[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2004035353A - Process for preparing silicon single crystal - Google Patents

Process for preparing silicon single crystal Download PDF

Info

Publication number
JP2004035353A
JP2004035353A JP2002197139A JP2002197139A JP2004035353A JP 2004035353 A JP2004035353 A JP 2004035353A JP 2002197139 A JP2002197139 A JP 2002197139A JP 2002197139 A JP2002197139 A JP 2002197139A JP 2004035353 A JP2004035353 A JP 2004035353A
Authority
JP
Japan
Prior art keywords
pulling speed
single crystal
diameter
silicon single
heater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002197139A
Other languages
Japanese (ja)
Inventor
Daisuke Wakabayashi
若林 大介
Masao Saito
斎藤 正夫
Satoshi Sato
佐藤 智
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumco Corp
Original Assignee
Sumitomo Mitsubishi Silicon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Mitsubishi Silicon Corp filed Critical Sumitomo Mitsubishi Silicon Corp
Priority to JP2002197139A priority Critical patent/JP2004035353A/en
Publication of JP2004035353A publication Critical patent/JP2004035353A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To inhibit the change in diameter of a silicon single crystal bar by setting the set pull-up speed of the single crystal bar so as to give a constant V/G and precisely controlling the actual pull-up speed so that it matches the set pull-up speed. <P>SOLUTION: While pulling up the silicon single crystal bar 24 from a silicon melt 13 melted by a heater 17, its diameter is detected at a predetermined time interval. The diameter of the silicon single crystal bar is controlled to achieve a predetermined diameter by feeding back the detection output to the pull-up speed of the silicon single crystal bar and to the temperature of the heater. When correcting the heater temperature to correct the pull-up speed, changes in the measured diameter of the silicon single crystal bar and in the pull-up speed are monitored, and the heater temperature is corrected to prevent the measured diameter from changing in the reverse direction of the predetermined diameter. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、チョクラルスキー法で引上げられるシリコン単結晶棒の直径変動を抑制したシリコン単結晶棒の製造方法に関するものである。
【0002】
【従来の技術】
従来、シリコン単結晶棒の引上げ速度の制御方法として、シリコン単結晶棒の引上げ中における直径の偏差を単結晶棒の引上げ速度に直接フィードバックする第1の方法や、上記直径の偏差をヒータ温度に直接フィードバックする第2の方法などが知られている。
【0003】
一方、近年の半導体デバイスの高集積化に伴い、デザインルールがより微細化され、材料であるシリコンウェーハ上の微細な欠陥がデバイス収率に大きな影響を及ぼしている。そこで引上げた単結晶棒をその軸に直交する面でスライスしてウェーハを作製したときに、このウェーハの全面にわたって微細な欠陥の無いウェーハを製造する必要がある。このため単結晶棒の引上げ時における固液界面近傍の軸方向の温度勾配をG(℃/mm)とし、その引上げ速度をV(mm/分)とするとき、V/Gが一定になるように引上げ速度を全長にわたって設定し、この設定された引上げ速度になるように制御することが重要になってくる。上記V/Gを全長にわたり一定に保つためには、単結晶棒の引上げ初期のトップ部で温度勾配Gが大きく、トップ部から所定の引上げ位置までは温度勾配が小さくなるため、上記温度勾配Gの変化に合った引上げ速度を設定すると、トップ部の引上げ速度は速く設定する必要があり、所定の引上げ位置まで引上げ速度を次第に減少させる設定が一般的である。
【0004】
しかし、この設定引上げ速度の相違はそのまま実際の引上げ速度の相違となるため、上記第1の方法によりトップ部の制御性を向上させようとすると、トップ部以外の直径変動が大きくなり、トップ部以外の制御性を向上させようとすると、トップ部の直径変動が大きくなる問題点がある。
また、上記第2の方法では、ヒータ温度の制御幅と融液温度の変化幅及び変化時間が液面とヒータの位置関係や融液量によって変化するため、ヒータ温度の制御が非常に難しくなり、状況によっては、実際の引上げ速度の変化傾向とヒータ温度の補正傾向が一致しなくなり、直径変動が大きくなるおそれがある。
【0005】
これらの点を解消するために、シリコン単結晶棒の引上げ速度の制御値を演算し、この引上げ速度の制御値に引上げ速度のスパン制限を行い、かつ上記演算された引上げ速度の制御値にスパン制限をする前に、引上げ速度の制御値と設定引上げ速度を比較することによりヒータ温度の補正量を演算してヒータ温度の設定出力を得て、シリコン単結晶棒の直径を制御するシリコン単結晶の製造方法が開示されている(特開2001−316199号)。
【0006】
【発明が解決しようとする課題】
しかし、上記従来の特開2001−316199号公報に示されたシリコン単結晶の製造方法では、引上げ速度制御値にスパン制限する前に、引上げ速度制御値と設定引上げ速度を比較してその偏差をヒータ温度にフィードバックしているため、ヒータ温度の補正量が実際の引上げ速度の偏差に追い付かず、未だ単結晶棒の直径の変動が大きくなるおそれがある。
本発明の目的は、V/Gが一定になるようにシリコン単結晶棒の設定引上げ速度が設定され、この設定引上げ速度に一致するように実際の引上げ速度を精度良く制御でき、これにより単結晶棒の直径変動を抑制できる、シリコン単結晶の製造方法を提供することにある。
【0007】
【課題を解決するための手段】
請求項1に係る発明は、図1〜図3に示すように、ヒータ17により溶融されたシリコン融液13からシリコン単結晶棒24を引上げ、この引上げ中のシリコン単結晶棒24の直径を所定時間毎に検出し、この検出出力をシリコン単結晶棒24の引上げ速度及びヒータ17の温度にフィードバックすることによりシリコン単結晶棒24の直径を設定直径になるように制御するシリコン単結晶の製造方法の改良である。
その特徴ある構成は、上記引上げ速度を補正するためにヒータ17の温度の補正を行う際に、シリコン単結晶棒24の実測直径の変化及び引上げ速度の変化を監視し、上記実測直径が設定直径の反対方向に変化しないようにヒータ17温度を補正するところにある。
【0008】
この請求項1に記載されたシリコン単結晶の製造方法では、シリコン単結晶棒24の引上げ速度を補正するためにヒータ温度を補正するときに、実測直径の変化及び引上げ速度の変化を監視するので、シリコン単結晶棒24の引上げ速度を最適に補正することができる。これによりヒータ温度の補正が反対向きに行われる、即ち実測直径が設定直径から離れる方向に変化するようにヒータ温度を補正してしまうという事態を回避することができる。
【0009】
請求項2に係る発明は、図1、図2及び図4に示すように、引上げ速度を補正するためにヒータ17の温度の補正を行う際に、シリコン単結晶棒24の実測直径の変化及び引上げ速度の変化を監視し、上記引上げ速度の変化により次のヒータ温度の補正時間経過後の引上げ速度を予測し、この補正時間経過後の引上げ速度が設定引上げ速度に未だ達しないと判断した場合に引上げ速度の変化方向にヒータ17温度の補正を行い、上記補正時間経過後の引上げ速度が設定引上げ速度を通り過ぎて離れると判断した場合に引上げ速度の変化方向へのヒータ17温度の補正を停止することを特徴とする。
この請求項2に記載されたシリコン単結晶の製造方法では、シリコン単結晶棒の引上げ速度を補正するときに、引上げ速度が設定引上げ速度に達しないと判断すると、引上げ速度が変化している方向にヒータ17温度の補正を行うので、引上げ速度が設定引上げ速度に早く近付く。一方、上記補正時間経過後の引上げ速度が設定引上げ速度を通り過ぎて離れると判断すると、引上げ速度の変化方向へのヒータ17温度の補正を停止するので、引上げ速度の設定引上げ速度を通り過ぎる量が少なくなる。この結果、引上げ速度が設定引上げ速度に速やかに近付くので、ヒータ温度の安定性を向上できるとともに、引上げ速度も速やかに安定させることができる。
【0010】
【発明の実施の形態】
次に本発明の実施の形態を図面に基づいて説明する。
図1に示すように、シリコン単結晶の引上げ装置10は、内部を真空可能に構成されたメインチャンバ11と、このチャンバ内の中央に設けられたるつぼ12とを備える。メインチャンバ11は円筒状の真空容器である。またるつぼ12は、石英により形成されシリコン融液13が貯留される有底円筒状の内層容器12aと、黒鉛により形成され上記内層容器12aの外側に嵌合された有底円筒状の外層容器12bとからなる。外層容器12bの底面にはシャフト14の上端が接続され、このシャフト14の下端にはシャフトを介してるつぼ12を回転させかつ昇降させるるつぼ駆動手段16が設けられる。更にるつぼ12の外周面は円筒状のヒータ17により所定の間隔をあけて包囲され、このヒータ17の外周面は円筒状の保温筒18により所定の間隔をあけて包囲される。
【0011】
一方、メインチャンバ11の上端には、メインチャンバより小径の円筒状のプルチャンバ19が接続される。このプルチャンバの上端にはシード引上げ手段(図示せず)が設けられ、このシード引上げ手段は下端がメインチャンバ11内のシリコン融液13表面に達する引上げ軸21を回転させかつ昇降させるように構成される。この引上げ軸21の下端にはシードチャック23が設けられ、このチャックは種結晶22を把持するように構成される。この種結晶22の下端をシリコン融液13中に浸漬した後、シード引上げ手段により種結晶22及びるつぼ12をそれぞれ回転させかつ上昇させることにより、種結晶22の下端からシリコン単結晶棒24を引上げて成長させるように構成される。
【0012】
また上記引上げ中の固液界面近傍のシリコン単結晶棒24の直径は直径検出センサ(図示せず)により所定時間毎に検出される。この直径検出センサはCCDカメラ、放射温度計等により構成される。直径検出センサの検出出力はコントローラ(図示せず)の制御入力に接続され、コントローラの制御出力はヒータ17、シード引上げ手段及びるつぼ駆動手段16に接続される。またコントローラにはメモリが設けられる。このメモリには、引上げられるシリコン単結晶棒24の目標直径と、V/Gが一定になるようにシリコン単結晶棒24の全長にわたって設定された設定引上げ速度とがマップとして記憶される。ここで、Vはシリコン単結晶棒24の引上げ速度であり、Gはシリコン単結晶棒24の引上げ時における固液界面近傍の軸方向の温度勾配である。
【0013】
コントローラは直径検出センサの検出出力に基づいてヒータ17、シード引上げ手段及びるつぼ駆動手段16を制御する。即ち、コントローラは、図1及び図2に示すように、上記直径変化の検出出力をヒータ17、シード引上げ手段及びるつぼ駆動手段16にフィードバックすることにより、シリコン単結晶棒24の直径が設定直径になるように制御する。シリコン単結晶棒24の直径の制御方法としては、シリコン単結晶棒24の直径が設定直径になるようにシリコン単結晶棒24の引上げ速度を優先してPID制御する方法と、シリコン単結晶棒24の直径が設定直径になるようにヒータ17温度を優先してPID制御とがある。なお、PID制御とは、フィードバック制御の一方式であり、フィードバック信号として、系の出力に比例した信号と、系の出力を積分した信号と、系の出力を微分した信号とを合せて用いる制御である。
【0014】
このように構成されたシリコン単結晶の第1の引上げ方法を図1〜図3に基づいて説明する。
引上げ中のシリコン単結晶棒24の目標直径φoと実測直径φの偏差を引上げ速度にフィードバックし、このフィードバックされた引上げ速度と設定引上げ速度のずれの度合いからヒータ温度にフィードバックしたときでも、直径の変化傾向とヒータ温度の補正傾向が一致しない場合がある。そのためヒータ温度を補正するときには、引上げ速度を適正に補正するために直径の変化及び引上げ速度の変化(傾き)を監視する必要がある。これによりヒータ温度の補正が反対向きに行われる、即ち実測直径が設定直径から離れる方向に変化するようにヒータ温度を補正してしまうという事態を回避することができる。この結果、V/Gが一定になるように設定された設定引上げ速度に一致するように、実際の引上げ速度を精度良く制御できるので、シリコン単結晶棒24の直径変動を抑制できる。
【0015】
具体的には、シリコン単結晶棒24の引上げ速度を補正するためにヒータ17の温度の補正を行うとき、シリコン単結晶棒24の直径の変化と引上げ速度の変化に基づいて、上記直径が設定直径に近付くようにヒータ温度を補正する。即ち、実測直径φの変化と実測引上げ速度Vの変化を監視する時間帯、即ち傾き時間帯をt(t,t,t,t,…)と設定し、ヒータ温度を補正する時間間隔、即ち補正間隔をT(T,T,T,T,…)と設定し、実測直径φの変化は傾き時間帯tにおける変化の平均値とし、引上げ速度Vの変化は傾き時間帯tにおける変化の平均値とする。そして補正間隔Tにおける実測直径φが(目標直径φo±不感帯δ)以上の偏差dを有する場合には次の▲1▼〜▲4▼の補正を行う。なお、不感帯δとは、直径偏差dが所定の値以内のときに、引上げ速度にフィードバックしない範囲をいう。また、図3の縦軸は単結晶棒の引上げ速度であり、横軸は時間である。
【0016】
▲1▼ 図3の傾き時間帯t及びa点において
傾き時間帯tでは、実測直径φ≧(目標直径φo+不感帯δ)であり、実測引上げ速度V≧設定引上げ速度Voであり、引上げ速度Vの変化の平均値がマイナスであるため、実測引上げ速度は設定引上げ速度に次第に近付いていく。この結果、コントローラは図3のa点においてヒータ温度の補正を行わず、ヒータ温度の不要な上昇を停止させるので、引上げ速度の急激な下降を防ぎ、実測直径φの細くなる割合が減少する。
【0017】
▲2▼ 図3の傾き時間帯t及びb点において
傾き時間帯tでは、実測直径φ≦(目標直径φo−不感帯δ)であり、実測引上げ速度V≦設定引上げ速度Voであり、引上げ速度Vの変化の平均値がマイナスであるため、実測引上げ速度は設定引上げ速度から次第に離れていく。この結果、コントローラは図3のb点においてヒータ温度の補正を行ってヒータ温度を下降させるので、引上げ速度の更なる低下を防ぎ、実測直径φが太くなる割合が増加する。
【0018】
▲3▼ 図3の傾き時間帯t及びc点において
傾き時間帯tでは、実測直径φ≦(目標直径φo−不感帯δ)であり、実測引上げ速度V≦設定引上げ速度Voであり、引上げ速度の変化の平均値がプラスであため、実測引上げ速度は設定引上げ速度に次第に近付いていく。この結果、コントローラは図3のc点においてヒータ温度の補正を行わずヒータ温度の不要な下降を停止させるので、引上げ速度の急激な上昇を防ぎ、実測直径φの太くなる割合が減少する。
【0019】
▲4▼ 図3の傾き時間帯t及びd点において
傾き時間帯Tでは、実測直径φ≧(目標直径φo+不感帯δ)であり、実測引上げ速度V≧設定引上げ速度Voであり、引上げ速度Vの変化の平均値がプラスであるため、実測引上げ速度は設定引上げ速度から次第に離れていく。この結果、コントローラは図3のd点においてヒータ温度の補正を行ってヒータ温度を上昇させるので、引上げ速度の更なる上昇を防ぎ、実測直径φが細くなる割合が増加する。
【0020】
次にシリコン単結晶の第2の引上げ方法を図1、図2及び図4に基づいて説明する。
上記第1の引上げ方法のように、引上げ速度の変化を考慮したヒータ温度の補正を行うと、図3のa点とc点において引上げ速度の変化がヒータ温度の補正と逆になる。このため第2の引上げ方法では、図4のB点とD点においてヒータ温度の補正を行わないこととした。即ち、第2の引上げ方法では、先ず引上げ速度を補正するためにヒータ17の温度の補正を行う際に、シリコン単結晶棒24の実測直径の変化及び引上げ速度の変化を監視し、上記引上げ速度の変化により次のヒータ温度の補正時間経過後の引上げ速度を予測する。次にこの補正時間経過後の引上げ速度が設定引上げ速度に未だ達しないと判断した場合に引上げ速度の変化方向にヒータ17温度の補正を行い、上記補正時間経過後の引上げ速度が設定引上げ速度を通り過ぎて離れると判断した場合に引上げ速度の変化方向へのヒータ17温度の補正を停止する。これにより引上げ速度が設定引上げ速度に速やかに近付くので、ヒータ温度の安定性を向上できるとともに、引上げ速度も速やかに安定させることができる。
【0021】
図4の縦軸は単結晶棒の引上げ速度であり、横軸は時間である。図4において、傾き時間帯t(t,t,t,t,…)は、あまり長いと直径φの実際の変化及び引上げ速度の実際の変化が見え難くなり、あまり短いと直径φのばらつきや引上げ速度Vのばらつきを拾ってしまうため、1〜2分間とすることが好ましい。なお補正間隔T(T,T,T,T,…)は、引上げ装置10内のホットゾーンの形態やシリコン融液13の残量等により種々の値が適用される。補正間隔Tにおける実測直径φが(目標直径φo±不感帯δ)以上の偏差dを有する場合には次の▲1▼〜▲4▼の補正を行う。
【0022】
▲1▼ 図4の傾き時間帯t及びB点において
傾き時間帯tでは、実測直径φ≧(目標直径φo+不感帯δ)であり、実測引上げ速度V≧設定引上げ速度Voであり、引上げ速度Vの変化の平均値がマイナスであるため、実測引上げ速度は設定引上げ速度に次第に近付いていく。また図4のA点における引上げ速度をVとし、B点における引上げ速度をVとするとき、A点及びB点間の引上げ速度の傾きは(V−V)/tである。更に補正間隔T経過直後の予想引上げ速度Vは式(1)で表される。
=V+T(V−V)/t  …(1)
従って、V≦Voのとき、コントローラはヒータ温度の補正を行わずヒータ温度の不要な上昇を停止させるので、引上げ速度の急激な低下を防ぎ、実測直径φの細くなる割合が減少する。なお、V>Voのとき、コントローラはヒータ温度の補正を行ってヒータ温度を上昇させるので、引上げ速度を更に低下させ、実測直径φが細くなる割合が増加する。
【0023】
▲2▼ 図4の傾き時間帯t及びb点において
上記第1の引上げ方法と同様に、傾き時間帯tでは、実測直径φ≦(目標直径φo−不感帯δ)であり、実測引上げ速度V≦設定引上げ速度Voであり、引上げ速度Vの変化の平均値がマイナスであるため、実測引上げ速度は設定引上げ速度から次第に離れていく。この結果、コントローラは図3のb点においてヒータ温度の補正を行ってヒータ温度を下降させるので、引上げ速度の更なる低下を防ぎ、実測直径φが太くなる割合が増加する。
【0024】
▲3▼ 図4の傾き時間帯t及びD点において
傾き時間帯tでは、実測直径φ≦(目標直径φo−不感帯δ)であり、実測引上げ速度V≦設定引上げ速度Voであり、引上げ速度の変化の平均値がプラスであるため、実測引上げ速度は設定引上げ速度に次第に近付いていく。また図4のC点における引上げ速度をVとし、D点における引上げ速度をVとするとき、C点及びD点間の引上げ速度の傾きは(V−V)/tである。更に補正間隔T経過直後の予想引上げ速度Vは式(2)で表される。
=V+T(V−V)/t  …(2)
従って、V<Voのとき、コントローラはヒータ温度の補正を行ってヒータ温度を下降させるので、引上げ速度を更に上昇させ、実測直径φの太くなる割合が増加する。なお、V≧Voのとき、コントローラはヒータ温度の補正を行わずヒータ温度の不要な下降を停止させるので、引上げ速度の急激な上昇を防ぎ、実測直径φが太くなる割合が減少する。
【0025】
▲4▼ 図4の傾き時間帯t及びd点において
上記第1の引上げ方法と同様に、傾き時間帯Tでは、実測直径φ≧(目標直径φo+不感帯δ)であり、実測引上げ速度V≧設定引上げ速度Voであり、引上げ速度Vの変化の平均値がプラスであるため、実測引上げ速度は設定引上げ速度から次第に離れていく。この結果、コントローラは図3のd点においてヒータ温度の補正を行ってヒータ温度を上昇させるので、引上げ速度の上昇が抑制され、実測直径φが次第に細くなる。
【0026】
【発明の効果】
以上述べたように、本発明によれば、シリコン単結晶棒の引上げ速度を補正するためにヒータの温度の補正を行う際に、シリコン単結晶棒の実測直径の変化及び引上げ速度の変化を監視し、実測直径が設定直径の反対方向に変化しないようにヒータ温度を補正するので、ヒータ温度の補正が反対向きに行われる、即ち実測直径が設定直径から離れる方向に変化するようにヒータ温度を補正してしまうという事態を回避することができる。この結果、V/Gが一定になるように設定された設定引上げ速度に一致するように、実際の引上げ速度を精度良く制御できるので、シリコン単結晶棒の直径変動を抑制できる。
【0027】
また引上げ速度を補正するためにヒータの温度の補正を行う際に、シリコン単結晶棒の実測直径の変化及び引上げ速度の変化を監視し、上記引上げ速度の変化により次のヒータ温度の補正時間経過後の引上げ速度を予測し、この補正時間経過後の引上げ速度が設定引上げ速度に未だ達しないと判断すると、引上げ速度の変化方向にヒータ温度の補正を行い、上記補正時間経過後の引上げ速度が設定引上げ速度を通り過ぎて離れると判断すると、引上げ速度の変化方向へのヒータ温度の補正を停止する。この結果、引上げ速度が設定引上げ速度に速やかに近付くので、ヒータ温度の安定性を向上できるとともに、引上げ速度も速やかに安定させることができる。
【図面の簡単な説明】
【図1】本発明実施形態のシリコン単結晶の引上げ装置を示す縦断面図。
【図2】そのシリコン単結晶棒を引上げるときの制御を示すブロック線図。
【図3】シリコン単結晶棒を第1の引上げ方法により引上げているときの引上げ速度の変化を示す図。
【図4】シリコン単結晶棒を第2の引上げ方法により引上げているときの引上げ速度の変化を示す図。
【符号の説明】
13 シリコン融液
17 ヒータ
24 シリコン単結晶棒
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for manufacturing a silicon single crystal rod in which the fluctuation of the diameter of the silicon single crystal rod pulled up by the Czochralski method is suppressed.
[0002]
[Prior art]
Conventionally, as a method of controlling the pulling speed of a silicon single crystal rod, a first method of directly feeding back the deviation of the diameter during the pulling of the silicon single crystal rod to the pulling speed of the single crystal rod, or the method of controlling the deviation of the diameter to the heater temperature. A second method of providing direct feedback is known.
[0003]
On the other hand, with the recent increase in the degree of integration of semiconductor devices, design rules have become finer, and minute defects on a silicon wafer, which is a material, greatly affect the device yield. Thus, when a wafer is manufactured by slicing the pulled single crystal rod in a plane perpendicular to the axis, it is necessary to manufacture a wafer free of fine defects over the entire surface of the wafer. Therefore, when the temperature gradient in the axial direction near the solid-liquid interface at the time of pulling the single crystal rod is G (° C./mm) and the pulling speed is V (mm / min), V / G is constant. It is important to set the pulling speed over the entire length and to control the pulling speed to the set pulling speed. In order to keep V / G constant over the entire length, the temperature gradient G is large at the top portion of the single crystal rod at the beginning of pulling, and the temperature gradient is small from the top portion to a predetermined pulling position. When the pulling speed is set in accordance with the change of the pulling speed, it is necessary to set the pulling speed of the top portion to be high. Generally, the pulling speed is gradually reduced to a predetermined pulling position.
[0004]
However, since the difference in the set pulling speed is the difference in the actual pulling speed as it is, when the controllability of the top portion is improved by the above-described first method, the diameter variation other than the top portion becomes large, and the top portion becomes large. In order to improve the controllability other than the above, there is a problem that the diameter variation of the top portion becomes large.
Further, in the second method, since the control width of the heater temperature and the change width and the change time of the melt temperature change depending on the positional relationship between the liquid surface and the heater and the amount of the melt, it becomes very difficult to control the heater temperature. Depending on the situation, there is a possibility that the change tendency of the actual pulling speed and the correction tendency of the heater temperature do not coincide with each other, resulting in a large diameter variation.
[0005]
In order to eliminate these points, the control value of the pulling speed of the silicon single crystal rod is calculated, the pulling speed control value is limited to the pulling speed control value, and the span of the pulling speed control value is calculated. Before limiting, a silicon single crystal that controls a diameter of a silicon single crystal rod by calculating a heater temperature correction amount by comparing a pulling speed control value and a set pulling speed to obtain a heater temperature setting output. (JP-A-2001-316199).
[0006]
[Problems to be solved by the invention]
However, in the conventional method of manufacturing a silicon single crystal disclosed in Japanese Patent Application Laid-Open No. 2001-316199, before the span is limited to the pulling speed control value, the pulling speed control value is compared with the set pulling speed to determine the deviation. Since the feedback is made to the heater temperature, the correction amount of the heater temperature cannot catch up with the deviation of the actual pulling speed, and the fluctuation of the diameter of the single crystal rod may still be large.
An object of the present invention is to set a set pulling speed of a silicon single crystal rod so that V / G is constant, and to control the actual pulling speed with high accuracy so as to match the set pulling speed. It is an object of the present invention to provide a method for producing a silicon single crystal, which can suppress fluctuation in the diameter of a rod.
[0007]
[Means for Solving the Problems]
According to the first aspect of the present invention, as shown in FIGS. 1 to 3, a silicon single crystal rod 24 is pulled up from a silicon melt 13 melted by a heater 17, and the diameter of the silicon single crystal rod 24 during the pulling is set to a predetermined value. A method of manufacturing a silicon single crystal in which the output of the detection is fed back to the pulling speed of the silicon single crystal rod 24 and the temperature of the heater 17 so as to control the diameter of the silicon single crystal rod 24 to a set diameter. Is an improvement.
The characteristic configuration is that when the temperature of the heater 17 is corrected to correct the pulling speed, the change in the measured diameter of the silicon single crystal rod 24 and the change in the pulling speed are monitored, and the measured diameter is set to the set diameter. Is to correct the temperature of the heater 17 so as not to change in the opposite direction.
[0008]
In the method of manufacturing a silicon single crystal according to the first aspect, when the heater temperature is corrected to correct the pulling speed of the silicon single crystal rod 24, the change in the measured diameter and the change in the pulling speed are monitored. Thus, the pulling speed of the silicon single crystal rod 24 can be optimally corrected. This makes it possible to avoid a situation in which the heater temperature is corrected in the opposite direction, that is, the heater temperature is corrected so that the measured diameter changes in a direction away from the set diameter.
[0009]
As shown in FIGS. 1, 2 and 4, when the temperature of the heater 17 is corrected to correct the pulling speed, the change in the measured diameter of the silicon single crystal rod 24 and When the change in the pulling speed is monitored, the pulling speed after the correction time of the next heater temperature is predicted based on the change in the pulling speed, and it is determined that the pulling speed after the correction time has not reached the set pulling speed. The temperature of the heater 17 is corrected in the direction in which the pulling speed changes, and the correction of the temperature of the heater 17 in the direction in which the pulling speed changes is stopped when it is determined that the pulling speed after the correction time has passed beyond the set pulling speed. It is characterized by doing.
In the method of manufacturing a silicon single crystal according to the second aspect, when the pulling speed is determined to not reach the set pulling speed when correcting the pulling speed of the silicon single crystal rod, the direction in which the pulling speed is changed. Since the temperature of the heater 17 is corrected in advance, the pulling speed quickly approaches the set pulling speed. On the other hand, if it is determined that the pulling speed after the correction time has passed beyond the set pulling speed, the heater 17 stops correcting the temperature of the heater 17 in the direction in which the pulling speed changes, so that the amount by which the pulling speed passes the set pulling speed is small. Become. As a result, the pulling speed quickly approaches the set pulling speed, so that the stability of the heater temperature can be improved and the pulling speed can be quickly stabilized.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, an embodiment of the present invention will be described with reference to the drawings.
As shown in FIG. 1, a silicon single crystal pulling apparatus 10 includes a main chamber 11 configured to be able to vacuum inside, and a crucible 12 provided at the center of the chamber. The main chamber 11 is a cylindrical vacuum container. The crucible 12 includes a bottomed cylindrical inner container 12a formed of quartz and storing a silicon melt 13, and a bottomed cylindrical outer container 12b formed of graphite and fitted to the outside of the inner container 12a. Consists of The upper end of a shaft 14 is connected to the bottom surface of the outer container 12b, and the lower end of the shaft 14 is provided with a crucible driving means 16 for rotating the crucible 12 via the shaft and moving the crucible up and down. Further, the outer peripheral surface of the crucible 12 is surrounded by a cylindrical heater 17 at a predetermined interval, and the outer peripheral surface of the heater 17 is surrounded by a cylindrical heat retaining cylinder 18 at a predetermined interval.
[0011]
On the other hand, a cylindrical pull chamber 19 having a smaller diameter than the main chamber is connected to the upper end of the main chamber 11. A seed pulling means (not shown) is provided at the upper end of the pull chamber, and the seed pulling means is configured to rotate and raise / lower a pulling shaft 21 whose lower end reaches the surface of the silicon melt 13 in the main chamber 11. You. A seed chuck 23 is provided at the lower end of the pulling shaft 21, and this chuck is configured to hold the seed crystal 22. After the lower end of the seed crystal 22 is immersed in the silicon melt 13, the seed crystal 22 and the crucible 12 are rotated and raised by the seed pulling means, thereby pulling the silicon single crystal rod 24 from the lower end of the seed crystal 22. It is configured to grow.
[0012]
The diameter of the silicon single crystal rod 24 near the solid-liquid interface during the pulling is detected at predetermined time intervals by a diameter detection sensor (not shown). This diameter detection sensor is composed of a CCD camera, a radiation thermometer, and the like. The detection output of the diameter detection sensor is connected to a control input of a controller (not shown), and the control output of the controller is connected to a heater 17, a seed pulling means, and a crucible driving means 16. The controller is provided with a memory. This memory stores, as a map, a target diameter of the silicon single crystal rod 24 to be pulled and a set pulling speed set over the entire length of the silicon single crystal rod 24 so that V / G is constant. Here, V is the pulling speed of the silicon single crystal rod 24, and G is the axial temperature gradient near the solid-liquid interface when the silicon single crystal rod 24 is pulled.
[0013]
The controller controls the heater 17, the seed pulling means, and the crucible driving means 16 based on the detection output of the diameter detection sensor. That is, as shown in FIG. 1 and FIG. 2, the controller feeds back the detection output of the diameter change to the heater 17, the seed pulling means and the crucible driving means 16 so that the diameter of the silicon single crystal rod 24 becomes the set diameter. Control so that As a method of controlling the diameter of the silicon single crystal rod 24, there are a method of giving priority to the pulling speed of the silicon single crystal rod 24 so that the diameter of the silicon single crystal rod 24 becomes a set diameter, and a method of controlling the PID of the silicon single crystal rod 24. PID control with priority given to the temperature of the heater 17 such that the diameter of the heater 17 becomes the set diameter. Note that PID control is a type of feedback control in which a signal proportional to the output of the system, a signal obtained by integrating the output of the system, and a signal obtained by differentiating the output of the system are used as feedback signals. It is.
[0014]
A first method for pulling a silicon single crystal having such a structure will be described with reference to FIGS.
The deviation between the target diameter φo and the measured diameter φ of the silicon single crystal rod 24 during pulling is fed back to the pulling speed, and even when this feedback is fed back to the heater temperature based on the difference between the fed back pulling speed and the set pulling speed, the diameter of the diameter is reduced. The change tendency and the correction tendency of the heater temperature may not match. Therefore, when correcting the heater temperature, it is necessary to monitor the change in the diameter and the change (inclination) in the pulling speed in order to properly correct the pulling speed. This makes it possible to avoid a situation in which the heater temperature is corrected in the opposite direction, that is, the heater temperature is corrected so that the measured diameter changes in a direction away from the set diameter. As a result, the actual pulling speed can be accurately controlled so as to coincide with the set pulling speed set so that V / G becomes constant, so that the diameter variation of the silicon single crystal rod 24 can be suppressed.
[0015]
Specifically, when the temperature of the heater 17 is corrected to correct the pulling speed of the silicon single crystal rod 24, the diameter is set based on the change in the diameter of the silicon single crystal rod 24 and the change in the pulling speed. Correct the heater temperature to approach the diameter. That is, the time period for monitoring the change in the actually measured diameter φ and the change in the actually measured pulling speed V, that is, the inclination time period is set to t (t 1 , t 2 , t 3 , t 4 ,...), And the heater temperature is corrected. The time interval, that is, the correction interval is set as T (T 1 , T 2 , T 3 , T 4 ,...), The change in the actually measured diameter φ is the average value of the change in the slope time zone t, and the change in the pulling speed V is The average value of the change in the inclination time zone t is used. If the measured diameter φ at the correction interval T has a deviation d equal to or more than (target diameter φo ± dead zone δ), the following corrections (1) to (4) are performed. The dead zone δ refers to a range in which the feedback to the pulling speed is not performed when the diameter deviation d is within a predetermined value. The vertical axis in FIG. 3 is the pulling speed of the single crystal rod, and the horizontal axis is time.
[0016]
▲ 1 ▼ In gradient time zone t 1 in a tilt time period t 1 and a point in FIG. 3, a measured diameter phi ≧ (target diameter .phi.o + dead zone [delta]), a measured pulling speed V ≧ setup pulling Vo, the pulling rate Since the average value of the change in V is negative, the actually measured pulling speed gradually approaches the set pulling speed. As a result, the controller does not correct the heater temperature at the point a in FIG. 3 and stops the unnecessary increase in the heater temperature, thereby preventing a rapid decrease in the pulling speed and reducing the rate at which the measured diameter φ becomes smaller.
[0017]
▲ 2 ▼ In gradient time zone t 2 in a tilt time slot t 2 and point b in FIG. 3, a measured diameter phi ≦ (target diameter φo- dead zone [delta]), a measured pulling speed V ≦ setup pulling Vo, the pulling Since the average value of the change in the speed V is negative, the actually measured pulling speed gradually departs from the set pulling speed. As a result, since the controller corrects the heater temperature at point b in FIG. 3 to lower the heater temperature, it prevents a further decrease in the pulling speed and increases the rate at which the measured diameter φ becomes larger.
[0018]
▲ 3 ▼ In gradient time zone t 3 in a tilt time zone t 3 and point c in FIG. 3, a measured diameter phi ≦ (target diameter φo- dead zone [delta]), a measured pulling speed V ≦ setup pulling Vo, the pulling Since the average value of the speed change is positive, the actually measured pulling speed gradually approaches the set pulling speed. As a result, the controller stops unnecessary lowering of the heater temperature without correcting the heater temperature at point c in FIG. 3, so that the pulling speed is prevented from sharply increasing, and the rate of increase in the measured diameter φ decreases.
[0019]
▲ 4 ▼ In gradient time period T 4 in a tilt time zone t 4 and point d in FIG. 3, a measured diameter phi ≧ (target diameter .phi.o + dead zone [delta]), a measured pulling speed V ≧ setup pulling Vo, the pulling rate Since the average value of the change in V is positive, the actually measured pulling speed gradually departs from the set pulling speed. As a result, the controller corrects the heater temperature at point d in FIG. 3 to increase the heater temperature, so that the pulling speed is prevented from further increasing, and the rate at which the measured diameter φ becomes smaller increases.
[0020]
Next, a second method for pulling a silicon single crystal will be described with reference to FIGS.
When the heater temperature is corrected in consideration of the change in the pulling speed as in the first pulling method, the change in the pulling speed at points a and c in FIG. 3 is opposite to the correction of the heater temperature. Therefore, in the second pulling-up method, the correction of the heater temperature is not performed at the points B and D in FIG. That is, in the second pulling method, first, when the temperature of the heater 17 is corrected to correct the pulling speed, the change in the measured diameter of the silicon single crystal rod 24 and the change in the pulling speed are monitored. , The pulling speed after the elapse of the next heater temperature correction time is predicted. Next, when it is determined that the pulling speed after the lapse of the correction time has not yet reached the set pulling speed, the temperature of the heater 17 is corrected in the direction in which the pulling speed changes, and the pulling speed after the lapse of the correction time becomes equal to the set pulling speed. When it is determined that the heater 17 has passed by, the correction of the temperature of the heater 17 in the direction in which the pulling speed changes is stopped. As a result, the pulling speed quickly approaches the set pulling speed, so that the stability of the heater temperature can be improved and the pulling speed can be quickly stabilized.
[0021]
The vertical axis in FIG. 4 is the pulling speed of the single crystal rod, and the horizontal axis is time. In FIG. 4, if the inclination time zone t (t 1 , t 2 , t 3 , t 4 ,...) Is too long, the actual change in the diameter φ and the actual change in the pulling speed become difficult to see, and if it is too short, the diameter becomes small. Since variations in φ and variations in the pulling speed V are picked up, it is preferable to set it for 1 to 2 minutes. Various values are applied to the correction interval T (T 1 , T 2 , T 3 , T 4 ,...) Depending on the form of the hot zone in the pulling apparatus 10 and the remaining amount of the silicon melt 13. If the measured diameter φ at the correction interval T has a deviation d equal to or more than (target diameter φo ± dead zone δ), the following corrections (1) to (4) are performed.
[0022]
▲ 1 ▼ In gradient time zone t 1 in a tilt time period t 1 and point B in FIG. 4, a measured diameter phi ≧ (target diameter .phi.o + dead zone [delta]), a measured pulling speed V ≧ setup pulling Vo, the pulling rate Since the average value of the change in V is negative, the actually measured pulling speed gradually approaches the set pulling speed. Also the pulling speed at point A in FIG. 4 as V A, when the pulling rate at the point B and V B, the slope of the pull rate between points A and B is (V B -V A) / t 1 . Further expected pulling speed V 1 of the immediately following correction interval T 2 has elapsed is expressed by Equation (1).
V 1 = V B + T 2 (V B -V A) / t 1 ... (1)
Therefore, when V 1 ≦ Vo, the controller does not correct the heater temperature and stops the unnecessary increase in the heater temperature, so that the pulling speed is prevented from sharply lowering, and the rate at which the measured diameter φ becomes smaller is reduced. When V 1 > Vo, the controller corrects the heater temperature to increase the heater temperature, so that the pulling speed is further reduced, and the rate at which the measured diameter φ becomes smaller increases.
[0023]
▲ 2 ▼ similarly to the first pulling method in a tilt time slot t 2 and point b in FIG. 4, the slope time period t 2, a measured diameter phi ≦ (target diameter φo- dead zone [delta]), measured pulling speed Since V ≦ the set pulling speed Vo and the average value of the change in the pulling speed V is negative, the actually measured pulling speed gradually departs from the set pulling speed. As a result, since the controller corrects the heater temperature at point b in FIG. 3 to lower the heater temperature, it prevents a further decrease in the pulling speed and increases the rate at which the measured diameter φ becomes larger.
[0024]
▲ 3 ▼ In gradient time zone t 3 in a tilt time zone t 3 and point D in FIG. 4, a measured diameter phi ≦ (target diameter φo- dead zone [delta]), a measured pulling speed V ≦ setup pulling Vo, the pulling Since the average value of the change in speed is positive, the actually measured pulling speed gradually approaches the set pulling speed. The pulling rate at point C in FIG. 4 and V C, when the pulling speed at point D and V D, the slope of the pulling speed between point C and point D is at (V D -V C) / t 3 . Further expected pulling rate V 2 immediately after the correction interval T 4 has elapsed is expressed by Equation (2).
V 2 = V D + T 4 (V D −V C ) / t 3 (2)
Therefore, when V 2 <Vo, the controller corrects the heater temperature and lowers the heater temperature, so that the pulling speed is further increased, and the rate of increase in the measured diameter φ increases. When V 2 ≧ V 0, the controller does not correct the heater temperature and stops unnecessary lowering of the heater temperature, thereby preventing a sudden increase in the pulling speed and reducing the rate of increase in the measured diameter φ.
[0025]
▲ 4 ▼ similarly to the first pulling method in a tilt time zone t 4 and point d of FIG. 4, the slope time period T 4, a measured diameter phi ≧ (target diameter .phi.o + dead zone [delta]), measured pulling speed V ≧ Set pulling speed Vo and the average value of the change in pulling speed V is positive, so that the actually measured pulling speed gradually departs from the set pulling speed. As a result, the controller corrects the heater temperature at point d in FIG. 3 to increase the heater temperature, so that an increase in the pulling speed is suppressed, and the measured diameter φ gradually decreases.
[0026]
【The invention's effect】
As described above, according to the present invention, when correcting the temperature of the heater in order to correct the pulling speed of the silicon single crystal rod, the change in the measured diameter of the silicon single crystal rod and the change in the pulling speed are monitored. Since the heater temperature is corrected so that the measured diameter does not change in the direction opposite to the set diameter, the heater temperature is corrected in the opposite direction, that is, the heater temperature is changed so that the measured diameter changes in the direction away from the set diameter. The situation of correction can be avoided. As a result, the actual pulling speed can be accurately controlled so as to match the pulling speed set so that V / G is constant, so that the diameter variation of the silicon single crystal rod can be suppressed.
[0027]
In addition, when correcting the heater temperature to correct the pulling speed, the change in the measured diameter of the silicon single crystal rod and the change in the pulling speed are monitored, and the change in the pulling speed causes the next heater temperature correction time to elapse. If the pulling speed after the correction time has not yet reached the set pulling speed, the heater temperature is corrected in the direction in which the pulling speed changes, and the pulling speed after the correction time elapses. When it is determined that the heater speed has passed the set pulling speed, the correction of the heater temperature in the direction in which the pulling speed changes is stopped. As a result, the pulling speed quickly approaches the set pulling speed, so that the stability of the heater temperature can be improved and the pulling speed can be quickly stabilized.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view showing a silicon single crystal pulling apparatus according to an embodiment of the present invention.
FIG. 2 is a block diagram showing control when pulling up the silicon single crystal rod.
FIG. 3 is a diagram showing a change in a pulling speed when a silicon single crystal rod is pulled by a first pulling method.
FIG. 4 is a diagram showing a change in a pulling speed when a silicon single crystal rod is pulled by a second pulling method.
[Explanation of symbols]
13 Silicon melt 17 Heater 24 Silicon single crystal rod

Claims (2)

ヒータ(17)により溶融されたシリコン融液(13)からシリコン単結晶棒(24)を引上げ、この引上げ中のシリコン単結晶棒(24)の直径を所定時間毎に検出し、この検出出力を前記シリコン単結晶棒(24)の引上げ速度及び前記ヒータ(17)の温度にフィードバックすることにより前記シリコン単結晶棒(24)の直径を設定直径になるように制御するシリコン単結晶の製造方法において、
前記引上げ速度を補正するために前記ヒータ(17)の温度の補正を行う際に、前記シリコン単結晶棒(24)の実測直径の変化及び前記引上げ速度の変化を監視し、前記実測直径が前記設定直径の反対方向に変化しないように前記ヒータ(17)温度を補正することを特徴とするシリコン単結晶の製造方法。
The silicon single crystal rod (24) is pulled up from the silicon melt (13) melted by the heater (17), the diameter of the silicon single crystal rod (24) being pulled is detected at predetermined time intervals, and the detection output is obtained. A method for producing a silicon single crystal in which the diameter of the silicon single crystal rod (24) is controlled to a set diameter by feeding back the pulling speed of the silicon single crystal rod (24) and the temperature of the heater (17). ,
When correcting the temperature of the heater (17) in order to correct the pulling speed, a change in the measured diameter of the silicon single crystal rod (24) and a change in the pulling speed are monitored, and A method for manufacturing a silicon single crystal, comprising correcting the temperature of the heater (17) so as not to change in the opposite direction of the set diameter.
ヒータ(17)により溶融されたシリコン融液(13)からシリコン単結晶棒(24)を引上げ、この引上げ中のシリコン単結晶棒(24)の直径を所定時間毎に検出し、この検出出力を前記シリコン単結晶棒(24)の引上げ速度及び前記ヒータ(17)の温度にフィードバックすることにより前記シリコン単結晶棒(24)の直径を設定直径になるように制御するシリコン単結晶の製造方法において、
前記引上げ速度を補正するために前記ヒータ(17)の温度の補正を行う際に、前記シリコン単結晶棒(24)の実測直径の変化及び前記引上げ速度の変化を監視し、前記引上げ速度の変化により次のヒータ温度の補正時間経過後の引上げ速度を予測し、前記補正時間経過後の引上げ速度が設定引上げ速度に未だ達しないと判断した場合に前記引上げ速度の変化方向に前記ヒータ(17)温度の補正を行い、前記補正時間経過後の引上げ速度が設定引上げ速度を通り過ぎて離れると判断した場合に前記引上げ速度の変化方向への前記ヒータ(17)温度の補正を停止することを特徴とするシリコン単結晶の製造方法。
The silicon single crystal rod (24) is pulled up from the silicon melt (13) melted by the heater (17), the diameter of the silicon single crystal rod (24) being pulled is detected at predetermined time intervals, and the detection output is obtained. A method for producing a silicon single crystal in which the diameter of the silicon single crystal rod (24) is controlled to a set diameter by feeding back the pulling speed of the silicon single crystal rod (24) and the temperature of the heater (17). ,
When correcting the temperature of the heater (17) to correct the pulling speed, a change in the measured diameter of the silicon single crystal rod (24) and a change in the pulling speed are monitored, and a change in the pulling speed is monitored. The pulling speed after the correction time of the next heater temperature is predicted, and if it is determined that the pulling speed after the correction time has not yet reached the set pulling speed, the heater (17) is moved in the changing direction of the pulling speed. The temperature of the heater (17) is corrected in a direction in which the pulling speed changes when it is determined that the pulling speed after the correction time has passed the set pulling speed. Of producing a silicon single crystal.
JP2002197139A 2002-07-05 2002-07-05 Process for preparing silicon single crystal Pending JP2004035353A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002197139A JP2004035353A (en) 2002-07-05 2002-07-05 Process for preparing silicon single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002197139A JP2004035353A (en) 2002-07-05 2002-07-05 Process for preparing silicon single crystal

Publications (1)

Publication Number Publication Date
JP2004035353A true JP2004035353A (en) 2004-02-05

Family

ID=31704988

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002197139A Pending JP2004035353A (en) 2002-07-05 2002-07-05 Process for preparing silicon single crystal

Country Status (1)

Country Link
JP (1) JP2004035353A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101208285B1 (en) * 2010-03-08 2012-12-05 주식회사 엘지실트론 A Ingot Growing Controlling System, A Controlling Method of the same, and Ingot Grower including the same
JP2013159525A (en) * 2012-02-06 2013-08-19 Shin Etsu Handotai Co Ltd Method for manufacturing silicon single crystal and device for manufacturing silicon single crystal
KR101304717B1 (en) * 2011-03-18 2013-09-05 주식회사 엘지실트론 A Ingot Growing Controlling System, and Ingot Grower including the same
JP2017075084A (en) * 2015-10-15 2017-04-20 上海新昇半導體科技有限公司 Single crystal silicon ingot and method for forming wafer
CN115573028A (en) * 2022-11-18 2023-01-06 浙江晶盛机电股份有限公司 Crystal furnace deviation correction method and device, computer equipment and storage medium

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101208285B1 (en) * 2010-03-08 2012-12-05 주식회사 엘지실트론 A Ingot Growing Controlling System, A Controlling Method of the same, and Ingot Grower including the same
KR101304717B1 (en) * 2011-03-18 2013-09-05 주식회사 엘지실트론 A Ingot Growing Controlling System, and Ingot Grower including the same
JP2013159525A (en) * 2012-02-06 2013-08-19 Shin Etsu Handotai Co Ltd Method for manufacturing silicon single crystal and device for manufacturing silicon single crystal
JP2017075084A (en) * 2015-10-15 2017-04-20 上海新昇半導體科技有限公司 Single crystal silicon ingot and method for forming wafer
KR101902629B1 (en) * 2015-10-15 2018-09-28 징 세미콘덕터 코포레이션 Method for forming monocrystalline silicon ingot and wafers
CN115573028A (en) * 2022-11-18 2023-01-06 浙江晶盛机电股份有限公司 Crystal furnace deviation correction method and device, computer equipment and storage medium
CN115573028B (en) * 2022-11-18 2023-03-21 浙江晶盛机电股份有限公司 Crystal furnace deviation correction method and device, computer equipment and storage medium

Similar Documents

Publication Publication Date Title
US6241818B1 (en) Method and system of controlling taper growth in a semiconductor crystal growth process
US6726764B2 (en) Method for controlling growth of a silicon crystal to minimize growth rate and diameter deviations
TWI485293B (en) Method and apparatus for controlling diameter of a silicon crystal ingot in a growth process
JP6206178B2 (en) Single crystal pulling method
JP2009057216A (en) Silicon single crystal pulling method
JPH04149092A (en) Method and device for controlling growth of cone part
US6203611B1 (en) Method of controlling growth of a semiconductor crystal to automatically transition from taper growth to target diameter growth
US10072352B2 (en) Silicon single crystal growing apparatus and silocon single crystal growing method using same
KR20120030028A (en) Single crystal pulling-up apparatus and single crystal pulling-up method
JP3867476B2 (en) Silicon single crystal manufacturing method and silicon single crystal manufacturing apparatus
JP2004035353A (en) Process for preparing silicon single crystal
JP4035924B2 (en) Single crystal diameter control method and crystal growth apparatus
JPH0651599B2 (en) Floating band control method
JP5716689B2 (en) Silicon single crystal manufacturing method and silicon single crystal manufacturing apparatus
KR101277396B1 (en) A Ingot Growing Controller
EP0288605B1 (en) Method of and apparatus for controlling floating zone of semiconductor rod
JP2007308335A (en) Method for pulling single crystal
JP6540583B2 (en) Method and apparatus for producing single crystal
JP4815766B2 (en) Silicon single crystal manufacturing apparatus and manufacturing method
JPS6337080B2 (en)
JPS61122187A (en) Apparatus for pulling up single crystal
KR101494533B1 (en) Pulling speed control system of growing apparatus for silicon single crystal and manufacturing method for the same
KR20220114803A (en) Method and apparatus for growing silicon single crystal ingot
JP2024081376A (en) Method and device for manufacturing monocrystal
KR101105479B1 (en) Method and Apparatus for manufacturing high quality silicon single crystal