JP7435196B2 - Aerobic biofilm treatment method and device - Google Patents
Aerobic biofilm treatment method and device Download PDFInfo
- Publication number
- JP7435196B2 JP7435196B2 JP2020072936A JP2020072936A JP7435196B2 JP 7435196 B2 JP7435196 B2 JP 7435196B2 JP 2020072936 A JP2020072936 A JP 2020072936A JP 2020072936 A JP2020072936 A JP 2020072936A JP 7435196 B2 JP7435196 B2 JP 7435196B2
- Authority
- JP
- Japan
- Prior art keywords
- aeration
- biofilm
- carrier
- raw water
- oxygen
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 106
- 238000011282 treatment Methods 0.000 title claims description 70
- 238000005273 aeration Methods 0.000 claims description 228
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 164
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 82
- 239000001301 oxygen Substances 0.000 claims description 82
- 229910052760 oxygen Inorganic materials 0.000 claims description 82
- 230000000717 retained effect Effects 0.000 claims description 18
- 238000003756 stirring Methods 0.000 claims description 13
- 230000002829 reductive effect Effects 0.000 claims description 9
- 238000011049 filling Methods 0.000 claims description 8
- 230000014759 maintenance of location Effects 0.000 claims description 8
- 238000004088 simulation Methods 0.000 claims description 8
- 230000009467 reduction Effects 0.000 claims description 4
- 239000000126 substance Substances 0.000 claims description 4
- 238000011001 backwashing Methods 0.000 claims description 3
- 238000004364 calculation method Methods 0.000 claims description 3
- 238000013019 agitation Methods 0.000 claims description 2
- 230000008569 process Effects 0.000 description 58
- 239000008187 granular material Substances 0.000 description 46
- 230000036284 oxygen consumption Effects 0.000 description 23
- 230000007423 decrease Effects 0.000 description 21
- 239000000969 carrier Substances 0.000 description 18
- 244000005700 microbiome Species 0.000 description 14
- 239000003344 environmental pollutant Substances 0.000 description 13
- 231100000719 pollutant Toxicity 0.000 description 13
- 230000000813 microbial effect Effects 0.000 description 10
- 239000010802 sludge Substances 0.000 description 10
- 239000002351 wastewater Substances 0.000 description 9
- 230000003247 decreasing effect Effects 0.000 description 8
- 238000009792 diffusion process Methods 0.000 description 8
- 230000036961 partial effect Effects 0.000 description 8
- 206010040844 Skin exfoliation Diseases 0.000 description 7
- 238000013178 mathematical model Methods 0.000 description 7
- 230000001580 bacterial effect Effects 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 238000005469 granulation Methods 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- 238000009825 accumulation Methods 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 230000007774 longterm Effects 0.000 description 4
- 239000012071 phase Substances 0.000 description 4
- 238000007664 blowing Methods 0.000 description 3
- 238000005345 coagulation Methods 0.000 description 3
- 230000015271 coagulation Effects 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 238000011068 loading method Methods 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 239000005416 organic matter Substances 0.000 description 3
- 230000035699 permeability Effects 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 238000004062 sedimentation Methods 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 241000894006 Bacteria Species 0.000 description 2
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 2
- 239000008346 aqueous phase Substances 0.000 description 2
- 238000005265 energy consumption Methods 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 238000005243 fluidization Methods 0.000 description 2
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 238000010008 shearing Methods 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 238000004065 wastewater treatment Methods 0.000 description 2
- 208000035404 Autolysis Diseases 0.000 description 1
- 206010057248 Cell death Diseases 0.000 description 1
- JVMRPSJZNHXORP-UHFFFAOYSA-N ON=O.ON=O.ON=O.N Chemical compound ON=O.ON=O.ON=O.N JVMRPSJZNHXORP-UHFFFAOYSA-N 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- XKMRRTOUMJRJIA-UHFFFAOYSA-N ammonia nh3 Chemical compound N.N XKMRRTOUMJRJIA-UHFFFAOYSA-N 0.000 description 1
- 230000000975 bioactive effect Effects 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 230000034994 death Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000004134 energy conservation Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 238000005188 flotation Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 238000010907 mechanical stirring Methods 0.000 description 1
- 238000010946 mechanistic model Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000035755 proliferation Effects 0.000 description 1
- 230000007281 self degradation Effects 0.000 description 1
- 230000028043 self proteolysis Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
Landscapes
- Biological Treatment Of Waste Water (AREA)
Description
本発明は、生物学的に酸化できる汚濁物質を含む排水を、自己造粒グラニュールや流動床担体、固定床担体などにより生物膜処理する方法及び装置に係り、特にその曝気強度制御に関する。本発明においては微生物処理を行う微生物の外部に存在する排水をバルク水と呼ぶ。 The present invention relates to a method and apparatus for biofilm treatment of wastewater containing biologically oxidizable pollutants using self-granulating granules, fluidized bed carriers, fixed bed carriers, etc., and particularly relates to control of aeration intensity. In the present invention, wastewater existing outside the microorganisms that undergo microbial treatment is referred to as bulk water.
生物学的に酸化できる汚濁物質を含む排水の処理方法として、浮遊汚泥を用いる活性汚泥法のほか、自己造粒グラニュール法や流動床担体法、固定床担体法など、微生物が生物膜とよばれる集積増殖した様態で処理を行う生物膜法などが利用されている。 Treatment methods for wastewater containing pollutants that can be biologically oxidized include the activated sludge method using suspended sludge, the self-granulation granule method, the fluidized bed carrier method, and the fixed bed carrier method, which allow microorganisms to form biofilms. The biofilm method, which treats bacteria in a state where they accumulate and proliferate, is used.
前者の浮遊汚泥を用いる活性汚泥法では、微生物フロックと称される典型的には1mm前後の微生物の凝集体内外において、微生物とバルク水相との接触面積が十分確保されているため、フロック内での酸素や汚濁物質の浸透性・拡散性が汚濁物除去速度の主要な処理性能の律速因子とならない。特許文献1には、汚濁物質の負荷を計器で計測し、これに比例して曝気風量を制御することが記載されている。
In the former activated sludge method, which uses suspended sludge, there is sufficient contact area between microorganisms and the bulk aqueous phase inside and outside of aggregates of microorganisms, typically around 1 mm in diameter, called microbial flocs. The permeability and diffusivity of oxygen and pollutants are not the main rate-limiting factors for pollutant removal rate.
浮遊汚泥を用いる活性汚泥法、および自己造粒グラニュール法、流動床担体法、固定床担体法などの生物膜法においては、原水の負荷に比例した酸素供給量調整を簡易に行う手法として、液中の溶存酸素濃度(以下DOと記載する)を一定に保つ風量制御を行ういわゆるDO制御システムが広く用いられている。 In activated sludge methods using suspended sludge, and biofilm methods such as self-granulation granule methods, fluidized bed carrier methods, and fixed bed carrier methods, as a method to easily adjust the oxygen supply amount in proportion to the load of raw water, BACKGROUND ART A so-called DO control system that performs air volume control to maintain a constant dissolved oxygen concentration (hereinafter referred to as DO) in a liquid is widely used.
自己造粒グラニュール法、流動床担体法に関して、特許文献2には、BOD容積負荷が所定値よりも小さいときは微生物担体の流動化を判断基準とし、BOD容積負荷が前記所定値よりも大きいときは廃水の酸素要求量を判断基準として廃水に対する曝気量を制御する廃水処理方法及び装置が記載されている。
Regarding the self-granulation granule method and the fluidized bed carrier method,
自己造粒グラニュール法、流動床担体法、固定床担体法など生物膜を利用した処理を行う方法では、流入する汚濁物質の量の指標として一般的である、原水の単位時間あたりの流量と原水の汚濁物質濃度との積により求められる原水負荷や、原水負荷を反応槽の容積で除算して求められる槽負荷のみに基づいて適切な酸素供給量調整を行うことは、厳密には困難である。その理由として以下が挙げられる。 In treatment methods that utilize biofilms, such as the self-granulation granule method, fluidized bed carrier method, and fixed bed carrier method, the flow rate per unit time of raw water, which is a general indicator of the amount of inflowing pollutants, is Strictly speaking, it is difficult to appropriately adjust the oxygen supply amount based only on the raw water load, which is calculated by multiplying the raw water by the pollutant concentration, or the tank load, which is calculated by dividing the raw water load by the reaction tank volume. be. The reasons for this are as follows.
(i) 原水負荷が同じで、原水中の有機物を酸化するために必要な酸素量が同じであっても、生物膜を利用した方法では、反応槽に生物膜の様態で保持されている微生物量が時間により変化するため、微生物自体の自己分解プロセスに起因して発生する酸素消費量が変化する。従って、装置に与える酸素供給量は同因子も考慮して決定する必要がある。 (i) Even if the raw water load is the same and the amount of oxygen required to oxidize the organic matter in the raw water is the same, in the method using a biofilm, the microorganisms retained in the reaction tank in the form of a biofilm As the amount changes over time, the amount of oxygen consumed due to the autolysis process of the microorganism itself changes. Therefore, the amount of oxygen supplied to the device must be determined by taking this factor into consideration.
(ii) 生物膜を利用した処理方法では、微生物が集積している生物膜内に酸素を拡散させる必要がある。生物膜内への酸素の拡散性に影響を与える主な因子としては、生物膜とバルク水との接触面積およびバルク水のDOの高低などが知られているが、自己造粒グラニュール法ではグラニュールの保持量およびグラニュールサイズが変化するため、微生物とバルク水との接触面積が変化する。 (ii) Treatment methods using biofilms require oxygen to diffuse into the biofilm where microorganisms are accumulated. The main factors that affect the diffusivity of oxygen into biofilms are the contact area between biofilm and bulk water and the level of DO in bulk water, but in the self-granulation granule method, As the granule loading and granule size change, the contact area between microorganisms and bulk water changes.
(iii) 流動床担体法では担体内外での微生物付着量の変化により、生物膜とバルク水の接触面積が変化する。特に、担体内部に空隙部がある構造で生物膜が空隙部に増殖する場合、担体への生物膜付着量が増加し、空隙部が全て閉塞した場合には、バルク水と生物膜との接触面積は顕著に低減する。 (iii) In the fluidized bed carrier method, the contact area between the biofilm and bulk water changes due to changes in the amount of microorganisms attached inside and outside the carrier. In particular, if the carrier has a structure with voids and biofilm grows in the voids, the amount of biofilm adhering to the carrier will increase, and if all the voids are blocked, contact between bulk water and the biofilm will increase. The area is significantly reduced.
(iv) このようなバルク水と生物膜との接触面積の変化は、生物膜への酸素拡散性に大きな影響を与える。例えば、バルク水と生物膜との接触面積が低減した場合には、同一の酸素量を生物膜内に供給する場合でも、バルク水のDOを高める必要があり、バルク水の溶存酸素濃度を高めるためには、より大流量の空気吹き込みが必要となる。また、原水の負荷が高くなった場合、酸素消費量は増加する。そのため、必要な酸素を拡散現象で生物膜内に供給するためには、バルク水の溶存酸素濃度を高くする必要がある。 (iv) Such changes in the contact area between bulk water and biofilms have a significant effect on oxygen diffusivity into biofilms. For example, if the contact area between bulk water and biofilm decreases, it is necessary to increase the DO of bulk water even if the same amount of oxygen is supplied into the biofilm, increasing the dissolved oxygen concentration of bulk water. This requires a larger flow rate of air blowing. Furthermore, when the load of raw water increases, the amount of oxygen consumed increases. Therefore, in order to supply the necessary oxygen into the biofilm through a diffusion phenomenon, it is necessary to increase the dissolved oxygen concentration in the bulk water.
このように負荷変動に応じて原水有機物の酸化に必要な酸素量は変化し、処理装置内に保持されている生物膜の量により供給する必要がある酸素量は変化するので、特に、酸素供給について拡散現象に依存している生物膜法の場合、生物膜に供給すべき酸素量に応じてバルク水のDOを調整する必要があり、バルク水のDOを維持するための曝気風量も調整する必要がある。 In this way, the amount of oxygen required to oxidize raw water organic matter changes according to load fluctuations, and the amount of oxygen that needs to be supplied changes depending on the amount of biofilm retained in the treatment equipment. In the case of the biofilm method, which relies on diffusion phenomena, it is necessary to adjust the DO of the bulk water according to the amount of oxygen that should be supplied to the biofilm, and the amount of aeration air to maintain the DO of the bulk water must also be adjusted. There is a need.
なお、曝気風量を制御しない場合は、高負荷時を想定してバルク水のDOを過剰に高く維持した運転をすることが多い。 In addition, when the aeration air volume is not controlled, operation is often performed with the DO of bulk water kept excessively high assuming a high load.
DOを過剰に高く維持した運転を行うために曝気制御を行わない一定風量での運転を行う場合、最大負荷に合わせた風量で常時曝気することになり、エネルギー消費の無駄が発生する。 When operating at a constant air volume without aeration control in order to maintain an excessively high DO, aeration is constantly performed at an air volume that matches the maximum load, resulting in wasted energy consumption.
また、一般的なDO一定の風量制御を行う場合も、高負荷時に生物膜内部への十分な酸素拡散量を確保することを想定したDO設定を行う必要がある。そのため、低負荷時には、必要な酸素供給量の維持に必要なDOレベル以上のDOに維持することになる。その結果、DOを維持するための曝気風量は必要量より多くなり、エネルギー消費の無駄が発生する。 Furthermore, when performing general air volume control with a constant DO, it is necessary to set the DO with a view to ensuring a sufficient amount of oxygen diffusion into the biofilm during high loads. Therefore, during low load, the DO is maintained at a DO level higher than that required to maintain the required oxygen supply amount. As a result, the amount of aeration air required to maintain the DO is greater than the required amount, resulting in wasted energy consumption.
ところが、原水負荷や反応槽の運転項目が一定の場合、あるいは原水負荷に応じた適切な運転制御を行っていた場合であっても処理水水質が変動することがある。これは特に生物処理装置の運転を長期間継続した際に発生しやすい傾向がある。 However, even when the raw water load and operation items of the reaction tank are constant, or even when appropriate operation control is performed according to the raw water load, the quality of the treated water may fluctuate. This tends to occur particularly when the biological treatment equipment is operated for a long period of time.
この原因として、自己造粒微生物グラニュールのような球状の生物膜や流動床もしくは固定床担体に付着させた生物膜を利用する処理装置では、経時的に生物膜の保持量が増加し、これにより微生物自体の自己分解プロセスに起因して発生する酸素消費量が変化すること、生物膜とバルク水の接触面積が減少することにより生物膜への酸素の拡散速度が低下することにより生物膜の処理性能が時間経過と共に低下することが考えられる。 The reason for this is that in treatment equipment that uses spherical biofilms such as self-granulating microbial granules or biofilms attached to fluidized bed or fixed bed carriers, the amount of biofilm retained increases over time. changes in the amount of oxygen consumed due to the self-degradation process of the microorganisms themselves, and decreases the rate of oxygen diffusion into the biofilm due to a decrease in the contact area between the biofilm and bulk water, which in turn reduces the rate of oxygen diffusion into the biofilm. It is possible that processing performance deteriorates over time.
このため、負荷変動に応じた曝気強度を定めて曝気制御していたにも拘わらず、継続運転に伴って処理水水質が所定値を逸脱したときに、曝気槽中の生物膜の保持量が増加し処理性能が低下したと判定し、曝気条件を変更することが考えられる。 For this reason, even though aeration control was carried out by setting the aeration intensity according to load fluctuations, when the quality of treated water deviates from a predetermined value due to continuous operation, the amount of biofilm retained in the aeration tank decreases. It is conceivable that the aeration conditions may be changed based on the judgment that the treatment performance has decreased due to the increase.
具体的には、処理水水質が目標値まで低減されず水質が悪化したときは生物膜の保持量が多くなったことにより酸素拡散性が低下して酸素供給量が不足したと判定し、現状の制御ロジックよりも曝気強度の強い曝気条件の制御ロジックに変更する。 Specifically, when the quality of treated water is not reduced to the target value and the water quality deteriorates, it is determined that the oxygen diffusivity has decreased due to an increase in the amount of biofilm retained, and the amount of oxygen supplied is insufficient. Change the control logic to an aeration condition control logic with stronger aeration intensity than the control logic of .
しかしながら、曝気強度の強い曝気条件を適用すると必要曝気動力が上昇する問題がある。また、そもそも所定以上の強曝気を行える曝気システムを未構築である場合は曝気強度を高くして処理水質を回復することができない。 However, there is a problem in that when aeration conditions with high aeration intensity are applied, the required aeration power increases. Furthermore, if an aeration system that can perform aeration stronger than a predetermined level has not been constructed in the first place, it is not possible to increase the aeration intensity and restore the quality of the treated water.
本発明は、自己造粒グラニュールや生物付着担体による好気性生物膜処理を長期的に継続運転することにより生物膜の保持量が増加したときに、処理性能を改善する方法と装置を提供することを目的とする。 The present invention provides a method and apparatus for improving treatment performance when the amount of biofilm retained increases due to long-term continuous operation of aerobic biofilm treatment using self-granulating granules or biofouling carriers. The purpose is to
本発明の好気性生物膜処理方法は、原水が供給される曝気槽にて、曝気槽に充填された生物膜保持担体またはグラニュールにより原水中の除去対象物質を好気性生物膜処理する方法において、以下のいずれか1つ以上を満たすときに、担体の生物膜保持量低減処理又はグラニュールの部分解体処理を行う。
i) 酸素拡散性指標の算出値が所定の下限値を下回る。
ii) グラニュールの平均粒径が所定の上限値を上回る。
iii) 担体あたりの生物膜の付着量(重量)が所定の上限値を上回る。
iv) 原水負荷あたりの曝気風量が所定の上限値を上回る状況で処理水の所定水質項目が所定の目標値を上回る。
v) 運転開始又は前回の前記処理から所定時間が経過する。
The aerobic biofilm treatment method of the present invention is a method for aerobic biofilm treatment of substances to be removed in raw water using biofilm retention carriers or granules filled in the aeration tank in an aeration tank to which raw water is supplied. , when any one or more of the following is satisfied, the biofilm retention amount reduction treatment of the carrier or the partial disassembly treatment of the granules is performed.
i) The calculated value of the oxygen diffusivity index is below a predetermined lower limit.
ii) The average particle size of the granules exceeds a predetermined upper limit.
iii) The amount (weight) of biofilm attached per carrier exceeds a predetermined upper limit.
iv) A specified water quality item of treated water exceeds a specified target value in a situation where the aeration air volume per raw water load exceeds a specified upper limit.
v) A predetermined period of time has elapsed since the start of operation or the previous processing.
本発明の好気性生物膜処理装置は、原水が供給される曝気槽と、該曝気槽に充填された生物膜保持担体またはグラニュールと、該曝気槽を曝気する曝気装置とを有する好気性生物膜処理装置において、以下のいずれか1つ以上を満たすときに作動する、担体の生物膜保持量低減手段又はグラニュールの部分解体処理手段を有する。
i) 酸素拡散性指標の算出値が所定の下限値を下回る。
ii) グラニュールの平均粒径が所定の上限値を上回る。
iii) 担体あたりの生物膜の付着量(重量)が所定の上限値を上回る。
iv) 原水負荷あたりの曝気風量が所定の上限値を上回る状況で処理水の所定水質項目が所定の目標値を上回る。
v) 運転開始又は前回の前記処理から所定時間が経過する。
The aerobic biofilm treatment device of the present invention comprises an aeration tank to which raw water is supplied, a biofilm holding carrier or granules filled in the aeration tank, and an aeration device for aerating the aeration tank. The membrane treatment device has a means for reducing the biofilm retention amount of the carrier or a means for partially disassembling the granules, which is activated when any one or more of the following is satisfied.
i) The calculated value of the oxygen diffusivity index is below a predetermined lower limit.
ii) The average particle size of the granules exceeds a predetermined upper limit.
iii) The amount (weight) of biofilm attached per carrier exceeds a predetermined upper limit.
iv) A specified water quality item of treated water exceeds a specified target value in a situation where the aeration air volume per raw water load exceeds a specified upper limit.
v) A predetermined period of time has elapsed since the start of operation or the previous processing.
本発明の一態様では、前記担体生物膜保持量低減又はグラニュール部分解体処理を、回転撹拌羽根又は逆洗による強撹拌、強曝気、高流速循環、及び槽内水の破砕ポンプへの通水のいずれか1又は2以上により行う。 In one aspect of the present invention, the carrier biofilm retention amount reduction or granule partial disassembly treatment is performed by strong stirring using a rotating stirring blade or backwashing, strong aeration, high flow rate circulation, and water flow in the tank to a crushing pump. Perform one or more of the following.
本発明の一態様では、前記曝気槽内に生物膜保持担体が充填されており、前記担体生物膜保持量低減を、新品の担体及び/又は生物膜剥離処理した生物膜付着担体を曝気槽内に添加するかまたは曝気槽内の担体と入れ替えることにより行う。 In one aspect of the present invention, the aeration tank is filled with a biofilm-retaining carrier, and the reduction in the amount of biofilm retained on the carrier is achieved by placing a new carrier and/or a biofilm-attached carrier that has been subjected to biofilm removal treatment in the aeration tank. This is done by adding it to the carrier or replacing it with the carrier in the aeration tank.
本発明によると、管理項目が所定値から逸脱したときに、自己造粒微生物グラニュールの部分解体、担体に付着している生物膜の剥離もしくは担体間に保持されている生物膜の剥離除去を行うことにより、自己造粒微生物グラニュールもしくは担体の酸素拡散性能を向上させ、曝気に関わる動力の省エネルギー性能を向上させることができる。 According to the present invention, when a control item deviates from a predetermined value, the self-granulating microbial granules are partially disassembled, the biofilm attached to the carrier is detached, or the biofilm retained between the carriers is detached and removed. By doing so, it is possible to improve the oxygen diffusion performance of the self-granulating microorganism granules or the carrier, and improve the energy saving performance of the motive power involved in aeration.
特に担体を用いた生物膜処理を長期運用したとき、担体内部に稠密で処理能力の低い生物膜が堆積する傾向にあり、担体内部への酸素拡散性を劣化させ、処理性能が低下する傾向にあるが、担体内部に堆積した生物膜を検知すると共に生物膜剥離を行うことにより、担体内部への酸素拡散性を回復させて処理性能を改善することができる。 In particular, when biofilm treatment using a carrier is operated for a long time, a dense biofilm with low treatment capacity tends to accumulate inside the carrier, which deteriorates oxygen diffusivity into the carrier and tends to reduce treatment performance. However, by detecting the biofilm deposited inside the carrier and removing the biofilm, it is possible to restore oxygen diffusivity into the carrier and improve treatment performance.
本発明では、管理項目が所定値を逸脱したときに、生物膜の保持量が過度に増加したもの、特に自己造粒微生物グラニュールの場合はグラニュールが肥大化したものと判定し、担体の生物膜保持量低減(例えば、担体からの生物膜の剥離)、グラニュールの部分解体のいずれかを行う。 In the present invention, when control items deviate from predetermined values, it is determined that the amount of biofilm retained has increased excessively, especially in the case of self-granulating microbial granules, the granules have become enlarged, and the carrier Either reducing the amount of biofilm retained (for example, detaching the biofilm from the carrier) or partially disassembling the granules.
具体的には、以下のi)~v)のいずれか1つ以上となったときに、担体からの生物膜剥離などの担体生物膜保持量低減や、グラニュールの部分解体を行う。
i) 酸素拡散性指標の算出値が所定の下限値を下回ったとき
酸素拡散性指標は、担体の充填容積当たりの生物膜保持量(mg/m3)および生物膜のバルク水との接触面積に依存するが、これらの指標は実機で直接計測することは困難であるので、担体充填容積あたりの原水負荷・曝気条件に対する処理水水質の変化からシミュレーション計算により推定する。
ii) グラニュールの平均粒径が所定の上限値を上回ったとき
グラニュールの平均粒径は、完全混合状態の曝気槽から槽内水をバンドーン採水器などでサンプリングし、目視観察もしくは光学的な平均粒径計測により確認する。
iii) 担体あたりの生物膜の付着量(重量)が所定の上限値を上回ったとき
安定運転中の担体に付着する生物膜の重量を予め計測し、この数値に所定幅を加算した数値を「所定の上限値」とする。
Specifically, when any one or more of the following i) to v) occurs, the amount of biofilm retained on the carrier is reduced, such as by detaching the biofilm from the carrier, or the granules are partially disassembled.
i) When the calculated value of the oxygen diffusivity index is below a predetermined lower limit value The oxygen diffusivity index is determined by the amount of biofilm retained per carrier filling volume (mg/m 3 ) and the contact area of the biofilm with bulk water. However, since it is difficult to directly measure these indicators with an actual machine, they are estimated by simulation calculations based on the raw water load per carrier filling volume and changes in treated water quality with respect to aeration conditions.
ii) When the average particle size of the granules exceeds a predetermined upper limit, the average particle size of the granules can be determined by visual observation or optical observation by sampling the tank water from a completely mixed aeration tank with a Vandoorne water sampler, etc. Confirm by measuring the average particle size.
iii) When the amount (weight) of biofilm attached per carrier exceeds the predetermined upper limit, the weight of biofilm attached to the carrier during stable operation is measured in advance, and the value obtained by adding the predetermined width to this value is calculated as " ``predetermined upper limit value''.
付着生物膜の重量は、バンドーン採水器などで一定量サンプリングした生物付着担体に対して、これを乾燥させて新品担体との重量差を計測するか、この担体を燃焼して有機性浮遊物質(VSS)を測定することにより算出する。
iv) 原水負荷あたりの曝気風量が所定の上限値を上回る状況であるときにおける処理水の所定水質項目が所定の目標値を上回ったとき
原水負荷あたりの曝気風量が「所定の上限値」とは、省エネルギーの観点から原水負荷あたりの曝気風量の上限値を定める、或いは、原水負荷が設計最大値以内であるにも関わらず設備上最大の曝気風量でも処理水質が維持できないとの理由で決定する設定値である。
v) 運転開始や前回の処理から所定時間が経過したとき
生物膜が肥大化するまでの運転経過時間を実験的またはシミュレーションで推定し、「所定時間」とする。
The weight of the attached biofilm can be measured by drying a fixed amount of the bioattached carrier sampled with a Vandoorne water sampler and measuring the weight difference between it and a new carrier, or by burning the carrier and measuring the weight difference between the bioattached carrier and the new carrier. Calculated by measuring (VSS).
iv) When the specified water quality item of the treated water exceeds the specified target value when the aeration air volume per raw water load exceeds the predetermined upper limit. , setting the upper limit of the aeration air volume per raw water load from the perspective of energy conservation, or deciding because the treated water quality cannot be maintained even with the maximum aeration air volume for the equipment even though the raw water load is within the design maximum value. This is the setting value.
v) When a predetermined time has elapsed since the start of operation or the previous treatment The elapsed time of operation until the biofilm becomes thickened is estimated experimentally or by simulation, and is defined as the "predetermined time".
なお、ii)~iv)の管理項目では異常が検知されないときでも、酸素拡散性指標が低下する場合がある。そのため、i)で管理することがより好ましい。 Note that even when no abnormality is detected in the management items ii) to iv), the oxygen diffusivity index may decrease. Therefore, management using i) is more preferable.
生物膜剥離やグラニュール部分解体の手段としては、以下の(1)~(4)のように剪断力を付与して強制的に生物膜を低減する手段や、新品担体や使用中の生物膜付着担体を追加添加または槽内担体と入替えを行う手段が好適である。
(1) 回転撹拌羽根や逆洗により強撹拌する。
(2) 強曝気する。
(3) 高流速循環する。
(4) 槽内水を槽内又は槽外で破砕ポンプに通水する。
As a means of detaching the biofilm or partially disassembling the granules, there are methods of forcibly reducing the biofilm by applying shearing force as shown in (1) to (4) below, and methods of forcibly reducing the biofilm by applying shearing force as shown in (1) to (4) below. It is preferable to add the adhering carrier or to replace it with the carrier in the tank.
(1) Strongly stir using rotating stirring blades or backwashing.
(2) Strong aeration.
(3) High flow rate circulation.
(4) Pass the tank water to the crushing pump inside or outside the tank.
なお、担体からの生物膜の剥離やグラニュールの部分解体により生じた生物膜は、SSとして処理水と共に槽外に排出され、固液分離(凝集沈殿、凝集加圧浮上、凝集濾過など)処理後、系外排出される。 In addition, the biofilm generated by detachment of the biofilm from the carrier or partial disassembly of the granules is discharged as SS to the outside of the tank along with the treated water, and subjected to solid-liquid separation treatment (coagulation sedimentation, coagulation pressure flotation, coagulation filtration, etc.). Afterwards, it is discharged from the system.
生物膜の剥離手段、部分解体手段は、剥離又は部分解体の処理業務を行うときに仮設してもよく、常設の設備として設置してもよい。 The biofilm stripping means and partial disassembly means may be temporarily installed when stripping or partial disassembly is performed, or may be installed as permanent equipment.
以下に、図面を参照して流動床担体からの付着生物膜の剥離手段又は自己造粒グラニュール部分解体手段を備えた好気性生物処理装置の構成について説明する。 Hereinafter, the configuration of an aerobic biological treatment apparatus equipped with a means for removing attached biofilm from a fluidized bed carrier or a means for partially dismantling self-granulating granules will be described with reference to the drawings.
図1の生物処理装置では、被処理排水(原水)は、配管1を通じて曝気槽2に導入される。曝気槽2内には、グラニュール又は生物膜を担持した担体Cが充填されている。曝気槽2内の底部には散気管3が設置されており、ブロア4から配管5を通じて空気が供給され、曝気が行われる。
In the biological treatment apparatus shown in FIG. 1, wastewater to be treated (raw water) is introduced into an
生物膜によって好気的に生物処理された水は、スクリーン6を通り抜け、配管7から処理水として取り出される。
The water that has been aerobically treated by the biofilm passes through the
この生物処理装置では、生物膜剥離手段として、曝気槽2のグラニュールや担体を吸引ポンプ11で引き抜き、撹拌水槽12に導入し、攪拌機13により強撹拌してグラニュール部分解体または担体に付着した生物膜を剥離した後、配管14を通じて曝気槽2に返送する。
In this biological treatment device, the granules and carriers in the
グラニュールの部分解体又は担体付着生物膜の剥離の程度は、次の(a),(b),(c)などにより調整される。
(a) 吸引ポンプ11の吐出量を調節して、撹拌水槽12の滞留時間を調整する。
(b) 攪拌機13の回転速度を調節して、生物膜の解体/剥離の強度を調整する。
(c) 上記2つを共に調整する。
The degree of partial disassembly of the granules or peeling of the biofilm attached to the carrier is adjusted by the following (a), (b), (c), etc.
(a) Adjust the discharge amount of the
(b) Adjust the rotational speed of the
(c) Adjust the above two together.
なお、撹拌水槽12と攪拌機13を設ける代わりに、水中破砕ポンプを設置して代替することもできる。
Note that instead of providing the stirring
図1では、吸引ポンプ11からの送水をそのまま撹拌水槽12に供給しているが、図2のように、吸引ポンプ11からの送水を、サイクロン等の沈降速度による処理対象担体の選別装置15に供給し、生物膜保持量が多く沈降速度が大きい担体やグラニュールのみを選択的に撹拌水槽12に供給してグラニュールの部分解体又は担体からの生物膜剥離処理を行うようにしてもよい。生物膜保持量が少なく、沈降速度が小さい担体やグラニュールは配管16を通じて曝気槽2に返送する。
In FIG. 1, the water from the
図3は、強曝気により、グラニュールの部分解体又は担体付着生物膜の剥離を行うようにした生物処理装置を示している。 FIG. 3 shows a biological treatment device that uses strong aeration to partially dismantle granules or peel off biofilms attached to carriers.
図3の生物処理装置では、被処理排水(原水)は、配管1を通じて曝気槽2に導入される。曝気槽2内には、グラニュール又は生物膜を担持した担体Cが充填されている。曝気槽2内の底部には散気管3が設置されており、ブロア4から配管5を通じて空気が供給され、曝気が行われる。配管5には、強曝気用のブロア17からも空気が供給可能とされている。
In the biological treatment apparatus shown in FIG. 3, wastewater to be treated (raw water) is introduced into an
生物膜によって好気的に生物処理された水は、スクリーン6を通り抜け、配管7から処理水として取り出される。
The water that has been aerobically treated by the biofilm passes through the
この生物処理装置では、曝気槽2内のDO濃度を測定するDO計19と、ブロア4から配管5へ供給される空気量を測定する風量計20が設けられており、これらの検出値が制御器21に入力される。制御器21によってブロア4が制御されることにより曝気強度が制御される。
This biological treatment equipment is provided with a
グラニュールの部分解体又は担体付着生物膜の剥離を行うときには、ブロア17を作動させて強曝気する。
When partially dismantling the granules or peeling off the biofilm attached to the carrier, the
<酸素拡散性指標>
汚濁物質除去のために自己造粒微生物グラニュールや流動床もしくは固定床担体に付着させた生物膜を利用する生物膜処理の場合、浮遊法と比較して流動状態の液相と微生物とが接触する表面積が少なく、汚濁物質の生分解のためには生物膜の内部へ(厚み方向へ)酸素や汚濁物質が拡散浸透する必要があり、この拡散浸透プロセスの速度は微生物の増殖速度・酸素消費速度と比較して遅いため、拡散浸透プロセスが処理性能を決定する主要な要因の一つである。
<Oxygen diffusivity index>
In the case of biofilm treatment that uses self-granulating microbial granules or biofilm attached to a fluidized bed or fixed bed carrier to remove pollutants, compared to the floating method, the microorganisms come into contact with the fluidized liquid phase. To biodegrade pollutants, it is necessary for oxygen and pollutants to diffuse into the biofilm (in the thickness direction), and the speed of this diffusion and osmosis process depends on the growth rate and oxygen consumption of microorganisms. The diffusion-osmosis process is one of the main factors determining treatment performance because it is slow compared to the speed.
生物膜がバルク水と接触する表面積は拡散浸透プロセスに影響を与える因子である。表面積が狭くなると、バルク水のDOが同じであっても、相対的に生物膜への酸素拡散総量が減り、処理性能が低下して処理水水質が悪化する傾向となる。逆に、表面積が広くなると、バルク水のDOが同じであっても、相対的に生物膜への酸素拡散総量が増加し、処理能力が上がり、処理水質が良好となる傾向となる。また、低いDOであっても十分な処理性能を発揮することができ、曝気量および曝気に関わる電力を削減できる。 The surface area of biofilm contact with bulk water is a factor that influences the diffusion-osmosis process. When the surface area becomes narrower, even if the DO of the bulk water is the same, the total amount of oxygen diffused into the biofilm will be relatively reduced, the treatment performance will decrease, and the quality of the treated water will tend to deteriorate. Conversely, as the surface area increases, even if the DO of the bulk water is the same, the total amount of oxygen diffused into the biofilm will relatively increase, the treatment capacity will increase, and the quality of the treated water will tend to improve. In addition, sufficient treatment performance can be achieved even at low DO, and the amount of aeration and electric power involved in aeration can be reduced.
自己造粒微生物グラニュールを利用する装置の場合、長期的な運用によりグラニュールが肥大した場合、自己造粒微生物グラニュールの充填容積あたりのバルク水と接触する比表面積が低下し、装置容積あたりのバルク水と接触する表面積が低下する。 In the case of equipment that uses self-granulating microbial granules, if the granules enlarge due to long-term operation, the specific surface area of the self-granulating microbial granules in contact with bulk water per filling volume decreases, and the surface area in contact with bulk water is reduced.
担体を利用する装置の場合、特に担体内部に空隙部がある構造の担体を利用した場合、長期的な運用により担体が保持する生物膜の保持量が増加すると、担体内部の空隙空間が生物膜自体およびスケール成分等の生物活性のない固形分により閉塞するため、バルク水と生物膜の接触面積が低下する。この結果、担体容積あたりのバルク水と接触する比表面積が低下し、曝気槽容積あたりのバルク水と接触する表面積が低下する。また担体内部の空隙部の有無にかかわらず、長期間の運用を行った場合、生物膜内の生物膜密度が上昇する、もしくは、スケール成分等の生物活性のない固形物の蓄積により生物膜の固形物密度が上昇することにより、酸素の拡散速度が低下する。 In the case of a device that uses a carrier, especially when using a carrier with a structure that has voids inside the carrier, if the amount of biofilm retained by the carrier increases due to long-term operation, the void space inside the carrier may become a biofilm. The contact area between bulk water and biofilm decreases due to blockage by non-bioactive solids such as itself and scale components. As a result, the specific surface area in contact with bulk water per carrier volume is reduced, and the surface area in contact with bulk water per aeration tank volume is reduced. In addition, regardless of the presence or absence of voids inside the carrier, if it is operated for a long period of time, the biofilm density within the biofilm will increase, or the biofilm will deteriorate due to the accumulation of non-biologically active solids such as scale components. The increase in solids density reduces the rate of oxygen diffusion.
特に、固定担体に付着させた生物膜を利用する処理の場合、運用期間が長期に渡ると担体間の空間に過剰な生物膜が保持されていく傾向がある。このような状況では、生物膜保持量の増加に応じバルク水相の容量が相対的に低下する。また、この状態がさらに進むと、担体間の空間が生物膜により閉塞し、バルク水が流入できない空間が発生する。この結果、バルク水相と生物膜との接触面積が徐々に低下し、生物膜への酸素や汚濁物質の浸透透過性が経時的に低下する傾向がある。 In particular, in the case of treatments that utilize biofilms attached to fixed carriers, if the operation period is extended over a long period of time, there is a tendency for excessive biofilms to be retained in the spaces between the carriers. In such a situation, the capacity of the bulk aqueous phase decreases relatively as the biofilm retention increases. Furthermore, if this condition progresses further, the spaces between the carriers become blocked by biofilms, creating spaces into which bulk water cannot flow. As a result, the contact area between the bulk water phase and the biofilm gradually decreases, and the permeability of oxygen and pollutants to the biofilm tends to decrease over time.
<制御ロジックの構築例>
本発明で使用する曝気制御の手法として、高負荷時には一般的なDO制御を行い、低負荷時には弱曝気と強曝気を交互に繰り返すいわゆる間欠曝気を組み合わせた場合の事例を説明する。本事例の間欠曝気では、一定時間サイクル毎に、所定時間最低限の一定風量で曝風量の抑制を行う弱曝気工程と、残りの時間DO制御を行う強曝気工程をくりかえす。本事例の間欠曝気の説明では、弱曝気工程と強曝気工程とから構成される制御サイクルの合計工程時間をサイクル時間と称し、弱曝気工程の工程時間を弱曝気工程時間、強曝気工程の工程時間を強曝気工程時間と称する。
<Example of control logic construction>
As an aeration control method used in the present invention, a case will be described in which general DO control is performed at high loads, and so-called intermittent aeration is combined, in which weak aeration and strong aeration are alternately repeated at low loads. In the intermittent aeration of this example, a weak aeration process in which the aeration volume is suppressed at a minimum constant air volume for a predetermined time period, and a strong aeration process in which DO control is performed for the remaining time are repeated every fixed time cycle. In the explanation of intermittent aeration in this case, the total process time of the control cycle consisting of a weak aeration process and a strong aeration process is called cycle time, and the process time of the weak aeration process is called the weak aeration process time, and the process of the strong aeration process is called the cycle time. The time is referred to as the strong aeration process time.
原水負荷や反応槽の酸素消費速度と、DO目標値や曝気強度設定値(本事例では弱曝気工程時間の設定値)の適正値との相関関係を、複数の酸素拡散性指標において予め作成する。原水負荷とDO目標値および弱曝気工程時間との相関関係を制御表で整理した下記の表1を例に説明する。 Create in advance the correlation between the raw water load and oxygen consumption rate of the reaction tank and the appropriate values of the DO target value and aeration intensity setting value (in this example, the setting value of the weak aeration process time) using multiple oxygen diffusivity indicators. . The following Table 1, in which the correlation between raw water load, DO target value, and weak aeration process time is arranged in a control table, will be explained as an example.
表1では、上から順番に5個の制御表(相関関係表)が示されている。各表は、それぞれ生物膜における酸素拡散性が異なる条件を想定して作成されており、1番目の表が最も酸素拡散性が高い条件で作成され、順次酸素拡散性が低下し、5番目の表がもっとも酸素拡散性が悪い想定での表となっている。各々の表はTOC担体容積負荷とDO目標値及び弱曝気工程時間設定値との関係を表わしている。 In Table 1, five control tables (correlation tables) are shown in order from the top. Each table has been created assuming different conditions for oxygen diffusivity in biofilms, with the first table being created under conditions with the highest oxygen diffusivity, the oxygen diffusivity decreasing sequentially, and the fifth table being created under conditions with the highest oxygen diffusivity. The table assumes the worst oxygen diffusivity. Each table represents the relationship between TOC carrier volume load, DO target value, and weak aeration process time setting value.
例えば、上から3番目の表では、担体充填容積当りTOC負荷[kgC/(m3・d)、以下、単位を省略することがある。]が0.1以上~0.6未満のTOC負荷では強曝気工程におけるDOの目標値を3.1mg/Lと設定し、TOC負荷0.1以上~0.2未満の場合は弱曝気工程時間を2時間ごとに110分、TOC負荷0.2以上0.3未満の場合は弱曝気工程時間を2時間ごとに90分、TOC負荷0.3以上0.4未満の場合は弱曝気工程時間を2時間ごとに80分、TOC負荷0.4以上0.5未満の場合は弱曝気工程時間を2時間ごとに60分、TOC負荷0.5以上0.6未満の場合は弱曝気工程時間を2時間ごとに40分をそれぞれ適正値として設定しており、TOC負荷0.6以上0.7未満の場合は強曝気工程でのDO目標値を3.8mg/L、弱曝気工程時間を2時間ごとに20分、TOC負荷0.7以上の場合は、間欠曝気を行わず(弱曝気時間を0分)TOC負荷0.7以上0.9未満の場合はDO目標値を3.9、TOC負荷0.9以上1.0未満の場合はDO目標値を4.4、TOC負荷1.0以上の場合はDO目標値を4.8をそれぞれ適正値として設定している。他の表も同様である。 For example, in the third table from the top, the TOC load per carrier filling volume [kgC/(m 3 ·d), hereinafter the unit may be omitted. ] is 0.1 or more and less than 0.6, the target value of DO in the strong aeration process is set to 3.1 mg/L, and when the TOC load is 0.1 or more and less than 0.2, the weak aeration process is set. If the TOC load is 0.2 or more and less than 0.3, the weak aeration process time is 90 minutes every 2 hours. If the TOC load is 0.3 or more and less than 0.4, the weak aeration process is If the TOC load is 0.4 or more and less than 0.5, the weak aeration process time is 60 minutes every 2 hours. If the TOC load is 0.5 or more and less than 0.6, the weak aeration process is The appropriate time is set to 40 minutes every 2 hours, and if the TOC load is 0.6 or more and less than 0.7, the DO target value for the strong aeration process is set to 3.8 mg/L, and the weak aeration process time is set as an appropriate value. for 20 minutes every 2 hours. If the TOC load is 0.7 or more, do not perform intermittent aeration (weak aeration time is 0 minutes). If the TOC load is 0.7 or more and less than 0.9, reduce the DO target value to 3. 9. When the TOC load is 0.9 or more and less than 1.0, the DO target value is set to 4.4, and when the TOC load is 1.0 or more, the DO target value is set to 4.8. The same applies to other tables.
処理水水質(例えばTOC濃度)が所定時間にわたって良好なときは、1つ上の表に移行し、逆に処理水水質が所定時間にわたって不良なときは、1つ下の表に移行する。例えば、標準の制御表(上から3番目の表)を用いて適切に曝気制御を継続していたにも拘わらず処理水水質が悪化したときは酸素拡散性が悪化したとみなし、1つ下側の制御表(上から4番目の表)を用いた曝気制御に切り替える。逆に処理水水質が過度に良くなったときは曝気を弱めても安定処理できるとみなして1つ上側の制御表(上から2番目の表)を用いた曝気制御に切り替える。本制御手順の適用により、実機の生物膜の状態に応じた酸素拡散性を想定した制御表が自動的に選択されることになり、結果として酸素拡散性指標を推定していることになる。 When the quality of the treated water (for example, TOC concentration) is good over a predetermined period of time, the table moves up one level, and when the quality of the treated water is poor over a certain period of time, the table moves down one level. For example, if the quality of the treated water deteriorates despite continued appropriate aeration control using the standard control table (third table from the top), it is assumed that the oxygen diffusivity has deteriorated, and the level is lowered. Switch to aeration control using the side control table (fourth table from the top). On the other hand, when the quality of the treated water becomes excessively good, it is assumed that stable treatment can be achieved even if the aeration is weakened, and the aeration control is switched to using the control table one level above (the second table from the top). By applying this control procedure, a control table that assumes oxygen diffusivity according to the state of the actual biofilm will be automatically selected, and as a result, the oxygen diffusivity index will be estimated.
なお酸素拡散性指標は実機で直接計測することは困難であるが、上記の操作により通常の運転データから推定することが可能となる。 Although it is difficult to directly measure the oxygen diffusivity index with an actual machine, the above operation makes it possible to estimate it from normal operation data.
さて、処理性能が低下した状況を想定した制御表(表1では最下段の表)を選択して制御しているときに処理水の水質が制御目標のTOC上限値よりも高い場合、それよりも曝気強度を大きくした制御表は設定されていないので、グラニュールの部分解体又は担体付着生物膜の剥離処理を行って性能を回復させる。 Now, if the water quality of the treated water is higher than the TOC upper limit value of the control target when controlling by selecting the control table (the bottom table in Table 1) that assumes a situation where the treatment performance has decreased, then However, since no control table has been set for increasing the aeration intensity, performance is restored by partially disassembling the granules or by removing the biofilm attached to the carrier.
なお、処理性能が若干低下した段階(例えば上から4番目の制御表の状態)であっても、曝気強化のエネルギー効率やコストなどを考慮して、グラニュールの部分解体又は担体付着生物膜の剥離を行って性能回復を図るようにしてもよい。 Even if the treatment performance is slightly degraded (for example, the state shown in the fourth control table from the top), partial dismantling of the granules or removal of biofilm attached to the carrier may be necessary, taking into consideration the energy efficiency and cost of strengthening aeration. Peeling may be performed to recover performance.
<制御の管理指標>
原水負荷を管理指標とする場合の原水担体負荷の計算方法について、図4を用いて次に説明する。
<Control management indicators>
A method of calculating the raw water carrier load when the raw water load is used as a management index will be explained next using FIG. 4.
[TOC計と流量計から原水負荷を算出する方法]
図4に示す生物処理装置は、原水のTOC濃度の計測値を利用した原水負荷に基づく曝気制御を行うものである。
[How to calculate raw water load from TOC meter and flow meter]
The biological treatment apparatus shown in FIG. 4 performs aeration control based on the raw water load using the measured value of the TOC concentration of the raw water.
図4の生物処理装置では、被処理排水(原水)は、配管1を通じて曝気槽2に導入される。曝気槽2内には、生物膜を担持した担体Cが充填されている。曝気槽2内の底部には散気管3が設置されており、ブロア4から配管5を通じて空気が供給され、曝気が行われる。
In the biological treatment apparatus shown in FIG. 4, wastewater to be treated (raw water) is introduced into an
生物膜によって好気的に生物処理された水は、スクリーン6を通り抜け、配管7から処理水として取り出される。
The water that has been aerobically treated by the biofilm passes through the
この生物処理装置では、計測手段として、配管1を流れる原水の流量及びTOC濃度を測定する流量計22及びTOC計23と、曝気槽2内のDO濃度を測定するDO計19と、ブロア4から散気管3へ供給される空気量を測定する風量計20が設けられており、これらの検出値が制御器21に入力される。制御器21によってブロア4が制御されることにより曝気強度が制御される。
In this biological treatment device, as measurement means, a
原水流量を流量計22で測定し、TOC計23で原水のTOC濃度を測定することで、原水負荷としてTOC負荷を算出する。
By measuring the raw water flow rate with the
<原水負荷>
原水負荷は次式によって算出される。
<Raw water load>
The raw water load is calculated using the following formula.
Load=Q・Conc
Load:原水負荷[kg/d]
Q:原水流量[m3/d]
Conc:原水濃度[kg/m3]
原水濃度としてはTOCに限らず、微生物による酸化処理の対象となる物質の濃度であれば処理目的に応じて他の指標を利用してもよい。典型的にはCODCr、CODMn、亜硝酸性窒素、アンモニア性窒素、有機アミン類等の特定化学物質の濃度を利用することが可能である。
Load=Q・Conc
Load: Raw water load [kg/d]
Q: Raw water flow rate [m 3 /d]
Conc: Raw water concentration [kg/m 3 ]
The raw water concentration is not limited to TOC, but other indicators may be used depending on the purpose of treatment as long as it is the concentration of a substance to be oxidized by microorganisms. Typically, concentrations of specific chemical substances such as COD Cr , CODMn , nitrite nitrogen, ammonia nitrogen, organic amines, etc. can be utilized.
<担体容積負荷>
担体容積負荷は次式によって算出される。
<Carrier volume load>
The carrier volume load is calculated by the following formula.
LoadCarrierVol=Load/VCarrier
LoadCarrierVol:担体容積負荷[kg/(m3・d)]
VCarrier:曝気槽内の担体充填容積[m3]
Load Carrier Vol = Load/V Carrier
Load CarrierVol : Carrier volume load [kg/( m3・d)]
V Carrier : carrier filling volume in the aeration tank [m 3 ]
<担体表面積負荷>
担体表面積負荷は次式によって算出される。
<Surface area load of carrier>
The carrier surface area loading is calculated by the following formula.
LoadCarrierSurf=Load/SCarrier
LoadCarrierSurf:担体表面積負荷[kg/(m2・d)]
SCarrier:曝気槽内の担体群の総表面積[m2]
Load CarrierSurf = Load/S Carrier
Load CarrierSurf : Carrier surface area load [kg/( m2・d)]
S Carrier : Total surface area of the carrier group in the aeration tank [m 2 ]
[ケース1:風量計と排ガス計から酸素消費速度を演算する方法]
曝気風量と排ガス中の酸素濃度を計測し、酸素消費速度qO2を次式により直接的に演算する。
[Case 1: Method of calculating oxygen consumption rate from air flow meter and exhaust gas meter]
The aeration air volume and the oxygen concentration in the exhaust gas are measured, and the oxygen consumption rate qO 2 is directly calculated using the following equation.
OTE:酸素移動効率[-]
Z0:吹き込み空気中の酸素モル分率[-]
Z:排ガス中の酸素モル分率[-]
qO2:酸素消費速度[kg/d]
Gν:標準状態換算の曝気空気の吹き込み流量[Nm3/d]
νm:酸素の比容[Nm3/kg]
OTE: Oxygen transfer efficiency [-]
Z 0 : Oxygen molar fraction in blown air [-]
Z: Oxygen mole fraction in exhaust gas [-]
qO 2 : Oxygen consumption rate [kg/d]
Gν: Aeration air blowing flow rate converted to standard conditions [Nm 3 /d]
ν m : Specific volume of oxygen [Nm 3 /kg]
[ケース2:DO計と曝気風量とから酸素消費速度を計算する方法]
曝気風量とDOを計測し、酸素消費速度qO2を間接的に推算する。
(i)(制御装置実装前の準備)酸素消費速度の推算に必要な酸素溶解性指標φを次式により算出する。
[Case 2: Method of calculating oxygen consumption rate from DO meter and aeration air volume]
The aeration air volume and DO are measured to indirectly estimate the oxygen consumption rate qO2 .
(i) (Preparation before installing the control device) Calculate the oxygen solubility index φ necessary for estimating the oxygen consumption rate using the following formula.
OTE:酸素移動効率[-]
Z0:吹き込み空気中の酸素モル分率[-]
Z:排ガス中の酸素モル分率[-]
φ:酸素溶解性指標[m]
νm:酸素の比容[Nm3/kg]
h:散気装置の水深[m]
Cs:飽和溶存酸素濃度[kg/m3]
C:混合液中の溶存酸素濃度[kg/m3]
OTE: Oxygen transfer efficiency [-]
Z 0 : Oxygen molar fraction in blown air [-]
Z: Oxygen mole fraction in exhaust gas [-]
φ: Oxygen solubility index [m]
ν m : Specific volume of oxygen [Nm 3 /kg]
h: Water depth of the air diffuser [m]
Cs: Saturated dissolved oxygen concentration [kg/m 3 ]
C: Dissolved oxygen concentration in the mixed liquid [kg/m 3 ]
(ii)(装置稼働時)酸素消費速度の経時変化を連続計測する。 (ii) (During equipment operation) Continuously measure changes in oxygen consumption rate over time.
DO計と曝気風量の連続計測データ、および予め求めた酸素溶解性指標φから酸素消費速度qO2を次式により連続推算する。 The oxygen consumption rate qO 2 is continuously estimated from the DO meter, continuous measurement data of the aeration air volume, and the oxygen solubility index φ determined in advance using the following equation.
qO2:酸素消費速度[kg/d]
Gν:標準状態換算の曝気空気の吹き込み流量[Nm3/d]
h:散気装置の水深[m]
Cs:飽和溶存酸素濃度[kg/m3]
C:混合液中の溶存酸素濃度[kg/m3]
φ:酸素溶解性指標[m]
qO 2 : Oxygen consumption rate [kg/d]
Gν: Aeration air blowing flow rate converted to standard conditions [Nm 3 /d]
h: Water depth of the air diffuser [m]
Cs: Saturated dissolved oxygen concentration [kg/m 3 ]
C: Dissolved oxygen concentration in the mixed liquid [kg/m 3 ]
φ: Oxygen solubility index [m]
[原水負荷又は酸素消費速度と、DO目標値又は曝気強度設定値との相関関係]
原水負荷又は酸素消費速度と、DO目標値または曝気強度設定値との相関関係は、予備実験の結果データ、実機の運転実績データ、生物膜における酸素の拡散性を考慮した機構モデルのシミュレーション結果などを用いて設定される。
[Correlation between raw water load or oxygen consumption rate and DO target value or aeration intensity setting value]
The correlation between the raw water load or oxygen consumption rate and the DO target value or aeration intensity setting value can be determined using preliminary experiment result data, actual operating performance data, simulation results of a mechanistic model that takes into account the diffusivity of oxygen in biofilms, etc. is set using
なお、曝気槽においては、原水負荷もしくは酸素消費速度は経時的に分単位で急速に変動することがあるが、担体の性状(曝気槽内の担体充填容積又は曝気槽内の担体群の総表面積)の経時的変化は日から月単位で比較的緩慢に変化する。そのため、原水負荷もしくは酸素消費速度の計算値は頻繁に更新するのが好ましい。また、曝気槽内の担体充填容積又は曝気槽内の担体群の総表面積については、担体を定期的に(例えば1~3ヶ月に1回程度の頻度で)サンプリングして解析し、担体充填容積、担体群の総表面積データを更新すればよい。 Note that in an aeration tank, the raw water load or oxygen consumption rate may change rapidly over time on a minute-by-minute basis; ) changes relatively slowly over time, from days to months. Therefore, it is preferable to update the calculated raw water load or oxygen consumption rate frequently. In addition, the carrier filling volume in the aeration tank or the total surface area of the carrier group in the aeration tank is determined by sampling and analyzing the carriers periodically (for example, once every 1 to 3 months). , the total surface area data of the carrier group may be updated.
[原水負荷もしくは酸素消費速度と、DO目標値及び/又は曝気強度設定値の適正値との相関関係]
本発明と組み合わせて利用する曝気制御方法の一様態では、曝気槽の担体またはグラニュールの単位体積もしくは単位表面積あたりの原水負荷もしくは酸素消費速度と、これに対するDO目標値及び/又は弱曝気時間の適正値との相関関係を、酸素拡散性の違いに応じて予め複数設定しておき、酸素消費速度の計測値の変動に応じて特性の酸素拡散性を想定した前記相関関係に基づいて対応するDO目標値又はその他の曝気強度設定値の適正値を設定する。
[Correlation between raw water load or oxygen consumption rate and appropriate value of DO target value and/or aeration intensity setting value]
In one aspect of the aeration control method used in combination with the present invention, the raw water load or oxygen consumption rate per unit volume or unit surface area of the carrier or granules in the aeration tank, and the DO target value and/or weak aeration time for this are determined. A plurality of correlations with the appropriate value are set in advance according to differences in oxygen diffusivity, and responses are taken based on the correlations assuming the characteristic oxygen diffusivity according to fluctuations in the measured value of the oxygen consumption rate. Set appropriate values for the DO target value or other aeration intensity settings.
原水負荷もしくは酸素消費速度と、DO目標値及び/又は弱曝気時間設定値の適正値との組み合わせは、予備実験の結果データもしくは実機の運転実績データもしくは生物膜における酸素の拡散性を考慮した機構モデルのシミュレーション結果などを用いて設定される。 The combination of the raw water load or oxygen consumption rate and the DO target value and/or weak aeration time setting value should be determined based on preliminary experiment result data, actual operating performance data, or a mechanism that takes into account the diffusivity of oxygen in biofilms. It is set using model simulation results.
この相関関係を制御システムに実装する手法としては、原水負荷もしくは酸素消費速度とDO目標値及び/又は弱曝気時間の適正値との相関関係を記述した関数式で実装するもしくは制御表などを利用して表現する手法のいずれでもよい。 To implement this correlation in the control system, implement it with a functional formula that describes the correlation between the raw water load or oxygen consumption rate and the DO target value and/or the appropriate value of the weak aeration time, or use a control table, etc. Any of the following methods of expression may be used.
[制御表を作成するための生物膜機構モデル]
制御表を構築するための1手法として、汚濁物質と酸素を含む流動状態にあるバルク水相に生物膜が接したときの、汚濁物質の減少や生物膜中の活性汚泥菌体量の増減を推定する動力学モデル(以降、生物膜機構モデルと称する場合がある。)を利用することができる。このような動力学モデルは、菌体増殖と汚濁物質の消費・酸素消費が生物膜内で同時に発生する状況、バルク水相中の溶存酸素の生物膜への拡散およびエアレーションにより酸素がバルク水量に溶解する現象も考慮して構築する必要がある。また、生物膜の増加や縮小は、菌体の増殖および死滅に伴った菌体群の体積の増加および減少やバルク水からの菌体の付着およびバルク水への菌体の剥離により発生する。生物膜利用処理に動力学モデルを利用する場合これらの現象を数学モデル化する必要がある。このような現象は本来3次元空間で発生する現象のため、モデル化は複雑なものとなるが、生物膜の増加・縮小を厚さ方向のみの変化を考慮する1次元モデルで表現することでシミュレーションを比較的容易に行うことができる。活性汚泥による排水処理をシミュレーションするための数学モデルとしては、例えばInternational Water AssociationのTask groupが提案している一連の数学モデルが活用できる(下記報文1)。生物膜を対象とした数学モデル例としては、下記報文2などが報告されている。
[Biofilm mechanism model for creating control table]
One method for constructing a control table is to measure the decrease in pollutants and the increase or decrease in the amount of activated sludge bacteria in the biofilm when the biofilm comes into contact with the bulk water phase in a fluid state containing pollutants and oxygen. A dynamic model to estimate (hereinafter sometimes referred to as a biofilm mechanism model) can be used. Such a dynamic model assumes a situation in which bacterial growth, contaminant consumption, and oxygen consumption occur simultaneously within a biofilm, and a situation in which dissolved oxygen in the bulk water phase diffuses into the biofilm and oxygen increases in bulk water volume due to aeration. It is necessary to consider the phenomenon of dissolution when constructing the system. In addition, the increase or shrinkage of the biofilm occurs due to an increase or decrease in the volume of a group of bacterial cells due to proliferation and death of bacterial cells, adhesion of bacterial cells from bulk water, or detachment of bacterial cells to bulk water. When using a dynamic model for biofilm treatment, it is necessary to mathematically model these phenomena. Since such a phenomenon originally occurs in three-dimensional space, modeling is complicated, but it is possible to express the increase and shrinkage of biofilm using a one-dimensional model that takes into account changes only in the thickness direction. Simulations can be performed relatively easily. As a mathematical model for simulating wastewater treatment using activated sludge, for example, a series of mathematical models proposed by the International Water Association's Task Group can be used (
1. M Henze; IWA. Task Group on Mathematical Modelling for Design and Operaton of Biological Wastewater Treatment; et al
2.Boltz, J. P., Johnson, B.R., Daigger, G.T., Sandino, J.,(2009a). “Modeling Integrated Fixed-Film Activated Sludge and Moving Bed Biofilm Reactor Systems I: Mathematical Treatment and Model Development”. Water Environment Research, 81(6), 555-575
1. M Henze; IWA. Task Group on Mathematical Modeling for Design and Operaton of Biological Wastewater Treatment; et al
2. Boltz, JP, Johnson, BR, Daigger, GT, Sandino, J.,(2009a). “Modeling Integrated Fixed-Film Activated Sludge and Moving Bed Biofilm Reactor Systems I: Mathematical Treatment and Model Development”. Water Environment Research, 81( 6), 555-575
前項のような数学モデルを利用することで、例えば流動床担体の数学モデルを構築することができる。一般にこのような数学モデルは連立常微分方程式の形式で記述されることが多く、連立常微分方程式の数値積分ソフトウエアを利用して同プロセスの動的な挙動をシミュレーションすることができる。例えば、特定の装置構成、負荷想定、曝気強度により変化するバルク水相のDOの条件に応じた処理水質の予想を行うことが可能である。 By using the mathematical model as described in the previous section, for example, a mathematical model of a fluidized bed carrier can be constructed. Generally, such mathematical models are often described in the form of simultaneous ordinary differential equations, and the dynamic behavior of the same process can be simulated using numerical integration software for simultaneous ordinary differential equations. For example, it is possible to predict the quality of treated water according to the DO conditions of the bulk water phase, which vary depending on the specific equipment configuration, load assumption, and aeration intensity.
前項のような数学モデルを利用することで、様々な生物膜における酸素透過性条件下での、様々な負荷条件に対して、様々な曝気強度で処理を行った際の、例えば処理水のTOC濃度を予想することができる。シミュレーション結果を整理した表を作成し、本発明の制御システムで利用する制御表作成に活用できる。 By using the mathematical model described in the previous section, it is possible to calculate, for example, the TOC of treated water when the treatment is carried out under various oxygen permeability conditions in various biofilms, under various loading conditions, and at various aeration intensities. concentration can be predicted. A table in which simulation results are organized can be created and used to create a control table used in the control system of the present invention.
[曝気強度の制御]
曝気強度は、例えば、曝気風量もしくはブロワへの給気風量、DO制御のDO目標値、間欠曝気運転における弱曝気工程時間、もしくはこれらの組み合わせで制御することができる。
[Control of aeration intensity]
The aeration intensity can be controlled, for example, by the aeration air volume or the air supply volume to the blower, the DO target value of DO control, the weak aeration process time in intermittent aeration operation, or a combination thereof.
曝気強度は、原水負荷もしくは酸素消費速度に応じて連続的又は段階的に制御する。 The aeration intensity is controlled continuously or stepwise depending on the raw water load or oxygen consumption rate.
[弱曝気工程風量、最小担体流動曝気風量、最長曝気停止時間、最長弱曝気時間]
本発明では、弱曝気工程における一定の風量を弱曝気工程風量と呼ぶ。この風量は弱曝気工程における処理槽内の液相の最低限の攪拌を維持して生物膜とバルク水との接触を維持するために必要な風量である。弱曝気工程で完全に曝気を停止する場合には、曝気による攪拌がなくなるため、曝気とは別の機械的な攪拌機能が必要となる。本事例では弱曝気工程でも最小限の曝気を行い曝気による攪拌を行うことを想定している。最小担体流動曝気風量は、特に流動床担体を利用する装置において、強曝気工程で担体全体の流動状態を確保し、曝気槽底部への担体の堆積を防ぎ、堆積に伴い低下する生物膜とバルク水との接触面積低下を抑制するとともに、担体の底部への堆積に伴い発生する汚泥の腐敗の問題および硫化水素臭の発生を抑制するために必要な最小限の曝気風量であり、通常弱曝気工程風量よりも多くなる。強曝気工程ではDO制御を行うが、風量が常に最小担体流動曝気風量以上の風量となることを制約条件とした制御を行う。
[Weak aeration process air volume, minimum carrier flow aeration air volume, maximum aeration stop time, maximum weak aeration time]
In the present invention, the constant air volume in the weak aeration process is referred to as the weak aeration process air volume. This air volume is the air volume required to maintain minimum agitation of the liquid phase in the treatment tank in the weak aeration process and to maintain contact between the biofilm and the bulk water. When aeration is completely stopped in the weak aeration process, stirring by aeration disappears, so a mechanical stirring function separate from aeration is required. In this example, it is assumed that even in the weak aeration process, minimal aeration is performed and stirring is performed by aeration. The minimum carrier fluidization aeration air volume is particularly important in equipment that uses fluidized bed carriers, by ensuring the fluidity of the entire carrier during the strong aeration process, preventing the carrier from accumulating at the bottom of the aeration tank, and reducing the biofilm and bulk that decreases with accumulation. This is the minimum amount of aeration air required to suppress the decrease in the contact area with water, as well as the problem of sludge decay and hydrogen sulfide odor caused by accumulation at the bottom of the carrier, and is usually a weak aeration. It will be more than the process air volume. In the strong aeration process, DO control is performed, but the control is performed with the constraint that the air volume is always equal to or greater than the minimum carrier flow aeration air volume.
本事例の間欠曝気の説明では、弱曝気工程と強曝気工程から構成される制御サイクルの合計工程時間をサイクル時間と称し、弱曝気工程の工程時間を弱曝気工程時間、強気工程の工程時間を強曝気工程時間と称する。弱曝気工程時間および強曝気工程におけるDO目標値は、原水負荷に応じて連続的又は段階的に制御する。強曝気工程時間はサイクル時間から弱曝気工程時間を引いた時間として自動的に決定される。また、弱曝気工程時間を調整する場合の最長時間を最長弱曝気工程時間と称する。従って最長弱曝気工程時間はサイクル時間より短い時間となる。 In the explanation of intermittent aeration in this case, the total process time of the control cycle consisting of the weak aeration process and the strong aeration process is referred to as cycle time, and the process time of the weak aeration process is called the weak aeration process time, and the process time of the strong process is called the cycle time. This is called strong aeration process time. The weak aeration step time and the DO target value in the strong aeration step are controlled continuously or stepwise depending on the raw water load. The strong aeration process time is automatically determined as the cycle time minus the weak aeration process time. Further, the longest time when adjusting the weak aeration process time is referred to as the longest weak aeration process time. Therefore, the maximum weak aeration process time is shorter than the cycle time.
曝気と曝気停止を繰り返す間欠曝気方式を採用する流動床担体装置において、曝気停止もしくは弱曝気運転工程では、最小担体流動曝気風量が確保されないため、この工程の間担体の装置底部への堆積が発生する。同工程の時間を一定時間内に制限し残りのサイクル時間を最小担体流動曝気風量以上の風量(本発明では強曝気工程での風量と呼ぶ。)を確保することで堆積した担体の再流動化を図り、担体の底部への長期堆積に伴い発生する汚泥の腐敗の問題および硫化水素臭の発生を抑制する。 In a fluidized bed carrier device that uses an intermittent aeration method that repeats aeration and aeration stop, the minimum amount of carrier fluid aeration air volume is not secured during the aeration stop or weak aeration operation process, so carriers accumulate on the bottom of the device during this process. do. Remobilization of the accumulated carriers is achieved by limiting the time of this process to a certain period of time and ensuring an air volume greater than the minimum carrier flow aeration air volume (referred to as the air volume in the strong aeration process in the present invention) during the remaining cycle time. This aims to suppress the problem of sludge putrefaction and the generation of hydrogen sulfide odor that occur due to long-term accumulation at the bottom of the carrier.
最小担体流動曝気風量又は最長曝気停止時間は、予備実験の結果データや、実機での実運転データなどに基づいて決定することが好ましい。本事例では、原水負荷が高い場合には、弱曝気および強曝気を繰り返す間欠曝気運転は行わず、曝気装置の能力を最大限利用できる連続曝気を行う。原水負荷が低下した場合には、制御表に従い低めのDO目標値を設定し曝気風量を抑制するが、曝気風量が最小担体流動曝気風量に達した段階で、曝気方式を間欠曝気運転に切り替える。連続曝気運転から間欠曝気運転に切り替える操作は風量を直接測定し最小担体流動曝気風量を判断基準として実施することもできるが、下記(a)~(d)のいずれかの指標を監視し指標値と風量との関係を事前評価しておくことにより、指標に基づき曝気風量を推定し、曝気風量≧最小担体流動曝気風量の場合には連続曝気、曝気風量<最小担体流動曝気風量の場合には間欠曝気を行う制御を行うことも可能である。
(a) 原水負荷の計測値が所定値以下
(b) 曝気槽の酸素消費速度の計測値が所定値以下
(c) 連続曝気下で負荷に応じて制御するDO目標値が所定値以下
(d) 連続曝気下で負荷に応じて制御する曝気強度(含む曝気風量)の設定値が所定値以下
It is preferable that the minimum carrier flow aeration air volume or the maximum aeration stop time be determined based on preliminary experiment result data, actual operation data in an actual machine, and the like. In this case, when the raw water load is high, intermittent aeration operation that repeats weak aeration and strong aeration is not performed, but continuous aeration is performed to maximize the capacity of the aeration equipment. When the raw water load decreases, a lower DO target value is set according to the control table to suppress the aeration air volume, but when the aeration air volume reaches the minimum carrier flow aeration air volume, the aeration method is switched to intermittent aeration operation. The operation of switching from continuous aeration operation to intermittent aeration operation can be performed by directly measuring the air flow rate and using the minimum carrier flow aeration air flow rate as a criterion, but by monitoring any of the indicators (a) to (d) below and determining the index value. By pre-evaluating the relationship between airflow and airflow, the aeration airflow is estimated based on the index, and continuous aeration is applied when aeration airflow ≧ minimum carrier flow aeration airflow, and continuous aeration is applied when aeration airflow < minimum carrier flow aeration airflow. It is also possible to control intermittent aeration.
(a) The measured value of the raw water load is below the predetermined value (b) The measured value of the oxygen consumption rate of the aeration tank is below the predetermined value (c) The DO target value controlled according to the load under continuous aeration is below the predetermined value (d ) The set value of the aeration intensity (including aeration air volume), which is controlled according to the load under continuous aeration, is below the specified value.
上記(a)の原水負荷は、流入負荷、槽負荷、担体容積負荷、及び担体表面積負荷のいずれかであることが好ましい。 The raw water load in (a) above is preferably any one of an inflow load, a tank load, a carrier volume load, and a carrier surface area load.
[流動床以外の生物処理]
図1では、流動床担体を用いた生物処理について説明したが、固定床担体やグラニュールを用いる場合も同様の手法で本発明を実施することができる。
[Biological treatment other than fluidized bed]
In FIG. 1, biological treatment using a fluidized bed carrier has been described, but the present invention can be carried out in a similar manner when using a fixed bed carrier or granules.
本実施形態では、有機物を含む排水を、曝気を伴う好気性生物膜処理により処理するときに用いることを説明したが、他にも生物膜を用いた生物学的硝化脱窒処理など、曝気槽にて生物膜を用いた好気処理工程を含む生物処理を行う場合にも同じ手法で本発明を実施することができる。 In this embodiment, it has been explained that it is used when wastewater containing organic matter is treated by aerobic biofilm treatment accompanied by aeration. The present invention can also be carried out using the same method when performing biological treatment including an aerobic treatment step using biofilm.
[実施例1]
図1に示す流動床担体の好気性生物処理装置の運転を行うに際し、原水負荷に追随して随時適切に曝気制御しつつ、処理水水質の程度に応じて表1に示す制御表を切り替えるという制御を行った。酸素拡散性の違いによる5種類の制御表は、上段から下段のそれぞれを制御表名「優良」「良」「標準」「若干悪化」「悪化」で呼称する。酸素拡散性が高い制御表に切り替える判断基準を処理水TOC5mg/L未満とし、この状況の処理水質を「目標以下」と呼称する。酸素拡散性が低い制御表に切り替える判断基準として処理水TOC10mg/L上限より大とし、この状況の処理水質を「悪化」と呼称する。処理水TOC5mg/L以上、10mg/L以下の場合、制御表は変更せず、この状況の処理水質を「良好」と呼称する。手分析による処理水質の確認、制御表変更の判断は毎日1回実施した。運転開始時は上から4番目の「若干低下」制御表を用いて運転制御を開始した。
[Example 1]
When operating the fluidized bed carrier aerobic biological treatment equipment shown in Figure 1, the control table shown in Table 1 is switched depending on the quality of the treated water while appropriately controlling aeration at any time according to the raw water load. controlled. The five types of control tables based on differences in oxygen diffusivity are designated from the top to the bottom by control table names "Excellent,""Good,""Standard,""SlightlyWorsened," and "Worst." The criterion for switching to a control table with high oxygen diffusivity is the treated water TOC of less than 5 mg/L, and the treated water quality in this situation is referred to as "below target". The criterion for switching to a control table with low oxygen diffusivity is that the treated water TOC is greater than the upper limit of 10 mg/L, and the treated water quality in this situation is referred to as "deteriorated". When the treated water TOC is 5 mg/L or more and 10 mg/L or less, the control table is not changed, and the treated water quality in this situation is called "good." Confirmation of treated water quality by manual analysis and decision to change the control table were conducted once a day. At the start of operation, operation control was started using the fourth "slightly lower" control table from the top.
運転開始から90日後に、「若干低下」制御表を利用した曝気制御では処理水TOCが11mg/Lとなり処理水質が「悪化」状況となったので、制御表を「低下」に変更し、翌91日後には処理水TOCが7mg/Lと目標TOCの範囲に回復し「良好」となったので「低下」制御表での曝気制御を継続した。しかし、180日後に制御表「低下」での曝気制御でも処理水質が11mg/Lとなり「悪化」状況となった。「低下」の制御表による曝気制御でも処理の目標範囲を逸脱した状況から、酸素拡散性が許容範囲を逸脱して低下したものと判定し、一時的な強曝気(風量20m3/(反応槽底面積m2・hr))を12時間行って担体表面の生物膜の剥離処理を行った。剥離した生物膜は処理水と共に曝気槽2から排出した。
90 days after the start of operation, the treated water TOC was 11 mg/L under aeration control using the "slightly decreased" control table, and the treated water quality was in a "deteriorating" state, so the control table was changed to "decreased" and the next After 91 days, the TOC of the treated water recovered to 7 mg/L, which was within the target TOC range and became "good", so aeration control using the "decrease" control table was continued. However, after 180 days, the treated water quality became 11 mg/L even under aeration control with the control table set to "Decrease", resulting in a "Deterioration" condition. Since the aeration control according to the "decrease" control table deviated from the treatment target range, it was determined that the oxygen diffusivity had fallen beyond the allowable range, and temporary strong aeration (air volume 20 m 3 / (reaction tank The biofilm on the surface of the carrier was peeled off for 12 hours. The detached biofilm was discharged from the
剥離処理後は「低下」の制御表を利用した状態で曝気制御を継続した。翌181日後、処理水TOCが3mg/Lまで改善し「目標以下」状態となったため、制御表を「若干低下」に変更、182日後、処理水TOCがなお3mg/Lで「目標以下」状態であることが確認できたため、制御表を「標準」に変更、183日後、処理水TOCが6mg/Lで「良好」であることが確認できたため、以降「標準」の制御表による曝気制御を継続した。結果、生物膜の剥離処理により制御表は「低下」から「標準」に切替わっており、本発明の生物膜剥離操作により微生物担体の酸素拡散性が回復していることが確認された。 After the stripping process, aeration control was continued using the "decrease" control table. The next day, 181 days later, the treated water TOC improved to 3 mg/L and was now "below the target", so the control table was changed to "slightly decreased", and 182 days later, the treated water TOC was still 3 mg/L and was "below the target". Since it was confirmed that the control table was ``standard,'' the control table was changed to ``standard.'' After 183 days, it was confirmed that the TOC of the treated water was 6 mg/L, which was ``good''. Continued. As a result, the control table was switched from "decreased" to "standard" by the biofilm peeling process, and it was confirmed that the oxygen diffusivity of the microbial carrier was restored by the biofilm peeling process of the present invention.
2 曝気槽
3,3a,3b,3c 散気管
4,17 ブロア
12 撹拌水槽
13 撹拌機
15 選別装置
2
Claims (4)
以下のいずれか1つ以上を満たすときに、担体の生物膜保持量低減処理を行うことを特徴とする好気性生物膜処理方法。
i) 酸素拡散性指標の算出値(担体充填容積あたりの原水負荷・曝気条件に対する処理水水質の変化からシミュレーション計算により算出された値)が所定の下限値を下回る。
iv) 原水負荷あたりの曝気風量が所定の上限値を上回る状況で処理水の所定水質項目が所定の目標値を上回る。 In a method for aerobic biofilm treatment of substances to be removed in raw water using a biofilm retention carrier filled in the aeration tank in an aeration tank to which raw water is supplied,
An aerobic biofilm treatment method, characterized in that a treatment for reducing the amount of biofilm retained on a carrier is performed when any one or more of the following is satisfied.
i) The calculated value of the oxygen diffusivity index (value calculated by simulation calculation from changes in treated water quality with respect to raw water load per carrier filling volume and aeration conditions) is below a predetermined lower limit value .
iv) A specified water quality item of treated water exceeds a specified target value in a situation where the aeration air volume per raw water load exceeds a specified upper limit .
以下のいずれか1つ以上を満たすときに作動する、担体の生物膜保持量低減手段を有することを特徴とする好気性生物膜処理装置。
i) 酸素拡散性指標の算出値(担体充填容積あたりの原水負荷・曝気条件に対する処理水水質の変化からシミュレーション計算により算出された値)が所定の下限値を下回る。
iv) 原水負荷あたりの曝気風量が所定の上限値であるときにおける処理水の所定水質項目が所定の目標値を上回る。 An aerobic biofilm treatment device having an aeration tank to which raw water is supplied, a biofilm holding carrier filled in the aeration tank, and an aeration device for aerating the aeration tank,
An aerobic biofilm treatment device characterized by having a means for reducing the amount of biofilm retained on a carrier, which is activated when any one or more of the following is satisfied.
i) The calculated value of the oxygen diffusivity index (value calculated by simulation calculation from changes in treated water quality with respect to raw water load per carrier filling volume and aeration conditions) is below a predetermined lower limit value .
iv) A predetermined water quality item of the treated water exceeds a predetermined target value when the aeration air volume per raw water load is a predetermined upper limit value .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020072936A JP7435196B2 (en) | 2020-04-15 | 2020-04-15 | Aerobic biofilm treatment method and device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020072936A JP7435196B2 (en) | 2020-04-15 | 2020-04-15 | Aerobic biofilm treatment method and device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2021169062A JP2021169062A (en) | 2021-10-28 |
JP7435196B2 true JP7435196B2 (en) | 2024-02-21 |
Family
ID=78149802
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020072936A Active JP7435196B2 (en) | 2020-04-15 | 2020-04-15 | Aerobic biofilm treatment method and device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7435196B2 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002336885A (en) | 2001-05-21 | 2002-11-26 | Kurita Water Ind Ltd | Method for aerobic treatment of waste water |
JP2006289311A (en) | 2005-04-14 | 2006-10-26 | Japan Organo Co Ltd | Method for treating drainage |
JP2016193386A (en) | 2015-03-31 | 2016-11-17 | オルガノ株式会社 | Method for forming aerobic granule, apparatus for forming aerobic granule, wastewater treatment method, and wastewater treatment apparatus |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5422703B2 (en) * | 1975-03-14 | 1979-08-08 | ||
JPS60137491A (en) * | 1983-12-27 | 1985-07-22 | Ebara Infilco Co Ltd | Process for biological treatment |
JPH06206087A (en) * | 1993-01-12 | 1994-07-26 | Shimizu Corp | Circulating fluidized bed type treatment of waste liquid and control of air amount for aeration in the treatment |
JPH07987A (en) * | 1993-06-16 | 1995-01-06 | Tonen Corp | Waste water treating device |
JP3836573B2 (en) * | 1997-07-28 | 2006-10-25 | 前澤工業株式会社 | Fluidized bed wastewater treatment equipment |
-
2020
- 2020-04-15 JP JP2020072936A patent/JP7435196B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002336885A (en) | 2001-05-21 | 2002-11-26 | Kurita Water Ind Ltd | Method for aerobic treatment of waste water |
JP2006289311A (en) | 2005-04-14 | 2006-10-26 | Japan Organo Co Ltd | Method for treating drainage |
JP2016193386A (en) | 2015-03-31 | 2016-11-17 | オルガノ株式会社 | Method for forming aerobic granule, apparatus for forming aerobic granule, wastewater treatment method, and wastewater treatment apparatus |
Also Published As
Publication number | Publication date |
---|---|
JP2021169062A (en) | 2021-10-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9475714B2 (en) | Method and system for treating waste material | |
JP2008012425A (en) | Method and apparatus for removing phosphorus and nitrogen from sewage | |
Rodgers et al. | A pilot plant study using a vertically moving biofilm process to treat municipal wastewater | |
JP4304453B2 (en) | Operation control device for nitrogen removal system | |
JP7435196B2 (en) | Aerobic biofilm treatment method and device | |
WO2021200968A1 (en) | Aerobic organism treatment method and device | |
JP6619242B2 (en) | Water treatment system | |
KR20220024245A (en) | Integrated control system for sewage treatment plant | |
WO2021199885A1 (en) | Aerobic biofilm treatment method and device | |
CN115335334A (en) | Aerobic biofilm treatment method and device | |
JP7347304B2 (en) | Aerobic biofilm treatment method and device | |
JPH07136687A (en) | Operation control method for modified active sludge circulation process in low water temperature period | |
JP4620391B2 (en) | Sewage treatment equipment | |
WO2021240968A1 (en) | Aerobic biological processing method and device | |
JP2005028217A (en) | Water cleaning system for lake and marsh, river, and the like | |
KR20150064574A (en) | Energy-saving system for treatment of wastewater and method for control of the same | |
JP2009165959A (en) | Treatment state judging method of aeration tank and wastewater treatment control system using it | |
JPH05154496A (en) | Controlling method for operation in anaerobic and aerobic activated sludge treating equipment | |
JP3444021B2 (en) | Control method and control device for oxidation ditch type water treatment apparatus | |
JPH0788490A (en) | Method and apparatus for treating waste water | |
JP7559355B2 (en) | Aeration tank maintenance management method and device | |
JP5205760B2 (en) | Aeration tank control method | |
Heidman et al. | Pilot-plant evaluation of porous biomass supports | |
KR101229455B1 (en) | System for managing water quality of discharging water | |
JP4146491B2 (en) | Water treatment using activated sludge |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20230323 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20230710 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230801 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20230922 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20231031 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20240109 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20240122 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7435196 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |