JPH04149092A - Method and device for controlling growth of cone part - Google Patents
Method and device for controlling growth of cone partInfo
- Publication number
- JPH04149092A JPH04149092A JP2274124A JP27412490A JPH04149092A JP H04149092 A JPH04149092 A JP H04149092A JP 2274124 A JP2274124 A JP 2274124A JP 27412490 A JP27412490 A JP 27412490A JP H04149092 A JPH04149092 A JP H04149092A
- Authority
- JP
- Japan
- Prior art keywords
- diameter
- temperature
- target
- value
- melt
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 31
- 239000013078 crystal Substances 0.000 claims abstract description 52
- 239000000155 melt Substances 0.000 claims abstract description 30
- 238000012937 correction Methods 0.000 claims description 12
- 239000011810 insulating material Substances 0.000 claims description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 6
- 229910002804 graphite Inorganic materials 0.000 description 6
- 239000010439 graphite Substances 0.000 description 6
- 238000007796 conventional method Methods 0.000 description 4
- 238000003384 imaging method Methods 0.000 description 4
- 239000010453 quartz Substances 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 238000012545 processing Methods 0.000 description 3
- 230000005855 radiation Effects 0.000 description 3
- 230000007423 decrease Effects 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- 238000007598 dipping method Methods 0.000 description 2
- 230000004043 responsiveness Effects 0.000 description 2
- 239000002131 composite material Substances 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B15/00—Single-crystal growth by pulling from a melt, e.g. Czochralski method
- C30B15/20—Controlling or regulating
- C30B15/22—Stabilisation or shape controlling of the molten zone near the pulled crystal; Controlling the section of the crystal
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S117/00—Single-crystal, oriented-crystal, and epitaxy growth processes; non-coating apparatus therefor
- Y10S117/901—Levitation, reduced gravity, microgravity, space
- Y10S117/902—Specified orientation, shape, crystallography, or size of seed or substrate
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T117/00—Single-crystal, oriented-crystal, and epitaxy growth processes; non-coating apparatus therefor
- Y10T117/10—Apparatus
- Y10T117/1004—Apparatus with means for measuring, testing, or sensing
- Y10T117/1008—Apparatus with means for measuring, testing, or sensing with responsive control means
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
Description
本発明は、チョクラルスキー法により、原料融液から単
結晶棒のコーン部を引上、育成する、コーン部育成制御
方法及び装置に関する。The present invention relates to a cone growth control method and apparatus for pulling up and growing a cone of a single crystal rod from a raw material melt using the Czochralski method.
この種のコーン部育成制御方法及び装置では、直径10
mm程度の種結晶を融液に漬け、種結晶を引き」二げ
ることにより単結晶を育成する。すなわち、結晶直径を
3111.[11程度まで絞って転位を無くした後、結
晶直径を増大させでて、目的とする円柱状の直胴部を育
成する。
この結晶直径増大部(コーン部)は製品として使用され
ないので、できるだけ短くして単結晶製造コストを低減
する必要がある。しかし、コー=ン部を短くし過ぎると
、すなわち結晶直径を急に増大させると、結晶が乱れて
、直胴部を育成することが不可能となる。
ここで、融液温度を下げたり、結晶用」−げ速度を下げ
たりすると、結晶直径が増大する。結晶弓トげ速度の変
化に対する結晶直径の変化の応答性は、融液温度の変化
に対する結晶直径の変化の応答性よりも相当速いが、結
晶が乱れ易い。一方、コーン部の目標形状を設定してお
き、結晶直径を測定し、目標形状になるように、融液を
加熱するし−タに供給A−る電力を制御すると、ハンチ
ングが大きくて、結晶表面に大きな凹凸が形成される。
このたy〕、目標形状の傾斜を、コーン部をできるだけ
短くするだめの理想的な形状の傾斜よりも緩やかにして
、結晶が乱れるのを防止する必要がある。換言すれば、
コーン部の長さが必要以上に長くなる。
そこで、従来では、時間の経過とともに融液温度が低く
なる目標温度パターンを設定しでおき、この目標温度に
なるように、融液を加熱するヒタへの供給電力を調節し
ていた。この制御方法によれば、ハンチングが小さいの
で、結晶表面に形成される凹凸が小さくなる。In this type of cone growth control method and device, the diameter is 10
A single crystal is grown by dipping a seed crystal about mm in size into a melt and pulling the seed crystal. That is, the crystal diameter is 3111. [After narrowing down to about 11 to eliminate dislocations, the crystal diameter is increased to grow the desired cylindrical straight body. Since this crystal diameter increasing portion (cone portion) is not used as a product, it is necessary to shorten it as much as possible to reduce the cost of producing a single crystal. However, if the cone portion is made too short, that is, if the crystal diameter is suddenly increased, the crystal becomes disordered and it becomes impossible to grow a straight body portion. Here, if the melt temperature is lowered or the crystal growth rate is lowered, the crystal diameter increases. Although the responsiveness of the crystal diameter change to a change in the crystal bowing rate is considerably faster than the responsiveness of the crystal diameter change to a change in melt temperature, the crystal is easily disordered. On the other hand, if the target shape of the cone section is set, the crystal diameter is measured, and the power supplied to the heater that heats the melt is controlled so as to achieve the target shape, hunting is large and the crystals are Large irregularities are formed on the surface. For this reason, it is necessary to make the inclination of the target shape gentler than the inclination of the ideal shape, which is intended to shorten the cone portion as much as possible, to prevent the crystal from becoming disordered. In other words,
The length of the cone becomes longer than necessary. Therefore, conventionally, a target temperature pattern is set in which the melt temperature decreases with the passage of time, and the power supplied to the heater that heats the melt is adjusted so as to reach this target temperature. According to this control method, since hunting is small, the unevenness formed on the crystal surface is reduced.
しかし、コーン部の形状は、絞り部の直径、直胴部の目
標直径、結晶引上げ速度、引上げ軸回転速度、坩堝回転
速度、ヒータに対する坩堝の上下方向位置、坩堝の内径
及び坩堝内の融液の量等にも依存するので、再現性の良
いコーン部形状が得られない。このた杓、経過時間に対
する目標温度パターンの傾斜を、コーン部をできるだけ
短くするための理想的な温度パターンの傾斜よりも緩や
かにして、結晶が乱れるのを防止する必要があり、コー
ン部の長さが必要以上に長くなる。
本発明の目的は、このような問題点に鑑み、コーン部形
状の再現性を向上させてコーン部を短くすることができ
るコーン部育成制御方法及び装置を提供することにある
。However, the shape of the cone part depends on the diameter of the cone part, the target diameter of the straight body part, the crystal pulling speed, the pulling shaft rotation speed, the crucible rotation speed, the vertical position of the crucible with respect to the heater, the inner diameter of the crucible, and the melt in the crucible. Since it also depends on the amount etc., it is not possible to obtain a cone shape with good reproducibility. For this reason, it is necessary to make the slope of the target temperature pattern with respect to the elapsed time gentler than the slope of the ideal temperature pattern to make the cone part as short as possible to prevent the crystals from being disordered. The length becomes longer than necessary. In view of these problems, it is an object of the present invention to provide a cone growth control method and apparatus that can improve the reproducibility of the cone shape and shorten the cone.
本方法発明では、チョクラルスキー法により、ヒータで
加熱された融液から単結晶棒のコーン部を引上育成する
コーン部育成制御方法において、該融液に関する温度の
目標値(To又はT。+△To)及び該結晶の育成部の
直径変化率の目標値を予め設定しておき、該結晶の育成
部の直径を測定し、該直径の変化率を算出し、該融液に
関する温度を測定し、該直径変化率の算出値と目標値と
の差に基づいて、該目標温度を補正し、該測定温度が補
正された該目標温度になるように、該ヒタに供給する電
力を調節するステップを有している。
また、本装置発明では、チョクラルスキー法により、ヒ
ータで加熱された融液から単結晶棒のコーン部を引上育
成するコーン部育成制御装置において、該結晶の育成部
の直径を測定する手段と、該直径の変化率を算出する手
段と、該直径の変化率の目標値が設定された第1設定手
段と、該融液に関する温度を測定する手段と、該融液に
関する温度の目標値が設定された第2設定手段と、該直
径変化率の算出値と目標値との差に基づいて、該目標温
度を補正する目標温度補正手段と、該測定温度が補正さ
れた該目標温度になるように、該ヒ夕に供給する電力を
調節するヒータ電力調節手段と、を有している。
上記方法及び装置の発明において、前記温度及びの直径
変化率の目標値は、時間、引上げ長さ又は直径の関数と
して設定されるが、コーン部形状の再現性向上のために
は、直径変化率の目標値は直径の関数で設定するのが最
も好ましい。この再現性の向上により、温度の目標値は
、最も構成が簡単になる時間の関数で充分となる。
前記温度は、例えば、前記ヒータを囲繞する断熱材に形
成した凹部の温度又は融液表面温度である。
前記目標温度の補正は、好ましくは、前記直径変化率の
算出値と目標値との差に関する比例成分と微分成分と積
分成分との和を前記目標温度に加えることにより行う。
また、前記電力調節は、例えば、前記測定温度と前記補
正された目標温度との差に関しPID動作を行う調節で
ある。In the present method invention, in a cone growth control method for growing a cone of a single crystal rod by pulling it up from a melt heated by a heater using the Czochralski method, the target temperature (To or T) for the melt is set. +ΔTo) and the target value of the rate of change in the diameter of the growing part of the crystal are set in advance, the diameter of the growing part of the crystal is measured, the rate of change of the diameter is calculated, and the temperature of the melt is determined. Measure the diameter change rate, correct the target temperature based on the difference between the calculated value and the target value, and adjust the power supplied to the heater so that the measured temperature becomes the corrected target temperature. It has steps to Further, in the present device invention, in a cone growth control device for growing a cone portion of a single crystal rod by pulling it up from a melt heated by a heater using the Czochralski method, there is a means for measuring the diameter of the growth portion of the crystal. , means for calculating the rate of change in the diameter, first setting means in which a target value for the rate of change in the diameter is set, means for measuring the temperature of the melt, and a target value of the temperature for the melt. is set, a target temperature correction means for correcting the target temperature based on the difference between the calculated value of the diameter change rate and the target value, and a second setting means for correcting the target temperature based on the difference between the calculated value of the diameter change rate and the target value; The heater has a heater power adjusting means for adjusting the power supplied to the heater. In the method and apparatus invention, the target values for the temperature and the diameter change rate are set as a function of time, pulling length, or diameter. Most preferably, the target value of is set as a function of diameter. Due to this improved reproducibility, the temperature target value is sufficient as a function of time, which is the simplest to construct. The temperature is, for example, the temperature of a recess formed in a heat insulating material surrounding the heater or the surface temperature of the melt. The correction of the target temperature is preferably performed by adding to the target temperature the sum of a proportional component, a differential component, and an integral component regarding the difference between the calculated value of the diameter change rate and the target value. Further, the power adjustment is, for example, an adjustment that performs a PID operation regarding the difference between the measured temperature and the corrected target temperature.
本発明では、結晶直径を直接制御せずに、(1)融液温
度が目標温度T0になるように制御し、かつ、
(2)直径自体ではなく、直径変化率
△D/Δtとその目標値(ΔD/Δt)。との差に基づ
いて、目標温度T。を補正しているので、コーン部形状
の再現性を向上させることができ、これにより、結晶の
乱れを生じさせずにコーン部の長さを従来よりも短くす
ることができる。In the present invention, without directly controlling the crystal diameter, (1) the melt temperature is controlled to be the target temperature T0, and (2) the diameter change rate ΔD/Δt and its target value are determined, not the diameter itself. value (ΔD/Δt). Based on the difference between the target temperature T. Since this is corrected, the reproducibility of the cone shape can be improved, and thereby the length of the cone can be made shorter than before without causing crystal disturbance.
以下、図面に基づいて本発明の一実施例を説明する。
第1図は、コーン部育成制御装置が適用された、チョク
ラルスキー法による結晶育成装置を示す。
黒鉛坩堝10内に嵌合された石英坩堝12内には、シリ
コーン多結晶の塊が収容され、これは、黒鉛坩堝10を
囲繞するヒータ14に電力を供給することにより、加熱
溶融されて融液16になる。
ヒータ14は黒鉛の断熱材18で囲繞され、これら構成
要素10〜18は、真空吸引されるチャンバ20内に収
容されている。
黒鉛坩堝10は、これと同心の坩堝回転軸22を介し不
図示のモータで、矢印方向に回転、昇降される。一方、
黒鉛坩堝10の上方には、これと同心の引上軸26の下
端に、ホルダ28を介して種結晶30が保持されている
。
種結晶30の下端を融液16に漬けて矢印方向に引き上
げながら回転させることにより、単結晶32が育成され
る。この単結晶32は、結晶を無転位にするための絞り
部32A1結晶を目標直径DBまで増大させるためのコ
ーン部32B、目標直径DBの直胴部32Cの順に育成
される。
チャンバ20の肩部には、単結晶32と融液16との界
面に形成された輝環34を撮像するた約に、覗き窓36
が設けられ、かつ、この覗き窓36に対向して撮像装置
38がチャンバ20に固定されている。撮像装置38か
ら出力される複合映像信号は直径計測器40に供給され
、直径計測器40は画像処理により輝厖:34の直径を
計測する。
一方、融液16に関する温度を測定するために、チャン
バ20の側面に覗き窓44が設けられ、断熱材18の側
面に凹部46が形成され、かつ、覗き窓44を通し凹部
46を覗くようにして放射温度計48がチャンバ20に
固定されている。
放射温度計48で検出された温度Tの目標値Toは、マ
イクロコーンピュータ5(]で決定される。
このマイクロコーンピュータ50は、周知の如く、CP
T、J 52、ROM54、RAM56、人カボト5
8及び出力ポートロ0を備えて構成されている。人力ボ
ート58には、直径計測器40から直径りが供給される
。また、例えば、絞り部32Aを手動制御で育成した後
、自動制御に切換えると、コーン部育成開始信号が人力
ボート58に供給される。入力ポート58にはまた、磁
気ディスクドライバ62及びキーボード63が接続され
ている。
この磁気ディスクドライバ62を介して、目標直径突化
率ファイル64及び目標温度ファイル66がマイクロコ
ーンピュータ50に読み込まれ、RAM56に格納され
る。目標直径変化率ファイル64は、図示の如く、結晶
直径りの時間tに関する変化率の目標値(ΔD/Δt)
oを直径りの関数で表したデータファイルである。また
、目標温度ファイル66は、図示の如く、凹部46の温
度の目標値T。を時間tの関数で表したデータファイル
である。
CPU52は、ROM54に格納さt17’aグラノ4
に従って、キーボード63から人力ボート58を介し後
述する初期補正値ΔT、を読み込み、直径計測器40か
ら入力ポート58を介し直径りを読み込み、RAM56
に格納された目標直径変化率ファイル64及び目標温度
ファイル66を参照して、補正した目標温度T、。を算
出し、この目標温度T。0を、出カポ−)60及びD/
A変換器68を介して温度調節器70に供給する。
温度調節器70は、例えばPID動作を行ってTが目標
温度T。flになるように、駆動回路72を介しヒータ
14に電力を供給する。
次に、第2図に基づいてマイクロフンピユータ50の処
理を説明する。
(98)絞り部最終時点での結晶直径り及び弓Fげ速度
をそれぞれ標準的な値と比較し、これらの差に基づいて
、目標温度T、の初期補正値Δ1゛。を算出し、キーボ
ード63を操作してマイクロコーンピュータ50に入力
する。
(100)直径計測器40から直径りを一定時間Δτ毎
にに回読ろ込ろ、その平均値をり、とする。
(102>直径D、が設定値DAに達したかどうかを判
定する。単結晶32が乱れないようにするために、DI
<DAでは、直径変゛イヒ率の目標値が比較的小さな値
に設定されているので、目標温度T。の補正の必要性は
少ないと考えられる。
(104)D、<[)Aであれば、RAM56に格納さ
れている目標温度ファイル66から、時刻t == i
△tにおける目標温度T。を読ろ出し、T、+ΔToを
To。とする。ここに、Δt=にΔτである。
D、≧DAであれば、
(106)直径り、が直胴部32Cの目標直径D3に達
したかどうかを判定する。
(108)D、<D、であれば、直径り、の時間に対す
る変化率△D/△tを算出する。ここに、ΔD−(D、
−D、、)7mである。
(1]、O)RAM56に格納されている目標直径変化
率ファイル64及び目標温度ファイル66から、時刻t
=i△tにおける目標直径変化率(△D/△t)。及び
目標温度T。を読み出す。
(112)d、=△D/△t
(△D/△t) ・ (1)
を算出する。
(11,4>コーン部32Bの凹凸を大きくすることな
くコーン部32Bの形状の再現性を向上させるための、
目標温度T。の補正値Sを算出する例えば、前記d、に
関する比例成分と微分成分と積分成分との和を補正値S
とする。この場合、5=Kpd+KIΣd、△t +
K n△d/△tとなる。
ここに、K−、K+ 、Knは、補正が最も効果的に行
われるように経験的に選定される定数であり、また、Δ
d = d 1d i−+である。
(116)T、+ΔTo+SをT。oとする。
(118)D/A変換器68を介し温度調節器70に、
補正された目標温度T。0を供給する。そして、lをイ
ンクリメントし、上記ステップ100へ戻る。
第3図乃至第5図は本装置を用いてコーン部32Bを実
際に育成したときの、直径り、直径変化率△D/△t1
目標直径変化率(ΔD/△t)o。
目標温度T0及び石英坩堝12の回転速度CRの時間1
(1=0でコーン部自動育成制御開始)に対する変化
を示す。コーン部32Bの育成の際の試験条件は次の通
りである。
石英坩堝12:上下方向位置一定
引上軸26:引上げ速度一定
温度調節器70:PIDli節器
Δτ=6秒、Δt=1分、m=2
DA :80mm
Da:158mm
m△tは、短か過ぎると目標温度T0゜がハンチングし
、長ずぎると補正が不正確になるので、m△tの選定は
重要である。m△tの好ましい範囲は1〜3分であった
。
第3〜5図において、ダイアル(dial)値は温度と
線形の関係にある。t<2分でT。が急降下しているの
はコーン部育成速度を速めるためである。また、t<2
分でT0+ΔToくT。0となっているのは、次の理由
である。すなわち、駆動回路72がダイアルをモータで
回転させてヒータ14に供給する電力を調整しており、
目標温度の変化率があまり大きいとこのモータの回転速
度が上限値に達して追従が遅れるためである。
第3図では、直径変化率の目標値に対する偏差dがD≧
DAにおいて比較的小さい。t−60〜65分で目標温
度T。が+側に補正されている。
第4図では、t−45〜50分でdが比較的大きくなり
、目標温度T0が+側に補正されている。
t〉50では、積分定数が補正値として残っており、T
o、l!:Tooの傾きが等しくなっている。
第5図では、t〉40でdが負になったために、目標温
度T。が−側に補正されている。
目標温度T。を補正しない従来法でコーン部32Bを育
成した場合と、目標温度T0を補正した本方法でコーン
部32Bを育成した場合とを、それぞれ40本の単結晶
棒について比較した結果は次の通りであった。
コーン部長さの平均値
従来法:1(]、’1cm 本方法:]、0.1c
mコーン部長さの標準偏差
従来法:1.49 本方法:0.65不良品発生
率(転位発生本数/40本)従来法:0,45
本方法:0.10なお、不良品とは、転位が発生したた
め結晶を降下・させて融液中で溶融し、再度引上げ直す
ものをいう。
従来力で不良品発生率が大きいのは、コーン部長さを短
くし目標直径変化率(ΔD/Δt)。を比較的大きくし
たことと、表面形状の再現性が悪いことのだ約に、実際
の直径変化率ΔD/Δtが部分的に大きくなり過ぎ%転
位が発生したと考えられる。、−のような厳1−い条件
下においては、本実施例のように、温度の自動補正を行
うこ1!−により、表面形状の再現性が向上し2て、不
良発生軍人きく低下することがわかった。Hereinafter, one embodiment of the present invention will be described based on the drawings. FIG. 1 shows a crystal growth apparatus using the Czochralski method to which a cone growth control apparatus is applied. A silicone polycrystal mass is housed in a quartz crucible 12 fitted into the graphite crucible 10, which is heated and melted into a melt by supplying power to a heater 14 surrounding the graphite crucible 10. Becomes 16. The heater 14 is surrounded by graphite insulation 18, and the components 10-18 are housed within a chamber 20 that is evacuated. The graphite crucible 10 is rotated and raised and lowered in the direction of the arrow by a motor (not shown) via a crucible rotation shaft 22 concentric therewith. on the other hand,
A seed crystal 30 is held above the graphite crucible 10 via a holder 28 at the lower end of a pulling shaft 26 that is concentric therewith. A single crystal 32 is grown by dipping the lower end of the seed crystal 30 in the melt 16 and rotating it while pulling it up in the direction of the arrow. This single crystal 32 is grown in the following order: a narrowed portion 32A for making the crystal free of dislocations, a cone portion 32B for increasing the crystal to the target diameter DB, and a straight body portion 32C having the target diameter DB. A viewing window 36 is provided at the shoulder of the chamber 20 for imaging the bright ring 34 formed at the interface between the single crystal 32 and the melt 16.
is provided, and an imaging device 38 is fixed to the chamber 20 facing the viewing window 36. The composite video signal outputted from the imaging device 38 is supplied to a diameter measuring device 40, and the diameter measuring device 40 measures the diameter of the diaphragm 34 through image processing. On the other hand, in order to measure the temperature of the melt 16, a viewing window 44 is provided on the side surface of the chamber 20, a recess 46 is formed on the side surface of the heat insulating material 18, and the viewing window 44 is configured to allow viewing into the recess 46. A radiation thermometer 48 is fixed to the chamber 20. The target value To of the temperature T detected by the radiation thermometer 48 is determined by the microcomputer 5. As is well known, the microcomputer 50 is
T, J 52, ROM54, RAM56, Hitokaboto 5
8 and an output port 0. The human-powered boat 58 is supplied with a diameter from the diameter measuring device 40 . Further, for example, when the cone section 32A is grown under manual control and then switched to automatic control, a cone section growth start signal is supplied to the human-powered boat 58. A magnetic disk driver 62 and a keyboard 63 are also connected to the input port 58. Via this magnetic disk driver 62, a target diameter burr rate file 64 and a target temperature file 66 are read into the microcomputer 50 and stored in the RAM 56. As shown in the figure, the target diameter change rate file 64 contains a target value (ΔD/Δt) of the rate of change in crystal diameter with respect to time t.
This is a data file in which o is expressed as a function of diameter. Further, the target temperature file 66 contains a target value T of the temperature of the recess 46 as shown in the figure. This is a data file in which t is expressed as a function of time t. The CPU 52 is stored in the ROM 54.
Accordingly, an initial correction value ΔT, which will be described later, is read from the keyboard 63 via the manual boat 58, a diameter is read from the diameter measuring device 40 via the input port 58, and the RAM 56
The corrected target temperature T, with reference to the target diameter change rate file 64 and target temperature file 66 stored in . This target temperature T is calculated. 0, output capo) 60 and D/
It is supplied to a temperature regulator 70 via an A converter 68. The temperature regulator 70 performs, for example, a PID operation so that T is the target temperature T. Power is supplied to the heater 14 via the drive circuit 72 so that the voltage becomes fl. Next, the processing of the micrometer computer 50 will be explained based on FIG. (98) Compare the crystal diameter and arching speed at the end of the constriction section with standard values, and based on these differences, determine the initial correction value Δ1 for the target temperature T. is calculated and input into the microcomputer 50 by operating the keyboard 63. (100) Read the diameter from the diameter measuring device 40 every fixed time Δτ, and take the average value as . (102>Diameter D, determines whether it has reached the set value DA. In order to prevent the single crystal 32 from being disturbed, the DI
<In DA, the target value of the diameter change rate is set to a relatively small value, so the target temperature T. It is thought that there is little need for correction. (104) If D, < [) A, from the target temperature file 66 stored in the RAM 56, time t == i
Target temperature T at Δt. Read out T, +ΔTo as To. shall be. Here, Δt = Δτ. If D, ≧DA, (106) Determine whether the diameter has reached the target diameter D3 of the straight body portion 32C. (108) If D<D, calculate the rate of change ΔD/Δt of the diameter with respect to time. Here, ΔD−(D,
-D,,)7m. (1), O) From the target diameter change rate file 64 and target temperature file 66 stored in the RAM 56, the time t
= Target diameter change rate (ΔD/Δt) at iΔt. and target temperature T. Read out. (112) d, = △D/△t (△D/△t) (1) is calculated. (11,4>To improve the reproducibility of the shape of the cone portion 32B without increasing the unevenness of the cone portion 32B,
Target temperature T. For example, the sum of the proportional component, differential component, and integral component regarding d is calculated as the correction value S.
shall be. In this case, 5=Kpd+KIΣd, △t+
K n△d/△t. Here, K-, K+, Kn are constants selected empirically so that the correction is most effective, and Δ
d = d 1d i-+. (116) T, +ΔTo+S. o. (118) To the temperature controller 70 via the D/A converter 68,
Corrected target temperature T. Supply 0. Then, l is incremented and the process returns to step 100 above. Figures 3 to 5 show the diameter and diameter change rate △D/△t1 when the cone portion 32B was actually grown using this device.
Target diameter change rate (ΔD/Δt)o. Time 1 of target temperature T0 and rotation speed CR of quartz crucible 12
(When 1=0, cone part automatic growth control is started). The test conditions for growing the cone portion 32B are as follows. Quartz crucible 12: Constant vertical position Pulling shaft 26: Constant pulling speed Temperature regulator 70: PIDli moderator Δτ = 6 seconds, Δt = 1 minute, m = 2 DA: 80 mm Da: 158 mm Is m△t short? The selection of mΔt is important because if it is too long, the target temperature T0° will hunt, and if it is too long, the correction will be inaccurate. The preferred range of mΔt was 1 to 3 minutes. In Figures 3-5, the dial value has a linear relationship with temperature. T when t<2 minutes. The reason for the rapid decline is to accelerate the growth rate of the cone. Also, t<2
T0+ΔTokuT in minutes. The reason why it is 0 is as follows. That is, the drive circuit 72 rotates the dial with a motor to adjust the power supplied to the heater 14.
This is because if the rate of change in the target temperature is too large, the rotational speed of this motor will reach the upper limit value and follow-up will be delayed. In Figure 3, the deviation d of the diameter change rate from the target value is D≧
Relatively small in DA. Target temperature T at t-60 to 65 minutes. has been corrected to the + side. In FIG. 4, d becomes relatively large between t-45 and t-50 minutes, and the target temperature T0 is corrected to the + side. At t>50, the integral constant remains as a correction value, and T
o, l! :The slopes of Too are equal. In FIG. 5, since d became negative at t>40, the target temperature T. is corrected to the negative side. Target temperature T. The results of comparing 40 single-crystal rods between the case where the cone part 32B was grown by the conventional method without correcting the temperature T0 and the case where the cone part 32B was grown by the present method in which the target temperature T0 was corrected are as follows. there were. Average value of cone length Conventional method: 1(], '1cm Current method: ], 0.1c
Standard deviation of m-cone length Conventional method: 1.49 This method: 0.65 Defective product incidence (number of dislocations/40) Conventional method: 0.45
This method: 0.10 Note that a defective product refers to one in which the crystal is lowered and melted in the melt due to the occurrence of dislocation, and is pulled up again. The reason why the defect rate is high with conventional force is when the cone length is shortened and the target diameter change rate (ΔD/Δt) is achieved. It is considered that the actual diameter change rate ΔD/Δt became too large in some parts and % dislocation occurred due to the fact that ΔD/Δt was made relatively large and the reproducibility of the surface shape was poor. , - Under severe conditions such as 1-, it is recommended to automatically correct the temperature as in this embodiment. - It was found that the reproducibility of the surface shape was improved and the occurrence of defects was significantly reduced.
第1図乃至第5図1i本発明に係る二)−ン部育成制御
方法及び装置の一実施例に係り、
第1図はコーン部育成制御方法及び装置が適用された結
晶育成装置の概略構成図、
第2図は第1図のマイクロコーンピュータ50の処理手
厘を示すフローチャー 1−1第3図乃至第5図は本実
施例装置を実際に用いた結果を示す線図である。
図中、
10は黒鉛坩堝
12は石英用鍋
14はヒータ
16は融液
18は断熱材
201よJヤンバ
22は坩堝回転軸
2日は引上軸
28はホルダ
30は種結晶
;321ま単結晶
32Aは絞り部
32F3はコーン部
32 Cは直胴部
34は輝環
36.44は覗き窓
38は撮像装置
48は放射温度計
5(]はマイクロコーンピュータ
64は目標直径変化Wファイル
66は目標温度ファイル1 to 5 1i 2) An embodiment of the cone growth control method and apparatus according to the present invention, FIG. 1 is a schematic configuration of a crystal growth apparatus to which the cone growth control method and apparatus are applied. FIG. 2 is a flowchart showing the processing procedure of the microcomputer 50 of FIG. 1. 1-1 FIGS. 3 to 5 are diagrams showing the results of actually using the apparatus of this embodiment. In the figure, 10 is a graphite crucible 12 is a quartz pot 14 is a heater 16, a melt 18 is a heat insulating material 201, a J yamba 22 is a crucible rotation axis, 2 is a pulling axis 28, a holder 30 is a seed crystal; 321 is a single crystal 32A is the aperture portion 32F3 is the cone portion 32C is the straight body portion 34 is the bright ring 36.44 is the viewing window 38 is the imaging device 48 is the radiation thermometer 5 (] is the microcomputer 64 is the target diameter change W file 66 is the target temperature file
Claims (1)
熱された融液(16)から単結晶棒(32)のコーン部
(32B)を引上育成するコーン部育成制御方法におい
て、 該融液に関する温度の目標値(66)及び該結晶の育成
部の直径変化率の目標値(64)を予め設定しておき、 該結晶の育成部の直径を測定し(100)、該直径の変
化率を算出し(108)、 該融液に関する温度を測定し、 該直径変化率の算出値と目標値との差に基づいて、該目
標温度を補正し(112〜116)、該測定温度が補正
された該目標温度になるように、該ヒータに供給する電
力を調節する、 ステップを有することを特徴とするコーン部育成制御方
法。 2)、前記温度の前記目標値(64)は時間の関数であ
り、前記直径変化率の前記目標値(66)は直径の関数
であることを特徴とする請求項1記載の方法。 3)、前記温度は、前記ヒータ(14)を囲繞する断熱
材(18)に形成した凹部(46)の温度であることを
特徴とする請求項1又は2に記載の方法。 4)、前記目標温度の補正は、前記直径変化率の算出値
と目標値との差に関する比例成分と微分成分と積分成分
との和を前記目標温度に加えることを特徴とする請求項
1乃至3のいずれか1つに記載の方法。 5)、前記電力調節は、前記測定温度と前記補正された
目標温度との差に関しPID動作を行う調節であること
を特徴とする請求項1乃至4のいずれか1つに記載の方
法。 6)、チョクラルスキー法により、ヒータ(14)で加
熱された融液(16)から単結晶棒(32)のコーン部
(32B)を引上育成するコーン部育成制御装置におい
て、 該結晶の育成部の直径を測定する手段(38、40)と
、 該直径の変化率を算出する手段(50、108)と、 該直径の変化率の目標値が設定された第1設定手段(6
4)と、 該融液に関する温度を測定する手段(48)と、該融液
に関する温度の目標値が設定された第2設定手段(66
)と、 該直径変化率の算出値と目標値との差に基づいて、該目
標温度を補正する目標温度補正手段(50、112〜1
16)と、 該測定温度が補正された該目標温度になるように、該ヒ
ータに供給する電力を調節するヒータ電力調節手段(7
0、72)と、 を有することを特徴とするコーン部育成制御装置。 7)、前記第1設定手段で設定された前記目標値(64
)は直径の関数であり、前記第2設定手段で設定された
前記目標値(66)は時間の関数であることを特徴とす
る請求項6記載の装置。 8)、前記温度測定手段(48)は、前記ヒータ(14
)を囲繞する断熱材(18)に形成した凹部(46)の
温度を検出することを特徴とする請求項6又は7に記載
の装置 9)、前記目標温度補正手段(50、112〜116)
は、前記直径変化率の算出値と目標値との差に関する比
例成分と微分成分と積分成分との和を前記目標温度に加
えることを特徴とする請求項5乃至8のいずれか1つに
記載の方法。 10)、前記ヒータ電力調節手段(70、72)は、前
記測定温度と前記補正された目標温度との差に関しPI
D動作を行う調節器であることを特徴とする請求項6乃
至8のいずれか1つに記載の装置。[Claims] 1) Cone growth control for pulling and growing a cone (32B) of a single crystal rod (32) from a melt (16) heated by a heater (14) by the Czochralski method. In the method, a target temperature value (66) for the melt and a target value (64) for the diameter change rate of the crystal growth area are set in advance, and the diameter of the crystal growth area is measured (100). , calculate the rate of change in the diameter (108), measure the temperature of the melt, and correct the target temperature based on the difference between the calculated rate of change in diameter and the target value (112-116). A cone growth control method, comprising the steps of: adjusting power supplied to the heater so that the measured temperature reaches the corrected target temperature. 2) A method according to claim 1, characterized in that said setpoint value (64) of said temperature is a function of time and said setpoint value (66) of said diameter change rate is a function of diameter. 3) The method according to claim 1 or 2, characterized in that the temperature is the temperature of a recess (46) formed in a heat insulating material (18) surrounding the heater (14). 4) The correction of the target temperature is characterized in that the sum of a proportional component, a differential component, and an integral component regarding the difference between the calculated value of the diameter change rate and the target value is added to the target temperature. 3. The method according to any one of 3. 5) The method according to any one of claims 1 to 4, characterized in that the power adjustment is an adjustment that performs a PID operation on the difference between the measured temperature and the corrected target temperature. 6), in a cone part growth control device for pulling and growing a cone part (32B) of a single crystal rod (32) from a melt (16) heated by a heater (14) by the Czochralski method; means (38, 40) for measuring the diameter of the growing region; means (50, 108) for calculating the rate of change in the diameter; and first setting means (6) in which a target value for the rate of change in the diameter is set.
4), means (48) for measuring the temperature of the melt, and second setting means (66) in which a target temperature value for the melt is set.
), and target temperature correction means (50, 112 to 1) that corrects the target temperature based on the difference between the calculated value of the diameter change rate and the target value.
16), and heater power adjustment means (7) for adjusting the power supplied to the heater so that the measured temperature reaches the corrected target temperature.
0,72); A cone growth control device comprising: 7), the target value (64) set by the first setting means;
) is a function of diameter, and the target value (66) set by the second setting means is a function of time. 8), the temperature measuring means (48) is connected to the heater (14).
) The device 9) according to claim 6 or 7, wherein the temperature of the recess (46) formed in the heat insulating material (18) surrounding the target temperature correction means (50, 112-116) is detected.
according to any one of claims 5 to 8, wherein the sum of a proportional component, a differential component, and an integral component regarding the difference between the calculated value and the target value of the diameter change rate is added to the target temperature. the method of. 10), the heater power adjustment means (70, 72) adjusts the PI regarding the difference between the measured temperature and the corrected target temperature.
9. Device according to claim 6, characterized in that it is a regulator with a D-operation.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2274124A JPH0777996B2 (en) | 1990-10-12 | 1990-10-12 | Cone part growing control method and device |
EP91117283A EP0482438B1 (en) | 1990-10-12 | 1991-10-10 | Single crystal conical portion growth control method and apparatus |
DE69103119T DE69103119T2 (en) | 1990-10-12 | 1991-10-10 | Method and device for controlling the growth of a conical part of a single crystal. |
US07/776,774 US5223078A (en) | 1990-10-12 | 1991-10-15 | Conical portion growth control method and apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2274124A JPH0777996B2 (en) | 1990-10-12 | 1990-10-12 | Cone part growing control method and device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04149092A true JPH04149092A (en) | 1992-05-22 |
JPH0777996B2 JPH0777996B2 (en) | 1995-08-23 |
Family
ID=17537359
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2274124A Expired - Fee Related JPH0777996B2 (en) | 1990-10-12 | 1990-10-12 | Cone part growing control method and device |
Country Status (4)
Country | Link |
---|---|
US (1) | US5223078A (en) |
EP (1) | EP0482438B1 (en) |
JP (1) | JPH0777996B2 (en) |
DE (1) | DE69103119T2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003528017A (en) * | 1999-03-22 | 2003-09-24 | エムイーエムシー・エレクトロニック・マテリアルズ・インコーポレイテッド | Method and apparatus for controlling the diameter associated with a silicon crystal during a growth process |
JP2019108239A (en) * | 2017-12-18 | 2019-07-04 | 信越半導体株式会社 | Method for manufacturing fz silicon raw material rod and method for manufacturing fz silicon single crystal |
CN110004492A (en) * | 2019-04-25 | 2019-07-12 | 苏州新美光纳米科技有限公司 | Monitoring method and long crystal furnace in long crystal furnace |
JP2020083714A (en) * | 2018-11-28 | 2020-06-04 | 住友金属鉱山株式会社 | Production method of oxide single crystal, and crystal growth apparatus |
JP2020132483A (en) * | 2019-02-21 | 2020-08-31 | 信越半導体株式会社 | Method for manufacturing cz silicon single crystal |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19529485A1 (en) * | 1995-08-10 | 1997-02-13 | Wacker Siltronic Halbleitermat | Method and device for determining the diameter of a growing single crystal |
JPH09221386A (en) * | 1996-02-08 | 1997-08-26 | Komatsu Electron Metals Co Ltd | Device for pulling up signal crystal |
US6503594B2 (en) | 1997-02-13 | 2003-01-07 | Samsung Electronics Co., Ltd. | Silicon wafers having controlled distribution of defects and slip |
US6045610A (en) * | 1997-02-13 | 2000-04-04 | Samsung Electronics Co., Ltd. | Methods of manufacturing monocrystalline silicon ingots and wafers by controlling pull rate profiles in a hot zone furnance |
SG64470A1 (en) | 1997-02-13 | 1999-04-27 | Samsung Electronics Co Ltd | Methods of manufacturing monocrystalline silicon ingots and wafers by controlling pull rate profiles in a hot zone furnace and ingots and wafers manufactured thereby |
US6485807B1 (en) | 1997-02-13 | 2002-11-26 | Samsung Electronics Co., Ltd. | Silicon wafers having controlled distribution of defects, and methods of preparing the same |
US6340392B1 (en) | 1997-10-24 | 2002-01-22 | Samsung Electronics Co., Ltd. | Pulling methods for manufacturing monocrystalline silicone ingots by controlling temperature at the center and edge of an ingot-melt interface |
US5968263A (en) * | 1998-04-01 | 1999-10-19 | Memc Electronic Materials, Inc. | Open-loop method and system for controlling growth of semiconductor crystal |
US6241818B1 (en) | 1999-04-07 | 2001-06-05 | Memc Electronic Materials, Inc. | Method and system of controlling taper growth in a semiconductor crystal growth process |
US6203611B1 (en) | 1999-10-19 | 2001-03-20 | Memc Electronic Materials, Inc. | Method of controlling growth of a semiconductor crystal to automatically transition from taper growth to target diameter growth |
TW498402B (en) * | 2000-04-26 | 2002-08-11 | Mitsubishi Material Silicon | Method for simulating the shape of the solid-liquid interface between a single crystal and a molten liquid, and the distribution of point defect of a single crystal |
DE10025870A1 (en) | 2000-05-25 | 2001-12-06 | Wacker Siltronic Halbleitermat | Single crystal rod and method of manufacturing the same |
JP2002005745A (en) * | 2000-06-26 | 2002-01-09 | Nec Corp | Temperature measuring device and temperature measuring method |
EP2287369B1 (en) * | 2002-07-05 | 2012-11-14 | SUMCO Corporation | Method for manufacturing silicon single crystal |
US7282094B2 (en) * | 2003-05-28 | 2007-10-16 | Sumco Corporation | Method of simulation with respect to density distribution and size distribution of void defect within single crystal and oxygen precipitation nucleus within single crystal |
US8496765B2 (en) * | 2009-09-10 | 2013-07-30 | Sumco Phoenix Corporation | Method for correcting speed deviations between actual and nominal pull speed during crystal growth |
CN109183141A (en) * | 2018-10-29 | 2019-01-11 | 上海新昇半导体科技有限公司 | A kind of crystal growth control method, device, system and computer storage medium |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3761692A (en) * | 1971-10-01 | 1973-09-25 | Texas Instruments Inc | Automated crystal pulling system |
GB1465191A (en) * | 1974-03-29 | 1977-02-23 | Nat Res Dev | Automatically controlled crystal growth |
DE2446293C2 (en) * | 1974-04-03 | 1986-01-30 | National Research Development Corp., London | Device for regulating the rod cross-section during Czochralski drawing |
US3958129A (en) * | 1974-08-05 | 1976-05-18 | Motorola, Inc. | Automatic crystal diameter control for growth of semiconductor crystals |
US4710258A (en) * | 1984-11-30 | 1987-12-01 | General Signal Corporation | System for controlling the diameter of a crystal in a crystal growing furnace |
JPH0649631B2 (en) * | 1986-10-29 | 1994-06-29 | 信越半導体株式会社 | Crystal size measuring device |
JPS63242991A (en) * | 1987-03-31 | 1988-10-07 | Shin Etsu Handotai Co Ltd | Method for controlling crystal diameter |
JPS63307186A (en) * | 1987-06-05 | 1988-12-14 | Shin Etsu Handotai Co Ltd | Crystal diameter controller in crystallization |
JPS6483595A (en) * | 1987-09-25 | 1989-03-29 | Shinetsu Handotai Kk | Device for measuring crystal diameter |
JP2678383B2 (en) * | 1989-05-30 | 1997-11-17 | 信越半導体 株式会社 | Device for single crystal |
JPH0774117B2 (en) * | 1989-10-20 | 1995-08-09 | 信越半導体株式会社 | Heater temperature pattern creation method and Si single crystal growth control apparatus using this temperature pattern |
-
1990
- 1990-10-12 JP JP2274124A patent/JPH0777996B2/en not_active Expired - Fee Related
-
1991
- 1991-10-10 EP EP91117283A patent/EP0482438B1/en not_active Expired - Lifetime
- 1991-10-10 DE DE69103119T patent/DE69103119T2/en not_active Expired - Lifetime
- 1991-10-15 US US07/776,774 patent/US5223078A/en not_active Expired - Lifetime
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003528017A (en) * | 1999-03-22 | 2003-09-24 | エムイーエムシー・エレクトロニック・マテリアルズ・インコーポレイテッド | Method and apparatus for controlling the diameter associated with a silicon crystal during a growth process |
JP2019108239A (en) * | 2017-12-18 | 2019-07-04 | 信越半導体株式会社 | Method for manufacturing fz silicon raw material rod and method for manufacturing fz silicon single crystal |
JP2020083714A (en) * | 2018-11-28 | 2020-06-04 | 住友金属鉱山株式会社 | Production method of oxide single crystal, and crystal growth apparatus |
JP2020132483A (en) * | 2019-02-21 | 2020-08-31 | 信越半導体株式会社 | Method for manufacturing cz silicon single crystal |
CN110004492A (en) * | 2019-04-25 | 2019-07-12 | 苏州新美光纳米科技有限公司 | Monitoring method and long crystal furnace in long crystal furnace |
Also Published As
Publication number | Publication date |
---|---|
DE69103119D1 (en) | 1994-09-01 |
DE69103119T2 (en) | 1995-01-12 |
US5223078A (en) | 1993-06-29 |
EP0482438A1 (en) | 1992-04-29 |
EP0482438B1 (en) | 1994-07-27 |
JPH0777996B2 (en) | 1995-08-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH04149092A (en) | Method and device for controlling growth of cone part | |
US5183528A (en) | Method of automatic control of growing neck portion of a single crystal by the cz method | |
US6776840B1 (en) | Method and apparatus for controlling diameter of a silicon crystal in a locked seed lift growth process | |
US6241818B1 (en) | Method and system of controlling taper growth in a semiconductor crystal growth process | |
US4973377A (en) | Crystal diameter controlling method | |
KR20020081287A (en) | Method for controlling growth of a silicon crystal to minimize growth rate and diameter deviations | |
EP1068375B1 (en) | Open-loop method and system for controlling growth of semiconductor crystal | |
US7582160B2 (en) | Silicone single crystal production process | |
EP2071060B1 (en) | Single crystal manufacturing method | |
EP0134680A2 (en) | Apparatus for manufacturing a single crystal | |
JP2001019588A (en) | Method for controlling diameter of single crystal and device for growing crystal | |
JP3867476B2 (en) | Silicon single crystal manufacturing method and silicon single crystal manufacturing apparatus | |
JP2735960B2 (en) | Liquid level control method | |
JPH0651599B2 (en) | Floating band control method | |
US4866230A (en) | Method of and apparatus for controlling floating zone of semiconductor rod | |
KR20030020474A (en) | A control system for Silicon Ingot Growing Apparatus | |
JPH04219388A (en) | Control of diameter of silicon single crystal and apparatus therefor | |
JPS6054994A (en) | Production of compound semiconductor crystal | |
JPH09118585A (en) | Apparatus for pulling up single crystal and method for pulling up single crystal | |
JPS61122187A (en) | Apparatus for pulling up single crystal | |
JP2004035353A (en) | Process for preparing silicon single crystal | |
TWI850312B (en) | Process for pulling a cylindrical crystal from a melt | |
JPH05208893A (en) | Single crystal pulling apparatus and controlling method therefor | |
JPH0859388A (en) | Device for producing single crystal | |
JPH078754B2 (en) | Single crystal manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080823 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080823 Year of fee payment: 13 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080823 Year of fee payment: 13 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080823 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090823 Year of fee payment: 14 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090823 Year of fee payment: 14 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100823 Year of fee payment: 15 |
|
LAPS | Cancellation because of no payment of annual fees |