24 may be formed by forming a plurality of p-type semiconductor regions 2432 and n-type semiconductor regions 2431 on a silicon substrate in a wafer state, and dividing them into pieces by a dicer.
 樹脂封止部25は、樹脂により形成され、半導体基板24の搭載面241上に形成されている。樹脂封止部25は、第1の封止部251と第2の封止部252とにより構成されている。 The resin sealing portion 25 is made of resin and is formed on the mounting surface 241 of the semiconductor substrate 24. The resin sealing portion 25 includes a first sealing portion 251 and a second sealing portion 252.
 第1の封止部251は、発光素子10全体を覆うように形成されている。第1の封止部251は、例えば、シリコン樹脂又はエポキシ樹脂等の光透過性樹脂により形成することができる。第1の封止部251には、発光素子10からの光に励起されて波長変換した光を発光する蛍光体が含有されていてもよい。 The first sealing portion 251 is formed so as to cover the entire light emitting element 10. The first sealing portion 251 can be formed of a light transmissive resin such as a silicon resin or an epoxy resin, for example. The first sealing portion 251 may contain a phosphor that emits light that is excited by light from the light emitting element 10 and wavelength-converted.
 蛍光体としては、イットリウムアルミニウムガーネット(YAG)蛍光体及び珪酸塩蛍光体等を用いことができる。蛍光体を、青色の補色となる黄色に発光するものとすれば、第1の封止部251を、青色と黄色とが混色した白色に発光させることができる。また白色光の演色性を高めるため、赤色蛍光体と緑色蛍光体の組み合わせ、あるいは赤色蛍光体と黄色蛍光体の組み合わせを使用することも可能である。 As the phosphor, yttrium aluminum garnet (YAG) phosphor and silicate phosphor can be used. If the phosphor emits light in yellow that is a complementary color of blue, the first sealing portion 251 can emit light in white in which blue and yellow are mixed. In order to enhance the color rendering properties of white light, it is possible to use a combination of a red phosphor and a green phosphor, or a combination of a red phosphor and a yellow phosphor.
 第2の封止部252は、第1の封止部251全体を覆うように形成されている。第2の封止部252は、第1の封止部251と同様に、例えば、シリコン樹脂又はエポキシ樹脂等の光透過性樹脂により形成することができる。 The 2nd sealing part 252 is formed so that the 1st sealing part 251 whole may be covered. Similarly to the first sealing portion 251, the second sealing portion 252 can be formed of a light transmissive resin such as a silicon resin or an epoxy resin.
 第1の封止部251は、例えば、スクリーン印刷法により形成することができる。スクリーン印刷法により形成する場合には、あらかじめ保護回路及び各電極(接続電極21,底面電極22,スルーホール電極23)を形成し、発光素子10を搭載したウェハ状態の半導体基板24上に、発光素子10に対応する位置が開口した印刷版を配置して、蛍光体を含有した樹脂材を開口へ充填して成形すればよい。このようにして第1の封止部251を成形することにより厚さが均一な蛍光体樹脂層を形成することができる。 The first sealing portion 251 can be formed by, for example, a screen printing method. In the case of forming by a screen printing method, a protective circuit and each electrode (connection electrode 21, bottom electrode 22, through-hole electrode 23) are formed in advance, and light is emitted on a semiconductor substrate 24 in a wafer state on which the light emitting element 10 is mounted. A printing plate having an opening corresponding to the element 10 may be disposed, and a resin material containing a phosphor may be filled into the opening and molded. By forming the first sealing portion 251 in this way, a phosphor resin layer having a uniform thickness can be formed.
 第1の封止部251を含むウェハ状態の半導体基板24全体にコーティングを行った後、個片化することにより、第1の封止部251を覆う外形が略矩形状の第2の封止部252を形成することができる。 After coating the entire semiconductor substrate 24 in a wafer state including the first sealing portion 251, the second sealing is performed so that the outer shape covering the first sealing portion 251 is substantially rectangular. A portion 252 can be formed.
 以上のように構成された一実施形態に係る発光装置は、発光素子10が保護素子20に搭載されているため、図4に示すように、発光素子10が保護素子20であるツェナーダイオードZDに並列接続された構成となっている。 In the light emitting device according to the embodiment configured as described above, since the light emitting element 10 is mounted on the protection element 20, the light emitting element 10 is connected to the Zener diode ZD, which is the protection element 20, as shown in FIG. It is the structure connected in parallel.
 本実施形態では、保護素子20をn型半導体領域2431とp型半導体領域2432とにより形成したツェナーダイオードとした。しかし、保護回路はダイオード又はバリスタ等としてもよい。また、本実施形態では、保護素子20は発光素子10を搭載することで、発光素子10とツェナーダイオードZDとが並列接続された回路となる例を示した。しかし、ツェナーダイオードと抵抗素子とを有し、発光素子10を搭載すると、抵抗素子が発光素子10に抵抗直列接続され、直列接続された発光素子10と抵抗素子とに対してツェナーダイオードが並列に接続される構成の保護素子としてもよい。 In the present embodiment, the protection element 20 is a Zener diode formed by an n-type semiconductor region 2431 and a p-type semiconductor region 2432. However, the protection circuit may be a diode or a varistor. In the present embodiment, the protection element 20 includes the light-emitting element 10 so that the light-emitting element 10 and the Zener diode ZD are connected in parallel. However, when a light-emitting element 10 is mounted having a Zener diode and a resistance element, the resistance element is connected in series with the light-emitting element 10, and the Zener diode is connected in parallel with the light-emitting element 10 and the resistance element connected in series. It is good also as a protection element of the structure connected.
 このように実装基板2に実装される発光装置1は、保護素子20からワイヤを配線する必要がない。このため、発光素子10を搭載した保護素子20を発光装置1を実装基板2に実装した後、全体を樹脂封止することなく使用することができる。したがって、ワイヤを保護するための樹脂封止が不要なため、例えば、製品の組み立て工程にて封止工程が削減できるので、工数の削減ができると共に、コストの抑制を図ることができる。 Thus, the light emitting device 1 mounted on the mounting substrate 2 does not need to be wired from the protective element 20. For this reason, after mounting the light emitting device 1 on the mounting substrate 2, the entire protective element 20 on which the light emitting element 10 is mounted can be used without being resin-sealed. Therefore, since resin sealing for protecting the wires is unnecessary, for example, the sealing process can be reduced in the product assembly process, so that the number of steps can be reduced and the cost can be suppressed.
 発光装置1は、保護素子20の搭載面241上に発光素子10を搭載しているので、発光素子10からの光の進行を阻害するワイヤや他の電気部品が無い。このため、発光素子10からの光を周囲に均一に照射させることができるので、発光装置1を小型化することができ、点光源として機能させることができる。 Since the light emitting device 1 has the light emitting element 10 mounted on the mounting surface 241 of the protective element 20, there is no wire or other electrical component that obstructs the progress of light from the light emitting element 10. For this reason, since the light from the light emitting element 10 can be uniformly irradiated to the circumference | surroundings, the light-emitting device 1 can be reduced in size and can be functioned as a point light source.
 半導体基板24がシリコン基板である例を示したが、半導体基板24はシリコン基板に限らない。しかし、シリコン基板は、例えば、セラミック基板等に比べて湾曲しにくく、平坦性に優れているため、第1の封止部251が湾曲しにくく、第1の封止部251の厚さを均一にしやすい。このため、蛍光体の濃度を均一にでき、イエローリングと称する円形状の色ムラの発生を抑える効果が得られる。したがって、第1の封止部251における色度のばらつきを抑制することができる。 Although an example in which the semiconductor substrate 24 is a silicon substrate has been shown, the semiconductor substrate 24 is not limited to a silicon substrate. However, the silicon substrate, for example, is less likely to bend than a ceramic substrate or the like, and has excellent flatness. Therefore, the first sealing portion 251 is less likely to be bent, and the thickness of the first sealing portion 251 is uniform. Easy to do. For this reason, the density | concentration of fluorescent substance can be made uniform and the effect which suppresses generation | occurrence | production of circular color unevenness called a yellow ring is acquired. Therefore, variation in chromaticity in the first sealing portion 251 can be suppressed.
 また、シリコンは、セラミック(Al23,LTCC(Low Temperature Co-fired Ceramics))等と比較して熱伝導率が高い。したがって、半導体基板24をシリコン基板とすることにより、発光素子10からの熱を半導体基板24を介して底面電極22から実装基板2に効率良く伝熱させることができる。これにより、発光素子10の劣化を抑制する効果も得られる。 Silicon has a higher thermal conductivity than ceramics (Al 2 O 3 , LTCC (Low Temperature Co-fired Ceramics)) and the like. Therefore, by using the semiconductor substrate 24 as a silicon substrate, the heat from the light emitting element 10 can be efficiently transferred from the bottom electrode 22 to the mounting substrate 2 through the semiconductor substrate 24. Thereby, the effect which suppresses deterioration of the light emitting element 10 is also acquired.
 一対の接続電極21と一対の底面電極22とは、半導体基板24の側面に側面電極を形成して接続することも可能である。しかし、スルーホール電極23は、個片化する前のウェハ状態で形成することができる。このため、半導体基板24を個片化した後にメッキ処理を行う等の工程が必要なく、製造が容易となるという利点がある。 The pair of connection electrodes 21 and the pair of bottom electrodes 22 can be connected by forming side electrodes on the side surfaces of the semiconductor substrate 24. However, the through-hole electrode 23 can be formed in a wafer state before being singulated. For this reason, there is an advantage that the manufacturing process is easy because there is no need for a process such as plating after the semiconductor substrate 24 is separated.
 なお、本実施の形態では、携帯電話のストロボ用の照明装置を示したが、他の照明装置にも同様に用いることができる。また、実装用基体を実装基板としたが、実装基板に代えて発光装置をリードフレーム等に搭載してもよい。 Note that although a lighting device for a strobe of a mobile phone is shown in this embodiment mode, the lighting device can be similarly used for other lighting devices. Further, although the mounting substrate is the mounting substrate, the light emitting device may be mounted on a lead frame or the like instead of the mounting substrate.
 本開示は、発光素子を保護しつつ、発光素子からの光を周囲に均一に照射させることができ、小型化を図ることができるので、発光素子が搭載されると共に、この発光素子と並列接続されることで発光素子を静電気などの高電圧から保護する保護素子及びこれを用いた発光装置に好適である。 The present disclosure can uniformly irradiate the light from the light emitting element to the surroundings while protecting the light emitting element, and can be downsized. Therefore, the light emitting element is mounted and connected in parallel with the light emitting element. This is suitable for a protective element that protects the light emitting element from a high voltage such as static electricity and a light emitting device using the protective element.
 1 発光装置
 2 実装基板
 2a,2b 配線パターン
 10 発光素子
 11 カソード電極
 12 アノード電極
 20 保護素子
 21 接続電極
 22 底面電極
 23 スルーホール電極
 24 半導体基板
 25 樹脂封止部
 211 カソード側電極
 212 アノード側電極
 221 負極側電極
 222 正極側電極
 231 負極側スルーホール電極
 232 正極側スルーホール電極
 241 搭載面
 242 裏面
 243 保護回路
 251 第1の封止部
 252 第2の封止部
 2431 n型半導体領域
 2432 p型半導体領域
 B バンプ
 ZD ツェナーダイオード
DESCRIPTION OF SYMBOLS 1 Light emitting device 2 Mounting board 2a, 2b Wiring pattern 10 Light emitting element 11 Cathode electrode 12 Anode electrode 20 Protection element 21 Connection electrode 22 Bottom electrode 23 Through-hole electrode 24 Semiconductor substrate 25 Resin sealing part 211 Cathode side electrode 212 Anode side electrode 221 Negative electrode side electrode 222 Positive electrode side electrode 231 Negative electrode side through hole electrode 232 Positive electrode side through hole electrode 241 Mounting surface 242 Back surface 243 Protection circuit 251 First sealing portion 252 Second sealing portion 2431 n-type semiconductor region 2432 p-type semiconductor Region B Bump ZD Zener diode

Claims (5)

  1.  半導体基板と、
     前記半導体基板における、フリップチップ実装型の発光素子を搭載する搭載面に設けられ、前記発光素子の電極と接続される接続電極と、
     前記半導体基板に設けられ、前記接続電極を介して前記発光素子と接続される保護回路と、
     前記半導体基板の前記搭載面と反対側の面に設けられ、対応する前記接続電極と接続されており、実装用基体の電極と接続される裏面電極とを備えている、保護素子。
    A semiconductor substrate;
    A connection electrode provided on a mounting surface on which a flip chip mounting type light emitting element is mounted in the semiconductor substrate, and connected to an electrode of the light emitting element;
    A protection circuit provided on the semiconductor substrate and connected to the light emitting element via the connection electrode;
    A protective element provided on a surface opposite to the mounting surface of the semiconductor substrate, connected to the corresponding connection electrode, and provided with a back electrode connected to an electrode of a mounting substrate.
  2.  前記接続電極と、前記底面電極とを接続するスルーホール電極をさらに備えている、請求項1に記載の保護素子。 The protection element according to claim 1, further comprising a through-hole electrode that connects the connection electrode and the bottom electrode.
  3.  前記半導体基板は、シリコン基板である、請求項1又は2に記載の保護素子。 The protection element according to claim 1 or 2, wherein the semiconductor substrate is a silicon substrate.
  4.  前記保護回路は、ツェナーダイオード、ダイオード又はバリスタを含む、請求項1から3のいずれか1項に記載の保護素子。 The protection device according to any one of claims 1 to 3, wherein the protection circuit includes a Zener diode, a diode, or a varistor.
  5.  前記請求項1から4のいずれかの項に記載の保護素子と、
     前記保護素子に搭載された発光素子と、
     前記発光素子からの光に励起されて発光する蛍光体が含有され、前記発光素子を封止する樹脂封止部とを備えている、発光装置。
    The protective element according to any one of claims 1 to 4,
    A light emitting element mounted on the protection element;
    A light emitting device including a phosphor that emits light when excited by light from the light emitting element, and includes a resin sealing portion that seals the light emitting element.
PCT/JP2012/005313 2011-08-25 2012-08-24 Protection element and light emitting device using same WO2013027413A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/234,956 US20140159061A1 (en) 2011-08-25 2012-08-24 Protection element and light emitting device using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011183273 2011-08-25
JP2011-183273 2011-08-25

Publications (1)

Publication Number Publication Date
WO2013027413A1 true WO2013027413A1 (en) 2013-02-28

Family

ID=47746172

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/005313 WO2013027413A1 (en) 2011-08-25 2012-08-24 Protection element and light emitting device using same

Country Status (3)

Country Link
US (1) US20140159061A1 (en)
JP (1) JPWO2013027413A1 (en)
WO (1) WO2013027413A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9299899B2 (en) 2013-07-23 2016-03-29 Grote Industries, Llc Flexible lighting device having unobtrusive conductive layers
WO2021144665A1 (en) * 2020-01-13 2021-07-22 King Abdullah University Of Science And Technology Wavelength-division multiplexing visible-light communication and lighting device and method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005244220A (en) * 2004-02-25 2005-09-08 Lumileds Lighting Us Llc Board for light-emitting diode with esd protection incorporated
JP2007535130A (en) * 2003-12-09 2007-11-29 クリー インコーポレイテッド Semiconductor light emitting device and submount, and method for forming the same
JP2008277409A (en) * 2007-04-26 2008-11-13 Matsushita Electric Ind Co Ltd Manufacturing method of semiconductor light-emitting device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6642550B1 (en) * 2002-08-26 2003-11-04 California Micro Devices Silicon sub-mount capable of single wire bonding and of providing ESD protection for light emitting diode devices
US7244965B2 (en) * 2002-09-04 2007-07-17 Cree Inc, Power surface mount light emitting die package
US7528422B2 (en) * 2006-01-20 2009-05-05 Hymite A/S Package for a light emitting element with integrated electrostatic discharge protection
TWI303872B (en) * 2006-03-13 2008-12-01 Ind Tech Res Inst High power light emitting device assembly with esd preotection ability and the method of manufacturing the same
TW201034256A (en) * 2008-12-11 2010-09-16 Illumitex Inc Systems and methods for packaging light-emitting diode devices

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007535130A (en) * 2003-12-09 2007-11-29 クリー インコーポレイテッド Semiconductor light emitting device and submount, and method for forming the same
JP2005244220A (en) * 2004-02-25 2005-09-08 Lumileds Lighting Us Llc Board for light-emitting diode with esd protection incorporated
JP2008277409A (en) * 2007-04-26 2008-11-13 Matsushita Electric Ind Co Ltd Manufacturing method of semiconductor light-emitting device

Also Published As

Publication number Publication date
US20140159061A1 (en) 2014-06-12
JPWO2013027413A1 (en) 2015-03-05

Similar Documents

Publication Publication Date Title
JP4881358B2 (en) Light emitting device
US6744196B1 (en) Thin film LED
KR101360732B1 (en) Led package
US20090072250A1 (en) Chip type semiconductor light emitting device
US9420642B2 (en) Light emitting apparatus and lighting apparatus
JP2009088299A (en) Light-emitting element and light-emitting device provided with the element
JP2011204840A (en) Semiconductor light emitting device and method for manufacturing the same
US20200303357A1 (en) Light emitting device
JP6107415B2 (en) Light emitting device
JP2012114286A (en) Led package
US9960333B2 (en) Light-emitting device including light-emitting elements connected in series and light-emitting elements connected in parallel
JP2009130237A (en) Light emitting device
JP2010226088A (en) Ac-driven light emitting device
JP2001298216A (en) Surface-mounting semiconductor light-emitting device
US9711700B2 (en) Light emitting device and method for producing the same
JP2009170824A (en) Light-emitting device
JP5200471B2 (en) Light emitting device and manufacturing method thereof
JP5697091B2 (en) Semiconductor light emitting device
JP4147353B2 (en) Light emitting device
KR100634189B1 (en) Thin light emitting diode package and method for manufacturing the same
JP4016925B2 (en) Light emitting device
WO2013027413A1 (en) Protection element and light emitting device using same
US20150053993A1 (en) Semiconductor light emitting device
US9761766B2 (en) Chip on board type LED module
JP5320374B2 (en) Method for manufacturing light emitting device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12826387

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013529903

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14234956

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12826387

Country of ref document: EP

Kind code of ref document: A1