[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2003338467A - Method for cutting semiconductor substrate - Google Patents

Method for cutting semiconductor substrate

Info

Publication number
JP2003338467A
JP2003338467A JP2002351600A JP2002351600A JP2003338467A JP 2003338467 A JP2003338467 A JP 2003338467A JP 2002351600 A JP2002351600 A JP 2002351600A JP 2002351600 A JP2002351600 A JP 2002351600A JP 2003338467 A JP2003338467 A JP 2003338467A
Authority
JP
Japan
Prior art keywords
semiconductor substrate
cutting
planned cutting
cut
resin layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002351600A
Other languages
Japanese (ja)
Other versions
JP4358502B2 (en
Inventor
Fumitsugu Fukuyo
文嗣 福世
Kenji Fukumitsu
憲志 福満
Naoki Uchiyama
直己 内山
Ryuji Sugiura
隆二 杉浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to JP2002351600A priority Critical patent/JP4358502B2/en
Priority to TW102106190A priority patent/TWI520269B/en
Priority to TW092125000A priority patent/TWI339876B/en
Priority to TW097145489A priority patent/TWI395293B/en
Priority to ES10012640.8T priority patent/ES2464166T3/en
Priority to CNA2008101618735A priority patent/CN101369554A/en
Priority to KR1020057007273A priority patent/KR100855136B1/en
Priority to EP10007917.7A priority patent/EP2239764B1/en
Priority to EP12001098.8A priority patent/EP2485251B1/en
Priority to ES10009049.7T priority patent/ES2437192T3/en
Priority to ES12001098.8T priority patent/ES2470325T3/en
Priority to PCT/JP2003/011624 priority patent/WO2004051721A1/en
Priority to AU2003262077A priority patent/AU2003262077A1/en
Priority to EP10012640.8A priority patent/EP2267763B1/en
Priority to ES10007917.7T priority patent/ES2439220T3/en
Priority to ES10014153.0T priority patent/ES2442848T3/en
Priority to US10/537,509 priority patent/US8263479B2/en
Priority to ES10005697.7T priority patent/ES2462219T3/en
Priority to EP10009049.7A priority patent/EP2249380B1/en
Priority to CNB038255189A priority patent/CN100440443C/en
Priority to EP10005697.7A priority patent/EP2216805B1/en
Priority to EP03812274.3A priority patent/EP1580800B1/en
Priority to MYPI20033496A priority patent/MY160196A/en
Priority to ES03812274.3T priority patent/ES2479791T3/en
Priority to EP10014153.0A priority patent/EP2284872B1/en
Publication of JP2003338467A publication Critical patent/JP2003338467A/en
Application granted granted Critical
Publication of JP4358502B2 publication Critical patent/JP4358502B2/en
Priority to US13/206,181 priority patent/US8409968B2/en
Priority to US13/608,676 priority patent/US8450187B2/en
Priority to US13/829,683 priority patent/US8865566B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies
    • H01L24/741Apparatus for manufacturing means for bonding, e.g. connectors
    • H01L24/743Apparatus for manufacturing layer connectors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/40Removing material taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/50Working by transmitting the laser beam through or within the workpiece
    • B23K26/53Working by transmitting the laser beam through or within the workpiece for modifying or reforming the material inside the workpiece, e.g. for producing break initiation cracks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • B23K2101/40Semiconductor devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/741Apparatus for manufacturing means for bonding, e.g. connectors
    • H01L2224/743Apparatus for manufacturing layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01015Phosphorus [P]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Laser Beam Processing (AREA)
  • Dicing (AREA)
  • Die Bonding (AREA)
  • Processing Of Stones Or Stones Resemblance Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for cutting a semiconductor substrate capable of efficiently cutting a semiconductor substrate, along with a die bond resin layer, on which a sheet is pasted with the die bond resin layer interposed. <P>SOLUTION: A planned cut 9 by a melting process region 13 is formed inside a silicon wafer 11 by generating multiphoton absorption. Then an adhesive sheet 20 pasted on the silicon wafer 11 is expanded. Thus, the silicon wafer 11 is precisely cut into semiconductor chips 25 along the planned cut 9. Since cut surfaces 25a and 25a, facing each other, of adjoining semiconductor chips 25 and 24 come apart from each other from a tightly contacted state, a die bond resin layer 23 is also cut along the planned cut 9. Thus, the silicon wafer 11 and the die bond resin layer 23 are cut more efficiently than by cutting them with a blade not to cut a base material 21. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、半導体デバイスの
製造工程等において半導体基板を切断するために使用さ
れる半導体基板の切断方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor substrate cutting method used for cutting a semiconductor substrate in a semiconductor device manufacturing process or the like.

【0002】[0002]

【従来の技術】従来におけるこの種の技術として、特許
文献1や特許文献2には次のような技術が記載されてい
る。まず、半導体ウェハの裏面にダイボンド樹脂層を介
して粘着シートを貼り付け、この粘着シート上に半導体
ウェハを保持させた状態でブレードにより半導体ウェハ
を切断して半導体チップを得る。そして、粘着シート上
の半導体チップをピックアップする際に、ダイボンド樹
脂を個々の半導体チップと共に粘着シートから剥離させ
る。これにより、半導体チップの裏面に接着剤を塗布す
るなどの工程を省略して、半導体チップをリードフレー
ム上に接着することが可能になる。
2. Description of the Related Art As conventional techniques of this type, the following techniques are described in Patent Documents 1 and 2. First, an adhesive sheet is attached to the back surface of a semiconductor wafer via a die bond resin layer, and the semiconductor wafer is held on the adhesive sheet to cut the semiconductor wafer with a blade to obtain a semiconductor chip. Then, when picking up the semiconductor chip on the adhesive sheet, the die bond resin is peeled off from the adhesive sheet together with the individual semiconductor chips. This makes it possible to bond the semiconductor chip onto the lead frame by omitting steps such as applying an adhesive to the back surface of the semiconductor chip.

【0003】[0003]

【特許文献1】特開2002−158276号公報[Patent Document 1] Japanese Patent Laid-Open No. 2002-158276

【特許文献2】特開2000−104040号公報[Patent Document 2] Japanese Patent Application Laid-Open No. 2000-104040

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上述し
たような技術においては、粘着シート上に保持された半
導体ウェハをブレードによって切断する際に、粘着シー
トは切断しないようにする一方で、半導体ウェハと粘着
シートとの間に存在するダイボンド樹脂層は確実に切断
する必要がある。そのため、このような場合のブレード
による半導体ウェハの切断は、特に慎重を期すべきもの
となる。
However, in the technique as described above, when the semiconductor wafer held on the adhesive sheet is cut by the blade, the adhesive sheet is not cut and the semiconductor wafer is not cut. It is necessary to surely cut the die bond resin layer existing between the pressure sensitive adhesive sheet and the pressure sensitive adhesive sheet. Therefore, the cutting of the semiconductor wafer by the blade in such a case is to be performed with extreme caution.

【0005】そこで、本発明は、このような事情に鑑み
てなされたものであり、ダイボンド樹脂層を介在させて
シートが貼り付けられた半導体基板をダイボンド樹脂層
と共に効率良く切断することのできる半導体基板の切断
方法を提供することを目的とする。
Therefore, the present invention has been made in view of the above circumstances, and a semiconductor capable of efficiently cutting together with a die bond resin layer a semiconductor substrate to which a sheet is attached with a die bond resin layer interposed therebetween. An object is to provide a method for cutting a substrate.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、本発明に係る半導体基板の切断方法は、ダイボンド
樹脂層を介在させてシートが貼り付けられた半導体基板
の内部に集光点を合わせてレーザ光を照射することによ
り、半導体基板の内部に多光子吸収による改質領域を形
成し、当該改質領域でもって切断予定部を形成する工程
と、切断予定部を形成する工程後、シートを拡張させる
ことにより切断予定部に沿って半導体基板及びダイボン
ド樹脂層を切断する工程とを備えたことを特徴とする。
In order to achieve the above-mentioned object, a method for cutting a semiconductor substrate according to the present invention provides a condensing point inside a semiconductor substrate to which a sheet is attached with a die bond resin layer interposed. By irradiating with a laser beam in combination, a modified region by multiphoton absorption is formed inside the semiconductor substrate, and a step of forming a planned cutting part with the modified region, and a step of forming the planned cutting part, And a step of cutting the semiconductor substrate and the die bond resin layer along the planned cutting portion by expanding the sheet.

【0007】この半導体基板の切断方法においては、半
導体基板の内部に集光点を合わせてレーザ光を照射し、
半導体基板の内部に多光子吸収という現象を発生させて
改質領域を形成するため、この改質領域でもって、半導
体基板を切断すべき所望の切断予定ラインに沿うよう半
導体基板の内部に切断予定部を形成することができる。
このように半導体基板の内部に切断予定部が形成される
と、比較的小さな力で切断予定部を起点として半導体基
板の厚さ方向に割れが発生する。そのため、半導体基板
に貼り付けられたシートを拡張させると、切断予定部に
沿って半導体基板を精度良く切断することができる。こ
のとき、切断された半導体基板の対向する切断面は、初
めは密着した状態にあり、シートの拡張に伴って離間し
ていくため、半導体基板とシートとの間に存在するダイ
ボンド樹脂層も切断予定部に沿って切断されることにな
る。したがって、シートを残して半導体基板及びダイボ
ンド樹脂層をブレードにより切断するような場合に比
べ、はるかに効率良く半導体基板及びダイボンド樹脂層
を切断予定部に沿って切断することが可能になる。しか
も、切断された半導体基板の対向する切断面が初めは互
いに密着しているがために、切断された個々の半導体基
板と切断された個々のダイボンド樹脂層とがほぼ同一の
外形となり、各半導体基板の切断面からダイボンド樹脂
がはみ出るようなことも防止される。
In this method of cutting a semiconductor substrate, a laser beam is irradiated with a focusing point inside the semiconductor substrate,
Since the phenomenon of multiphoton absorption is generated inside the semiconductor substrate to form the modified region, the modified region is planned to be cut inside the semiconductor substrate along the desired cut line to cut the semiconductor substrate. Parts can be formed.
When the portion to be cut is formed inside the semiconductor substrate in this manner, a crack is generated in the thickness direction of the semiconductor substrate from the portion to be cut as a starting point with a relatively small force. Therefore, when the sheet attached to the semiconductor substrate is expanded, the semiconductor substrate can be accurately cut along the planned cutting portion. At this time, the cut surfaces of the cut semiconductor substrate facing each other are initially in a state of being in close contact with each other, and are separated as the sheet expands, so that the die bond resin layer existing between the semiconductor substrate and the sheet is also cut. It will be cut along the scheduled part. Therefore, it is possible to cut the semiconductor substrate and the die bond resin layer along the planned cutting portion much more efficiently than in the case where the semiconductor substrate and the die bond resin layer are cut with a blade while leaving the sheet. Moreover, since the cut surfaces of the cut semiconductor substrate facing each other are initially in close contact with each other, the cut individual semiconductor substrates and the cut individual die bond resin layers have substantially the same outer shape, and It is also possible to prevent the die bond resin from protruding from the cut surface of the substrate.

【0008】また、本発明に係る半導体基板の切断方法
は、ダイボンド樹脂層を介在させてシートが貼り付けら
れた半導体基板の内部に集光点を合わせて、集光点にお
けるピークパワー密度が1×108(W/cm2)以上で
且つパルス幅が1μs以下の条件でレーザ光を照射する
ことにより、半導体基板の内部に溶融処理領域を含む改
質領域を形成し、当該溶融処理領域を含む改質領域でも
って切断予定部を形成する工程と、切断予定部を形成す
る工程後、シートを拡張させることにより切断予定部に
沿って半導体基板及びダイボンド樹脂層を切断する工程
とを備えたことを特徴とする。
Further, in the method for cutting a semiconductor substrate according to the present invention, the focus point is aligned inside the semiconductor substrate to which the sheet is attached with the die bond resin layer interposed, and the peak power density at the focus point is 1 or less. By irradiating a laser beam under the condition of × 10 8 (W / cm 2 ) or more and a pulse width of 1 μs or less, a modified region including a melt processed region is formed inside the semiconductor substrate, and the melt processed region is The method includes a step of forming a planned cutting part with the modified region including the step, and a step of cutting the semiconductor substrate and the die bond resin layer along the planned cutting part by expanding the sheet after the step of forming the planned cutting part. It is characterized by

【0009】この半導体基板の切断方法では、切断予定
部を形成する工程において、半導体基板の内部に集光点
を合わせて、集光点におけるピークパワー密度が1×1
8(W/cm2)以上で且つパルス幅が1μs以下の条
件でレーザ光を照射している。よって、半導体基板の内
部は多光子吸収によって局所的に加熱される。この加熱
により半導体基板の内部に溶融処理領域が形成される。
この溶融処理領域は上述した改質領域の一例であるの
で、この半導体基板の切断方法によっても、シートを残
して半導体基板及びダイボンド樹脂層をブレードにより
切断するような場合に比べ、はるかに効率良く半導体基
板及びダイボンド樹脂層を切断予定部に沿って切断する
ことが可能になる。
In this method of cutting a semiconductor substrate, in the step of forming the planned cutting portion, the focus point is aligned inside the semiconductor substrate, and the peak power density at the focus point is 1 × 1.
The laser light is irradiated under the condition that the pulse width is 0 8 (W / cm 2 ) or more and the pulse width is 1 μs or less. Therefore, the inside of the semiconductor substrate is locally heated by multiphoton absorption. By this heating, a melt processing region is formed inside the semiconductor substrate.
Since this melt-processed area is an example of the above-mentioned modified area, the method for cutting the semiconductor substrate is far more efficient than the case where the semiconductor substrate and the die bond resin layer are cut with a blade while leaving the sheet. It becomes possible to cut the semiconductor substrate and the die bond resin layer along the planned cutting portion.

【0010】また、本発明に係る半導体基板の切断方法
は、ダイボンド樹脂層を介在させてシートが貼り付けら
れた半導体基板の内部に集光点を合わせてレーザ光を照
射することにより、半導体基板の内部に改質領域を形成
し、当該改質領域でもって切断予定部を形成する工程
と、切断予定部を形成する工程後、シートを拡張させる
ことにより切断予定部に沿って半導体基板及びダイボン
ド樹脂層を切断する工程とを備えたことを特徴とする。
そして、この改質領域は、溶融処理した領域である場合
もある。
Further, in the method for cutting a semiconductor substrate according to the present invention, by irradiating a laser beam with a condensing point aligned with the inside of the semiconductor substrate to which the sheet is attached with a die bond resin layer interposed therebetween. Forming a modified region in the interior of the substrate and forming a planned cutting portion with the modified region, and after the step of forming the planned cutting region, the sheet is expanded to extend the semiconductor substrate and the die bond along the planned cutting portion. And a step of cutting the resin layer.
The modified region may be a melt-processed region.

【0011】この半導体基板の切断方法によっても、上
述した半導体基板の切断方法と同様の理由から、シート
を残して半導体基板及びダイボンド樹脂層をブレードに
より切断するような場合に比べ、はるかに効率良く半導
体基板及びダイボンド樹脂層を切断予定部に沿って切断
することが可能になる。ただし、改質領域は、多光子吸
収により形成される場合もあるし、他の原因により形成
される場合もある。
This semiconductor substrate cutting method is also much more efficient than the case of cutting the semiconductor substrate and the die bond resin layer with a blade while leaving the sheet for the same reason as the above-mentioned semiconductor substrate cutting method. It becomes possible to cut the semiconductor substrate and the die bond resin layer along the planned cutting portion. However, the modified region may be formed by multiphoton absorption or may be formed by other causes.

【0012】また、本発明に係る半導体基板の切断方法
は、シートが貼り付けられた半導体基板の内部に集光点
を合わせてレーザ光を照射することにより、半導体基板
の内部に改質領域を形成し、当該改質領域でもって切断
予定部を形成する工程と、切断予定部を形成する工程
後、シートを拡張させることにより切断予定部に沿って
半導体基板を切断する工程とを備えたことを特徴とす
る。
Further, in the method for cutting a semiconductor substrate according to the present invention, a modified region is formed inside the semiconductor substrate by irradiating the inside of the semiconductor substrate to which the sheet is attached with a laser beam with a converging point. And a step of forming a planned cutting portion with the modified region, and a step of cutting the semiconductor substrate along the planned cutting portion by expanding the sheet after the step of forming the planned cutting portion. Is characterized by.

【0013】この半導体基板の切断方法によれば、シー
トを残して半導体基板をブレードにより切断するような
場合に比べ、はるかに効率良く半導体基板を切断予定部
に沿って切断することが可能になる。
According to this method of cutting a semiconductor substrate, the semiconductor substrate can be cut along the planned cutting portion much more efficiently than in the case of cutting the semiconductor substrate with a blade while leaving the sheet. .

【0014】なお、上述してきた本発明に係る半導体基
板の切断方法において、切断予定部を形成する工程で
は、切断予定部を起点として、半導体基板のレーザ光入
射側の表面に割れを到達させてもよいし、切断予定部を
起点として、半導体基板のレーザ光入射側と反対側の裏
面に割れを到達させてもよいし、或いは、切断予定部を
起点として、半導体基板のレーザ光入射側の表面と、そ
の反対側の裏面とに割れを到達させてもよい。
In the method of cutting a semiconductor substrate according to the present invention described above, in the step of forming the planned cutting portion, a crack reaches the surface of the semiconductor substrate on the laser light incident side from the starting cutting portion as a starting point. Alternatively, the crack may reach the back surface of the semiconductor substrate on the opposite side of the laser light incident side from the planned cutting portion, or alternatively, the laser light incident side of the semiconductor substrate may start from the planned cutting portion. The crack may reach the front surface and the back surface on the opposite side.

【0015】また、本発明に係る半導体基板の切断方法
は、ダイボンド樹脂層を介在させてシートが貼り付けら
れた半導体基板の内部に集光点を合わせてレーザ光を照
射することにより、半導体基板の内部に多光子吸収によ
る改質領域を形成し、当該改質領域でもって切断予定部
を形成する工程と、切断予定部を形成する工程後、切断
予定部に沿って半導体基板にストレスを生じさせること
により、切断予定部に沿って半導体基板を切断する工程
と、半導体基板を切断する工程後、シートを拡張させる
ことにより半導体基板の切断面に沿ってダイボンド樹脂
層を切断する工程とを備えたことを特徴とする。
Further, in the method for cutting a semiconductor substrate according to the present invention, the semiconductor substrate to which the sheet is attached with the die-bonding resin layer interposed is irradiated with a laser beam so that the focusing point is aligned with the inside of the semiconductor substrate. Forming a modified region by multiphoton absorption in the inside of the substrate, and forming a planned cutting part with the modified region, and after the step of forming the planned cutting part, stress is generated in the semiconductor substrate along the planned cutting part. By doing so, a step of cutting the semiconductor substrate along the planned cutting portion, and a step of cutting the die bond resin layer along the cut surface of the semiconductor substrate by expanding the sheet after the step of cutting the semiconductor substrate are provided. It is characterized by that.

【0016】この半導体基板の切断方法においても、多
光子吸収により形成された改質領域でもって、半導体基
板を切断すべき所望の切断予定ラインに沿うよう半導体
基板の内部に切断予定部を形成することができる。よっ
て、切断予定部に沿って半導体基板にストレスを生じさ
せると、切断予定部に沿って半導体基板を精度良く切断
することができる。そして、半導体基板に貼り付けられ
たシートを拡張させると、切断された半導体基板の対向
する切断面は、互いに密着した状態から、シートの拡張
に伴って離間していくため、半導体基板とシートとの間
に存在するダイボンド樹脂層は半導体基板の切断面に沿
って切断されることになる。したがって、シートを残し
て半導体基板及びダイボンド樹脂層をブレードにより切
断するような場合に比べ、はるかに効率良く半導体基板
及びダイボンド樹脂層を切断予定部に沿って切断するこ
とが可能になる。しかも、切断された半導体基板の対向
する切断面が初めは互いに密着しているがために、切断
された個々の半導体基板と切断された個々のダイボンド
樹脂層とがほぼ同一の外形となり、各半導体基板の切断
面からダイボンド樹脂がはみ出るようなことも防止され
る。
Also in this semiconductor substrate cutting method, the planned cutting portion is formed inside the semiconductor substrate along the desired planned cutting line for cutting the semiconductor substrate by the modified region formed by multiphoton absorption. be able to. Therefore, when stress is applied to the semiconductor substrate along the planned cutting portion, the semiconductor substrate can be accurately cut along the planned cutting portion. When the sheet attached to the semiconductor substrate is expanded, the cut surfaces facing each other of the cut semiconductor substrate are separated from each other as the sheet is expanded from the state in which they are in close contact with each other. The die bond resin layer existing between the two is cut along the cut surface of the semiconductor substrate. Therefore, it is possible to cut the semiconductor substrate and the die bond resin layer along the planned cutting portion much more efficiently than in the case where the semiconductor substrate and the die bond resin layer are cut with a blade while leaving the sheet. Moreover, since the cut surfaces of the cut semiconductor substrate facing each other are initially in close contact with each other, the cut individual semiconductor substrates and the cut individual die bond resin layers have substantially the same outer shape, and It is also possible to prevent the die bond resin from protruding from the cut surface of the substrate.

【0017】また、本発明に係る半導体基板の切断方法
は、ダイボンド樹脂層を介在させてシートが貼り付けら
れた半導基板の内部に集光点を合わせて、集光点におけ
るピークパワー密度が1×108(W/cm2)以上で且
つパルス幅が1μs以下の条件でレーザ光を照射するこ
とにより、半導体基板の内部に溶融処理領域を含む改質
領域を形成し、当該溶融処理領域を含む改質領域でもっ
て切断予定部を形成する工程と、切断予定部を形成する
工程後、切断予定部に沿って半導体基板にストレスを生
じさせることにより、切断予定部に沿って半導体基板を
切断する工程と、半導体基板を切断する工程後、シート
を拡張させることにより半導体基板の切断面に沿ってダ
イボンド樹脂層を切断する工程とを備えたことを特徴と
する。
Further, in the semiconductor substrate cutting method according to the present invention, the converging point is aligned inside the semiconductor substrate to which the sheet is attached with the die bond resin layer interposed, and the peak power density at the converging point is reduced. By irradiating a laser beam under the condition of 1 × 10 8 (W / cm 2 ) or more and a pulse width of 1 μs or less, a modified region including a melt-processed region is formed inside the semiconductor substrate, and the melt-processed region is formed. After the step of forming the planned cutting portion with the modified region including, and the step of forming the planned cutting portion, stress is applied to the semiconductor substrate along the planned cutting portion, so that the semiconductor substrate is cut along the planned cutting portion. The method is characterized by including a step of cutting and a step of cutting the die bond resin layer along the cut surface of the semiconductor substrate by expanding the sheet after the step of cutting the semiconductor substrate.

【0018】さらに、本発明に係る半導体基板の切断方
法は、ダイボンド樹脂層を介在させてシートが貼り付け
られた半導体基板の内部に集光点を合わせてレーザ光を
照射することにより、半導体基板の内部に改質領域を形
成し、当該改質領域でもって切断予定部を形成する工程
と、切断予定部を形成する工程後、切断予定部に沿って
半導体基板にストレスを生じさせることにより、切断予
定部に沿って半導体基板を切断する工程と、半導体基板
を切断する工程後、シートを拡張させることにより半導
体基板の切断面に沿ってダイボンド樹脂層を切断する工
程とを備えたことを特徴とする。そして、この改質領域
は、溶融処理した領域である場合もある。
Further, in the method for cutting a semiconductor substrate according to the present invention, the semiconductor substrate is irradiated with a laser beam with a focusing point aligned with the inside of the semiconductor substrate to which the sheet is attached with the die bond resin layer interposed. By forming a modified region in the inside of, the step of forming the planned cutting portion in the modified region, and after the step of forming the planned cutting portion, by causing stress on the semiconductor substrate along the planned cutting portion, It is characterized by comprising a step of cutting the semiconductor substrate along the planned cutting portion and a step of cutting the die bond resin layer along the cut surface of the semiconductor substrate by expanding the sheet after the step of cutting the semiconductor substrate. And The modified region may be a melt-processed region.

【0019】これらの半導体基板の切断方法によって
も、上述した半導体基板の切断方法と同様の理由から、
シートを残して半導体基板及びダイボンド樹脂層をブレ
ードにより切断するような場合に比べ、はるかに効率良
く半導体基板及びダイボンド樹脂層を切断予定部に沿っ
て切断することが可能になる。
These semiconductor substrate cutting methods are also used for the same reason as the above-described semiconductor substrate cutting method.
It is possible to cut the semiconductor substrate and the die bond resin layer along the planned cutting portion much more efficiently than in the case of cutting the semiconductor substrate and the die bond resin layer with a blade while leaving the sheet.

【0020】[0020]

【発明の実施の形態】以下、本発明に係る半導体基板の
切断方法の好適な実施形態について、図面を参照して詳
細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Preferred embodiments of a method for cutting a semiconductor substrate according to the present invention will be described in detail below with reference to the drawings.

【0021】本実施形態に係る半導体基板の切断方法で
は、半導体基板の内部に集光点を合わせてレーザ光を照
射することにより、半導体基板の内部に多光子吸収によ
る改質領域を形成し、この改質領域でもって切断予定部
を形成する。そこで、本実施形態に係る半導体基板の切
断方法の説明に先立って、切断予定部を形成するために
実施されるレーザ加工方法について多光子吸収を中心に
説明する。
In the method of cutting a semiconductor substrate according to this embodiment, a modified region by multiphoton absorption is formed inside the semiconductor substrate by irradiating a laser beam with the focusing point aligned inside the semiconductor substrate, A planned cutting portion is formed by this modified region. Therefore, prior to the description of the method of cutting the semiconductor substrate according to the present embodiment, a laser processing method that is performed to form the planned cutting portion will be described focusing on multiphoton absorption.

【0022】材料の吸収のバンドギャップEGよりも光
子のエネルギーhνが小さいと光学的に透明となる。よ
って、材料に吸収が生じる条件はhν>EGである。し
かし、光学的に透明でも、レーザ光の強度を非常に大き
くするとnhν>EGの条件(n=2,3,4,・・
・)で材料に吸収が生じる。この現象を多光子吸収とい
う。パルス波の場合、レーザ光の強度はレーザ光の集光
点のピークパワー密度(W/cm2)で決まり、例えば
ピークパワー密度が1×108(W/cm2)以上の条件
で多光子吸収が生じる。ピークパワー密度は、(集光点
におけるレーザ光の1パルス当たりのエネルギー)÷
(レーザ光のビームスポット断面積×パルス幅)により
求められる。また、連続波の場合、レーザ光の強度はレ
ーザ光の集光点の電界強度(W/cm2)で決まる。
When the photon energy hν is smaller than the absorption band gap E G of the material, it becomes optically transparent. Therefore, the condition under which absorption occurs in the material is hν> E G. However, even if it is optically transparent, if the intensity of the laser light is made extremely high, the condition of nhν> E G (n = 2, 3, 4, ...
・) Absorption occurs in the material. This phenomenon is called multiphoton absorption. In the case of a pulse wave, the intensity of the laser light is determined by the peak power density (W / cm 2 ) at the condensing point of the laser light. For example, the multiphoton is generated under the condition that the peak power density is 1 × 10 8 (W / cm 2 ) or more. Absorption occurs. The peak power density is (energy per pulse of laser light at the condensing point) ÷
It is calculated by (beam spot cross-sectional area of laser light × pulse width). Further, in the case of a continuous wave, the intensity of the laser light is determined by the electric field intensity (W / cm 2 ) at the condensing point of the laser light.

【0023】このような多光子吸収を利用する本実施形
態に係るレーザ加工の原理について、図1〜図6を参照
して説明する。図1はレーザ加工中の半導体基板1の平
面図であり、図2は図1に示す半導体基板1のII−II線
に沿った断面図であり、図3はレーザ加工後の半導体基
板1の平面図であり、図4は図3に示す半導体基板1の
IV−IV線に沿った断面図であり、図5は図3に示す半導
体基板1のV−V線に沿った断面図であり、図6は切断さ
れた半導体基板1の平面図である。
The principle of laser processing according to this embodiment utilizing such multiphoton absorption will be described with reference to FIGS. 1 is a plan view of the semiconductor substrate 1 during laser processing, FIG. 2 is a sectional view taken along line II-II of the semiconductor substrate 1 shown in FIG. 1, and FIG. 3 is a plan view of the semiconductor substrate 1 after laser processing. FIG. 4 is a plan view, and FIG. 4 shows the semiconductor substrate 1 shown in FIG.
4 is a sectional view taken along line IV-IV, FIG. 5 is a sectional view taken along line VV of the semiconductor substrate 1 shown in FIG. 3, and FIG. 6 is a plan view of the cut semiconductor substrate 1.

【0024】図1及び図2に示すように、半導体基板1
の表面3には、半導体基板1を切断すべき所望の切断予
定ライン5がある。切断予定ライン5は直線状に延びた
仮想線である(半導体基板1に実際に線を引いて切断予
定ライン5としてもよい)。本実施形態に係るレーザ加
工は、多光子吸収が生じる条件で半導体基板1の内部に
集光点Pを合わせてレーザ光Lを半導体基板1に照射し
て改質領域7を形成する。なお、集光点とはレーザ光L
が集光した箇所のことである。
As shown in FIGS. 1 and 2, the semiconductor substrate 1
The surface 3 has a desired planned cutting line 5 for cutting the semiconductor substrate 1. The planned cutting line 5 is an imaginary line extending in a straight line (a line may actually be drawn on the semiconductor substrate 1 to form the planned cutting line 5). In the laser processing according to the present embodiment, the modified region 7 is formed by irradiating the semiconductor substrate 1 with the laser light L by aligning the focus point P inside the semiconductor substrate 1 under the condition that multiphoton absorption occurs. The converging point means the laser beam L
Is the point where the light is collected.

【0025】レーザ光Lを切断予定ライン5に沿って
(すなわち矢印A方向に沿って)相対的に移動させるこ
とにより、集光点Pを切断予定ライン5に沿って移動さ
せる。これにより、図3〜図5に示すように改質領域7
が切断予定ライン5に沿って半導体基板1の内部にのみ
形成され、この改質領域7でもって切断予定部9が形成
される。本実施形態に係るレーザ加工方法は、半導体基
板1がレーザ光Lを吸収することにより半導体基板1を
発熱させて改質領域7を形成するのではない。半導体基
板1にレーザ光Lを透過させ半導体基板1の内部に多光
子吸収を発生させて改質領域7を形成している。よっ
て、半導体基板1の表面3ではレーザ光Lがほとんど吸
収されないので、半導体基板1の表面3が溶融すること
はない。
By moving the laser beam L relatively along the planned cutting line 5 (that is, along the direction of arrow A), the focal point P is moved along the planned cutting line 5. As a result, as shown in FIG. 3 to FIG.
Is formed only inside the semiconductor substrate 1 along the planned cutting line 5, and the modified region 7 forms the planned cutting portion 9. In the laser processing method according to this embodiment, the semiconductor substrate 1 does not generate the modified region 7 by absorbing the laser light L to heat the semiconductor substrate 1. The laser light L is transmitted through the semiconductor substrate 1 to cause multiphoton absorption inside the semiconductor substrate 1 to form the modified region 7. Therefore, the surface 3 of the semiconductor substrate 1 hardly absorbs the laser light L, so that the surface 3 of the semiconductor substrate 1 is not melted.

【0026】半導体基板1の切断において、切断する箇
所に起点があると半導体基板1はその起点から割れるの
で、図6に示すように比較的小さな力で半導体基板1を
切断することができる。よって、半導体基板1の表面3
に不必要な割れを発生させることなく半導体基板1の切
断が可能となる。
In the cutting of the semiconductor substrate 1, if there is a starting point at the cutting point, the semiconductor substrate 1 is broken from the starting point, so that the semiconductor substrate 1 can be cut with a relatively small force as shown in FIG. Therefore, the surface 3 of the semiconductor substrate 1
The semiconductor substrate 1 can be cut without causing unnecessary cracks.

【0027】なお、切断予定部を起点とした半導体基板
の切断には、次の2通りが考えられる。1つは、切断予
定部形成後、半導体基板に人為的な力が印加されること
により、切断予定部を起点として半導体基板が割れ、半
導体基板が切断される場合である。これは、例えば半導
体基板の厚さが大きい場合の切断である。人為的な力が
印加されるとは、例えば、半導体基板の切断予定部に沿
って半導体基板に曲げ応力やせん断応力を加えたり、半
導体基板に温度差を与えることにより熱応力を発生させ
たりすることである。他の1つは、切断予定部を形成す
ることにより、切断予定部を起点として半導体基板の断
面方向(厚さ方向)に向かって自然に割れ、結果的に半
導体基板が切断される場合である。これは、例えば半導
体基板の厚さが小さい場合には、1列の改質領域により
切断予定部が形成されることで可能となり、半導体基板
の厚さが大きい場合には、厚さ方向に複数列形成された
改質領域により切断予定部が形成されることで可能とな
る。なお、この自然に割れる場合も、切断する箇所にお
いて、切断予定部が形成されていない部位に対応する部
分の表面上にまで割れが先走ることがなく、切断予定部
を形成した部位に対応する部分のみを割断することがで
きるので、割断を制御よくすることができる。近年、シ
リコンウェハ等の半導体基板の厚さは薄くなる傾向にあ
るので、このような制御性のよい割断方法は大変有効で
ある。
There are two possible ways of cutting the semiconductor substrate starting from the planned cutting part. One is a case where an artificial force is applied to the semiconductor substrate after the planned cutting portion is formed, so that the semiconductor substrate is cracked starting from the planned cutting portion and the semiconductor substrate is cut. This is cutting, for example, when the thickness of the semiconductor substrate is large. The artificial force is applied, for example, to apply a bending stress or a shear stress to the semiconductor substrate along the cut portion of the semiconductor substrate, or to generate a thermal stress by giving a temperature difference to the semiconductor substrate. That is. The other one is a case in which, by forming the planned cutting portion, the semiconductor substrate is naturally broken in the cross-sectional direction (thickness direction) of the semiconductor substrate starting from the planned cutting portion, and as a result, the semiconductor substrate is cut. . This can be achieved, for example, when the thickness of the semiconductor substrate is small, by forming the planned cutting portion by one row of modified regions, and when the thickness of the semiconductor substrate is large, a plurality of regions are formed in the thickness direction. This is possible because the planned cutting portion is formed by the modified regions formed in rows. Even in the case of this natural breakage, the part to be cut does not have a crack that extends to the surface of the part corresponding to the part where the part to be cut is not formed, and the part corresponding to the part where the part to be cut is formed. Since only the cleaving can be performed, the cleaving can be controlled better. In recent years, since the thickness of a semiconductor substrate such as a silicon wafer tends to be thin, such a cleaving method with good controllability is very effective.

【0028】さて、本実施形態において多光子吸収によ
り形成される改質領域としては、次に説明する溶融処理
領域がある。
In the present embodiment, the modified region formed by multiphoton absorption includes the melt-processed region described below.

【0029】半導体基板の内部に集光点を合わせて、集
光点における電界強度が1×108(W/cm2)以上で
且つパルス幅が1μs以下の条件でレーザ光を照射す
る。これにより半導体基板の内部は多光子吸収によって
局所的に加熱される。この加熱により半導体基板の内部
に溶融処理領域が形成される。溶融処理領域とは一旦溶
融後再固化した領域や、まさに溶融状態の領域や、溶融
状態から再固化する状態の領域であり、相変化した領域
や結晶構造が変化した領域ということもできる。また、
溶融処理領域とは単結晶構造、非晶質構造、多結晶構造
において、ある構造が別の構造に変化した領域というこ
ともできる。つまり、例えば、単結晶構造から非晶質構
造に変化した領域、単結晶構造から多結晶構造に変化し
た領域、単結晶構造から非晶質構造及び多結晶構造を含
む構造に変化した領域を意味する。半導体基板がシリコ
ン単結晶構造の場合、溶融処理領域は例えば非晶質シリ
コン構造である。電界強度の上限値としては、例えば1
×1012(W/cm2)である。パルス幅は例えば1n
s〜200nsが好ましい。
A focusing point is set inside the semiconductor substrate, and the laser beam is irradiated under the condition that the electric field intensity at the focusing point is 1 × 10 8 (W / cm 2 ) or more and the pulse width is 1 μs or less. As a result, the inside of the semiconductor substrate is locally heated by multiphoton absorption. By this heating, a melt processing region is formed inside the semiconductor substrate. The melt-processed region is a region that has been once melted and then re-solidified, a region that is just in a molten state, or a region that is in a state where it is re-solidified from the molten state, and can also be referred to as a phase-changed region or a region in which the crystal structure is changed. Also,
It can be said that the melt-processed region is a region in which one structure is changed to another structure in a single crystal structure, an amorphous structure, or a polycrystalline structure. That is, for example, a region in which a single crystal structure is changed to an amorphous structure, a region in which a single crystal structure is changed to a polycrystalline structure, or a region in which a single crystal structure is changed to a structure including an amorphous structure and a polycrystalline structure is meant. To do. When the semiconductor substrate has a silicon single crystal structure, the melt-processed region has, for example, an amorphous silicon structure. The upper limit value of the electric field strength is, for example, 1
It is × 10 12 (W / cm 2 ). The pulse width is, for example, 1n
s-200 ns is preferable.

【0030】本発明者は、シリコンウェハの内部で溶融
処理領域が形成されることを実験により確認した。実験
条件は次の通りである。
The present inventor has confirmed by experiments that a melt-processed region is formed inside a silicon wafer. The experimental conditions are as follows.

【0031】(A)半導体基板:シリコンウェハ(厚さ
350μm、外径4インチ) (B)レーザ 光源:半導体レーザ励起Nd:YAGレーザ 波長:1064nm レーザ光スポット断面積:3.14×10-8cm2 発振形態:Qスイッチパルス 繰り返し周波数:100kHz パルス幅:30ns 出力:20μJ/パルス レーザ光品質:TEM00 偏光特性:直線偏光 (C)集光用レンズ 倍率:50倍 N.A.:0.55 レーザ光波長に対する透過率:60パーセント (D)半導体基板が載置される載置台の移動速度:10
0mm/秒
(A) Semiconductor substrate: Silicon wafer (thickness 350 μm, outer diameter 4 inches) (B) Laser light source: Semiconductor laser excitation Nd: YAG laser Wavelength: 1064 nm Laser beam spot cross-sectional area: 3.14 × 10 −8 cm 2 Oscillation form: Q switch pulse repetition frequency: 100 kHz Pulse width: 30 ns Output: 20 μJ / pulse Laser beam quality: TEM 00 Polarization characteristic: Linearly polarized light (C) Condensing lens magnification: 50 times N.M. A. : 0.55 Transmittance for laser light wavelength: 60% (D) Moving speed of mounting table on which semiconductor substrate is mounted: 10
0 mm / sec

【0032】図7は、上記条件でのレーザ加工により切
断されたシリコンウェハの一部における断面の写真を表
した図である。シリコンウェハ11の内部に溶融処理領
域13が形成されている。なお、上記条件により形成さ
れた溶融処理領域13の厚さ方向の大きさは100μm
程度である。
FIG. 7 is a view showing a photograph of a cross section of a part of a silicon wafer cut by laser processing under the above conditions. A melt processing region 13 is formed inside the silicon wafer 11. The size in the thickness direction of the melt-processed region 13 formed under the above conditions is 100 μm.
It is a degree.

【0033】溶融処理領域13が多光子吸収により形成
されたことを説明する。図8は、レーザ光の波長とシリ
コン基板の内部の透過率との関係を示すグラフである。
ただし、シリコン基板の表面側と裏面側それぞれの反射
成分を除去し、内部のみの透過率を示している。シリコ
ン基板の厚さtが50μm、100μm、200μm、
500μm、1000μmの各々について上記関係を示
した。
It will be described that the melt-processed region 13 is formed by multiphoton absorption. FIG. 8 is a graph showing the relationship between the wavelength of laser light and the transmittance inside the silicon substrate.
However, the reflection components on the front surface side and the back surface side of the silicon substrate are removed, and the transmittance of only the inside is shown. The thickness t of the silicon substrate is 50 μm, 100 μm, 200 μm,
The above relationship is shown for each of 500 μm and 1000 μm.

【0034】例えば、Nd:YAGレーザの波長である
1064nmにおいて、シリコン基板の厚さが500μ
m以下の場合、シリコン基板の内部ではレーザ光が80
%以上透過することが分かる。図7に示すシリコンウェ
ハ11の厚さは350μmであるので、多光子吸収によ
る溶融処理領域13はシリコンウェハの中心付近、つま
り表面から175μmの部分に形成される。この場合の
透過率は、厚さ200μmのシリコンウェハを参考にす
ると、90%以上なので、レーザ光がシリコンウェハ1
1の内部で吸収されるのは僅かであり、ほとんどが透過
する。このことは、シリコンウェハ11の内部でレーザ
光が吸収されて、溶融処理領域13がシリコンウェハ1
1の内部に形成(つまりレーザ光による通常の加熱で溶
融処理領域が形成)されたものではなく、溶融処理領域
13が多光子吸収により形成されたことを意味する。多
光子吸収による溶融処理領域の形成は、例えば、溶接学
会全国大会講演概要第66集(2000年4月)の第7
2頁〜第73頁の「ピコ秒パルスレーザによるシリコン
の加工特性評価」に記載されている。
For example, when the wavelength of the Nd: YAG laser is 1064 nm, the thickness of the silicon substrate is 500 μm.
If it is less than m, the laser light will be 80 inside the silicon substrate.
It can be seen that more than% is transmitted. Since the thickness of the silicon wafer 11 shown in FIG. 7 is 350 μm, the melt-processed region 13 by multiphoton absorption is formed near the center of the silicon wafer, that is, at a portion 175 μm from the surface. In this case, the transmittance is 90% or more when a silicon wafer having a thickness of 200 μm is referred to.
There is little absorption inside 1 and most penetrates. This means that the laser light is absorbed inside the silicon wafer 11 so that the melt processing region 13 is exposed to the silicon wafer 1.
It means that the melt-processed region 13 is formed by multiphoton absorption, not that formed inside 1 (that is, the melt-processed region is formed by normal heating with laser light). The formation of the melt-processed region by multiphoton absorption is described, for example, in No. 7 of Proceedings of the 66th Annual Meeting of the Welding Society (April 2000)
It is described in "Evaluation of processing characteristics of silicon by picosecond pulse laser" on pages 2 to 73.

【0035】なお、シリコンウェハは、溶融処理領域で
もって形成される切断予定部を起点として断面方向に向
かって割れを発生させ、その割れがシリコンウェハの表
面と裏面とに到達することにより、結果的に切断され
る。シリコンウェハの表面と裏面に到達するこの割れは
自然に成長する場合もあるし、シリコンウェハに力が印
加されることにより成長する場合もある。なお、切断予
定部からシリコンウェハの表面と裏面とに割れが自然に
成長する場合には、切断予定部を形成する溶融処理領域
が溶融している状態から割れが成長する場合と、切断予
定部を形成する溶融処理領域が溶融している状態から再
固化する際に割れが成長する場合とのいずれもある。た
だし、どちらの場合も溶融処理領域はシリコンウェハの
内部のみに形成され、切断後の切断面には、図7のよう
に内部にのみ溶融処理領域が形成されている。半導体基
板の内部に溶融処理領域でもって切断予定部を形成する
と、割断時、切断予定部ラインから外れた不必要な割れ
が生じにくいので、割断制御が容易となる。
The silicon wafer is cracked in the cross-sectional direction starting from the planned cutting portion formed in the melt-processed region, and the cracks reach the front surface and the back surface of the silicon wafer. Be disconnected. The crack reaching the front surface and the back surface of the silicon wafer may grow naturally, or may grow when a force is applied to the silicon wafer. When a crack naturally grows from the planned cutting part on the front surface and the back surface of the silicon wafer, when the crack grows from the molten state of the melting treatment region forming the planned cutting part, There is also a case where cracks grow when the melt-processed region forming the is solidified from a molten state. However, in both cases, the melt-processed region is formed only inside the silicon wafer, and the cut surface after cutting has the melt-processed region formed only inside as shown in FIG. 7. If the planned cutting portion is formed in the semiconductor substrate in the melt-processed region, unnecessary cracks that deviate from the planned cutting portion line are unlikely to occur at the time of cutting, which facilitates cutting control.

【0036】次に、上述したレーザ加工方法に使用され
るレーザ加工装置について、図9を参照して説明する。
図9はレーザ加工装置100の概略構成図である。
Next, a laser processing apparatus used in the above laser processing method will be described with reference to FIG.
FIG. 9 is a schematic configuration diagram of the laser processing apparatus 100.

【0037】レーザ加工装置100は、レーザ光Lを発
生するレーザ光源101と、レーザ光Lの出力やパルス
幅等を調節するためにレーザ光源101を制御するレー
ザ光源制御部102と、レーザ光Lの反射機能を有しか
つレーザ光Lの光軸の向きを90°変えるように配置さ
れたダイクロイックミラー103と、ダイクロイックミ
ラー103で反射されたレーザ光Lを集光する集光用レ
ンズ105と、集光用レンズ105で集光されたレーザ
光Lが照射される半導体基板1が載置される載置台10
7と、載置台107をX軸方向に移動させるためのX軸
ステージ109と、載置台107をX軸方向に直交する
Y軸方向に移動させるためのY軸ステージ111と、載
置台107をX軸及びY軸方向に直交するZ軸方向に移
動させるためのZ軸ステージ113と、これら3つのス
テージ109,111,113の移動を制御するステー
ジ制御部115とを備える。
The laser processing apparatus 100 includes a laser light source 101 for generating a laser light L, a laser light source controller 102 for controlling the laser light source 101 to adjust the output and pulse width of the laser light L, and a laser light L. A dichroic mirror 103 which has a reflection function and is arranged to change the direction of the optical axis of the laser light L by 90 °, and a condenser lens 105 which condenses the laser light L reflected by the dichroic mirror 103. A mounting table 10 on which the semiconductor substrate 1 irradiated with the laser light L condensed by the condensing lens 105 is mounted.
7, an X-axis stage 109 for moving the mounting table 107 in the X-axis direction, a Y-axis stage 111 for moving the mounting table 107 in the Y-axis direction orthogonal to the X-axis direction, and the mounting table 107 for the X-axis. A Z-axis stage 113 for moving in the Z-axis direction orthogonal to the axes and the Y-axis direction, and a stage control unit 115 for controlling the movement of these three stages 109, 111, 113 are provided.

【0038】Z軸方向は半導体基板1の表面3と直交す
る方向なので、半導体基板1に入射するレーザ光Lの焦
点深度の方向となる。よって、Z軸ステージ113をZ
軸方向に移動させることにより、半導体基板1の内部に
レーザ光Lの集光点Pを合わせることができる。また、
この集光点PのX(Y)軸方向の移動は、半導体基板1
をX(Y)軸ステージ109(111)によりX(Y)
軸方向に移動させることにより行う。
Since the Z-axis direction is the direction orthogonal to the surface 3 of the semiconductor substrate 1, it is the direction of the depth of focus of the laser light L incident on the semiconductor substrate 1. Therefore, set the Z-axis stage 113 to Z
By moving in the axial direction, the condensing point P of the laser light L can be aligned inside the semiconductor substrate 1. Also,
The movement of the condensing point P in the X (Y) axis direction is caused by the semiconductor substrate 1
X (Y) by the X (Y) axis stage 109 (111)
This is done by moving in the axial direction.

【0039】レーザ光源101はパルスレーザ光を発生
するNd:YAGレーザである。レーザ光源101に用
いることができるレーザとして、この他、Nd:YVO
4レーザ、Nd:YLFレーザやチタンサファイアレー
ザがある。溶融処理領域を形成する場合には、Nd:Y
AGレーザ、Nd:YVO4レーザ、Nd:YLFレー
ザを用いるのが好適である。本実施形態では、半導体基
板1の加工にパルスレーザ光を用いているが、多光子吸
収を起こさせることができるなら連続波レーザ光でもよ
い。
The laser light source 101 is an Nd: YAG laser which generates pulsed laser light. Other lasers that can be used for the laser light source 101 include Nd: YVO
There are 4 lasers, Nd: YLF lasers and titanium sapphire lasers. Nd: Y when forming the melt-processed region
It is preferable to use an AG laser, an Nd: YVO 4 laser, or an Nd: YLF laser. In this embodiment, pulsed laser light is used for processing the semiconductor substrate 1, but continuous wave laser light may be used as long as it can cause multiphoton absorption.

【0040】レーザ加工装置100はさらに、載置台1
07に載置された半導体基板1を可視光線により照明す
るために可視光線を発生する観察用光源117と、ダイ
クロイックミラー103及び集光用レンズ105と同じ
光軸上に配置された可視光用のビームスプリッタ119
とを備える。ビームスプリッタ119と集光用レンズ1
05との間にダイクロイックミラー103が配置されて
いる。ビームスプリッタ119は、可視光線の約半分を
反射し残りの半分を透過する機能を有しかつ可視光線の
光軸の向きを90°変えるように配置されている。観察
用光源117から発生した可視光線はビームスプリッタ
119で約半分が反射され、この反射された可視光線が
ダイクロイックミラー103及び集光用レンズ105を
透過し、半導体基板1の切断予定ライン5等を含む表面
3を照明する。
The laser processing apparatus 100 further includes a mounting table 1
For observing the light source 117 for illuminating the semiconductor substrate 1 mounted on 07 with visible light, the dichroic mirror 103 and the condenser lens 105 are arranged on the same optical axis. Beam splitter 119
With. Beam splitter 119 and condenser lens 1
The dichroic mirror 103 is arranged between the dichroic mirror 05 and the camera. The beam splitter 119 has a function of reflecting approximately half of visible light and transmitting the other half, and is arranged so as to change the direction of the optical axis of visible light by 90 °. About half of the visible light emitted from the observation light source 117 is reflected by the beam splitter 119, and the reflected visible light passes through the dichroic mirror 103 and the condenser lens 105, and cuts the planned cutting line 5 of the semiconductor substrate 1. Illuminate the containing surface 3.

【0041】レーザ加工装置100はさらに、ビームス
プリッタ119、ダイクロイックミラー103及び集光
用レンズ105と同じ光軸上に配置された撮像素子12
1及び結像レンズ123を備える。撮像素子121とし
ては例えばCCDカメラがある。切断予定ライン5等を
含む表面3を照明した可視光線の反射光は、集光用レン
ズ105、ダイクロイックミラー103、ビームスプリ
ッタ119を透過し、結像レンズ123で結像されて撮
像素子121で撮像され、撮像データとなる。
The laser processing apparatus 100 further includes an image pickup device 12 arranged on the same optical axis as the beam splitter 119, the dichroic mirror 103 and the condenser lens 105.
1 and the imaging lens 123. The image sensor 121 is, for example, a CCD camera. The reflected light of visible light that illuminates the surface 3 including the planned cutting line 5 and the like passes through the condenser lens 105, the dichroic mirror 103, and the beam splitter 119, is imaged by the imaging lens 123, and is imaged by the imaging element 121. And becomes imaging data.

【0042】レーザ加工装置100はさらに、撮像素子
121から出力された撮像データが入力される撮像デー
タ処理部125と、レーザ加工装置100全体を制御す
る全体制御部127と、モニタ129とを備える。撮像
データ処理部125は、撮像データを基にして観察用光
源117で発生した可視光の焦点を表面3上に合わせる
ための焦点データを演算する。この焦点データを基にし
てステージ制御部115がZ軸ステージ113を移動制
御することにより、可視光の焦点が表面3に合うように
する。よって、撮像データ処理部125はオートフォー
カスユニットとして機能する。また、撮像データ処理部
125は、撮像データを基にして表面3の拡大画像等の
画像データを演算する。この画像データは全体制御部1
27に送られ、全体制御部で各種処理がなされ、モニタ
129に送られる。これにより、モニタ129に拡大画
像等が表示される。
The laser processing apparatus 100 further includes an image data processing section 125 to which the image data output from the image sensor 121 is input, an overall control section 127 for controlling the entire laser processing apparatus 100, and a monitor 129. The imaging data processing unit 125 calculates focus data for focusing the visible light generated by the observation light source 117 on the surface 3 based on the imaging data. The stage control unit 115 controls the movement of the Z-axis stage 113 based on this focus data, so that the visible light is focused on the surface 3. Therefore, the imaging data processing unit 125 functions as an autofocus unit. Further, the imaging data processing unit 125 calculates image data such as an enlarged image of the surface 3 based on the imaging data. This image data is sent to the overall control unit 1.
27 is sent to the monitor 129. As a result, an enlarged image or the like is displayed on the monitor 129.

【0043】全体制御部127には、ステージ制御部1
15からのデータ、撮像データ処理部125からの画像
データ等が入力し、これらのデータも基にしてレーザ光
源制御部102、観察用光源117及びステージ制御部
115を制御することにより、レーザ加工装置100全
体を制御する。よって、全体制御部127はコンピュー
タユニットとして機能する。
The overall controller 127 includes the stage controller 1
Data from the image pickup device 15, image data from the image pickup data processing unit 125, and the like are input, and the laser light source control unit 102, the observation light source 117, and the stage control unit 115 are controlled based on these data, thereby the laser processing apparatus. Control 100 as a whole. Therefore, the overall control unit 127 functions as a computer unit.

【0044】以上のように構成されたレーザ加工装置1
00による切断予定部の形成手順について、図9及び図
10を参照して説明する。図10は、レーザ加工装置1
00による切断予定部の形成手順を説明するためのフロ
ーチャートである。
Laser processing apparatus 1 configured as described above
A procedure of forming the planned cutting portion by 00 will be described with reference to FIGS. 9 and 10. FIG. 10 shows a laser processing apparatus 1.
10 is a flowchart for explaining a procedure of forming a planned cutting portion by 00.

【0045】半導体基板1の光吸収特性を図示しない分
光光度計等により測定する。この測定結果に基づいて、
半導体基板1に対して透明な波長又は吸収の少ない波長
のレーザ光Lを発生するレーザ光源101を選定する
(S101)。続いて、半導体基板1の厚さを測定す
る。厚さの測定結果及び半導体基板1の屈折率を基にし
て、半導体基板1のZ軸方向の移動量を決定する(S1
03)。これは、レーザ光Lの集光点Pを半導体基板1
の内部に位置させるために、半導体基板1の表面3に位
置するレーザ光Lの集光点Pを基準とした半導体基板1
のZ軸方向の移動量である。この移動量は全体制御部1
27に入力される。
The light absorption characteristics of the semiconductor substrate 1 are measured by a spectrophotometer (not shown) or the like. Based on this measurement result,
A laser light source 101 that emits laser light L having a wavelength transparent to the semiconductor substrate 1 or a wavelength with little absorption is selected (S101). Then, the thickness of the semiconductor substrate 1 is measured. The amount of movement of the semiconductor substrate 1 in the Z-axis direction is determined based on the thickness measurement result and the refractive index of the semiconductor substrate 1 (S1).
03). This is because the focusing point P of the laser light L is at the semiconductor substrate 1
In order to locate the inside of the semiconductor substrate 1, the semiconductor substrate 1 located on the surface 3 of the semiconductor substrate 1 with the condensing point P of the laser light L as a reference.
Is the amount of movement in the Z-axis direction. This movement amount is the total control unit 1
27 is input.

【0046】半導体基板1をレーザ加工装置100の載
置台107に載置する。そして、観察用光源117から
可視光を発生させて半導体基板1を照明する(S10
5)。照明された切断予定ライン5を含む半導体基板1
の表面3を撮像素子121により撮像する。切断予定ラ
イン5は、半導体基板1を切断すべき所望の仮想線であ
る。撮像素子121により撮像された撮像データは撮像
データ処理部125に送られる。この撮像データに基づ
いて撮像データ処理部125は観察用光源117の可視
光の焦点が表面3に位置するような焦点データを演算す
る(S107)。
The semiconductor substrate 1 is mounted on the mounting table 107 of the laser processing apparatus 100. Then, visible light is generated from the observation light source 117 to illuminate the semiconductor substrate 1 (S10).
5). Semiconductor substrate 1 including illuminated planned cutting line 5
The surface 3 of the image is imaged by the image sensor 121. The planned cutting line 5 is a desired virtual line for cutting the semiconductor substrate 1. The image data captured by the image sensor 121 is sent to the image data processing unit 125. Based on the imaged data, the imaged data processing unit 125 calculates focus data such that the visible light focus of the observation light source 117 is located on the surface 3 (S107).

【0047】この焦点データはステージ制御部115に
送られる。ステージ制御部115は、この焦点データを
基にしてZ軸ステージ113をZ軸方向の移動させる
(S109)。これにより、観察用光源117の可視光
の焦点が半導体基板1の表面3に位置する。なお、撮像
データ処理部125は撮像データに基づいて、切断予定
ライン5を含む半導体基板1の表面3の拡大画像データ
を演算する。この拡大画像データは全体制御部127を
介してモニタ129に送られ、これによりモニタ129
に切断予定ライン5付近の拡大画像が表示される。
This focus data is sent to the stage controller 115. The stage control unit 115 moves the Z-axis stage 113 in the Z-axis direction based on this focus data (S109). As a result, the focus of visible light from the observation light source 117 is located on the surface 3 of the semiconductor substrate 1. The imaging data processing unit 125 calculates the enlarged image data of the surface 3 of the semiconductor substrate 1 including the planned cutting line 5 based on the imaging data. This magnified image data is sent to the monitor 129 via the overall control unit 127, whereby the monitor 129
An enlarged image near the planned cutting line 5 is displayed at.

【0048】全体制御部127には予めステップS10
3で決定された移動量データが入力されており、この移
動量データがステージ制御部115に送られる。ステー
ジ制御部115はこの移動量データに基づいて、レーザ
光Lの集光点Pが半導体基板1の内部となる位置に、Z
軸ステージ113により半導体基板1をZ軸方向に移動
させる(S111)。
In step S10, the overall control unit 127 is set in advance.
The movement amount data determined in 3 is input, and the movement amount data is sent to the stage control unit 115. Based on this movement amount data, the stage control unit 115 sets Z at the position where the condensing point P of the laser light L is inside the semiconductor substrate 1.
The semiconductor substrate 1 is moved in the Z-axis direction by the axis stage 113 (S111).

【0049】続いて、レーザ光源101からレーザ光L
を発生させて、レーザ光Lを半導体基板1の表面3の切
断予定ライン5に照射する。レーザ光Lの集光点Pは半
導体基板1の内部に位置しているので、溶融処理領域は
半導体基板1の内部にのみ形成される。そして、切断予
定ライン5に沿うようにX軸ステージ109やY軸ステ
ージ111を移動させて、切断予定ライン5に沿うよう
形成された溶融処理領域でもって切断予定ライン5に沿
う切断予定部を半導体基板1の内部に形成する(S11
3)。
Next, the laser light L from the laser light source 101
Is generated to irradiate the planned cutting line 5 on the surface 3 of the semiconductor substrate 1 with the laser light L. Since the condensing point P of the laser light L is located inside the semiconductor substrate 1, the melting processed region is formed only inside the semiconductor substrate 1. Then, the X-axis stage 109 and the Y-axis stage 111 are moved along the planned cutting line 5, and the planned cutting portion along the planned cutting line 5 is formed in the melting processing region formed along the planned cutting line 5 as a semiconductor. It is formed inside the substrate 1 (S11
3).

【0050】以上により、レーザ加工装置100による
切断予定部の形成が終了し、半導体基板1の内部に切断
予定部が形成される。半導体基板1の内部に切断予定部
が形成されると、比較的小さな力で切断予定部を起点と
して半導体基板1の厚さ方向に割れを発生させることが
できる。
As described above, the formation of the planned cutting portion by the laser processing apparatus 100 is completed, and the planned cutting portion is formed inside the semiconductor substrate 1. When the planned cutting portion is formed inside the semiconductor substrate 1, a crack can be generated in the thickness direction of the semiconductor substrate 1 with the comparatively small force as the starting point.

【0051】次に、本実施形態に係る半導体基板の切断
方法について説明する。なお、ここでは、半導体基板と
して半導体ウェハであるシリコンウェハ11を用いた。
Next, a method of cutting the semiconductor substrate according to this embodiment will be described. Here, a silicon wafer 11 which is a semiconductor wafer was used as the semiconductor substrate.

【0052】まず、図11(a)に示すように、シリコ
ンウェハ11の裏面17を覆うよう、この裏面17に粘
着シート20を貼り付ける。この粘着シート20は、厚
さ100μm程度の基材21を有し、この基材21上に
は、層厚数μm程度のUV硬化樹脂層22が設けられて
いる。さらに、このUV硬化樹脂層22上には、ダイボ
ンデイング用接着剤として機能するダイボンド樹脂層2
3が設けられている。なお、シリコンウェハ11の表面
3には、複数の機能素子がマトリックス状に形成されて
いる。ここで、機能素子とは、フォトダイオード等の受
光素子やレーザダイオード等の発光素子、或いは回路と
して形成された回路素子等を意味する。
First, as shown in FIG. 11A, an adhesive sheet 20 is attached to the back surface 17 of the silicon wafer 11 so as to cover the back surface 17. The adhesive sheet 20 has a base material 21 having a thickness of about 100 μm, and a UV curable resin layer 22 having a layer thickness of about several μm is provided on the base material 21. Further, on the UV curable resin layer 22, the die bond resin layer 2 which functions as an adhesive agent for die bonding.
3 is provided. A plurality of functional elements are formed in a matrix on the surface 3 of the silicon wafer 11. Here, the functional element means a light receiving element such as a photodiode, a light emitting element such as a laser diode, or a circuit element formed as a circuit.

【0053】続いて、図11(b)に示すように、例え
ば上述のレーザ加工装置100を用いてシリコンウェハ
11の内部に集光点を合わせて表面3側からレーザ光を
照射することにより、シリコンウェハ11の内部に改質
領域である溶融処理領域13を形成し、この溶融処理領
域13でもって切断予定部9を形成する。この切断予定
部9の形成において、レーザ光はシリコンウェハ11の
表面3にマトリックス状に配置された複数の機能素子の
間を走るように照射され、これにより、切断予定部9は
隣り合う機能素子間の真下を走るよう格子状に形成され
る。
Subsequently, as shown in FIG. 11B, for example, by using the above-described laser processing apparatus 100, a focusing point is aligned inside the silicon wafer 11 and a laser beam is irradiated from the surface 3 side. A melt-processed region 13 that is a modified region is formed inside the silicon wafer 11, and the melt-processed region 13 forms the planned cutting portion 9. In the formation of the planned cutting portion 9, laser light is irradiated so as to travel between the plurality of functional elements arranged in a matrix on the surface 3 of the silicon wafer 11, whereby the planned cutting portions 9 are adjacent to each other. It is formed like a grid so that it runs just below.

【0054】切断予定部9の形成後、図12(a)に示
すように、シート拡張手段30によって、粘着シート2
0の周囲を外側に向かって引っ張るようにして粘着シー
ト20を拡張させる。この粘着シート20のエキスパン
ドによって、切断予定部9を起点として厚さ方向に割れ
が発生し、この割れがシリコンウェハ11の表面3と裏
面17とに到達することになる。これにより、シリコン
ウェハ11が機能素子毎に精度良く切断され、機能素子
を1つ有した半導体チップ25が得られる。
After forming the portion 9 to be cut, as shown in FIG. 12A, the adhesive sheet 2 is expanded by the sheet expanding means 30.
The adhesive sheet 20 is expanded by pulling the periphery of 0 toward the outside. The expansion of the adhesive sheet 20 causes cracks in the thickness direction from the planned cutting portion 9 as a starting point, and the cracks reach the front surface 3 and the back surface 17 of the silicon wafer 11. As a result, the silicon wafer 11 is accurately cut into each functional element, and the semiconductor chip 25 having one functional element is obtained.

【0055】また、このとき、隣り合う半導体チップ2
5,25の対向する切断面25a,25aは、初めは密
着した状態にあり、粘着シート20の拡張に伴って離間
していくことになるため、シリコンウェハ11の切断と
同時に、シリコンウェハ11の裏面17に密着していた
ダイボンド樹脂層23も切断予定部9に沿って切断され
る。
At this time, the adjacent semiconductor chips 2
The cut surfaces 25a, 25a facing each other of 5 and 25 are initially in a state of being in close contact with each other and are separated from each other as the adhesive sheet 20 is expanded. The die bond resin layer 23 that was in close contact with the back surface 17 is also cut along the planned cutting portion 9.

【0056】なお、シート拡張手段30は、切断予定部
9の形成時にシリコンウェハ11が載置されるステージ
に設けられている場合と、そのステージに設けられてい
ない場合とがある。そのステージに設けられていない場
合、そのステージ上に載置されたシリコンウェハ11
は、切断予定部9の形成後、シート拡張手段30が設け
られた他のステージ上に搬送手段によって搬送される。
The sheet expanding means 30 may or may not be provided on the stage on which the silicon wafer 11 is placed when the planned cutting portion 9 is formed. If not provided on that stage, the silicon wafer 11 placed on that stage
After the planned cutting portion 9 is formed, the sheet is conveyed to another stage provided with the sheet expanding means 30 by the conveying means.

【0057】粘着シート20のエキスパンド終了後、図
12(b)に示すように、粘着シート20に裏面側から
紫外線を照射し、UV硬化樹脂層22を硬化させる。こ
れにより、UV硬化樹脂層22とダイボンド樹脂層23
との密着力が低下することになる。なお、この紫外線の
照射は、粘着シート20のエキスパンド開始前に行って
もよい。
After the expansion of the pressure-sensitive adhesive sheet 20, as shown in FIG. 12B, the pressure-sensitive adhesive sheet 20 is irradiated with ultraviolet rays from the back side to cure the UV curable resin layer 22. As a result, the UV curable resin layer 22 and the die bond resin layer 23
Adhesion with will be reduced. The irradiation of ultraviolet rays may be performed before the expansion of the adhesive sheet 20 is started.

【0058】続いて、図13(a)に示すように、ピッ
クアップ手段である吸着コレット等を用いて半導体チッ
プ25を順次ピックアップしていく。このとき、ダイボ
ンド樹脂層23は半導体チップ25と同等の外形に切断
されており、また、ダイボンド樹脂層23とUV硬化樹
脂層22との密着力が低下しているため、半導体チップ
25は、その裏面に切断されたダイボンド樹脂層23が
密着した状態でピックアップされることになる。そし
て、図13(b)に示すように、半導体チップ25を、
その裏面に密着したダイボンド樹脂層23を介してリー
ドフレーム27のダイパッド上に載置し、加熱によりフ
ィラー接合する。
Subsequently, as shown in FIG. 13A, the semiconductor chips 25 are sequentially picked up by using a suction collet or the like which is a pickup means. At this time, the die-bonding resin layer 23 is cut into the same outer shape as the semiconductor chip 25, and the adhesive force between the die-bonding resin layer 23 and the UV curable resin layer 22 is reduced. The die bond resin layer 23 cut on the back surface is picked up in close contact. Then, as shown in FIG. 13B, the semiconductor chip 25 is
It is placed on the die pad of the lead frame 27 via the die bond resin layer 23 adhered to the back surface thereof, and filler bonding is performed by heating.

【0059】以上のように、シリコンウェハ11の切断
方法においては、多光子吸収により形成された溶融処理
領域13でもって、シリコンウェハ11を切断すべき所
望の切断予定ラインに沿うようシリコンウェハ11の内
部に切断予定部9を形成している。そのため、シリコン
ウェハ11に貼り付けられた粘着シート20をエキスパ
ンドすると、切断予定部9に沿ってシリコンウェハ11
が精度良く切断され、半導体チップ25が得られる。こ
のとき、隣り合う半導体チップ25,25の対向する切
断面25a,25aは、初めは密着した状態にあり、粘
着シート20の拡張に伴って離間していくため、シリコ
ンウェハ11の裏面17に密着していたダイボンド樹脂
層23も切断予定部9に沿って切断されることになる。
したがって、基材21を切断しないようにしてシリコン
ウェハ11及びダイボンド樹脂層23をブレードにより
切断するような場合に比べ、はるかに効率良くシリコン
ウェハ11及びダイボンド樹脂層23を切断予定部9に
沿って切断することが可能になる。
As described above, in the method for cutting the silicon wafer 11, the silicon wafer 11 is cut along the desired cutting line to be cut by the melt processing region 13 formed by multiphoton absorption. A planned cutting portion 9 is formed inside. Therefore, when the pressure-sensitive adhesive sheet 20 attached to the silicon wafer 11 is expanded, the silicon wafer 11 is cut along the planned cutting portion 9.
Is accurately cut, and the semiconductor chip 25 is obtained. At this time, the cut surfaces 25a, 25a facing each other of the adjacent semiconductor chips 25, 25 are initially in a state of being in close contact with each other, and are separated as the adhesive sheet 20 is expanded, so that they are in close contact with the back surface 17 of the silicon wafer 11. The die bond resin layer 23 that has been cut is also cut along the planned cutting portion 9.
Therefore, the silicon wafer 11 and the die bond resin layer 23 can be cut along the planned cutting portion 9 much more efficiently than the case where the silicon wafer 11 and the die bond resin layer 23 are cut by a blade without cutting the base material 21. It becomes possible to disconnect.

【0060】しかも、隣り合う半導体チップ25,25
の対向する切断面25a,25aが初めは互いに密着し
ているがために、切断された個々の半導体チップ25と
切断された個々のダイボンド樹脂層23とがほぼ同一の
外形となり、各半導体チップ25の切断面25aからダ
イボンド樹脂がはみ出るようなことも防止される。
Moreover, the adjacent semiconductor chips 25, 25
Since the cut surfaces 25a, 25a opposed to each other are initially in close contact with each other, the cut individual semiconductor chips 25 and the cut individual die bond resin layers 23 have substantially the same outer shape, and each semiconductor chip 25 It is also possible to prevent the die bond resin from protruding from the cut surface 25a.

【0061】以上のシリコンウェハ11の切断方法は、
図14(a)に示すように、粘着シート20をエキスパ
ンドする前までは、切断予定部9を起点とした割れがシ
リコンウェハ11に発生しない場合であったが、図14
(b)に示すように、粘着シート20をエキスパンドす
る前に、切断予定部9を起点とした割れ15を発生さ
せ、この割れ15をシリコンウェハ11の表面3と裏面
17とに到達させてもよい。この割れ15を発生させる
方法としては、例えばナイフエッジ等の応力印加手段を
切断予定部9に沿ってシリコンウェハ11の裏面17に
押し当てることで、切断予定部9に沿ってシリコンウェ
ハ11に曲げ応力やせん断応力を生じさせる方法や、シ
リコンウェハ11に温度差を与えることで切断予定部9
に沿ってシリコンウェハ11に熱応力を生じさせる方法
などがある。
The above-described method for cutting the silicon wafer 11 is
As shown in FIG. 14A, until the adhesive sheet 20 was expanded, the silicon wafer 11 was not cracked from the planned cutting portion 9 as a starting point.
As shown in (b), before the adhesive sheet 20 is expanded, even if a crack 15 is generated starting from the planned cutting portion 9 and the crack 15 reaches the front surface 3 and the back surface 17 of the silicon wafer 11. Good. As a method of generating the crack 15, for example, a stress applying means such as a knife edge is pressed against the back surface 17 of the silicon wafer 11 along the planned cutting portion 9 to bend the silicon wafer 11 along the planned cutting portion 9. The portion to be cut 9 can be cut by applying a stress or shear stress or by applying a temperature difference to the silicon wafer 11.
There is a method of causing a thermal stress to the silicon wafer 11 along the direction.

【0062】このように、切断予定部9の形成後、切断
予定部9に沿ってシリコンウェハ11にストレスを生じ
さ、切断予定部9に沿ってシリコンウェハ11を切断し
ておくと、極めて精度良く切断された半導体チップ25
を得ることができる。そして、この場合においても、シ
リコンウェハ11に貼り付けられた粘着シート20を拡
張させると、隣り合う半導体チップ25,25の対向す
る切断面25a,25aが、互いに密着した状態から、
粘着シート20の拡張に伴って離間していくため、シリ
コンウェハ11の裏面17に密着していたダイボンド樹
脂層23は切断面25aに沿って切断されることにな
る。したがって、この切断方法によっても、基材21を
切断しないようにしてシリコンウェハ11及びダイボン
ド樹脂層23をブレードにより切断するような場合に比
べれば、はるかに効率良くシリコンウェハ11及びダイ
ボンド樹脂層23を切断予定部9に沿って切断すること
が可能になる。
As described above, after the planned cutting portion 9 is formed, stress is generated in the silicon wafer 11 along the planned cutting portion 9 and the silicon wafer 11 is cut along the planned cutting portion 9 so that the accuracy is extremely high. Well cut semiconductor chip 25
Can be obtained. Then, also in this case, when the adhesive sheet 20 attached to the silicon wafer 11 is expanded, the cut surfaces 25a, 25a of the adjacent semiconductor chips 25, 25 facing each other are brought into close contact with each other.
Since the adhesive sheets 20 are separated from each other as the adhesive sheet 20 is expanded, the die bond resin layer 23 adhered to the back surface 17 of the silicon wafer 11 is cut along the cut surface 25a. Therefore, even with this cutting method, the silicon wafer 11 and the die bond resin layer 23 are much more efficiently compared to the case where the silicon wafer 11 and the die bond resin layer 23 are cut by the blade without cutting the base material 21. It becomes possible to cut along the planned cutting part 9.

【0063】なお、シリコンウェハ11の厚さが薄くな
ると、切断予定部9に沿ってストレスを生じさせなくて
も、図14(b)に示すように、切断予定部9を起点と
した割れ15がシリコンウェハ11の表面3と裏面17
とに到達する場合がある。
When the thickness of the silicon wafer 11 becomes thin, even if stress is not generated along the planned cutting portion 9, as shown in FIG. Is the front surface 3 and the back surface 17 of the silicon wafer 11.
And may be reached.

【0064】また、図15(a)に示すように、シリコ
ンウェハ11の内部における表面3近傍に溶融処理領域
13による切断予定部9を形成し、表面3に割れ15を
到達させておけば、切断して得られる半導体チップ25
の表面(すなわち、機能素子形成面)の切断精度を極め
て高くすることができる。一方、図15(b)に示すよ
うに、シリコンウェハ11の内部における裏面17近傍
に溶融処理領域13による切断予定部9を形成し、裏面
17に割れ15を到達させておけば、粘着シート20の
エキスパンドによってダイボンド樹脂層23を精度良く
切断することができる。
Further, as shown in FIG. 15A, if a portion 9 to be cut by the melt processing region 13 is formed in the vicinity of the surface 3 inside the silicon wafer 11 and the crack 15 reaches the surface 3, Semiconductor chip 25 obtained by cutting
The cutting accuracy of the surface (that is, the functional element forming surface) can be made extremely high. On the other hand, as shown in FIG. 15 (b), if the planned cut portion 9 by the melt processing region 13 is formed in the vicinity of the back surface 17 inside the silicon wafer 11 and the crack 15 reaches the back surface 17, the adhesive sheet 20 will be formed. The die-bonding resin layer 23 can be cut with high precision by the expansion.

【0065】次に、粘着シート20として、リンテック
株式会社の「LE−5000(商品名)」を用いた場合
の実験結果について説明する。図16及び図17は、シ
リコンウェハ11の内部に溶融処理領域13による切断
予定部9を形成した後、粘着シート20をエキスパンド
した際の一連の状態を示す模式図であり、図16(a)
は粘着シート20のエキスパンド開始直後の状態、図1
6(b)は粘着シート20のエキスパンド中の状態、図
17(a)は粘着シート20のエキスパンド終了後の状
態、図17(b)は半導体チップ25のピックアップ時
の状態である。
Next, the experimental results when "LE-5000 (trade name)" of Lintec Co., Ltd. is used as the adhesive sheet 20 will be described. 16 and 17 are schematic diagrams showing a series of states when the adhesive sheet 20 is expanded after forming the planned cutting portion 9 by the melt processing region 13 inside the silicon wafer 11, and FIG.
Is a state immediately after the expansion of the adhesive sheet 20 is started, FIG.
6 (b) shows a state where the adhesive sheet 20 is being expanded, FIG. 17 (a) is a state after the expanding of the adhesive sheet 20, and FIG. 17 (b) is a state when the semiconductor chip 25 is picked up.

【0066】図16(a)に示すように、粘着シート2
0のエキスパンド開始直後においては、シリコンウェハ
11は切断予定部9に沿って切断され、隣り合う半導体
チップ25の対向する切断面25a,25aは密着した
状態にある。このとき、ダイボンド樹脂層23はまだ切
断されていない。そして、図16(b)に示すように、
粘着シート20の拡張に伴って、ダイボンド樹脂層23
は引き千切られるようにして切断予定部9に沿って切断
されていく。
As shown in FIG. 16A, the adhesive sheet 2
Immediately after the start of the expansion of 0, the silicon wafer 11 is cut along the planned cutting portion 9, and the facing cut surfaces 25a, 25a of the adjacent semiconductor chips 25 are in close contact with each other. At this time, the die bond resin layer 23 has not been cut yet. Then, as shown in FIG.
Along with the expansion of the adhesive sheet 20, the die bond resin layer 23
Is cut along the planned cutting portion 9 so as to be torn.

【0067】このようにして粘着シート20のエキスパ
ンドが終了すると、図17(a)に示すように、ダイボ
ンド樹脂層23も個々の半導体チップ25毎に切断され
る。このとき、互いに離間した半導体チップ25,25
間の粘着シート20の基材21上には、ダイボンド樹脂
層23の一部23bが薄く残っていた。また、半導体チ
ップ25と共に切断されたダイボンド樹脂層23の切断
面23aは、半導体チップ25の切断面25aを基準と
して若干凹状となっていた。これにより、各半導体チッ
プ25の切断面25aからのダイボンド樹脂のはみ出し
が確実に防止される。そして、図17(b)に示すよう
に、吸着コレット等を用いて半導体チップ25を切断さ
れたダイボンド樹脂層23と共にピックアップすること
ができた。
When the expansion of the adhesive sheet 20 is completed in this manner, the die bond resin layer 23 is also cut into individual semiconductor chips 25, as shown in FIG. 17 (a). At this time, the semiconductor chips 25, 25 separated from each other
A part 23b of the die bond resin layer 23 remained thin on the base material 21 of the adhesive sheet 20 in between. Further, the cut surface 23a of the die bond resin layer 23 cut together with the semiconductor chip 25 was slightly concave with respect to the cut surface 25a of the semiconductor chip 25. This reliably prevents the die bond resin from protruding from the cut surface 25a of each semiconductor chip 25. Then, as shown in FIG. 17B, the semiconductor chip 25 could be picked up together with the die-bonding resin layer 23 cut by using a suction collet or the like.

【0068】なお、ダイボンド樹脂層23が非伸縮性の
材料からなるような場合などには、図18に示すよう
に、互いに離間した半導体チップ25,25間の粘着シ
ート20の基材21上にはダイボンド樹脂層23が残ら
ない。これにより、半導体チップ25の切断面25a
と、その裏面に密着したダイボンド樹脂層23の切断面
23aとをほぼ一致させることができる。
When the die-bonding resin layer 23 is made of a non-stretchable material, etc., as shown in FIG. 18, the die-bonding resin layer 23 is placed on the base material 21 of the adhesive sheet 20 between the semiconductor chips 25 and 25 which are separated from each other. Does not leave the die bond resin layer 23. Thereby, the cut surface 25a of the semiconductor chip 25
And the cut surface 23a of the die-bonding resin layer 23 adhered to the back surface thereof can be made to substantially coincide with each other.

【0069】また、図19(a)に示すように、基材2
1及びUV硬化樹脂層22を有してなる粘着シート20
を、そのUV硬化樹脂層22を介してシリコンウェハ1
1の裏面17に貼り付け、溶融処理領域13による切断
予定部9を形成した後、図19(b)に示すように、粘
着シート20の周囲を外側に向かって拡張させること
で、シリコンウェハ11を半導体チップ25に切断して
もよい。この場合にも、粘着シート20を残してシリコ
ンウェハ11をブレードにより切断するような場合に比
べ、はるかに効率良くシリコンウェハ11を切断予定部
9に沿って精度良く切断することが可能になる。
Further, as shown in FIG. 19 (a), the substrate 2
1. Adhesive sheet 20 having 1 and UV curable resin layer 22
The silicon wafer 1 through the UV curable resin layer 22.
19 is adhered to the back surface 17 of the melt-processed region 13 to form the planned cutting portion 9 by the melt processing region 13, and then the periphery of the adhesive sheet 20 is expanded outward as shown in FIG. May be cut into semiconductor chips 25. Also in this case, it is possible to cut the silicon wafer 11 along the planned cutting portion 9 with higher efficiency than in the case where the silicon wafer 11 is cut with a blade while leaving the adhesive sheet 20.

【0070】そして、基材21及びUV硬化樹脂層22
を有してなる粘着シート20を用いたシリコンウェハ1
1の切断方法においても、図19を参照して説明したよ
うに、粘着シート20をエキスパンドする前までは、切
断予定部9を起点とした割れがシリコンウェハ11に発
生しない場合だけでなく、図20に示すように、粘着シ
ート20をエキスパンドする(図20(b))前に、切
断予定部9を起点とした割れ15をシリコンウェハ11
の表面3と裏面17とに到達させてもよい(図20
(a))。また、図21に示すように、粘着シート20
をエキスパンドする(図21(b))前に、切断予定部
9を起点とした割れ15をシリコンウェハ11の表面3
に到達させてもよいし(図21(a))、或いは図22
に示すように、粘着シート20をエキスパンドする(図
22(b))前に、切断予定部9を起点とした割れ15
をシリコンウェハ11の裏面17に到達させてもよい
(図22(a))。
Then, the substrate 21 and the UV curable resin layer 22
Wafer 1 Using Adhesive Sheet 20 Having
Also in the cutting method of No. 1, as described with reference to FIG. 19, not only when the silicon wafer 11 is not cracked from the planned cutting portion 9 until the adhesive sheet 20 is expanded, as shown in FIG. As shown in FIG. 20, before the adhesive sheet 20 is expanded (FIG. 20 (b)), the crack 15 starting from the planned cutting portion 9 is made into the silicon wafer 11
It may reach the front surface 3 and the back surface 17 (see FIG. 20).
(A)). In addition, as shown in FIG. 21, the adhesive sheet 20
Before expanding (FIG. 21 (b)), cracks 15 starting from the planned cutting portion 9 are formed on the surface 3 of the silicon wafer 11.
May be reached (Fig. 21 (a)) or Fig. 22.
As shown in FIG. 22, before the adhesive sheet 20 is expanded (FIG. 22B), cracks 15 originating from the planned cutting portion 9 start.
May reach the back surface 17 of the silicon wafer 11 (FIG. 22A).

【0071】[0071]

【発明の効果】以上説明したように、本発明に係る半導
体基板の切断方法によれば、ダイボンド樹脂層を介在さ
せてシートが貼り付けられた半導体基板をダイボンド樹
脂層と共に効率良く切断することが可能になる。
As described above, according to the semiconductor substrate cutting method of the present invention, the semiconductor substrate to which the sheet is attached with the die bond resin layer interposed can be efficiently cut together with the die bond resin layer. It will be possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】本実施形態に係るレーザ加工方法によるレーザ
加工中の半導体基板の平面図である。
FIG. 1 is a plan view of a semiconductor substrate during laser processing by a laser processing method according to this embodiment.

【図2】図1に示す半導体基板のII−II線に沿った断面
図である。
FIG. 2 is a sectional view taken along line II-II of the semiconductor substrate shown in FIG.

【図3】本実施形態に係るレーザ加工方法によるレーザ
加工後の半導体基板の平面図である。
FIG. 3 is a plan view of the semiconductor substrate after laser processing by the laser processing method according to the present embodiment.

【図4】図3に示す半導体基板のIV−IV線に沿った断面
図である。
FIG. 4 is a sectional view taken along line IV-IV of the semiconductor substrate shown in FIG.

【図5】図3に示す半導体基板のV−V線に沿った断面図
である。
5 is a cross-sectional view of the semiconductor substrate shown in FIG. 3, taken along line VV.

【図6】本実施形態に係るレーザ加工方法により切断さ
れた半導体基板の平面図である。
FIG. 6 is a plan view of a semiconductor substrate cut by a laser processing method according to this embodiment.

【図7】本実施形態に係るレーザ加工方法により切断さ
れたシリコンウェハの一部における断面の写真を表した
図である。
FIG. 7 is a view showing a photograph of a cross section of a part of a silicon wafer cut by the laser processing method according to the present embodiment.

【図8】本実施形態に係るレーザ加工方法におけるレー
ザ光の波長とシリコン基板の内部の透過率との関係を示
すグラフである。
FIG. 8 is a graph showing the relationship between the wavelength of laser light and the transmittance inside the silicon substrate in the laser processing method according to the present embodiment.

【図9】本実施形態に係るレーザ加工装置の概略構成図
である。
FIG. 9 is a schematic configuration diagram of a laser processing apparatus according to the present embodiment.

【図10】本実施形態に係るレーザ加工装置による切断
予定部の形成手順を説明するためのフローチャートであ
る。
FIG. 10 is a flowchart for explaining a procedure for forming a planned cutting portion by the laser processing apparatus according to the present embodiment.

【図11】本実施形態に係るシリコンウェハの切断方法
を説明するための模式図であり、(a)はシリコンウェ
ハに粘着シートが貼り付けられた状態、(b)はシリコ
ンウェハの内部に溶融処理領域による切断予定部が形成
された状態である。
11A and 11B are schematic diagrams for explaining the method of cutting a silicon wafer according to the present embodiment, where FIG. 11A is a state in which an adhesive sheet is attached to the silicon wafer, and FIG. This is a state in which the planned cutting portion is formed by the processing region.

【図12】本実施形態に係るシリコンウェハの切断方法
を説明するための模式図であり、(a)は粘着シートが
エキスパンドされた状態、(b)は粘着シートに紫外線
が照射された状態である。
12A and 12B are schematic views for explaining the method for cutting a silicon wafer according to the present embodiment, where FIG. 12A is a state where the adhesive sheet is expanded, and FIG. 12B is a state where the adhesive sheet is irradiated with ultraviolet rays. is there.

【図13】本実施形態に係るシリコンウェハの切断方法
を説明するための模式図であり、(a)は切断されたダ
イボンド樹脂層と共に半導体チップがピックアップされ
た状態、(b)は半導体チップがダイボンド樹脂層を介
してリードフレームに接合された状態である。
13A and 13B are schematic views for explaining the method for cutting a silicon wafer according to the present embodiment, where FIG. 13A is a state in which a semiconductor chip is picked up together with the cut die bond resin layer, and FIG. It is in a state of being bonded to the lead frame via the die bond resin layer.

【図14】本実施形態に係るシリコンウェハの切断方法
におけるシリコンウェハと切断予定部との関係を示す模
式図であり、(a)は切断予定部を起点とした割れが発
生していない状態、(b)は切断予定部を起点とした割
れがシリコンウェハの表面と裏面とに到達している状態
である。
FIG. 14 is a schematic diagram showing a relationship between a silicon wafer and a planned cutting portion in the method for cutting a silicon wafer according to the present embodiment, in which (a) is a state in which no crack has occurred starting from the planned cutting portion, (B) shows a state in which cracks starting from the planned cutting portion reach the front and back surfaces of the silicon wafer.

【図15】本実施形態に係るシリコンウェハの切断方法
におけるシリコンウェハと切断予定部との関係を示す模
式図であり、(a)は切断予定部を起点とした割れがシ
リコンウェハの表面に到達している状態、(b)は切断
予定部を起点とした割れがシリコンウェハの裏面に到達
している状態である。
FIG. 15 is a schematic diagram showing a relationship between a silicon wafer and a planned cutting part in the method for cutting a silicon wafer according to the present embodiment, and FIG. 15 (a) shows that a crack starting from the planned cutting part reaches the surface of the silicon wafer. In the state shown in FIG. 3B, the crack starting from the planned cutting portion reaches the back surface of the silicon wafer.

【図16】本実施形態に係るシリコンウェハの切断方法
の一実施例を説明するための模式図であり、(a)は粘
着シートのエキスパンド開始直後の状態、(b)は粘着
シートのエキスパンド中の状態である。
16A and 16B are schematic views for explaining an example of the method for cutting a silicon wafer according to the present embodiment, where FIG. 16A is a state immediately after the expansion of the pressure-sensitive adhesive sheet is started, and FIG. Is the state of.

【図17】本実施形態に係るシリコンウェハの切断方法
の一実施例を説明するための模式図であり、(a)は粘
着シートのエキスパンド終了後の状態、(b)は半導体
チップのピックアップ時の状態である。
17A and 17B are schematic diagrams for explaining an example of the method for cutting a silicon wafer according to the present embodiment, where FIG. 17A is a state after completion of expansion of an adhesive sheet, and FIG. Is the state of.

【図18】本実施形態に係るシリコンウェハの切断方法
の他の実施例を説明するための模式図である。
FIG. 18 is a schematic diagram for explaining another example of the method for cutting a silicon wafer according to the present embodiment.

【図19】本実施形態に係るシリコンウェハの切断方法
の更に他の実施例において切断予定部を起点とした割れ
が発生しない場合を説明するための図であり、(a)は
溶融処理領域による切断予定部が形成された後の状態、
(b)は粘着シートがエキスパンドされた状態である。
FIG. 19 is a view for explaining a case where a crack originating from a planned cutting portion does not occur in still another example of the method for cutting a silicon wafer according to the present embodiment, and FIG. The state after the planned cutting part is formed,
(B) is a state in which the adhesive sheet is expanded.

【図20】本実施形態に係るシリコンウェハの切断方法
の更に他の実施例において切断予定部を起点とした割れ
がシリコンウェハの表面と裏面とに到達する場合を説明
するための図であり、(a)は溶融処理領域による切断
予定部が形成された後の状態、(b)は粘着シートがエ
キスパンドされた状態である。
FIG. 20 is a diagram for explaining a case where a crack starting from a planned cutting portion reaches the front surface and the back surface of the silicon wafer in still another example of the method for cutting a silicon wafer according to the present embodiment, (A) is a state after the planned cut portion is formed by the melt processing region, and (b) is a state in which the adhesive sheet is expanded.

【図21】本実施形態に係るシリコンウェハの切断方法
の更に他の実施例において切断予定部を起点とした割れ
がシリコンウェハの表面に到達する場合を説明するため
の図であり、(a)は溶融処理領域による切断予定部が
形成された後の状態、(b)は粘着シートがエキスパン
ドされた状態である。
FIG. 21 is a view for explaining a case where a crack starting from a planned cutting portion reaches the surface of the silicon wafer in still another example of the method for cutting a silicon wafer according to the present embodiment, (a) Shows a state after the planned cutting portion by the melt processing region is formed, and (b) shows a state in which the adhesive sheet is expanded.

【図22】本実施形態に係るシリコンウェハの切断方法
の更に他の実施例において切断予定部を起点とした割れ
がシリコンウェハの裏面に到達する場合を説明するため
の図であり、(a)は溶融処理領域による切断予定部が
形成された後の状態、(b)は粘着シートがエキスパン
ドされた状態である。
FIG. 22 is a view for explaining a case where a crack starting from a planned cutting portion reaches the back surface of the silicon wafer in still another example of the method for cutting a silicon wafer according to the present embodiment, (a) Shows a state after the planned cutting portion by the melt processing region is formed, and (b) shows a state in which the adhesive sheet is expanded.

【符号の説明】[Explanation of symbols]

1…半導体基板、3…表面、5…切断予定ライン、7…
改質領域、9…切断予定部、11…シリコンウェハ、1
3…溶融処理領域、15…割れ、17…裏面、20…粘
着シート、21…基材、23…ダイボンド樹脂層、25
…半導体チップ、L…レーザ光、P…集光点。
1 ... Semiconductor substrate, 3 ... Surface, 5 ... Planned cutting line, 7 ...
Modified region, 9 ... Planned cutting portion, 11 ... Silicon wafer, 1
3 ... Melt processing area, 15 ... Crack, 17 ... Back surface, 20 ... Adhesive sheet, 21 ... Base material, 23 ... Die bond resin layer, 25
... semiconductor chip, L ... laser light, P ... condensing point.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 内山 直己 静岡県浜松市市野町1126番地の1 浜松ホ トニクス株式会社内 (72)発明者 杉浦 隆二 静岡県浜松市市野町1126番地の1 浜松ホ トニクス株式会社内 Fターム(参考) 3C069 AA01 BA08 BB03 BB04 CA05 CB01 EA01 EA02 EA05 4E068 AA02 AD01 CA01 CA03 CA11 DA11 5F047 BB03 BB19 FA21    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Naoki Uchiyama             1 Hamamatsuho, 1126 Nomachi, Hamamatsu City, Shizuoka Prefecture             Tonics Co., Ltd. (72) Inventor Ryuji Sugiura             1 Hamamatsuho, 1126 Nomachi, Hamamatsu City, Shizuoka Prefecture             Tonics Co., Ltd. F term (reference) 3C069 AA01 BA08 BB03 BB04 CA05                       CB01 EA01 EA02 EA05                 4E068 AA02 AD01 CA01 CA03 CA11                       DA11                 5F047 BB03 BB19 FA21

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 ダイボンド樹脂層を介在させてシートが
貼り付けられた半導体基板の内部に集光点を合わせてレ
ーザ光を照射することにより、前記半導体基板の内部に
多光子吸収による改質領域を形成し、当該改質領域でも
って切断予定部を形成する工程と、 前記切断予定部を形成する工程後、前記シートを拡張さ
せることにより前記切断予定部に沿って前記半導体基板
及び前記ダイボンド樹脂層を切断する工程と、を備えた
ことを特徴とする半導体基板の切断方法。
1. A modified region by multiphoton absorption inside the semiconductor substrate by irradiating a laser beam with a focusing point aligned inside the semiconductor substrate to which a sheet is attached with a die bond resin layer interposed. And a step of forming a planned cutting portion in the modified region, and after the step of forming the planned cutting portion, by expanding the sheet, the semiconductor substrate and the die bond resin along the planned cutting portion. A method of cutting a semiconductor substrate, comprising: a step of cutting a layer.
【請求項2】 ダイボンド樹脂層を介在させてシートが
貼り付けられた半導体基板の内部に集光点を合わせて、
集光点におけるピークパワー密度が1×10 8(W/c
2)以上で且つパルス幅が1μs以下の条件でレーザ
光を照射することにより、前記半導体基板の内部に溶融
処理領域を含む改質領域を形成し、当該溶融処理領域を
含む改質領域でもって切断予定部を形成する工程と、 前記切断予定部を形成する工程後、前記シートを拡張さ
せることにより前記切断予定部に沿って前記半導体基板
及び前記ダイボンド樹脂層を切断する工程と、を備えた
ことを特徴とする半導体基板の切断方法。
2. A sheet with a die bond resin layer interposed
Align the focusing point inside the attached semiconductor substrate,
Peak power density at condensing point is 1 × 10 8(W / c
m2) Above and a pulse width of 1 μs or less
Melting inside the semiconductor substrate by irradiating with light
A modified region including the treatment region is formed, and the melting treatment region is
A step of forming a planned cutting portion with the modified region including After the step of forming the planned cutting portion, the sheet is expanded.
The semiconductor substrate along the planned cutting portion by
And a step of cutting the die bond resin layer.
A method of cutting a semiconductor substrate, comprising:
【請求項3】 ダイボンド樹脂層を介在させてシートが
貼り付けられた半導体基板の内部に集光点を合わせてレ
ーザ光を照射することにより、前記半導体基板の内部に
改質領域を形成し、当該改質領域でもって切断予定部を
形成する工程と、 前記切断予定部を形成する工程後、前記シートを拡張さ
せることにより前記切断予定部に沿って前記半導体基板
及び前記ダイボンド樹脂層を切断する工程と、を備えた
ことを特徴とする半導体基板の切断方法。
3. A modified region is formed in the inside of the semiconductor substrate by irradiating a laser beam with a focusing point aligned with the inside of the semiconductor substrate to which the sheet is attached with a die bond resin layer interposed therebetween. After the step of forming the planned cutting part in the modified region and the step of forming the planned cutting part, the sheet is expanded to cut the semiconductor substrate and the die bond resin layer along the planned cutting part. A method of cutting a semiconductor substrate, comprising:
【請求項4】 シートが貼り付けられた半導体基板の内
部に集光点を合わせてレーザ光を照射することにより、
前記半導体基板の内部に改質領域を形成し、当該改質領
域でもって切断予定部を形成する工程と、 前記切断予定部を形成する工程後、前記シートを拡張さ
せることにより前記切断予定部に沿って前記半導体基板
を切断する工程と、を備えたことを特徴とする半導体基
板の切断方法。
4. A semiconductor substrate having a sheet attached thereto is irradiated with a laser beam with a focus point aligned.
A step of forming a modified region inside the semiconductor substrate, and forming a planned cutting part with the modified region, and a step of forming the planned cutting part, and then expanding the sheet to the planned cutting part. And a step of cutting the semiconductor substrate along the same.
【請求項5】 前記改質領域は、溶融処理した領域であ
ることを特徴とする請求項3又は4記載の半導体基板の
切断方法。
5. The method of cutting a semiconductor substrate according to claim 3, wherein the modified region is a region subjected to melt processing.
【請求項6】 前記切断予定部を形成する工程では、前
記切断予定部を起点として、前記半導体基板のレーザ光
入射側の表面に割れを到達させることを特徴とする請求
項1〜4のいずれか一項記載の半導体基板の切断方法。
6. The step of forming the portion to be cut has a crack reaching the surface of the semiconductor substrate on the laser light incident side from the portion to be cut as a starting point. A method of cutting a semiconductor substrate according to claim 1.
【請求項7】 前記切断予定部を形成する工程では、前
記切断予定部を起点として、前記半導体基板のレーザ光
入射側と反対側の裏面に割れを到達させることを特徴と
する請求項1〜4のいずれか一項記載の半導体基板の切
断方法。
7. The step of forming the portion to be cut has a crack reaching the back surface of the semiconductor substrate opposite to the laser light incident side from the portion to be cut as a starting point. 4. The method for cutting a semiconductor substrate according to claim 4.
【請求項8】 前記切断予定部を形成する工程では、前
記切断予定部を起点として、前記半導体基板のレーザ光
入射側の表面と、その反対側の裏面とに割れを到達させ
ることを特徴とする請求項1〜4のいずれか一項記載の
半導体基板の切断方法。
8. In the step of forming the planned cutting portion, cracks are made to reach the laser light incident side surface of the semiconductor substrate and the opposite back surface of the semiconductor substrate, starting from the planned cutting portion. The method for cutting a semiconductor substrate according to any one of claims 1 to 4.
【請求項9】 ダイボンド樹脂層を介在させてシートが
貼り付けられた半導体基板の内部に集光点を合わせてレ
ーザ光を照射することにより、前記半導体基板の内部に
多光子吸収による改質領域を形成し、当該改質領域でも
って切断予定部を形成する工程と、 前記切断予定部を形成する工程後、前記切断予定部に沿
って前記半導体基板にストレスを生じさせることによ
り、前記切断予定部に沿って前記半導体基板を切断する
工程と、 前記半導体基板を切断する工程後、前記シートを拡張さ
せることにより前記半導体基板の切断面に沿って前記ダ
イボンド樹脂層を切断する工程と、を備えたことを特徴
とする半導体基板の切断方法。
9. A modified region by multiphoton absorption inside the semiconductor substrate by irradiating a laser beam with a focusing point aligned inside the semiconductor substrate to which a sheet is attached with a die bond resin layer interposed. And forming a planned cutting part in the modified region, and after the step of forming the planned cutting part, stress is generated in the semiconductor substrate along the planned cutting part, thereby the planned cutting A step of cutting the semiconductor substrate along a portion, and a step of cutting the die bond resin layer along the cut surface of the semiconductor substrate by expanding the sheet after the step of cutting the semiconductor substrate. A method for cutting a semiconductor substrate, which is characterized by the above.
【請求項10】 ダイボンド樹脂層を介在させてシート
が貼り付けられた半導体基板の内部に集光点を合わせ
て、集光点におけるピークパワー密度が1×108(W
/cm2)以上で且つパルス幅が1μs以下の条件でレ
ーザ光を照射することにより、前記半導体基板の内部に
溶融処理領域を含む改質領域を形成し、当該溶融処理領
域を含む改質領域でもって切断予定部を形成する工程
と、 前記切断予定部を形成する工程後、前記切断予定部に沿
って前記半導体基板にストレスを生じさせることによ
り、前記切断予定部に沿って前記半導体基板を切断する
工程と、 前記半導体基板を切断する工程後、前記シートを拡張さ
せることにより前記半導体基板の切断面に沿って前記ダ
イボンド樹脂層を切断する工程と、を備えたことを特徴
とする半導体基板の切断方法。
10. The peak power density at the converging point is 1 × 10 8 (W) by aligning the converging point inside the semiconductor substrate to which the sheet is attached with the die bond resin layer interposed.
/ Cm 2 ) or more and a pulse width of 1 μs or less, a modified region including a melt-processed region is formed inside the semiconductor substrate, and a modified region including the melt-processed region is formed. Therefore, after the step of forming the planned cutting portion, and the step of forming the planned cutting portion, by causing stress on the semiconductor substrate along the planned cutting portion, the semiconductor substrate along the planned cutting portion. A semiconductor substrate comprising: a step of cutting, and a step of cutting the die bond resin layer along a cut surface of the semiconductor substrate by expanding the sheet after the step of cutting the semiconductor substrate. Cutting method.
【請求項11】 ダイボンド樹脂層を介在させてシート
が貼り付けられた半導体基板の内部に集光点を合わせて
レーザ光を照射することにより、前記半導体基板の内部
に改質領域を形成し、当該改質領域でもって切断予定部
を形成する工程と、 前記切断予定部を形成する工程後、前記切断予定部に沿
って前記半導体基板にストレスを生じさせることによ
り、前記切断予定部に沿って前記半導体基板を切断する
工程と、 前記半導体基板を切断する工程後、前記シートを拡張さ
せることにより前記半導体基板の切断面に沿って前記ダ
イボンド樹脂層を切断する工程と、を備えたことを特徴
とする半導体基板の切断方法。
11. A modified region is formed inside the semiconductor substrate by irradiating a laser beam with a focusing point aligned inside the semiconductor substrate to which the sheet is attached with a die bond resin layer interposed therebetween. After the step of forming the planned cutting portion in the modified region, and the step of forming the planned cutting portion, by causing stress on the semiconductor substrate along the planned cutting portion, along the planned cutting portion A step of cutting the semiconductor substrate, and a step of cutting the die bond resin layer along a cut surface of the semiconductor substrate by expanding the sheet after the step of cutting the semiconductor substrate. And a method for cutting a semiconductor substrate.
【請求項12】 前記改質領域は、溶融処理した領域で
あることを特徴とする請求項11記載の半導体基板の切
断方法。
12. The method of cutting a semiconductor substrate according to claim 11, wherein the modified region is a region subjected to a melting process.
JP2002351600A 2002-03-12 2002-12-03 Semiconductor substrate cutting method Expired - Lifetime JP4358502B2 (en)

Priority Applications (28)

Application Number Priority Date Filing Date Title
JP2002351600A JP4358502B2 (en) 2002-03-12 2002-12-03 Semiconductor substrate cutting method
TW092125000A TWI339876B (en) 2002-03-12 2003-09-10 Semi-conductor cutting method
TW097145489A TWI395293B (en) 2002-03-12 2003-09-10 Semi-conductor cutting method
TW102106190A TWI520269B (en) 2002-12-03 2003-09-10 Cutting method of semiconductor substrate
CNB038255189A CN100440443C (en) 2002-12-03 2003-09-11 Method for cutting semiconductor substrate
KR1020057007273A KR100855136B1 (en) 2002-12-03 2003-09-11 Method for cutting semiconductor substrate
EP10007917.7A EP2239764B1 (en) 2002-12-03 2003-09-11 Method for cutting semiconductor substrate
EP12001098.8A EP2485251B1 (en) 2002-12-03 2003-09-11 Method of cutting semiconductor substrate
ES10009049.7T ES2437192T3 (en) 2002-12-03 2003-09-11 Cutting procedure of a semiconductor substrate
ES12001098.8T ES2470325T3 (en) 2002-12-03 2003-09-11 Cutting procedure of a semiconductor substrate
PCT/JP2003/011624 WO2004051721A1 (en) 2002-12-03 2003-09-11 Method for cutting semiconductor substrate
AU2003262077A AU2003262077A1 (en) 2002-12-03 2003-09-11 Method for cutting semiconductor substrate
EP10012640.8A EP2267763B1 (en) 2002-12-03 2003-09-11 Method for cutting semiconductor substrate
ES10007917.7T ES2439220T3 (en) 2002-12-03 2003-09-11 Cutting procedure of a semiconductor substrate
ES10012640.8T ES2464166T3 (en) 2002-12-03 2003-09-11 Cutting procedure of a semiconductor substrate
US10/537,509 US8263479B2 (en) 2002-12-03 2003-09-11 Method for cutting semiconductor substrate
ES10005697.7T ES2462219T3 (en) 2002-12-03 2003-09-11 Cutting procedure of a semiconductor substrate
EP10009049.7A EP2249380B1 (en) 2002-12-03 2003-09-11 Method for cutting semiconductor substrate
CNA2008101618735A CN101369554A (en) 2002-12-03 2003-09-11 Method for cutting semiconductor substrate
EP10005697.7A EP2216805B1 (en) 2002-12-03 2003-09-11 Method of cutting semiconductor substrate
EP03812274.3A EP1580800B1 (en) 2002-12-03 2003-09-11 Method for cutting semiconductor substrate
MYPI20033496A MY160196A (en) 2002-12-03 2003-09-11 A method of cutting semiconductor substrate
ES03812274.3T ES2479791T3 (en) 2002-12-03 2003-09-11 Cutting procedure of a semiconductor substrate
EP10014153.0A EP2284872B1 (en) 2002-12-03 2003-09-11 Method for cutting semiconductor substrate
ES10014153.0T ES2442848T3 (en) 2002-12-03 2003-09-11 Cutting procedure of a semiconductor substrate
US13/206,181 US8409968B2 (en) 2002-12-03 2011-08-09 Method of cutting semiconductor substrate via modified region formation and subsequent sheet expansion
US13/608,676 US8450187B2 (en) 2002-12-03 2012-09-10 Method of cutting semiconductor substrate
US13/829,683 US8865566B2 (en) 2002-12-03 2013-03-14 Method of cutting semiconductor substrate

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2002067372 2002-03-12
JP2002-67348 2002-03-12
JP2002-67372 2002-03-12
JP2002067348 2002-03-12
JP2002351600A JP4358502B2 (en) 2002-03-12 2002-12-03 Semiconductor substrate cutting method

Related Child Applications (6)

Application Number Title Priority Date Filing Date
JP2005045915A Division JP3822626B2 (en) 2002-03-12 2005-02-22 Semiconductor substrate cutting method
JP2006013963A Division JP3935186B2 (en) 2002-03-12 2006-01-23 Semiconductor substrate cutting method
JP2006013984A Division JP2006135355A (en) 2002-03-12 2006-01-23 Cutting method of semiconductor substrate
JP2006013973A Division JP3867100B2 (en) 2002-03-12 2006-01-23 Semiconductor substrate cutting method
JP2006016285A Division JP3867105B2 (en) 2002-03-12 2006-01-25 Semiconductor substrate cutting method
JP2006016261A Division JP3867104B2 (en) 2002-03-12 2006-01-25 Semiconductor substrate cutting method

Publications (2)

Publication Number Publication Date
JP2003338467A true JP2003338467A (en) 2003-11-28
JP4358502B2 JP4358502B2 (en) 2009-11-04

Family

ID=29715897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002351600A Expired - Lifetime JP4358502B2 (en) 2002-03-12 2002-12-03 Semiconductor substrate cutting method

Country Status (2)

Country Link
JP (1) JP4358502B2 (en)
TW (2) TWI339876B (en)

Cited By (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005019962A (en) * 2003-06-06 2005-01-20 Hitachi Chem Co Ltd Adhesive sheet
JP2005260204A (en) * 2004-02-10 2005-09-22 Lintec Corp Manufacturing method of semiconductor device
JP2005332841A (en) * 2004-05-18 2005-12-02 Disco Abrasive Syst Ltd Method of dividing wafer
JP2006049591A (en) * 2004-08-05 2006-02-16 Disco Abrasive Syst Ltd Fracture method and fracture equipment of adhesive film stuck on wafer
JP2006059941A (en) * 2004-08-19 2006-03-02 Disco Abrasive Syst Ltd Manufacturing method of semiconductor chip
JP2006093213A (en) * 2004-09-21 2006-04-06 Hitachi Chem Co Ltd Manufacturing method of semiconductor element with adhesive layer
JP2006114691A (en) * 2004-10-14 2006-04-27 Disco Abrasive Syst Ltd Division method of wafer
WO2006051866A1 (en) 2004-11-12 2006-05-18 Hamamatsu Photonics K.K. Laser beam machining method and semiconductor chip
WO2006051861A1 (en) * 2004-11-12 2006-05-18 Hamamatsu Photonics K.K. Laser processing method
WO2006064714A1 (en) * 2004-12-14 2006-06-22 Hamamatsu Photonics K.K. Substrate processing method and film stretching apparatus
JPWO2004100240A1 (en) * 2003-05-12 2006-07-13 株式会社東京精密 Method and apparatus for dividing plate-like member
JP2007053325A (en) * 2005-07-20 2007-03-01 Furukawa Electric Co Ltd:The Dicing die bond tape and dicing tape
JP2007157887A (en) * 2005-12-02 2007-06-21 Disco Abrasive Syst Ltd Wafer-dividing method
JP2007173268A (en) * 2005-12-19 2007-07-05 Disco Abrasive Syst Ltd Method of dividing wafer
WO2007091670A1 (en) * 2006-02-10 2007-08-16 Tokyo Seimitsu Co., Ltd. Apparatus and method for processing wafer
JP2007221034A (en) * 2006-02-20 2007-08-30 Fujitsu Ltd Film sticking apparatus and method therefor and manufacturing method of semiconductor device
WO2008126717A1 (en) 2007-04-06 2008-10-23 Hitachi Chemical Company, Ltd. Adhesive film for semiconductor, composite sheet, and method for producing semiconductor chip using them
WO2008126718A1 (en) 2007-04-05 2008-10-23 Hitachi Chemical Company, Ltd. Method for manufacturing semiconductor chip, adhesive film for semiconductor, and composite sheet using the film
WO2009048060A1 (en) 2007-10-09 2009-04-16 Hitachi Chemical Company, Ltd. Method for producing semiconductor chip with adhesive film, adhesive film for semiconductor used in the method, and method for producing semiconductor device
US7566639B2 (en) 2005-09-16 2009-07-28 Rohm Co., Ltd. Manufacturing method for nitride semiconductor device and nitride semiconductor light emitting device obtained with the same
JP2009260211A (en) * 2008-03-26 2009-11-05 Hitachi Chem Co Ltd Method of manufacturing semiconductor device
JP2010034263A (en) * 2008-07-29 2010-02-12 Lintec Corp Adhesive sheet for wafer processing, and method of manufacturing semiconductor apparatus
US7732730B2 (en) 2000-09-13 2010-06-08 Hamamatsu Photonics K.K. Laser processing method and laser processing apparatus
US7749867B2 (en) 2002-03-12 2010-07-06 Hamamatsu Photonics K.K. Method of cutting processed object
WO2010122866A1 (en) 2009-04-20 2010-10-28 浜松ホトニクス株式会社 Laser machining method
JP2011006687A (en) * 2003-06-06 2011-01-13 Hitachi Chem Co Ltd Adhesive sheet, dicing tape integrated type adhesive sheet, and method for manufacturing semiconductor device
WO2011021627A1 (en) 2009-08-21 2011-02-24 浜松ホトニクス株式会社 Laser machining method and chip
JP2011046963A (en) * 2003-06-06 2011-03-10 Hitachi Chem Co Ltd Adhesive sheet
JP2011155270A (en) * 2005-07-20 2011-08-11 Furukawa Electric Co Ltd:The Dicing tape
US8058103B2 (en) 2003-09-10 2011-11-15 Hamamatsu Photonics K.K. Semiconductor substrate cutting method
US8247734B2 (en) 2003-03-11 2012-08-21 Hamamatsu Photonics K.K. Laser beam machining method
US8263479B2 (en) 2002-12-03 2012-09-11 Hamamatsu Photonics K.K. Method for cutting semiconductor substrate
US8268704B2 (en) 2002-03-12 2012-09-18 Hamamatsu Photonics K.K. Method for dicing substrate
US8685838B2 (en) 2003-03-12 2014-04-01 Hamamatsu Photonics K.K. Laser beam machining method
US8946055B2 (en) 2004-03-30 2015-02-03 Hamamatsu Photonics K.K. Laser processing method for cutting substrate and laminate part bonded to the substrate
US8969752B2 (en) 2003-03-12 2015-03-03 Hamamatsu Photonics K.K. Laser processing method
US9142457B2 (en) 2010-10-01 2015-09-22 Nitto Denko Corporation Dicing die bond film and method of manufacturing semiconductor device
KR20150110823A (en) 2013-03-28 2015-10-02 후루카와 덴키 고교 가부시키가이샤 Adhesive tape and wafer-processing tape
KR20150113877A (en) 2014-03-31 2015-10-08 닛토덴코 가부시키가이샤 Thermosetting die bond film, dicing·die bond film and manufacturing method for semiconductor device
KR20150113878A (en) 2014-03-31 2015-10-08 닛토덴코 가부시키가이샤 Dicing film, dicing·die bond film and manufacturing method for semiconductor device
KR20150113862A (en) 2014-03-31 2015-10-08 닛토덴코 가부시키가이샤 Die bond film, die bond film having dicing sheet, semiconductor device and method for manufacturing semiconductor device
KR20170030645A (en) 2014-09-05 2017-03-17 후루카와 덴키 고교 가부시키가이샤 Semiconductor processing tape and semiconducor device manufactured using same
KR20170095947A (en) 2014-12-12 2017-08-23 닛토덴코 가부시키가이샤 Dicing sheet, dicing/die-bonding film, and method for manufacturing semiconductor device
KR20170117199A (en) 2015-03-24 2017-10-20 후루카와 덴키 고교 가부시키가이샤 Tape for semiconductor processing
KR20170131504A (en) 2015-03-24 2017-11-29 후루카와 덴키 고교 가부시키가이샤 Semiconductor processing tape
KR20190088522A (en) 2016-12-07 2019-07-26 후루카와 덴키 고교 가부시키가이샤 Tape for semiconductor processing
KR20190113748A (en) 2018-03-28 2019-10-08 후루카와 덴키 고교 가부시키가이샤 Semiconductor Processing Tape
KR20190113746A (en) 2018-03-28 2019-10-08 후루카와 덴키 고교 가부시키가이샤 Semiconductor Processing Tape
KR20190113749A (en) 2018-03-28 2019-10-08 후루카와 덴키 고교 가부시키가이샤 Semiconductor Processing Tape
KR20190113747A (en) 2018-03-28 2019-10-08 후루카와 덴키 고교 가부시키가이샤 Semiconductor Processing Tape
CN110678965A (en) * 2017-05-24 2020-01-10 协立化学产业株式会社 Method for cutting object to be processed
KR20210015889A (en) 2019-05-29 2021-02-10 후루카와 덴키 고교 가부시키가이샤 Glass processing tape
KR20210015888A (en) 2019-05-29 2021-02-10 후루카와 덴키 고교 가부시키가이샤 Glass processing tape
KR20210015891A (en) 2019-05-29 2021-02-10 후루카와 덴키 고교 가부시키가이샤 Glass processing tape
KR20210015893A (en) 2019-05-29 2021-02-10 후루카와 덴키 고교 가부시키가이샤 Glass processing tape
KR20210107032A (en) 2018-12-28 2021-08-31 쇼와덴코머티리얼즈가부시끼가이샤 Evaluation method of photocurable adhesive, dicing and die-bonding integrated film and manufacturing method thereof, and manufacturing method of semiconductor device
KR20210107031A (en) 2018-12-28 2021-08-31 쇼와덴코머티리얼즈가부시끼가이샤 Evaluation method of photocurable adhesive, dicing and die-bonding integrated film and manufacturing method thereof, and manufacturing method of semiconductor device
KR20210144731A (en) 2019-03-27 2021-11-30 쇼와덴코머티리얼즈가부시끼가이샤 Semiconductor device manufacturing method, die-bonding film, and dicing and die-bonding integrated adhesive sheet
KR20220088866A (en) 2019-10-28 2022-06-28 쇼와덴코머티리얼즈가부시끼가이샤 Film adhesive and its parting property evaluation method, dicing and die-bonding integrated film and manufacturing method thereof, and semiconductor device
KR20220119626A (en) 2019-12-23 2022-08-30 쇼와덴코머티리얼즈가부시끼가이샤 Dicing and die-bonding integrated film, quality control method thereof, and semiconductor device manufacturing method
KR20230157294A (en) 2021-03-05 2023-11-16 가부시끼가이샤 레조낙 Film-like adhesive, integrated dicing/die bonding film, and semiconductor device and method of manufacturing the same
KR20240016939A (en) 2021-06-02 2024-02-06 가부시끼가이샤 레조낙 Semiconductor device manufacturing method and dicing/die bonding integrated film
KR20240090161A (en) 2021-09-27 2024-06-21 가부시끼가이샤 레조낙 Film-like adhesive, integrated dicing/die bonding film, and semiconductor device and method for manufacturing the same
US12062575B2 (en) 2020-09-28 2024-08-13 Disco Corporation Wafer processing method
KR20240150443A (en) 2022-02-16 2024-10-15 가부시끼가이샤 레조낙 Film-shaped adhesive and its manufacturing method, dicing/die bonding integrated film, and semiconductor device and its manufacturing method

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11024501B2 (en) 2018-12-29 2021-06-01 Cree, Inc. Carrier-assisted method for parting crystalline material along laser damage region
US10576585B1 (en) 2018-12-29 2020-03-03 Cree, Inc. Laser-assisted method for parting crystalline material
US10562130B1 (en) 2018-12-29 2020-02-18 Cree, Inc. Laser-assisted method for parting crystalline material
US10611052B1 (en) 2019-05-17 2020-04-07 Cree, Inc. Silicon carbide wafers with relaxed positive bow and related methods

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6057525A (en) * 1995-09-05 2000-05-02 United States Enrichment Corporation Method and apparatus for precision laser micromachining
US6294439B1 (en) * 1997-07-23 2001-09-25 Kabushiki Kaisha Toshiba Method of dividing a wafer and method of manufacturing a semiconductor device
JPH11204551A (en) * 1998-01-19 1999-07-30 Sony Corp Manufacture of semiconductor device
US6057180A (en) * 1998-06-05 2000-05-02 Electro Scientific Industries, Inc. Method of severing electrically conductive links with ultraviolet laser output
JP3648399B2 (en) * 1999-03-18 2005-05-18 株式会社東芝 Semiconductor device
JP2000349107A (en) * 1999-06-09 2000-12-15 Nitto Denko Corp Manufacture of semiconductor sealing chip module and its fixing sheet
JP4180206B2 (en) * 1999-11-12 2008-11-12 リンテック株式会社 Manufacturing method of semiconductor device
US6612035B2 (en) * 2000-01-05 2003-09-02 Patrick H. Brown Drywall cutting tool
TW473896B (en) * 2001-03-20 2002-01-21 Chipmos Technologies Inc A manufacturing process of semiconductor devices
WO2002082540A1 (en) * 2001-03-30 2002-10-17 Fujitsu Limited Semiconductor device, method of manufacture thereof, and semiconductor substrate

Cited By (135)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7732730B2 (en) 2000-09-13 2010-06-08 Hamamatsu Photonics K.K. Laser processing method and laser processing apparatus
US10796959B2 (en) 2000-09-13 2020-10-06 Hamamatsu Photonics K.K. Laser processing method and laser processing apparatus
US9837315B2 (en) 2000-09-13 2017-12-05 Hamamatsu Photonics K.K. Laser processing method and laser processing apparatus
US8969761B2 (en) 2000-09-13 2015-03-03 Hamamatsu Photonics K.K. Method of cutting a wafer-like object and semiconductor chip
US8946589B2 (en) 2000-09-13 2015-02-03 Hamamatsu Photonics K.K. Method of cutting a substrate, method of cutting a wafer-like object, and method of manufacturing a semiconductor device
US8946592B2 (en) 2000-09-13 2015-02-03 Hamamatsu Photonics K.K. Laser processing method and laser processing apparatus
US8946591B2 (en) 2000-09-13 2015-02-03 Hamamatsu Photonics K.K. Method of manufacturing a semiconductor device formed using a substrate cutting method
US8937264B2 (en) 2000-09-13 2015-01-20 Hamamatsu Photonics K.K. Laser processing method and laser processing apparatus
US8933369B2 (en) 2000-09-13 2015-01-13 Hamamatsu Photonics K.K. Method of cutting a substrate and method of manufacturing a semiconductor device
US8927900B2 (en) 2000-09-13 2015-01-06 Hamamatsu Photonics K.K. Method of cutting a substrate, method of processing a wafer-like object, and method of manufacturing a semiconductor device
US8716110B2 (en) 2000-09-13 2014-05-06 Hamamatsu Photonics K.K. Laser processing method and laser processing apparatus
US8283595B2 (en) 2000-09-13 2012-10-09 Hamamatsu Photonics K.K. Laser processing method and laser processing apparatus
US8227724B2 (en) 2000-09-13 2012-07-24 Hamamatsu Photonics K.K. Laser processing method and laser processing apparatus
US7825350B2 (en) 2000-09-13 2010-11-02 Hamamatsu Photonics K.K. Laser processing method and laser processing apparatus
US9553023B2 (en) 2002-03-12 2017-01-24 Hamamatsu Photonics K.K. Substrate dividing method
US7749867B2 (en) 2002-03-12 2010-07-06 Hamamatsu Photonics K.K. Method of cutting processed object
US11424162B2 (en) 2002-03-12 2022-08-23 Hamamatsu Photonics K.K. Substrate dividing method
US10622255B2 (en) 2002-03-12 2020-04-14 Hamamatsu Photonics K.K. Substrate dividing method
US10068801B2 (en) 2002-03-12 2018-09-04 Hamamatsu Photonics K.K. Substrate dividing method
US9711405B2 (en) 2002-03-12 2017-07-18 Hamamatsu Photonics K.K. Substrate dividing method
US9548246B2 (en) 2002-03-12 2017-01-17 Hamamatsu Photonics K.K. Substrate dividing method
US9543207B2 (en) 2002-03-12 2017-01-10 Hamamatsu Photonics K.K. Substrate dividing method
US9543256B2 (en) 2002-03-12 2017-01-10 Hamamatsu Photonics K.K. Substrate dividing method
US9287177B2 (en) 2002-03-12 2016-03-15 Hamamatsu Photonics K.K. Substrate dividing method
US9142458B2 (en) 2002-03-12 2015-09-22 Hamamatsu Photonics K.K. Substrate dividing method
US8889525B2 (en) 2002-03-12 2014-11-18 Hamamatsu Photonics K.K. Substrate dividing method
US8518801B2 (en) 2002-03-12 2013-08-27 Hamamatsu Photonics K.K. Substrate dividing method
US8673745B2 (en) 2002-03-12 2014-03-18 Hamamatsu Photonics K.K. Method of cutting object to be processed
US8598015B2 (en) 2002-03-12 2013-12-03 Hamamatsu Photonics K.K. Laser processing method
US8551865B2 (en) 2002-03-12 2013-10-08 Hamamatsu Photonics K.K. Method of cutting an object to be processed
US8519511B2 (en) 2002-03-12 2013-08-27 Hamamatsu Photonics K.K. Substrate dividing method
US8518800B2 (en) 2002-03-12 2013-08-27 Hamamatsu Photonics K.K. Substrate dividing method
US8361883B2 (en) 2002-03-12 2013-01-29 Hamamatsu Photonics K.K. Laser processing method
US8314013B2 (en) 2002-03-12 2012-11-20 Hamamatsu Photonics K.K. Semiconductor chip manufacturing method
US8304325B2 (en) 2002-03-12 2012-11-06 Hamamatsu-Photonics K.K. Substrate dividing method
US8268704B2 (en) 2002-03-12 2012-09-18 Hamamatsu Photonics K.K. Method for dicing substrate
US8802543B2 (en) 2002-03-12 2014-08-12 Hamamatsu Photonics K.K. Laser processing method
US8183131B2 (en) 2002-03-12 2012-05-22 Hamamatsu Photonics K. K. Method of cutting an object to be processed
US8450187B2 (en) 2002-12-03 2013-05-28 Hamamatsu Photonics K.K. Method of cutting semiconductor substrate
US8409968B2 (en) 2002-12-03 2013-04-02 Hamamatsu Photonics K.K. Method of cutting semiconductor substrate via modified region formation and subsequent sheet expansion
US8865566B2 (en) 2002-12-03 2014-10-21 Hamamatsu Photonics K.K. Method of cutting semiconductor substrate
US8263479B2 (en) 2002-12-03 2012-09-11 Hamamatsu Photonics K.K. Method for cutting semiconductor substrate
US8247734B2 (en) 2003-03-11 2012-08-21 Hamamatsu Photonics K.K. Laser beam machining method
US8969752B2 (en) 2003-03-12 2015-03-03 Hamamatsu Photonics K.K. Laser processing method
US8685838B2 (en) 2003-03-12 2014-04-01 Hamamatsu Photonics K.K. Laser beam machining method
JPWO2004100240A1 (en) * 2003-05-12 2006-07-13 株式会社東京精密 Method and apparatus for dividing plate-like member
JP4599631B2 (en) * 2003-05-12 2010-12-15 株式会社東京精密 Method and apparatus for dividing plate-like member
JP2011046963A (en) * 2003-06-06 2011-03-10 Hitachi Chem Co Ltd Adhesive sheet
US8617930B2 (en) 2003-06-06 2013-12-31 Hitachi Chemical Co., Ltd. Adhesive sheet, dicing tape integrated type adhesive sheet, and method of producing semiconductor device
US7968195B2 (en) 2003-06-06 2011-06-28 Hitachi Chemical Co., Ltd. Dicing tape laminated with adhesive sheet of polymer, epoxy resin and filler
JP2005019962A (en) * 2003-06-06 2005-01-20 Hitachi Chem Co Ltd Adhesive sheet
JP2011006687A (en) * 2003-06-06 2011-01-13 Hitachi Chem Co Ltd Adhesive sheet, dicing tape integrated type adhesive sheet, and method for manufacturing semiconductor device
US7875500B2 (en) 2003-06-06 2011-01-25 Hitachi Chemical Company, Ltd. Bonding semiconductor wafer stuck on dicing tape laminated adhesive sheet onto mounting support
US20130045585A1 (en) * 2003-06-06 2013-02-21 Teiichi Inada Adhesive sheet, dicing tape integrated type adhesive sheet, and method of producing semiconductor device
US7968194B2 (en) 2003-06-06 2011-06-28 Hitachi Chemical Co., Ltd. Dicing tape laminated with adhesive sheet of polymer, thermosetting resin and filler
US8551817B2 (en) 2003-09-10 2013-10-08 Hamamatsu Photonics K.K. Semiconductor substrate cutting method
US8058103B2 (en) 2003-09-10 2011-11-15 Hamamatsu Photonics K.K. Semiconductor substrate cutting method
JP2005260204A (en) * 2004-02-10 2005-09-22 Lintec Corp Manufacturing method of semiconductor device
JP4503429B2 (en) * 2004-02-10 2010-07-14 リンテック株式会社 Manufacturing method of semiconductor device
US8946055B2 (en) 2004-03-30 2015-02-03 Hamamatsu Photonics K.K. Laser processing method for cutting substrate and laminate part bonded to the substrate
JP2005332841A (en) * 2004-05-18 2005-12-02 Disco Abrasive Syst Ltd Method of dividing wafer
JP4694795B2 (en) * 2004-05-18 2011-06-08 株式会社ディスコ Wafer division method
JP2006049591A (en) * 2004-08-05 2006-02-16 Disco Abrasive Syst Ltd Fracture method and fracture equipment of adhesive film stuck on wafer
JP2006059941A (en) * 2004-08-19 2006-03-02 Disco Abrasive Syst Ltd Manufacturing method of semiconductor chip
JP2006093213A (en) * 2004-09-21 2006-04-06 Hitachi Chem Co Ltd Manufacturing method of semiconductor element with adhesive layer
JP2006114691A (en) * 2004-10-14 2006-04-27 Disco Abrasive Syst Ltd Division method of wafer
KR101282459B1 (en) 2004-11-12 2013-07-04 하마마츠 포토닉스 가부시키가이샤 Laser beam machining method and semiconductor chip
JP2006140355A (en) * 2004-11-12 2006-06-01 Hamamatsu Photonics Kk Laser processing method and semiconductor chip
WO2006051866A1 (en) 2004-11-12 2006-05-18 Hamamatsu Photonics K.K. Laser beam machining method and semiconductor chip
KR101283294B1 (en) * 2004-11-12 2013-07-11 하마마츠 포토닉스 가부시키가이샤 Laser processing method
WO2006051861A1 (en) * 2004-11-12 2006-05-18 Hamamatsu Photonics K.K. Laser processing method
KR101282432B1 (en) 2004-11-12 2013-07-04 하마마츠 포토닉스 가부시키가이샤 Laser beam machining method and semiconductor chip
JP2006140354A (en) * 2004-11-12 2006-06-01 Hamamatsu Photonics Kk Laser processing method
US8143141B2 (en) 2004-11-12 2012-03-27 Hamamatsu Photonics K.K. Laser beam machining method and semiconductor chip
KR101282509B1 (en) 2004-11-12 2013-07-04 하마마츠 포토닉스 가부시키가이샤 Laser beam machining method and semiconductor chip
US7939430B2 (en) 2004-11-12 2011-05-10 Hamamatsu Photonics K.K. Laser processing method
US7902636B2 (en) 2004-11-12 2011-03-08 Hamamatsu Photonics K.K. Semiconductor chip including a substrate and multilayer part
WO2006064714A1 (en) * 2004-12-14 2006-06-22 Hamamatsu Photonics K.K. Substrate processing method and film stretching apparatus
JP2007053325A (en) * 2005-07-20 2007-03-01 Furukawa Electric Co Ltd:The Dicing die bond tape and dicing tape
JP2011155270A (en) * 2005-07-20 2011-08-11 Furukawa Electric Co Ltd:The Dicing tape
US7566639B2 (en) 2005-09-16 2009-07-28 Rohm Co., Ltd. Manufacturing method for nitride semiconductor device and nitride semiconductor light emitting device obtained with the same
JP2007157887A (en) * 2005-12-02 2007-06-21 Disco Abrasive Syst Ltd Wafer-dividing method
JP2007173268A (en) * 2005-12-19 2007-07-05 Disco Abrasive Syst Ltd Method of dividing wafer
WO2007091670A1 (en) * 2006-02-10 2007-08-16 Tokyo Seimitsu Co., Ltd. Apparatus and method for processing wafer
JP2007221034A (en) * 2006-02-20 2007-08-30 Fujitsu Ltd Film sticking apparatus and method therefor and manufacturing method of semiconductor device
JP4514722B2 (en) * 2006-02-20 2010-07-28 富士通セミコンダクター株式会社 Film pasting method, film pasting apparatus, and semiconductor device manufacturing method
US8232185B2 (en) 2007-04-05 2012-07-31 Hitachi Chemical Company, Ltd. Method for manufacturing semiconductor chip, adhesive film for semiconductor, and composite sheet using the film
WO2008126718A1 (en) 2007-04-05 2008-10-23 Hitachi Chemical Company, Ltd. Method for manufacturing semiconductor chip, adhesive film for semiconductor, and composite sheet using the film
US8404564B2 (en) 2007-04-06 2013-03-26 Hitachi Chemical Company, Ltd. Adhesive film for semiconductor, composite sheet, and method for producing semiconductor chip using them
WO2008126717A1 (en) 2007-04-06 2008-10-23 Hitachi Chemical Company, Ltd. Adhesive film for semiconductor, composite sheet, and method for producing semiconductor chip using them
US8071465B2 (en) 2007-10-09 2011-12-06 Hitachi Chemical Company, Ltd. Method for producing semiconductor chip with adhesive film, adhesive film for semiconductor used in the method, and method for producing semiconductor device
WO2009048060A1 (en) 2007-10-09 2009-04-16 Hitachi Chemical Company, Ltd. Method for producing semiconductor chip with adhesive film, adhesive film for semiconductor used in the method, and method for producing semiconductor device
JP2009260211A (en) * 2008-03-26 2009-11-05 Hitachi Chem Co Ltd Method of manufacturing semiconductor device
JP2010034263A (en) * 2008-07-29 2010-02-12 Lintec Corp Adhesive sheet for wafer processing, and method of manufacturing semiconductor apparatus
US9076855B2 (en) 2009-04-20 2015-07-07 Hamamatsu Photonics K.K. Laser machining method
WO2010122866A1 (en) 2009-04-20 2010-10-28 浜松ホトニクス株式会社 Laser machining method
US8790997B2 (en) 2009-08-21 2014-07-29 Hamamatsu Photonics K.K. Laser machining method and chip
WO2011021627A1 (en) 2009-08-21 2011-02-24 浜松ホトニクス株式会社 Laser machining method and chip
KR20120041690A (en) 2009-08-21 2012-05-02 하마마츠 포토닉스 가부시키가이샤 Laser machining method and chip
KR20180029276A (en) 2009-08-21 2018-03-20 하마마츠 포토닉스 가부시키가이샤 Laser machining method and chip
US9029987B2 (en) 2009-08-21 2015-05-12 Hamamatsu Photonics K.K. Laser machining method and chip
US9142457B2 (en) 2010-10-01 2015-09-22 Nitto Denko Corporation Dicing die bond film and method of manufacturing semiconductor device
KR20150110823A (en) 2013-03-28 2015-10-02 후루카와 덴키 고교 가부시키가이샤 Adhesive tape and wafer-processing tape
JP2015198116A (en) * 2014-03-31 2015-11-09 日東電工株式会社 Thermo-setting die-bonding film, dicing/die-bonding film, and method of manufacturing semiconductor device
KR20150113862A (en) 2014-03-31 2015-10-08 닛토덴코 가부시키가이샤 Die bond film, die bond film having dicing sheet, semiconductor device and method for manufacturing semiconductor device
KR20150113878A (en) 2014-03-31 2015-10-08 닛토덴코 가부시키가이샤 Dicing film, dicing·die bond film and manufacturing method for semiconductor device
KR20150113877A (en) 2014-03-31 2015-10-08 닛토덴코 가부시키가이샤 Thermosetting die bond film, dicing·die bond film and manufacturing method for semiconductor device
KR20220050110A (en) 2014-03-31 2022-04-22 닛토덴코 가부시키가이샤 Dicing·die bond film and manufacturing method for semiconductor device
KR20170030645A (en) 2014-09-05 2017-03-17 후루카와 덴키 고교 가부시키가이샤 Semiconductor processing tape and semiconducor device manufactured using same
KR20170095947A (en) 2014-12-12 2017-08-23 닛토덴코 가부시키가이샤 Dicing sheet, dicing/die-bonding film, and method for manufacturing semiconductor device
KR20170117199A (en) 2015-03-24 2017-10-20 후루카와 덴키 고교 가부시키가이샤 Tape for semiconductor processing
KR20170131504A (en) 2015-03-24 2017-11-29 후루카와 덴키 고교 가부시키가이샤 Semiconductor processing tape
KR20190088522A (en) 2016-12-07 2019-07-26 후루카와 덴키 고교 가부시키가이샤 Tape for semiconductor processing
US11901211B2 (en) 2016-12-07 2024-02-13 Furukawa Electric Co., Ltd. Semiconductor-processing tape
CN110678965B (en) * 2017-05-24 2023-08-25 协立化学产业株式会社 Method for cutting object to be processed
US11806805B2 (en) 2017-05-24 2023-11-07 Kyoritsu Chemical & Co., Ltd. Workpiece cutting method
CN110678965A (en) * 2017-05-24 2020-01-10 协立化学产业株式会社 Method for cutting object to be processed
KR20190113747A (en) 2018-03-28 2019-10-08 후루카와 덴키 고교 가부시키가이샤 Semiconductor Processing Tape
KR20190113746A (en) 2018-03-28 2019-10-08 후루카와 덴키 고교 가부시키가이샤 Semiconductor Processing Tape
KR20190113748A (en) 2018-03-28 2019-10-08 후루카와 덴키 고교 가부시키가이샤 Semiconductor Processing Tape
KR20190113749A (en) 2018-03-28 2019-10-08 후루카와 덴키 고교 가부시키가이샤 Semiconductor Processing Tape
KR20210107032A (en) 2018-12-28 2021-08-31 쇼와덴코머티리얼즈가부시끼가이샤 Evaluation method of photocurable adhesive, dicing and die-bonding integrated film and manufacturing method thereof, and manufacturing method of semiconductor device
KR20210107031A (en) 2018-12-28 2021-08-31 쇼와덴코머티리얼즈가부시끼가이샤 Evaluation method of photocurable adhesive, dicing and die-bonding integrated film and manufacturing method thereof, and manufacturing method of semiconductor device
KR20210144731A (en) 2019-03-27 2021-11-30 쇼와덴코머티리얼즈가부시끼가이샤 Semiconductor device manufacturing method, die-bonding film, and dicing and die-bonding integrated adhesive sheet
KR20210015888A (en) 2019-05-29 2021-02-10 후루카와 덴키 고교 가부시키가이샤 Glass processing tape
KR20210015893A (en) 2019-05-29 2021-02-10 후루카와 덴키 고교 가부시키가이샤 Glass processing tape
KR20210015891A (en) 2019-05-29 2021-02-10 후루카와 덴키 고교 가부시키가이샤 Glass processing tape
KR20210015889A (en) 2019-05-29 2021-02-10 후루카와 덴키 고교 가부시키가이샤 Glass processing tape
KR20220088866A (en) 2019-10-28 2022-06-28 쇼와덴코머티리얼즈가부시끼가이샤 Film adhesive and its parting property evaluation method, dicing and die-bonding integrated film and manufacturing method thereof, and semiconductor device
KR20220119626A (en) 2019-12-23 2022-08-30 쇼와덴코머티리얼즈가부시끼가이샤 Dicing and die-bonding integrated film, quality control method thereof, and semiconductor device manufacturing method
US12062575B2 (en) 2020-09-28 2024-08-13 Disco Corporation Wafer processing method
KR20230157294A (en) 2021-03-05 2023-11-16 가부시끼가이샤 레조낙 Film-like adhesive, integrated dicing/die bonding film, and semiconductor device and method of manufacturing the same
KR20240016939A (en) 2021-06-02 2024-02-06 가부시끼가이샤 레조낙 Semiconductor device manufacturing method and dicing/die bonding integrated film
KR20240090161A (en) 2021-09-27 2024-06-21 가부시끼가이샤 레조낙 Film-like adhesive, integrated dicing/die bonding film, and semiconductor device and method for manufacturing the same
KR20240150443A (en) 2022-02-16 2024-10-15 가부시끼가이샤 레조낙 Film-shaped adhesive and its manufacturing method, dicing/die bonding integrated film, and semiconductor device and its manufacturing method

Also Published As

Publication number Publication date
TW200416954A (en) 2004-09-01
TWI395293B (en) 2013-05-01
JP4358502B2 (en) 2009-11-04
TW200924113A (en) 2009-06-01
TWI339876B (en) 2011-04-01

Similar Documents

Publication Publication Date Title
JP4358502B2 (en) Semiconductor substrate cutting method
EP2216805B1 (en) Method of cutting semiconductor substrate
JP3935186B2 (en) Semiconductor substrate cutting method
JP4606741B2 (en) Processing object cutting method
JP3762409B2 (en) Substrate dividing method
WO2004080643A1 (en) Laser beam machining method
JP4409840B2 (en) Processing object cutting method
WO2004082006A1 (en) Laser beam machining method
JP2006135355A (en) Cutting method of semiconductor substrate
JP4167094B2 (en) Laser processing method
JP3867100B2 (en) Semiconductor substrate cutting method
JP3867105B2 (en) Semiconductor substrate cutting method
JP3867104B2 (en) Semiconductor substrate cutting method
WO2004080642A1 (en) Laser beam machining method
JP3822626B2 (en) Semiconductor substrate cutting method
JP2004268103A (en) Laser beam machining method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090317

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090804

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090806

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120814

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4358502

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120814

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130814

Year of fee payment: 4

EXPY Cancellation because of completion of term