【0001】
【発明の属する技術分野】
本発明は、膜分離装置を有する水処理装置の殺菌剤に関するものである。
【0002】
【従来の技術】
膜による分離技術は、海水およびかん水の淡水化、医療、工業用純水、超純水の製造、工業廃水処理、食品工業など幅広い分野に利用されている。これら膜分離において、微生物による分離装置の汚染は、得られる透過水の水質悪化や、膜の透過性、分離性能の低下をもたらす。このような重大な問題を回避するため、膜分離装置の殺菌法が種々提案されているが、一般的には殺菌剤を常時、あるいは間欠的に供給液に添加する方法がとられている。殺菌剤としては、実績があり、価格、操作面でも有利な塩素系殺菌剤を0.1〜50ppm程度の濃度になるよう添加するのが最も一般的である。また、安価な硫酸を添加して、膜分離装置の供給液のpHを4以下に下げることにより効果的に殺菌を行う方法も開発されている(特開2000−237555号)。しかし、膜分離装置の配管には通常ステンレスなどの耐海水性金属が使われているが、硫酸の添加により酸性条件が厳しくなると、配管の腐食が起こりやすくなる。そのため、殺菌効果をさらに上げるために殺菌の頻度を多くしたり、pHを下げることができないという問題点があった。
【0003】
そこで、腐食抑制剤を添加することが考えられる。しかし、ポリアミン、ピリジニウム塩、ヒドラジンなどのアミン系の腐食抑制剤はカチオン性であるため、アニオン荷電性である分離膜に対しては吸着を起こし、性能を低下させる。また、ブタンテトラカルボン酸などの腐食抑制剤は腐食抑制効果が小さい。そのため、安定な膜性能を維持して、殺菌効果を上げることが困難であった。
【0004】
【発明が解決しようとする課題】
本発明の目的は、前記のような欠点を克服し、殺菌効果の高い水処理用殺菌剤、水処理方法および水処理装置を提供することである。
【0005】
【課題を解決するための手段】
本発明の目的は、酸、腐食抑制剤、および分子内にアミノ基を有する有機酸を含む水処理用殺菌剤によって達成される。
【0006】
また、本発明の目的は、分離膜を用いる水処理工程において、膜分離工程以前のいずれかの工程において、被処理液に、酸、腐食抑制剤および分子内にアミノ基を有する有機酸を含む水溶液を添加する水処理方法によって達成される。
【0007】
また、本発明の目的は、膜分離装置を有する水処理装置であって、該膜分離装置へ供給される被処理液に、酸、腐食抑制剤および分子内にアミノ基を有する有機酸を含む水溶液を添加する手段を有する水処理装置によって達成される。
【0008】
【発明の実施の形態】
本発明において、水処理とは、海水あるいはかん水の脱塩、分離または淡水化、工業用純水あるいは超純水の製造、工業廃水処理、食品工業における分離または濃縮、廃水からの有価物回収などを行うプロセスをいう。
【0009】
また本発明において、膜分離装置とは造水、濃縮、分離などの目的で、処理液を加圧下で膜モジュールに供給し、透過液と濃縮液に分離する装置をいう。膜モジュールとしては逆浸透膜モジュール、限外濾過膜モジュール、精密濾過膜モジュールなどがあり、膜分離装置はそこで主に使用する膜モジュールの種類によって逆浸透膜装置、限外濾過膜装置、精密濾過膜装置に分けられる。
【0010】
本発明で好ましく用いられる逆浸透膜装置を例に挙げて説明する。逆浸透膜装置は通常は逆浸透膜エレメント、耐圧容器、加圧ポンプなどで構成される。該逆浸透膜装置に供給される被処理液は、通常、殺菌剤、凝集剤、還元剤、pH調整剤などの薬液を添加され、凝集、沈殿、砂濾過、ポリッシング濾過、活性炭濾過、精密濾過、限外濾過、保安フィルターなどの前処理が行われた後、装置に供給される。例えば、海水の脱塩の場合には、海水を取り込んだ後、沈殿池で粒子などを分離し、また沈殿池に塩素などの殺菌剤を添加して殺菌を行う。さらに塩化鉄、ポリ塩化アルミニウムなどの凝集剤を添加して砂濾過を行う。濾液は貯槽に貯められ、硫酸などでpHを調整した後、送液される。送液中に亜硫酸水素ナトリウムなどの還元剤を添加して殺菌剤を還元除去し、保安フィルターを透過させた後、透過液は高圧ポンプで昇圧されて逆浸透膜モジュールに供給される。ただし、これらの前処理は用いる供給液の種類、用途に応じて適宜採用される。
【0011】
ここで逆浸透膜とは、供給液中の一部の成分、例えば溶媒を透過させ、他の成分を透過させない半透性の膜である。ナノフィルトレーション膜またはルースRO膜なども広い意味では逆浸透膜に含まれる。その素材には酢酸セルロース系ポリマー、ポリアミド、ポリエステル、ポリイミド、ビニルポリマーなどの高分子素材が一般的に使用されている。また、その構造としては、膜の少なくとも片側に緻密層を持ち、該緻密層から膜内部あるいはもう片方の面に向けて徐々に大きな孔径の微細孔を有する非対称膜や、該非対称膜の緻密層の上に別の素材で形成された非常に薄い活性層を有する複合膜などがある。膜形態には中空糸、平膜がある。通常、中空糸および平膜の膜厚は10μm〜1mm、中空糸の外径は50μm〜4mmが好ましい。また平膜である非対称膜、複合膜は織物、編み物、不織布などの基材で支持されていることが好ましい。しかし、本発明の方法は、逆浸透膜の素材、膜構造や膜形態によらず利用することができ、いずれも効果がある。
【0012】
代表的な逆浸透膜としては、例えば酢酸セルロース系やポリアミド系の非対称膜およびポリアミド系、ポリ尿素系の活性層を有する複合膜などがあげられる。これらの中でも、酢酸セルロース系の非対称膜、ポリアミド系の複合膜に本発明の方法が有効であり、さらに芳香族系のポリアミド複合膜では効果が大きい。
【0013】
逆浸透膜モジュールとは、上記逆浸透膜を実際に使用するために形状化したものである。逆浸透膜の形態が平膜の場合は、スパイラル、チューブラーあるいはプレート・アンド・フレームのモジュールに組み込んで、また中空糸の場合は束ねた上でモジュールに組み込んで使用することができる。本発明はこれらの逆浸透膜モジュールの構成形態によらず適用することができる。
【0014】
逆浸透膜装置の運転圧力は0.1MPa〜15MPaの範囲であり、被処理液の種類、運転方法などで適宜使い分けられる。かん水や超純水など浸透圧の低い溶液を被処理液とする場合には比較的低圧で、海水や工業廃水などを被処理液とする場合には比較的高圧で使用される。
【0015】
逆浸透膜装置の運転温度は0℃から100℃の範囲が好ましい。0℃よりも低いと被処理液が凍結する恐れがあり、100℃よりも高い場合には被処理液の蒸発が起こる恐れがある。
【0016】
また、膜分離装置の回収率は、5〜100%の間で分離操作、装置に応じて適宜設定することができる。膜分離装置が逆浸透膜装置の場合、回収率は5〜98%の間で適宜選択することができる。ただし、被処理液や濃縮液の性状、濃度、浸透圧に応じて前処理、運転圧力を考慮し、回収率を決定する。例えば海水淡水化の場合には、通常10〜40%の回収率が設定され、高効率の装置の場合には40〜70%の回収率が設定される。かん水淡水化や超純水製造の場合には通常70%以上、必要に応じ90〜95%の高回収率で運転することもできる。ここで回収率とは、逆浸透膜を透過した液量を被処理液量で割り、100倍した値を言う。
【0017】
逆浸透膜装置の構成はおもに高圧ポンプと逆浸透膜モジュールからなる。高圧ポンプは装置の運転圧力に応じて最適のポンプを選択することができる。
【0018】
また、逆浸透膜モジュールの配列は1段で使用することもできるが、被処理液に対して直列、または並列に多段に配列することができる。直列に配列する場合は逆浸透膜モジュールの間に昇圧ポンプを設置することができる。海水淡水化の際は装置コストの観点から特に直列2段の配列が好ましく用いられる。その際、直列に配列したモジュールの間に昇圧ポンプを設置して被処理液を1.0〜5.0MPaに昇圧して後段のモジュールに供給することが好ましい。被処理液に対して逆浸透膜モジュールを直列に配列した場合には膜モジュールと被処理液が接触する時間が長いので本発明の効果が大きい。
【0019】
さらに、逆浸透膜モジュールは、透過液に対して直列に配列することもできる。透過液の質が不十分な場合や透過水中の溶質成分を回収したい場合に好ましい方法である。ここで、透過液に対して逆浸透膜モジュールを直列に配置する場合には、逆浸透膜モジュール間にポンプを設置し、透過液を再加圧するか、前段で十分な圧力をかけておき背圧をかけて膜分離することができる。また、透過液に対して逆浸透膜モジュールを直列に配置する場合は、後ろの逆浸透膜モジュール部分の殺菌を行うために酸の添加装置を逆浸透膜モジュール間に設けるのが好ましい。
【0020】
逆浸透膜の装置において、被処理液のうち膜を透過しなかった部分は濃縮液として逆浸透膜モジュールから取り出される。この濃縮液は利用したり、廃棄することができ、さらに他の方法で濃縮することもできる。また、濃縮液はその一部または全てを被処理液に循環することもできる。膜を透過した透過液は、利用したり、廃棄することができ、被処理液にその一部または全てを循環することもできる。
【0021】
一般に逆浸透膜装置の濃縮液は圧力エネルギーを有しており、運転コストの低減化のためには、このエネルギーを回収することが好ましい。エネルギー回収の方法としては、任意の部分の高圧ポンプに取り付けたエネルギー回収装置で回収することができるが、高圧ポンプの前後や、モジュール間に取り付けた専用のタービンタイプのエネルギー回収ポンプで回収することが好ましい。
【0022】
本発明が使用される膜分離装置の処理能力は、一日あたりの処理水量が0.5m3〜100万m3であることが好ましい。
【0023】
また、本発明が使用される膜分離装置において、装置内の配管はできるだけ滞留部の少ない構造とすることが好ましい。
【0024】
本発明の水処理用殺菌剤を使用した水処理方法では、酸、腐食抑制剤および分子内にアミノ基を有する有機酸を含む水溶液を水処理装置の供給液に添加する。酸の添加は、殺菌効果を提供する上で極めて重要であり、特に海水を供給液として使用する膜濾過においてこの効果は顕著である。微生物の死滅するpHは個々の微生物に特有であり、例えば大腸菌の場合生育の下限はpH4.6であるが、死滅はpH3.4以下でおこる。一方海水中にも多種多様の微生物が存在し、それぞれ死滅するpHが異なる。しかし、通常、被処理液をpH4以下に一定時間保持すれば、5微生物の50〜100%を死滅させることが可能である。無機酸および腐食抑制剤を添加された被処理液のpHは3.9以下が好ましく、3.7以下がさらに好ましく、3.4以下が特に好ましい。pHの下限は特に限定されないが、装置の腐食予防の観点から、1.5以上が好ましく、特に2.0以上が好ましい。
【0025】
本発明で使用する酸としては、有機酸、無機酸いずれも用いることができるが、経済的な面を考えると、無機酸を用いることが好ましい。無機酸としては、塩酸、硫酸、硝酸、リン酸等が好ましく挙げられるが、経済的な面を考えると、硫酸を用いることが好ましい。
【0026】
本発明で使用する腐食抑制剤は、水処理装置の腐食を予防し、殺菌効果を上げるために重要である。本発明に使用する腐食抑制剤としては、分子中にカルボン酸基を少なくとも6個有するポリカルボン酸、エチレンジアミン四酢酸、亜硝酸およびそれらのアルカリ金属塩から選ばれた化合物が好ましく用いられる。ここで、ポリカルボン酸としては、下記一般式(1)
【0027】
【化1】
【0028】
(式中、nは3以上の整数、X、Yは水素またはアルカリ金属)で表されるポリエポキシこはく酸、ポリアクリル酸、ポリマレイン酸、それらの共重合体およびそれらのアルカリ金属塩から選ばれた化合物が特に好ましい。これらは、分子中に酸素、窒素などの電気陰性度の大きい原子を持つので、金属表面への吸着性に優れており好ましい。
【0029】
中でもポリアクリル酸は、食品安全性が高く、かつ、腐食抑制効果が高いのでもっとも好ましい。ポリアクリル酸は、水処理が飲料水の製造を目的とする場合に、特に好ましい。
【0030】
ポリアクリル酸の重量平均分子量は、水処理条件、例えばpHや温度などによって最適な範囲が変化するので、条件にあった重量平均分子量を有するポリアクリル酸を選択する必要がある。ポリアクリル酸の重量平均分子量は、500〜10,000の範囲が好ましく、より好ましくは1,000〜8,000の範囲である。重量平均分子量が500未満であると、十分な腐食抑制効果が得られにくく、10,000を超えると殺菌剤の保存安定性が悪くなりやすい。
【0031】
ポリエポキシこはく酸またはそのアルカリ金属塩は、例えば次のような方法で合成される。すなわち、マレイン酸塩を、タングステン酸ナトリウムを触媒として過酸化水素にてエポキシ化し、エポキシこはく酸塩とする。次にエポキシこはく酸塩を、アルカリ水溶液中で水酸化カルシウムを触媒として開環重合すると、ポリエポキシこはく酸塩が得られる。また、マレイン酸共重合体としては、マレイン酸とオレフィンの共重合体、マレイン酸とメチルビニルエーテルの共重合体などが好ましく用いられる。
【0032】
水処理装置に供給する被処理液に、酸および腐食抑制剤を添加する際には、あらかじめ両者を混合した殺菌剤を作製して添加すると、殺菌処理を効率的に行うことができ好ましい。
【0033】
本発明の殺菌剤中の酸および腐食抑制剤の濃度はそれぞれ、50ppm(重量)〜50重量%が好ましい。酸および腐食抑制剤のいずれかあるいは両方の濃度が50重量%を越えると、殺菌剤の保存安定性が悪くなりやすい。また、酸および腐食抑制剤のいずれかあるいは両方の濃度が50ppmより低い場合、水処理用殺菌剤の添加量を増やすことが必要で、殺菌効率が悪くなりやすい。
【0034】
本発明の水処理用殺菌剤に使用する水は、純水が好ましい。使用する水に不純物が含まれると、酸あるいは腐食抑制剤と反応して析出物が生じるなど、保存安定性が悪くなる場合がある。
【0035】
酸と腐食抑制剤の混合物は保存安定性が悪い場ので、水処理用殺菌剤にさらに保存安定化剤として分子内にアミノ基を有する有機酸を添加する。
【0036】
分子内にアミノ基を有する有機酸は腐食抑制剤のカルボキシル基との相互作用により、腐食抑制剤が水溶液中で分子内および分子間凝集し、水への溶解性が低くなるのを防ぎ、長期間安定に保存できると考えられる。また、水処理装置の分離膜の性能を低下させることもなく、殺菌効果も低減させない。特に、分子内にアミノ基およびカルボキシル基をそれぞれ1つ以上有する化合物が効果が高い。
【0037】
分子内にアミノ基およびカルボキシル基をそれぞれ1つ以上有する化合物としてはα−アミノ酸が好適に用いられ、その中でもグリシン、アラニン、バリン、ロイシン、セリン、スレオニン、システイン、アスパラギン、グルタミン、チロシン、イソロイシン、メチオニン、フェニルアラニン、プロリン、トリプトファン、アスパラギン酸、グルタミン酸、ヒスチジン、リジンおよびアルギニンから選ばれる少なくとも1種が好ましい。これらのα−アミノ酸は必須アミノ酸であることから安全性が確認されていることに加え、水への溶解性、カルボキシル基との相互作用のしやすさ、およびコスト的な面から好ましく用いることができる。これらのα−アミノ酸はこれらのアミノ酸は1種類だけ使用しても良いし、2種類以上添加しても良い。
【0038】
このような保存安定化剤を添加することにより、酸と腐食抑制剤を混合して長時間保存しても、安定に保存することができる。殺菌剤中の保存安定化剤の濃度は、殺菌剤中の酸および腐食抑制剤の濃度によって最適範囲が変化するが、50ppm(重量)〜50重量%が好ましい。
【0039】
本発明において、酸および腐食抑制剤水処理用殺菌剤は、供給液が膜分離装置に供給される前の工程であれば、どこに添加しても良い。膜分離装置の殺菌のためには、膜分離装置の直前において、添加することが好ましい。水処理を行いながら、殺菌処理を実施することが好ましいが、休止時に殺菌処理を行っても良い。
【0040】
本発明の膜分離装置を有する水処理装置は、例えば以下に示す構成のシステムである。
A.取水装置。これは原水を取り込む装置であって、通常取水ポンプ、薬品注入設備などで構成される。
B.取水装置に連通した前処理装置。これは分離膜装置に供給する水を前処理して所望の程度まで精製するものである。例えば以下の順に構成することができる。
B−1 凝集濾過装置。
B−2 ポリッシング濾過装置。ただし前記B−1、B−2の替わりに限外濾過装置や精密濾過装置を用いても良い。
B−3 凝集剤、殺菌剤、pH調整剤などの薬品注入設備。
C.前処理装置に連通し必要に応じて設置される中間槽。これは水量調節、水質の緩衝作用の機能を提供するものである。
D.Cを設置する場合には中間槽に連通し、またはCを設置しない場合には前処理装置から連通したフィルター。これは膜分離装置に供給される水の固形不純物を除去する。
E.膜分離装置。高圧ポンプおよび分離膜モジュールからなる。膜分離装置は複数設置して、これらを並列に設置しても、直列に設置してもよい。直列に設定する場合には、後段の分離膜装置に供給する水圧を上げるためのポンプを膜分離装置間に設けることができる。
F.膜分離装置の膜透過側出口部分に連通した後処理装置。以下の装置が例示される。
F−1 脱気装置。これは脱炭酸の機能を有するものである。
F−2 カルシウム塔
F−3 塩素注入
G.膜分離装置の原水側出口部分に連通した後処理装置。以下の装置が例示される。
G−1 pHを4とした供給液を処理する装置。例えば中和装置。
G−2 放流設備。
H.その他、廃水の処理装置を適宜設けても良い。
【0041】
本発明の水処理用殺菌剤を使用する水処理装置の構成部材、例えば配管、バルブなどはpH4以下の条件で腐食しにくいものを使用することが好ましい。供給する被処理液のpHを4以下とすることによって、高い殺菌効果が得られると同時に、配管内のスケールを除去できるという効果も得ることができる。塩素などの酸化物による膜劣化を防止するために亜硫酸水素ナトリウムを添加する場合があるが、本発明の水処理用殺菌剤を用いることによって、その添加量を著しく低減できることがある。
【0042】
本発明の水処理用殺菌剤を用いた水処理方法および装置は、膜分離装置を用いる水処理に好適に使用できる。特に海水の淡水化や、かん水の淡水化、工業用水の製造、超純水、純水の製造、医薬用純水の製造、水道原水の除濁、水道における高度処理等の水の精製工程などで好適に使用できる。また、食品の濃縮等において、従来の酸化性殺菌剤で分解しやすい有機物等を分離または濃縮する場合にも、殺菌による分解無しで有機物を濃縮または回収することができ、本発明の効果は大きい。また、飲料水製造の場合には塩素殺菌によるトリハロメタン発生を防止できる効果がある。さらに本発明の水処理用殺菌剤を使用した食品安全性の高い化合物のみの使用により殺菌を行うことができるので、飲料水製造に特に適している。
【0043】
【実施例】
合成例、実施例において、本発明を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。まず、実施例に使用した薬液等の合成について記載する。
<ポリエポキシこはく酸塩の合成例>
Payneら( J.Org.Chem., 24, 54(1959))の合成法に従い、以下の通りエポキシこはく酸塩を合成した。
【0044】
2Lの三口フラスコに、無水マレイン酸280gと超純水428mLを入れ、溶解させた。この水溶液に、48重量%水酸化カリウム水溶液500gを、冷却しながら室温に維持しつつ、滴下ロートで滴下した。次に、タングステン酸ナトリウム18.8gを添加した後、35重量%過酸化水素水332gを滴下した。30分ほど攪拌した後、48重量%水酸化カリウム水溶液115gを徐々に添加した。この際、フラスコを急冷し、反応温度を55〜65℃に保った。この後、65〜60℃で30分保持し、エポキシこはく酸カリウム水溶液を得た。室温まで冷却した後、該水溶液を約300mLに濃縮して、これを1Lのアセトンに注入して、生じた沈殿物を濾過し、エポキシこはく酸カリウムを単離した。
【0045】
次に、200mL丸底フラスコに、このエポキシこはく酸カリウム10.4gと超純水50gを入れ、48重量%水酸化カリウムを添加して、水溶液のpHを10.3に調整した。さらに、水酸化カルシウム0.41gを添加し、80℃で6時間反応を行った。続いて、室温に冷却した後、不溶物を濾過し、ロータリーエバポレータを用い、浴温40℃で水を除去して、白色の固形物を得た。
【0046】
得られたポリエポキシこはく酸塩の分子量を、ゲルパーミエーションクロマトグラフィー(GPC)により測定した。具体的には、サンプルを200ppmの濃度で調製し、標準物質として分子量既知のポリエチレングリコールを用いて検量線を作成し、サンプルの分子量を計算した。得られたポリエポキシこはく酸の分子量は、重量平均分子量 Mw=20900(n=100、Mw/Mn=1.00)であった。
<腐食抑制効果の評価方法>
表面を320番のヤスリで研磨処理したSUS304製のステンレス試験片(20mm×30mm×1mm)を超音波洗浄器を用いて60分間純水で洗浄後、アセトンで60分間洗浄し、風乾する。その後、50℃の20%硝酸水にステンレス試験片をいれ、1時間不動態化処理を行ってから試験片を取り出し、アセトンで洗浄し風乾する。前記殺菌剤を海水(電導度100mS/cm)で100倍に希釈(殺菌剤濃度1wt%)して、全体が100mLの試験液(pH1.4)とし、100mLポリ容器に入れ、前記ステンレス試験片を1個ずつ浸漬する。該ポリ容器を80℃の恒温室内に静置し、浸漬開始から6日目に試験片を取り出す。取り出した試験片は純水で5秒間洗浄後、アセトンで5秒間洗浄し、風乾後、シリカゲル乾燥雰囲気中、0.01mgまで秤量可能な電子天秤を用いて重量測定を行う。腐食による 試験片の重量減少を、以下のように計算する。
重量減少(g/m2)=(浸漬前の試験片重量−浸漬後の試験片重量)/試験片表面積
<殺菌効果の評価方法>
塩濃度6.9重量%の海水を30℃で一晩静置し、生菌数を安定させた後、滅菌水で塩濃度3.5重量%に希釈する(これをA液と呼ぶ)。A液に、本発明の水処理用殺菌剤を0.1重量%加え(pH3.1)、30℃で30分間置く(これをB液と呼ぶ)。A液、B液の生菌数測定を行う。生菌数測定は1/2ORI培地(海洋性細菌測定用培地)を用い30℃で6日間培養した後、出現したコロニー数を数え、下式で計算する。
生菌数残存率(%)=(B液の生菌数)/(A液の生菌数) ×100
(実施例1、2、比較例1、2)
純水(電導度10μS/cm)に硫酸20wt%、表1に示す腐食抑制剤0.1wt%を加えて水処理用殺菌剤を調整した。実施例1、2については、表1に示す保存安定化剤を0.5wt%添加した。
【0047】
上記の殺菌剤を25℃の恒温室に静置し、19日目に溶液状態を確認した。その結果を表3に示す。(表中、ポリアクリル酸をPA、グルタミン酸をGlu、アスパラギン酸をAspと略記する。)
【0048】
【表1】
【0049】
表1から分かるように、保存安定化剤を添加していない比較例1に比べ、保存安定化剤を添加した実施例1、2は高い保存安定性を有していた。さらに、実施例1、2の水処理用殺菌剤は、高い腐食抑制効果および殺菌効果も有する。また、実施例1、2のポリアクリル酸の代わりに、腐食抑制剤として、ポリエポキシコハク酸、もしくは、エチレンジアミン四酢酸四ナトリウムを0.1wt%加えても同様の結果が得られる。
【0050】
【発明の効果】
本発明によれば、膜分離装置を用いる水処理工程において、装置配管の腐食を抑えつつ、効果的に殺菌をすることができる。そのため、殺菌の頻度を多くしたり、pHをさらに下げることが可能となり、殺菌効果を増大させることができる。また、本発明の水処理用殺菌剤は、殺菌効果および腐食抑制効果を保ったまま、高い保存安定性を実現できる。
【0051】
本発明は、海水淡水化、かん水淡水化などの工程に特に好適に用いることができる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a disinfectant for a water treatment device having a membrane separation device.
[0002]
[Prior art]
Membrane separation technology is used in a wide range of fields such as desalination of seawater and brackish water, medical treatment, production of industrial pure water and ultrapure water, industrial wastewater treatment, and the food industry. In these membrane separations, contamination of the separation device by microorganisms causes deterioration of the quality of the obtained permeated water, and lowers the permeability and separation performance of the membrane. In order to avoid such a serious problem, various methods of sterilizing a membrane separation device have been proposed. In general, a method of constantly or intermittently adding a sterilizing agent to a supply liquid has been adopted. As a disinfectant, a chlorine-based disinfectant, which has a proven track record and is advantageous in terms of cost and operation, is most commonly added to a concentration of about 0.1 to 50 ppm. Also, a method has been developed in which sterilization is effectively performed by adding inexpensive sulfuric acid to lower the pH of the feed solution of the membrane separation device to 4 or less (Japanese Patent Application Laid-Open No. 2000-237555). However, seawater-resistant metals such as stainless steel are usually used for the piping of the membrane separation device. However, if the acidic conditions become severe due to the addition of sulfuric acid, corrosion of the piping is likely to occur. Therefore, there has been a problem that the frequency of sterilization cannot be increased or the pH cannot be lowered in order to further increase the sterilizing effect.
[0003]
Therefore, it is conceivable to add a corrosion inhibitor. However, amine-based corrosion inhibitors such as polyamines, pyridinium salts, and hydrazine are cationic, and therefore cause adsorption to separation membranes that are anion-charged, resulting in reduced performance. Further, a corrosion inhibitor such as butanetetracarboxylic acid has a small corrosion inhibitory effect. Therefore, it has been difficult to maintain a stable membrane performance and increase the sterilizing effect.
[0004]
[Problems to be solved by the invention]
An object of the present invention is to provide a bactericide for water treatment, a water treatment method, and a water treatment apparatus, which overcome the above-mentioned drawbacks and have a high bactericidal effect.
[0005]
[Means for Solving the Problems]
The object of the present invention is achieved by a water treatment disinfectant containing an acid, a corrosion inhibitor, and an organic acid having an amino group in the molecule.
[0006]
Further, an object of the present invention is to provide a liquid to be treated, in a water treatment step using a separation membrane, in any of the steps before the membrane separation step, including an acid, a corrosion inhibitor and an organic acid having an amino group in a molecule. This is achieved by a water treatment method in which an aqueous solution is added.
[0007]
Further, an object of the present invention is a water treatment apparatus having a membrane separation device, wherein the liquid to be treated supplied to the membrane separation device contains an acid, a corrosion inhibitor and an organic acid having an amino group in a molecule. This is achieved by a water treatment device having means for adding an aqueous solution.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
In the present invention, water treatment refers to desalination, separation or desalination of seawater or brackish water, production of industrial pure water or ultrapure water, industrial wastewater treatment, separation or concentration in the food industry, recovery of valuables from wastewater, and the like. Process.
[0009]
In the present invention, a membrane separation device refers to a device that supplies a treatment liquid to a membrane module under pressure and separates it into a permeated liquid and a concentrated liquid for the purpose of producing water, concentrating, and separating. Membrane modules include reverse osmosis membrane modules, ultrafiltration membrane modules, microfiltration membrane modules, etc. Depending on the type of membrane module used mainly there, reverse osmosis membrane devices, ultrafiltration membrane devices, microfiltration Divided into membrane devices.
[0010]
The reverse osmosis membrane device preferably used in the present invention will be described as an example. A reverse osmosis membrane device is usually composed of a reverse osmosis membrane element, a pressure vessel, a pressure pump and the like. The liquid to be treated supplied to the reverse osmosis membrane device is usually added with a chemical solution such as a bactericide, a coagulant, a reducing agent, a pH adjuster, and the like, and coagulation, sedimentation, sand filtration, polishing filtration, activated carbon filtration, microfiltration are performed. After being subjected to pretreatment such as ultrafiltration and security filter, it is supplied to the apparatus. For example, in the case of seawater desalination, after taking in seawater, particles and the like are separated in a sedimentation basin, and a disinfectant such as chlorine is added to the sedimentation basin for sterilization. Further, sand filtration is performed by adding a flocculant such as iron chloride and polyaluminum chloride. The filtrate is stored in a storage tank, and after adjusting the pH with sulfuric acid or the like, is sent. A reducing agent such as sodium bisulfite is added to the solution to reduce and remove the germicide, and after passing through a security filter, the permeate is pressurized by a high-pressure pump and supplied to the reverse osmosis membrane module. However, these pretreatments are appropriately adopted depending on the type of the supply liquid to be used and the application.
[0011]
Here, the reverse osmosis membrane is a semipermeable membrane that allows some components in the supply liquid, for example, a solvent to permeate and does not allow other components to permeate. A nanofiltration membrane or a loose RO membrane is also included in the reverse osmosis membrane in a broad sense. As the material, a polymer material such as cellulose acetate polymer, polyamide, polyester, polyimide, and vinyl polymer is generally used. Further, as the structure thereof, an asymmetric film having a dense layer on at least one side of the film and gradually having fine pores with a large pore diameter from the dense layer toward the inside of the film or the other surface, or a dense layer of the asymmetric film There is a composite film having a very thin active layer formed of another material on the top. The membrane form includes a hollow fiber and a flat membrane. Usually, the thickness of the hollow fiber and the flat membrane is preferably 10 μm to 1 mm, and the outer diameter of the hollow fiber is preferably 50 μm to 4 mm. Further, it is preferable that the asymmetric membrane and the composite membrane which are flat membranes are supported by a base material such as a woven fabric, a knitted fabric, and a nonwoven fabric. However, the method of the present invention can be used irrespective of the material, membrane structure and membrane form of the reverse osmosis membrane, and all are effective.
[0012]
Typical reverse osmosis membranes include, for example, a cellulose acetate-based or polyamide-based asymmetric membrane and a composite membrane having a polyamide-based or polyurea-based active layer. Among these, the method of the present invention is effective for cellulose acetate-based asymmetric membranes and polyamide-based composite membranes, and is particularly effective for aromatic polyamide-based composite membranes.
[0013]
The reverse osmosis membrane module is formed by shaping the above reverse osmosis membrane for actual use. When the form of the reverse osmosis membrane is a flat membrane, it can be incorporated into a spiral, tubular or plate-and-frame module, and when it is a hollow fiber, it can be bundled and incorporated into a module. The present invention can be applied regardless of the configuration of these reverse osmosis membrane modules.
[0014]
The operating pressure of the reverse osmosis membrane device is in the range of 0.1 MPa to 15 MPa, and can be appropriately used depending on the type of the liquid to be treated, the operating method, and the like. When a solution having a low osmotic pressure, such as brackish water or ultrapure water, is used as the liquid to be treated, the pressure is relatively low, and when seawater or industrial wastewater is used as the liquid to be treated, the pressure is relatively high.
[0015]
The operating temperature of the reverse osmosis membrane device is preferably in the range of 0 ° C to 100 ° C. If the temperature is lower than 0 ° C., the liquid to be treated may be frozen. If the temperature is higher than 100 ° C., the liquid to be treated may evaporate.
[0016]
Further, the recovery rate of the membrane separation device can be appropriately set in a range of 5 to 100% depending on the separation operation and the device. When the membrane separation device is a reverse osmosis membrane device, the recovery rate can be appropriately selected from 5 to 98%. However, the recovery rate is determined in consideration of the pretreatment and operating pressure according to the properties, concentration and osmotic pressure of the liquid to be treated and the concentrated liquid. For example, in the case of seawater desalination, a recovery rate of 10 to 40% is usually set, and in the case of a highly efficient apparatus, a recovery rate of 40 to 70% is set. In the case of brackish water desalination or ultrapure water production, it can be operated at a high recovery rate of usually 70% or more, and if necessary, 90 to 95%. Here, the recovery rate refers to a value obtained by dividing the amount of liquid permeating the reverse osmosis membrane by the amount of liquid to be treated and multiplying by 100.
[0017]
The configuration of the reverse osmosis membrane device mainly includes a high-pressure pump and a reverse osmosis membrane module. The optimum high-pressure pump can be selected according to the operating pressure of the device.
[0018]
The reverse osmosis membrane modules can be arranged in one stage, but can be arranged in series or in parallel with the liquid to be treated in multiple stages. When arranged in series, a booster pump can be installed between the reverse osmosis membrane modules. In the case of seawater desalination, an arrangement of two stages in series is particularly preferably used from the viewpoint of apparatus cost. At this time, it is preferable to install a booster pump between the modules arranged in series to increase the pressure of the liquid to be treated to 1.0 to 5.0 MPa and supply it to the subsequent module. When the reverse osmosis membrane modules are arranged in series with the liquid to be treated, the effect of the present invention is great because the time for contact between the membrane module and the liquid to be treated is long.
[0019]
Further, the reverse osmosis membrane modules can be arranged in series with the permeate. This is a preferred method when the quality of the permeate is insufficient or when it is desired to recover solute components in the permeate. Here, when the reverse osmosis membrane module is arranged in series with the permeated liquid, a pump is installed between the reverse osmosis membrane modules and the permeated liquid is repressurized or a sufficient pressure is applied in the previous step to apply a reverse pressure. The membrane can be separated by applying pressure. When the reverse osmosis membrane modules are arranged in series with the permeated liquid, it is preferable to provide an acid addition device between the reverse osmosis membrane modules in order to sterilize the subsequent reverse osmosis membrane module.
[0020]
In the reverse osmosis membrane device, a portion of the liquid to be treated that has not passed through the membrane is taken out of the reverse osmosis membrane module as a concentrated solution. The concentrate can be used or discarded, and can be further concentrated by other methods. Further, a part or all of the concentrated liquid can be circulated to the liquid to be treated. The permeate that has passed through the membrane can be used or discarded, and part or all of the permeate can be circulated to the liquid to be treated.
[0021]
Generally, the concentrated liquid of the reverse osmosis membrane device has pressure energy, and it is preferable to recover this energy in order to reduce operating costs. Energy can be recovered with an energy recovery device attached to the high-pressure pump in any part.However, it can be recovered with a dedicated turbine-type energy recovery pump before or after the high-pressure pump or between modules. Is preferred.
[0022]
Processing capacity of the membrane separation device to which the present invention is used, it is preferable amount of treated water per day is 0.5 m 3 to 100 million in m 3.
[0023]
Further, in the membrane separation device in which the present invention is used, it is preferable that the piping in the device has a structure having as few stagnation portions as possible.
[0024]
In the water treatment method using the bactericide for water treatment of the present invention, an aqueous solution containing an acid, a corrosion inhibitor, and an organic acid having an amino group in a molecule is added to a feed liquid of a water treatment apparatus. The addition of an acid is extremely important in providing a bactericidal effect, especially in membrane filtration using seawater as feed. The pH at which microorganisms die is peculiar to individual microorganisms. For example, in the case of Escherichia coli, the lower limit of growth is pH 4.6, but killing occurs at pH 3.4 or less. On the other hand, a variety of microorganisms also exist in seawater, and the pH at which they die is different from each other. However, usually, if the liquid to be treated is kept at pH 4 or lower for a certain period of time, 50 to 100% of the five microorganisms can be killed. The pH of the liquid to be treated to which the inorganic acid and the corrosion inhibitor have been added is preferably 3.9 or less, more preferably 3.7 or less, and particularly preferably 3.4 or less. The lower limit of the pH is not particularly limited, but is preferably 1.5 or more, particularly preferably 2.0 or more, from the viewpoint of preventing corrosion of the apparatus.
[0025]
As the acid used in the present invention, any of an organic acid and an inorganic acid can be used, but from the viewpoint of economy, it is preferable to use an inorganic acid. Preferred examples of the inorganic acid include hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid and the like. However, from the viewpoint of economy, it is preferable to use sulfuric acid.
[0026]
The corrosion inhibitor used in the present invention is important for preventing corrosion of a water treatment apparatus and for increasing a sterilizing effect. As the corrosion inhibitor used in the present invention, a compound selected from a polycarboxylic acid having at least six carboxylic acid groups in a molecule, ethylenediaminetetraacetic acid, nitrous acid and an alkali metal salt thereof is preferably used. Here, as the polycarboxylic acid, the following general formula (1)
[0027]
Embedded image
[0028]
(Wherein, n is an integer of 3 or more, X and Y are hydrogen or alkali metal) selected from polyepoxysuccinic acid, polyacrylic acid, polymaleic acid, copolymers thereof and alkali metal salts thereof. Are particularly preferred. Since these have atoms having high electronegativity such as oxygen and nitrogen in the molecule, they are excellent in the adsorptivity to the metal surface and are preferable.
[0029]
Among them, polyacrylic acid is most preferable because it has high food safety and high corrosion inhibiting effect. Polyacrylic acid is particularly preferred when the water treatment aims to produce drinking water.
[0030]
Since the optimum range of the weight average molecular weight of polyacrylic acid varies depending on water treatment conditions, for example, pH and temperature, it is necessary to select a polyacrylic acid having a weight average molecular weight that meets the conditions. The weight average molecular weight of polyacrylic acid is preferably in the range of 500 to 10,000, more preferably in the range of 1,000 to 8,000. If the weight average molecular weight is less than 500, it is difficult to obtain a sufficient corrosion inhibitory effect, and if it exceeds 10,000, the storage stability of the bactericide tends to deteriorate.
[0031]
Polyepoxysuccinic acid or its alkali metal salt is synthesized, for example, by the following method. That is, the maleate is epoxidized with hydrogen peroxide using sodium tungstate as a catalyst to obtain an epoxy succinate. Next, the epoxysuccinate is subjected to ring-opening polymerization in an aqueous alkaline solution using calcium hydroxide as a catalyst to obtain a polyepoxysuccinate. Further, as the maleic acid copolymer, a copolymer of maleic acid and olefin, a copolymer of maleic acid and methyl vinyl ether, and the like are preferably used.
[0032]
When adding the acid and the corrosion inhibitor to the liquid to be treated supplied to the water treatment apparatus, it is preferable to prepare and add a bactericide in which both are mixed in advance so that the bactericidal treatment can be performed efficiently.
[0033]
The concentration of the acid and the corrosion inhibitor in the germicide of the present invention is preferably 50 ppm (weight) to 50% by weight, respectively. If the concentration of one or both of the acid and the corrosion inhibitor exceeds 50% by weight, the storage stability of the bactericide tends to deteriorate. When the concentration of either or both of the acid and the corrosion inhibitor is lower than 50 ppm, it is necessary to increase the amount of the bactericide for water treatment, and the bactericidal efficiency tends to deteriorate.
[0034]
The water used in the germicide for water treatment of the present invention is preferably pure water. If the water used contains impurities, storage stability may be deteriorated, for example, by reacting with an acid or a corrosion inhibitor to form a precipitate.
[0035]
Since the mixture of the acid and the corrosion inhibitor has poor storage stability, an organic acid having an amino group in the molecule is further added to the bactericide for water treatment as a storage stabilizer.
[0036]
The organic acid having an amino group in the molecule interacts with the carboxyl group of the corrosion inhibitor to prevent the corrosion inhibitor from agglomerating in the aqueous solution and between the molecules in the aqueous solution, thereby reducing the solubility in water. It is thought that it can be stored stably for a long period. Further, the performance of the separation membrane of the water treatment device is not reduced, and the sterilizing effect is not reduced. In particular, a compound having at least one amino group and at least one carboxyl group in the molecule is highly effective.
[0037]
As the compound having at least one amino group and at least one carboxyl group in the molecule, α-amino acids are preferably used, and among them, glycine, alanine, valine, leucine, serine, threonine, cysteine, asparagine, glutamine, tyrosine, isoleucine, At least one selected from methionine, phenylalanine, proline, tryptophan, aspartic acid, glutamic acid, histidine, lysine and arginine is preferred. Since these α-amino acids are essential amino acids, their safety has been confirmed.In addition, they are preferably used in view of solubility in water, ease of interaction with a carboxyl group, and cost. it can. One of these α-amino acids may be used alone, or two or more thereof may be added.
[0038]
By adding such a storage stabilizer, even if the acid and the corrosion inhibitor are mixed and stored for a long time, stable storage can be achieved. The optimum range of the concentration of the storage stabilizer in the germicide varies depending on the concentrations of the acid and the corrosion inhibitor in the germicide, but is preferably 50 ppm (weight) to 50% by weight.
[0039]
In the present invention, the acid and the corrosion inhibitor and the disinfectant for water treatment may be added anywhere as long as the process is before the supply liquid is supplied to the membrane separation device. For the sterilization of the membrane separation device, it is preferable to add it immediately before the membrane separation device. It is preferable to carry out the sterilization treatment while performing the water treatment, but the sterilization treatment may be carried out at rest.
[0040]
The water treatment apparatus having the membrane separation device of the present invention is, for example, a system having the following configuration.
A. Intake device. This is a device for taking in raw water, and is usually composed of a water intake pump, a chemical injection facility, and the like.
B. A pretreatment device connected to the water intake device. In this method, water supplied to a separation membrane device is pretreated and purified to a desired degree. For example, they can be configured in the following order.
B-1 Aggregation filtration device.
B-2 Polishing filtration device. However, an ultrafiltration device or a microfiltration device may be used instead of B-1 and B-2.
B-3 Chemical injection equipment such as a flocculant, a bactericide, and a pH adjuster.
C. An intermediate tank that communicates with the pretreatment device and is installed as needed. This provides functions of water volume control and water quality buffering.
D. A filter connected to the intermediate tank when C is installed, or from a pretreatment device when C is not installed. This removes solid impurities in the water supplied to the membrane separator.
E. FIG. Membrane separation device. It consists of a high-pressure pump and a separation membrane module. A plurality of membrane separation devices may be installed, and these may be installed in parallel or in series. In the case of setting in series, a pump for increasing the pressure of water supplied to the subsequent separation membrane device can be provided between the membrane separation devices.
F. A post-processing device that communicates with the outlet of the membrane permeation side of the membrane separation device. The following devices are exemplified.
F-1 Deaerator. This has a function of decarboxylation.
F-2 Calcium tower F-3 Chlorine injection Post-treatment device that communicates with the raw water side outlet of the membrane separation device. The following devices are exemplified.
G-1 An apparatus for processing a supply liquid having a pH of 4. For example, a neutralization device.
G-2 Discharge facility.
H. In addition, a wastewater treatment device may be appropriately provided.
[0041]
It is preferable that the components of the water treatment apparatus using the disinfectant for water treatment of the present invention, such as pipes and valves, which are hardly corroded under the condition of pH 4 or less are used. By setting the pH of the supplied liquid to be treated to 4 or less, a high sterilizing effect can be obtained, and at the same time, an effect that scale in the pipe can be removed can be obtained. In some cases, sodium bisulfite is added in order to prevent film deterioration due to oxides such as chlorine. By using the disinfectant for water treatment of the present invention, the amount of addition may be significantly reduced.
[0042]
The water treatment method and apparatus using the disinfectant for water treatment of the present invention can be suitably used for water treatment using a membrane separation device. Water purification processes such as desalination of seawater, desalination of brackish water, production of industrial water, production of ultrapure water, pure water, production of pharmaceutical pure water, turbidity of raw tap water, and advanced treatment in tap water, etc. Can be suitably used. Further, in the concentration of foods, when separating or concentrating organic substances that are easily decomposed by a conventional oxidizing germicide, the organic substances can be concentrated or collected without decomposition by sterilization, and the effect of the present invention is great. . In addition, in the case of producing drinking water, there is an effect that generation of trihalomethane due to chlorine sterilization can be prevented. Furthermore, sterilization can be carried out by using only a compound having high food safety using the bactericide for water treatment of the present invention, which is particularly suitable for producing drinking water.
[0043]
【Example】
The present invention will be specifically described in Synthesis Examples and Examples, but the present invention is not limited to these Examples. First, the synthesis of the chemical solution and the like used in the examples will be described.
<Synthesis example of polyepoxy succinate>
According to the synthesis method of Payne et al. (J. Org. Chem., 24, 54 (1959)), an epoxy succinate was synthesized as follows.
[0044]
In a 2 L three-necked flask, 280 g of maleic anhydride and 428 mL of ultrapure water were put and dissolved. To this aqueous solution, 500 g of a 48% by weight aqueous potassium hydroxide solution was added dropwise with a dropping funnel while maintaining the temperature at room temperature while cooling. Next, after adding 18.8 g of sodium tungstate, 332 g of 35% by weight aqueous hydrogen peroxide was added dropwise. After stirring for about 30 minutes, 115 g of a 48% by weight aqueous solution of potassium hydroxide was gradually added. At this time, the flask was rapidly cooled and the reaction temperature was maintained at 55 to 65 ° C. Thereafter, the temperature was maintained at 65 to 60 ° C. for 30 minutes to obtain an aqueous solution of potassium epoxysuccinate. After cooling to room temperature, the aqueous solution was concentrated to about 300 mL, poured into 1 L of acetone, and the resulting precipitate was filtered to isolate potassium epoxysuccinate.
[0045]
Next, 10.4 g of this potassium epoxysuccinate and 50 g of ultrapure water were placed in a 200 mL round bottom flask, and 48 wt% potassium hydroxide was added to adjust the pH of the aqueous solution to 10.3. Further, 0.41 g of calcium hydroxide was added, and the reaction was performed at 80 ° C. for 6 hours. Subsequently, after cooling to room temperature, insolubles were filtered, and water was removed at a bath temperature of 40 ° C. using a rotary evaporator to obtain a white solid.
[0046]
The molecular weight of the obtained polyepoxysuccinate was measured by gel permeation chromatography (GPC). Specifically, a sample was prepared at a concentration of 200 ppm, a calibration curve was prepared using polyethylene glycol having a known molecular weight as a standard substance, and the molecular weight of the sample was calculated. The molecular weight of the obtained polyepoxysuccinic acid was weight average molecular weight Mw = 20900 (n = 100, Mw / Mn = 1.00).
<Evaluation method of corrosion inhibition effect>
A SUS304 stainless steel test piece (20 mm × 30 mm × 1 mm) whose surface has been polished with a # 320 file is washed with pure water for 60 minutes using an ultrasonic cleaner, washed with acetone for 60 minutes, and air-dried. Thereafter, the stainless steel test piece is placed in a 20% nitric acid solution at 50 ° C., passivated for 1 hour, and then the test piece is taken out, washed with acetone, and air-dried. The disinfectant was diluted 100-fold with seawater (conductivity 100 mS / cm) (disinfectant concentration 1 wt%) to make a 100 mL test solution (pH 1.4) as a whole, put in a 100 mL plastic container, and put the stainless steel test piece. Are immersed one by one. The poly container is allowed to stand in a constant temperature chamber at 80 ° C, and a test piece is taken out on the sixth day from the start of immersion. The removed test piece is washed with pure water for 5 seconds, washed with acetone for 5 seconds, air-dried, and weighed using an electronic balance capable of weighing up to 0.01 mg in a silica gel dry atmosphere. The weight loss of the test specimen due to corrosion is calculated as follows.
Weight loss (g / m 2 ) = (weight of test piece before immersion−weight of test piece after immersion) / specimen surface area <evaluation method of sterilization effect>
Seawater having a salt concentration of 6.9% by weight is allowed to stand at 30 ° C. overnight to stabilize the viable cell count, and then diluted with sterilized water to a salt concentration of 3.5% by weight (this is called solution A). 0.1% by weight of the disinfectant for water treatment of the present invention is added to solution A (pH 3.1), and the mixture is placed at 30 ° C. for 30 minutes (this is called solution B). The viable cell count of solution A and solution B is measured. The viable cell count is determined by culturing the cells at 30 ° C. for 6 days in a 1/2 ORI medium (medium for measuring marine bacteria), counting the number of colonies that have appeared, and calculating by the following formula.
Viable cell count remaining rate (%) = (viable cell count of solution B) / (viable cell count of solution A) × 100
(Examples 1 and 2, Comparative Examples 1 and 2)
A bactericide for water treatment was prepared by adding 20 wt% of sulfuric acid and 0.1 wt% of a corrosion inhibitor shown in Table 1 to pure water (conductivity: 10 μS / cm). In Examples 1 and 2, the storage stabilizers shown in Table 1 were added at 0.5 wt%.
[0047]
The bactericide was allowed to stand in a constant temperature room at 25 ° C., and the state of the solution was checked on the 19th day. Table 3 shows the results. (In the table, polyacrylic acid is abbreviated as PA, glutamic acid is abbreviated as Glu, and aspartic acid is abbreviated as Asp.)
[0048]
[Table 1]
[0049]
As can be seen from Table 1, Examples 1 and 2 in which the storage stabilizer was added had higher storage stability than Comparative Example 1 in which the storage stabilizer was not added. Further, the germicides for water treatment of Examples 1 and 2 also have a high corrosion inhibiting effect and a germicidal effect. Similar results can be obtained by adding 0.1 wt% of polyepoxysuccinic acid or tetrasodium ethylenediaminetetraacetate as a corrosion inhibitor instead of the polyacrylic acid of Examples 1 and 2.
[0050]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, in the water treatment process which uses a membrane separation apparatus, it can sterilize effectively, suppressing corrosion of apparatus piping. Therefore, the frequency of sterilization can be increased and the pH can be further reduced, and the sterilizing effect can be increased. Further, the bactericide for water treatment of the present invention can realize high storage stability while maintaining a bactericidal effect and a corrosion inhibiting effect.
[0051]
INDUSTRIAL APPLICABILITY The present invention can be particularly suitably used in processes such as seawater desalination and brine desalination.