[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2015080765A - Pure water production apparatus - Google Patents

Pure water production apparatus Download PDF

Info

Publication number
JP2015080765A
JP2015080765A JP2013220140A JP2013220140A JP2015080765A JP 2015080765 A JP2015080765 A JP 2015080765A JP 2013220140 A JP2013220140 A JP 2013220140A JP 2013220140 A JP2013220140 A JP 2013220140A JP 2015080765 A JP2015080765 A JP 2015080765A
Authority
JP
Japan
Prior art keywords
filled
chamber
pure water
exchanger
membrane separation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013220140A
Other languages
Japanese (ja)
Other versions
JP6181510B2 (en
Inventor
健太 合庭
Kenta Aiba
健太 合庭
勇規 中村
Yuki Nakamura
勇規 中村
俊介 大嶋
Shunsuke Oshima
俊介 大嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP2013220140A priority Critical patent/JP6181510B2/en
Publication of JP2015080765A publication Critical patent/JP2015080765A/en
Application granted granted Critical
Publication of JP6181510B2 publication Critical patent/JP6181510B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Physical Water Treatments (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

PROBLEM TO BE SOLVED: To effectively exhibit treatment performance of an electric deionized water production device in a pure water production apparatus formed by combining RO membrane separation devices, a decarbonation device, and the electric deionized water production device.SOLUTION: A pure water production apparatus 1, which produces pure water by sequential treatment of water to be treated, includes a plurality of reverse osmosis membrane separation devices 2, 4, a decarbonation device 3, and an electric deionized water production device 10. The plurality of reverse osmosis membrane separation devices 2, 4 comprises a first reverse osmosis membrane separation device 2 and a second reverse osmosis membrane separation device 4. The decarbonation device 3 is serially connected to the first and second reverse osmosis membrane separation devices 2, 4 between them. The electric deionized water production device 10 is connected to the downstream side of the plurality of reverse osmosis membrane separation devices 2, 4 with respect to the flow direction of the water to be treated.

Description

本発明は、純水製造装置に関する。   The present invention relates to a pure water production apparatus.

工業用水、井水、市水などの原水から純水を製造する方法として、逆浸透(RO)膜分離装置を用いる方法が知られている。この方法では、原水に除濁や脱塩素などの前処理を施した後、その水をRO膜に通すことで、透過水(純水)が得られている。しかしながら、RO膜分離装置だけを用いる方法では、半導体や医薬品などの製造分野で求められるグレードの高い純水を製造することは困難である。そこで、このような製造分野では、RO膜で分離された透過水をさらにイオン交換体に通水することで、脱イオン水(純水)を製造する純水製造装置が用いられている。すなわち、RO膜分離装置と脱イオン水製造装置とを組み合わせた純水製造装置が用いられている。   As a method for producing pure water from raw water such as industrial water, well water, city water, etc., a method using a reverse osmosis (RO) membrane separator is known. In this method, permeated water (pure water) is obtained by subjecting raw water to pretreatment such as turbidity and dechlorination and then passing the water through an RO membrane. However, with the method using only the RO membrane separator, it is difficult to produce high-grade pure water required in the field of manufacturing semiconductors and pharmaceuticals. Therefore, in such a manufacturing field, a pure water production apparatus is used that produces deionized water (pure water) by further passing permeated water separated by the RO membrane through an ion exchanger. That is, a pure water production apparatus in which an RO membrane separation apparatus and a deionized water production apparatus are combined is used.

近年、脱イオン水製造装置として、酸やアルカリといった薬剤によるイオン交換体の再生が不要な電気式脱イオン水製造装置が実用化されている。この装置では、イオン交換体のイオン交換基が飽和して脱塩性能が低下したときに、イオン交換基に吸着したカチオンやアニオンを水素イオンや水酸化物イオンで置き換えるために、酸やアルカリといった薬剤を使用する必要がなくなる。そのため、このような電気式脱イオン水製造装置を上述の純水製造装置に用いることで、薬剤の使用量を抑えて、より純度の高い純水を製造することが可能となる。   In recent years, an electrical deionized water production apparatus that does not require regeneration of an ion exchanger with a chemical such as acid or alkali has been put to practical use as a deionized water production apparatus. In this apparatus, when the ion exchange group of the ion exchanger is saturated and the desalting performance is lowered, in order to replace cations and anions adsorbed on the ion exchange group with hydrogen ions or hydroxide ions, acid or alkali is used. There is no need to use drugs. Therefore, by using such an electric deionized water production apparatus for the above-described pure water production apparatus, it is possible to produce pure water with higher purity while suppressing the amount of chemicals used.

一方で、電気式脱イオン水製造装置には、一般に、シリカや炭酸といった弱酸性成分の除去性能が低いという問題がある。例えば、被処理水中にシリカや炭酸が非常に高い濃度で存在すると、それらが十分に除去されずに処理水(脱イオン水)中にリークしてしまうことがある。そのため、原水の水質によっては、電気式脱イオン水製造装置に対する負荷を低減することが必要になる。そこで、多くの純水製造装置では、電気式脱イオン水製造装置の上流側に、複数のRO膜分離装置を接続するとともに、被処理水を脱炭酸処理する脱炭酸手段を接続した構成が採用されている(例えば、特許文献1参照)。   On the other hand, the electric deionized water production apparatus generally has a problem that the performance of removing weakly acidic components such as silica and carbonic acid is low. For example, if silica or carbonic acid is present at a very high concentration in the water to be treated, they may not be sufficiently removed and leak into the treated water (deionized water). Therefore, depending on the quality of raw water, it is necessary to reduce the load on the electric deionized water production apparatus. Therefore, many pure water production systems employ a configuration in which a plurality of RO membrane separators are connected to the upstream side of the electrical deionized water production system, and decarbonation means for decarboxylating the water to be treated is connected. (For example, refer to Patent Document 1).

ところで、脱炭酸手段には、被処理水が酸性でないと炭酸成分を除去しにくいという特性がある。また、脱炭酸手段には、全有機炭素(TOC)を高濃度で含む水を処理する場合にスライムが繁殖しやすいというデメリットもある。このような観点から、複数のRO膜分離装置と脱炭酸手段と電気式脱イオン水製造装置とを組み合わせた純水製造装置では、直列に接続された複数のRO膜分離装置の下流側に脱炭酸手段が接続され、その下流側に電気式脱イオン水製造装置が接続された構成が好適に用いられている。RO膜分離装置により分離された透過水は、主成分として遊離炭酸を含んでいる。そのため、上述の構成によれば、複数のRO膜分離装置を通過することにより酸性に傾いた被処理水を、脱炭酸手段に供給することができる。また、TOCも複数のRO膜分離装置によって十分に除去されるため、脱炭酸手段にスライムが発生するという問題も回避される。さらには、脱炭酸手段の処理水量が少なくて済むため、小型化によるコスト低減も実現することができる。   By the way, the decarbonation means has a characteristic that it is difficult to remove the carbonic acid component unless the water to be treated is acidic. In addition, the decarbonation means has a demerit that slime is likely to propagate when water containing a high concentration of total organic carbon (TOC) is treated. From this point of view, in a pure water production apparatus that combines a plurality of RO membrane separators, decarbonation means, and electric deionized water production apparatus, dewatering is performed downstream of the plurality of RO membrane separation apparatuses connected in series. A structure in which a carbonic acid means is connected and an electric deionized water production apparatus is connected to the downstream side is suitably used. The permeated water separated by the RO membrane separator contains free carbonic acid as a main component. Therefore, according to the above-described configuration, the water to be treated that is inclined to be acidic by passing through a plurality of RO membrane separation devices can be supplied to the decarbonation means. Further, since the TOC is also sufficiently removed by the plurality of RO membrane separation devices, the problem that slime is generated in the decarbonation means is also avoided. Furthermore, since the amount of treated water in the decarbonation means is small, it is possible to realize cost reduction by downsizing.

特開2004−167423号公報JP 2004-167423 A

このように、複数のRO膜分離装置と脱炭酸手段と電気式脱イオン水製造装置とを組み合わせた純水製造装置では、複数のRO膜分離装置と脱炭酸手段と電気式脱イオン水製造装置とがこの順で接続された構成が好適に用いられている。しかしながら、このような構成では、上述したように、脱炭酸手段の特性や問題は考慮されているものの、電気式脱イオン水製造装置の処理性能については全く考慮されていない。そのため、電気式脱イオン水製造装置の処理性能を有効に発揮させることができず、所望の処理水質が得られない場合がある。   Thus, in the pure water manufacturing apparatus which combined several RO membrane separation apparatus, the decarbonation means, and the electrical deionized water manufacturing apparatus, several RO membrane separation apparatus, a decarbonation means, and an electrical deionized water manufacturing apparatus A configuration in which and are connected in this order is preferably used. However, in such a configuration, as described above, the characteristics and problems of the decarbonation means are considered, but the treatment performance of the electric deionized water production apparatus is not considered at all. For this reason, the treatment performance of the electric deionized water production apparatus cannot be effectively exhibited, and a desired treated water quality may not be obtained.

そこで、本発明の目的は、複数のRO膜分離装置と脱炭酸装置と電気式脱イオン水製造装置とを組み合わせた純水製造装置において、電気式脱イオン水製造装置の処理性能を有効に発揮させる構成を提供することである。   Therefore, an object of the present invention is to effectively demonstrate the processing performance of an electric deionized water production apparatus in a pure water production apparatus that combines a plurality of RO membrane separation devices, a decarbonation apparatus, and an electric deionized water production apparatus. It is to provide a configuration to be made.

上述した目的を達成するために、本発明の純水製造装置は、被処理水を順次処理して純水を製造する純水製造装置であって、第1の逆浸透膜分離装置と第2の逆浸透膜分離装置とを含み、直列に接続された複数の逆浸透膜分離装置と、第1の逆浸透膜分離装置と第2の逆浸透膜分離装置との間で、第1の逆浸透膜分離装置と第2の逆浸透膜分離装置とに直列に接続された脱炭酸装置と、被処理水の流れ方向に対して複数の逆浸透膜分離装置の下流側に接続された電気式脱イオン水製造装置と、を有している。   In order to achieve the above-described object, a pure water production apparatus of the present invention is a pure water production apparatus for producing pure water by sequentially treating water to be treated, which is a first reverse osmosis membrane separation device and a second one. Between the plurality of reverse osmosis membrane separation devices connected in series and the first reverse osmosis membrane separation device and the second reverse osmosis membrane separation device. A decarboxylation device connected in series to the osmosis membrane separation device and the second reverse osmosis membrane separation device, and an electric type connected to the downstream side of the plurality of reverse osmosis membrane separation devices with respect to the flow direction of the water to be treated A deionized water production apparatus.

以上、本発明によれば、複数のRO膜分離装置と脱炭酸装置と電気式脱イオン水製造装置とを組み合わせた純水製造装置において、電気式脱イオン水製造装置の処理性能を有効に発揮させることができる。   As mentioned above, according to this invention, in the pure water manufacturing apparatus which combined the several RO membrane separator, the decarbonation apparatus, and the electrical deionized water manufacturing apparatus, the processing performance of an electrical deionized water manufacturing apparatus is exhibited effectively. Can be made.

本発明の第1の実施形態による純水製造装置の構成を示すブロック図である。It is a block diagram which shows the structure of the pure water manufacturing apparatus by the 1st Embodiment of this invention. 本実施形態の電気式脱イオン水製造装置の構成を示す概略図である。It is the schematic which shows the structure of the electrical deionized water manufacturing apparatus of this embodiment. 本発明の第2の実施形態による電気式脱イオン水製造装置の構成を示す概略図である。It is the schematic which shows the structure of the electrical deionized water manufacturing apparatus by the 2nd Embodiment of this invention. 本発明の第3の実施形態による電気式脱イオン水製造装置の構成を示す概略図である。It is the schematic which shows the structure of the electrical deionized water manufacturing apparatus by the 3rd Embodiment of this invention.

以下、図面を参照して、本発明の実施の形態について説明する。   Embodiments of the present invention will be described below with reference to the drawings.

(第1の実施形態)
本発明の第1の実施形態による純水製造装置の構成について説明する。図1は、本実施形態の純水製造装置の構成を示すブロック図である。
(First embodiment)
The structure of the pure water manufacturing apparatus according to the first embodiment of the present invention will be described. FIG. 1 is a block diagram showing the configuration of the pure water production apparatus of this embodiment.

純水製造装置1は、2つの逆浸透(RO)膜分離装置2,4と、脱炭酸装置3と、電気式脱イオン水製造装置10と、を有している。本実施形態では、第1のRO膜分離装置2と、脱炭酸装置3と、第2のRO膜分離装置4と、電気式脱イオン水製造装置10とが、被処理水の流れ方向にこの順で配置されている。すなわち、純水製造装置1は、第1のRO膜分離装置2と、第1のRO膜分離装置2の下流側に接続された脱炭酸装置3と、脱炭酸装置3の下流側に接続された第2のRO膜分離装置4と、第2のRO膜分離装置4の下流側に接続された電気式脱イオン水製造装置10と、を有している。さらに、純水製造装置1は、第1のRO膜分離装置2の上流側に接続され、除濁や脱塩素などを行う前処理装置(図示せず)を有している。   The pure water production apparatus 1 includes two reverse osmosis (RO) membrane separation apparatuses 2 and 4, a decarboxylation apparatus 3, and an electric deionized water production apparatus 10. In the present embodiment, the first RO membrane separation device 2, the decarboxylation device 3, the second RO membrane separation device 4, and the electric deionized water production device 10 are arranged in the direction of the water to be treated. Arranged in order. That is, the pure water production apparatus 1 is connected to the first RO membrane separation device 2, the decarboxylation device 3 connected to the downstream side of the first RO membrane separation device 2, and the downstream side of the decarbonation device 3. The second RO membrane separation device 4 and the electric deionized water production device 10 connected to the downstream side of the second RO membrane separation device 4 are provided. Furthermore, the pure water production apparatus 1 has a pretreatment apparatus (not shown) that is connected to the upstream side of the first RO membrane separation apparatus 2 and performs turbidity, dechlorination, and the like.

第1のRO膜分離装置2には、被処理水として、原水を前処理装置により前処理したものが流入するようになっている。第1のRO膜分離装置2は、その被処理水を、不純物を含む濃縮水と、不純物が除去された透過水とに分離するRO膜を有している。   In the first RO membrane separation device 2, raw water pretreated by a pretreatment device flows as treated water. The first RO membrane separation device 2 has an RO membrane that separates the water to be treated into concentrated water containing impurities and permeated water from which impurities have been removed.

脱炭酸装置3には、被処理水として、第1のRO膜分離装置2で分離された透過水が流入するようになっている。脱炭酸装置3は、その被処理水を脱炭酸処理して、被処理水に含まれる炭酸ガスを除去する機能を有している。このような脱炭酸装置3としては、膜脱気装置、脱炭酸塔等が挙げられ、膜脱気装置が好適に用いられる。   Permeated water separated by the first RO membrane separation device 2 flows into the decarbonation device 3 as water to be treated. The decarboxylation device 3 has a function of decarboxylating the water to be treated and removing carbon dioxide contained in the water to be treated. Examples of such a decarboxylation device 3 include a membrane deaeration device, a decarbonation tower, and the like, and a membrane deaeration device is preferably used.

第2のRO膜分離装置4には、被処理水として、脱炭酸装置3により脱炭酸処理された水が流入するようになっている。第2のRO膜分離装置4は、その被処理水を、不純物を含む濃縮水と、不純物が除去された透過水とに分離するRO膜を有している。   The water decarboxylated by the decarboxylation device 3 flows into the second RO membrane separation device 4 as the water to be treated. The second RO membrane separation device 4 has an RO membrane that separates the water to be treated into concentrated water containing impurities and permeated water from which impurities have been removed.

電気式脱イオン水製造装置10には、被処理水として、第2のRO膜分離装置4で分離された透過水が流入するようになっている。電気式脱イオン水製造装置10は、電気泳動と電気透析とを組み合わせた装置であり、イオン交換体による被処理水の脱イオン化(脱塩)処理と、イオン交換体の再生処理とを同時に行う装置である。   The permeated water separated by the second RO membrane separation device 4 flows into the electric deionized water production apparatus 10 as the water to be treated. The electric deionized water production apparatus 10 is a combination of electrophoresis and electrodialysis, and simultaneously performs deionization (desalting) treatment of water to be treated with an ion exchanger and regeneration treatment of the ion exchanger. Device.

ここで、本実施形態の電気式脱イオン水製造装置の構成について説明する。図2は、本実施形態の電気式脱イオン水製造装置の構成を示す概略図である。   Here, the configuration of the electric deionized water production apparatus of the present embodiment will be described. FIG. 2 is a schematic diagram showing the configuration of the electric deionized water production apparatus of the present embodiment.

電気式脱イオン水製造装置10は、陽極11を備えた陽極室E1と、陰極12を備えた陰極室E2と、陽極室E1と陰極室E2との間に設けられた脱塩室Dと、脱塩室Dの両側に位置する一対の濃縮室C1,C2であって、脱塩室Dの陽極11側で、アニオン交換膜a1を介して脱塩室Dと隣接する陽極側濃縮室C1と、脱塩室Dの陰極12側で、カチオン交換膜c1を介して脱塩室Dと隣接する陰極側濃縮室C2とを含む一対の濃縮室C1,C2と、を有している。陽極側濃縮室C1は、カチオン交換膜c2を介して陽極室E1と隣接し、陰極側濃縮室C2は、アニオン交換膜a2を介して陰極室E2と隣接している。   The electric deionized water production apparatus 10 includes an anode chamber E1 including an anode 11, a cathode chamber E2 including a cathode 12, a demineralization chamber D provided between the anode chamber E1 and the cathode chamber E2, A pair of concentrating chambers C1, C2 located on both sides of the desalting chamber D, on the anode 11 side of the desalting chamber D, and an anode side concentrating chamber C1 adjacent to the desalting chamber D via the anion exchange membrane a1; On the cathode 12 side of the desalting chamber D, a pair of concentrating chambers C1, C2 including the desalting chamber D and the adjacent cathode-side concentrating chamber C2 via the cation exchange membrane c1 are provided. The anode enrichment chamber C1 is adjacent to the anode chamber E1 via the cation exchange membrane c2, and the cathode enrichment chamber C2 is adjacent to the cathode chamber E2 via the anion exchange membrane a2.

脱塩室Dには、カチオン交換体とアニオン交換体との混合物が充填されている。すなわち、カチオン交換体とアニオン交換体とがいわゆる混床形態で充填されている。カチオン交換体としては、カチオン交換樹脂、カチオン交換繊維、モノリス状多孔質カチオン交換体等が挙げられ、最も汎用的なカチオン交換樹脂が好適に用いられる。カチオン交換体の種類としては、弱酸性カチオン交換体、強酸性カチオン交換体等が挙げられる。アニオン交換体としては、アニオン交換樹脂、アニオン交換繊維、モノリス状多孔質アニオン交換体等が挙げられ、最も汎用的なアニオン交換樹脂が好適に用いられる。脱塩室Dには、第2のRO膜分離装置4からの流路が接続され、第2のRO膜分離装置4で分離された透過水が流入するようになっている。   The desalting chamber D is filled with a mixture of a cation exchanger and an anion exchanger. That is, the cation exchanger and the anion exchanger are packed in a so-called mixed bed form. Examples of the cation exchanger include a cation exchange resin, a cation exchange fiber, and a monolithic porous cation exchanger, and the most versatile cation exchange resin is preferably used. Examples of the cation exchanger include weakly acidic cation exchangers and strongly acidic cation exchangers. Examples of the anion exchanger include anion exchange resins, anion exchange fibers, and monolithic porous anion exchangers, and the most general anion exchange resin is preferably used. A flow path from the second RO membrane separation device 4 is connected to the desalting chamber D, and the permeated water separated by the second RO membrane separation device 4 flows therein.

陽極側濃縮室C1および陰極側濃縮室C2は、脱塩室Dから排出されるアニオン成分およびカチオン成分をそれぞれ取り込み、それらを系外に放出するために設けられている。本実施形態では、濃縮水として、各濃縮室C1,C2に上記透過水の一部が流入するようになっている。濃縮水としては、これに限定されず、別の供給ラインによって供給することもできる。電気式脱イオン水製造装置1の電気抵抗を抑えるために、各濃縮室C1,C2にはイオン交換体が充填されていてもよい。   The anode-side enrichment chamber C1 and the cathode-side enrichment chamber C2 are provided for taking in the anion component and the cation component discharged from the desalting chamber D and releasing them out of the system. In the present embodiment, as the concentrated water, a part of the permeated water flows into each of the concentration chambers C1 and C2. The concentrated water is not limited to this, and can be supplied by another supply line. In order to suppress the electric resistance of the electric deionized water production apparatus 1, each of the concentrating chambers C1 and C2 may be filled with an ion exchanger.

陽極室E1には、金属の網状体あるいは板状体からなる陽極11が収容されている。陰極室E2には、金属の網状体あるいは板状体からなる陰極12が収容されている。陽極室E1および陰極室E2には、電極水として、上記透過水の一部が流入するようになっている。電気式脱イオン水製造装置1の電気抵抗を抑えるために、陽極室E1および陰極室E2にはイオン交換体が充填されていることが好ましい。   The anode chamber E1 accommodates an anode 11 made of a metal net or plate. The cathode chamber E2 contains a cathode 12 made of a metal net or plate. A part of the permeated water flows into the anode chamber E1 and the cathode chamber E2 as electrode water. In order to suppress the electric resistance of the electric deionized water production apparatus 1, it is preferable that the anode chamber E1 and the cathode chamber E2 are filled with an ion exchanger.

次に、引き続き図2を参照して、本実施形態の電気式脱イオン水製造装置の動作について簡潔に説明する。   Next, the operation of the electric deionized water production apparatus of this embodiment will be briefly described with reference to FIG.

あらかじめ、第2のRO膜分離装置4からの透過水の一部を、濃縮水として、陽極側濃縮室C1および陰極側濃縮室C2に供給しておく。同様に、上記透過水の一部を、電極水として、陽極室E1および陰極室E2に供給しておく。陽極11、陰極12間には所定の電圧を印加しておく。   A part of the permeated water from the second RO membrane separation device 4 is supplied in advance to the anode side concentration chamber C1 and the cathode side concentration chamber C2 as concentrated water. Similarly, a part of the permeated water is supplied to the anode chamber E1 and the cathode chamber E2 as electrode water. A predetermined voltage is applied between the anode 11 and the cathode 12.

この状態で、被処理水として、第2のRO膜分離装置4からの透過水を脱塩室Dに流入させる。被処理水中のカチオン成分およびアニオン成分は、被処理水が脱塩室Dを通過する際に、脱塩室Dに充填されたカチオン交換体およびアニオン交換体にそれぞれ吸着されて除去される。こうして、カチオン成分およびアニオン成分が除去された被処理水は、処理水(純水)として、電気式脱イオン水製造装置1の外へと排出される。   In this state, permeated water from the second RO membrane separation device 4 is caused to flow into the desalting chamber D as water to be treated. When the water to be treated passes through the desalting chamber D, the cation component and the anion component in the water to be treated are adsorbed and removed by the cation exchanger and the anion exchanger filled in the desalting chamber D, respectively. Thus, the water to be treated from which the cation component and the anion component have been removed is discharged out of the electric deionized water production apparatus 1 as treated water (pure water).

一方で、脱塩室Dでは、水が水素イオン(H)と水酸化物イオン(OH)とに解離する水解離反応が、連続的に進行している。Hはカチオン交換体に吸着したカチオン成分と交換され、OHはアニオン交換体に吸着したアニオン成分と交換される。こうして、脱塩室Dに充填されたカチオン交換体およびアニオン交換体がそれぞれ再生される。 On the other hand, in the desalting chamber D, a water dissociation reaction in which water is dissociated into hydrogen ions (H + ) and hydroxide ions (OH ) proceeds continuously. H + is exchanged with a cation component adsorbed on the cation exchanger, and OH is exchanged with an anion component adsorbed on the anion exchanger. Thus, the cation exchanger and the anion exchanger filled in the desalting chamber D are regenerated.

脱塩室Dのカチオン交換体から遊離したカチオン成分は、陽極11、陰極12間の電位差によって、陰極12側に引き寄せられ、カチオン交換膜c1を通過して陰極側濃縮室C2に移動する。陰極側濃縮室C2に移動したカチオン成分は、陰極側濃縮室C2に供給される透過水(濃縮水)に取り込まれ、濃縮水と共に電気式脱イオン水製造装置1の外へと排出される。脱塩室Dのアニオン交換体から遊離したアニオン成分は、陽極11、陰極12間の電位差によって、陽極側11に引き寄せられ、アニオン交換膜a1を通過して陽極側濃縮室C1に移動する。陽極側濃縮室C1に移動したアニオン成分は、陽極側濃縮室C1に供給される透過水(濃縮水)に取り込まれ、濃縮水と共に電気式脱イオン水製造装置1の外へと排出される。   The cation component liberated from the cation exchanger in the desalting chamber D is attracted to the cathode 12 side by the potential difference between the anode 11 and the cathode 12, passes through the cation exchange membrane c1, and moves to the cathode concentration chamber C2. The cation component that has moved to the cathode side concentrating chamber C2 is taken into the permeate (concentrated water) supplied to the cathode side concentrating chamber C2, and is discharged out of the electric deionized water production apparatus 1 together with the concentrated water. The anion component liberated from the anion exchanger in the desalting chamber D is attracted to the anode side 11 by the potential difference between the anode 11 and the cathode 12, passes through the anion exchange membrane a1, and moves to the anode concentration chamber C1. The anion component that has moved to the anode side concentrating chamber C1 is taken into the permeated water (concentrated water) supplied to the anode side concentrating chamber C1, and is discharged out of the electric deionized water production apparatus 1 together with the concentrated water.

上述したように、本実施形態の純水製造装置1では、第1のRO膜分離装置2と脱炭酸装置3と第2のRO膜分離装置4とがこの順で直列に接続され、その下流側に電気式脱イオン水製造装置10が接続されている。各装置がこのように配置されていることで、後述する実施例で示すように、電気式脱イオン水製造装置の処理性能を有効に発揮させることができる。   As described above, in the pure water production apparatus 1 of the present embodiment, the first RO membrane separation device 2, the decarboxylation device 3, and the second RO membrane separation device 4 are connected in series in this order, and downstream thereof. An electric deionized water production apparatus 10 is connected to the side. By arranging each device in this way, the treatment performance of the electrical deionized water production device can be effectively exhibited as shown in the examples described later.

なお、上述した実施形態では、電気式脱イオン水製造装置の上流側には、2つのRO膜分離装置が設けられていたが、例えば、被処理水に含まれる不純物の量や種類に応じて、3つ以上のRO膜分離装置が設けられていてもよい。その場合にも、3つ以上のRO膜分離装置は、直列に接続され、脱炭酸装置は、3つ以上のRO膜分離装置のうち2つのRO膜分離装置の間で、それらに直列に接続されていることが好ましい。また、脱炭酸装置は、処理水量を少なくするという観点から、最も下流側のRO膜分離装置と次に下流側のRO膜分離装置との間に配置されていることがより好ましい。   In the above-described embodiment, two RO membrane separation devices are provided on the upstream side of the electric deionized water production device. For example, depending on the amount and type of impurities contained in the water to be treated. Three or more RO membrane separation devices may be provided. Even in that case, three or more RO membrane separators are connected in series, and the decarboxylation device is connected in series between two RO membrane separators among the three or more RO membrane separators. It is preferable that Further, from the viewpoint of reducing the amount of treated water, the decarboxylation device is more preferably disposed between the most downstream RO membrane separation device and the next downstream RO membrane separation device.

また、上述した実施形態では、電気式脱イオン水製造装置には、脱塩室が1つだけ設けられていたが、脱塩室は2つ以上設けられていてもよい。この場合、脱塩室と濃縮室とは、カチオン交換膜またはアニオン交換膜を介して交互に設けられ、最も陽極側に位置する濃縮室が陽極室と隣接し、最も陰極側に位置する濃縮室が陰極室と隣接することになる。一方で、陽極室に隣接する濃縮室を省略して、陽極室と脱塩室とを隣接させたり、陰極室に隣接する濃縮室を省略して、陰極室と脱塩室とを隣接させたりすることもできる。この場合、陽極室および陰極室が濃縮室を兼ねることになり、すなわち、陽極室または陰極室に隣接する脱塩室で除去された被処理水中のイオン成分が、陽極室または陰極室に移動して、電極水と共に外部に排出されるようになる。このような構成は、脱塩室の数にかかわらず適用可能であり、脱塩室が1つだけ設けられている図2に示す構成にも適用可能である。いずれの場合であっても、各脱塩室は、陽極と陰極との間に位置し、陽極側のアニオン交換膜と陰極側のカチオン交換膜とで区画されている。   Further, in the above-described embodiment, the electric deionized water production apparatus is provided with only one demineralization chamber, but two or more demineralization chambers may be provided. In this case, the desalting chamber and the concentrating chamber are provided alternately via a cation exchange membrane or an anion exchange membrane, the concentrating chamber located closest to the anode side is adjacent to the anode chamber, and the concentrating chamber located closest to the cathode side. Will be adjacent to the cathode chamber. On the other hand, the concentration chamber adjacent to the anode chamber is omitted, the anode chamber and the desalination chamber are adjacent, or the concentration chamber adjacent to the cathode chamber is omitted, and the cathode chamber and the desalination chamber are adjacent. You can also In this case, the anode chamber and the cathode chamber also serve as the concentration chamber, that is, ionic components in the water to be treated removed in the desalting chamber adjacent to the anode chamber or the cathode chamber move to the anode chamber or the cathode chamber. As a result, it is discharged to the outside together with the electrode water. Such a configuration is applicable regardless of the number of desalting chambers, and is also applicable to the configuration shown in FIG. 2 in which only one desalting chamber is provided. In any case, each desalting chamber is located between the anode and the cathode, and is partitioned by the anion exchange membrane on the anode side and the cation exchange membrane on the cathode side.

(第2の実施形態)
次に、本発明の第2の実施形態による純水製造装置の構成について説明する。図3は、本実施形態の電気式脱イオン水製造装置の構成を概略的に示す図である。
(Second Embodiment)
Next, the structure of the pure water manufacturing apparatus by the 2nd Embodiment of this invention is demonstrated. FIG. 3 is a diagram schematically showing the configuration of the electric deionized water production apparatus of the present embodiment.

本実施形態は、第1の実施形態の変形例であって、電気式脱イオン水製造装置における脱塩室の構成を変更した変形例である。したがって、本実施形態の純水製造装置は、電気式脱イオン水製造装置の脱塩室の構成以外、第1の実施形態と同様の構成を有している。以下、第1の実施形態と同様の構成については、図面に同じ符号を付して説明は省略し、第1の実施形態と異なる構成のみ説明する。   This embodiment is a modification of the first embodiment, and is a modification in which the configuration of the demineralization chamber in the electric deionized water production apparatus is changed. Therefore, the pure water manufacturing apparatus of this embodiment has the same configuration as that of the first embodiment except for the configuration of the demineralization chamber of the electric deionized water manufacturing apparatus. In the following, the same components as those in the first embodiment are denoted by the same reference numerals in the drawings, description thereof is omitted, and only components different from those in the first embodiment are described.

本実施形態では、脱塩室Dに、カチオン交換体CEとアニオン交換体AEとが複床形態で充填されている。具体的には、脱塩室Dは、被処理水の流れ方向に沿って3つの領域に区画され、下流側および上流側の領域に、アニオン交換体AEが単床形態で充填され、中間の領域に、カチオン交換体CEが単床形態で充填されている。したがって、脱塩室Dに流入する被処理水は、アニオン交換体AEとカチオン交換体CEとアニオン交換体AEとをこの順で通過するようになっている。   In the present embodiment, the desalting chamber D is filled with a cation exchanger CE and an anion exchanger AE in a double bed form. Specifically, the desalination chamber D is divided into three regions along the flow direction of the water to be treated, and the downstream and upstream regions are filled with anion exchanger AE in the form of a single bed. The region is filled with a cation exchanger CE in a single bed form. Accordingly, the water to be treated flowing into the desalting chamber D passes through the anion exchanger AE, the cation exchanger CE, and the anion exchanger AE in this order.

ところで、本実施形態のように、脱塩室内で、異符号のイオン交換体が被処理水の流れ方向に沿って積層されている場合、各層の電気抵抗に差が生じ、各層を流れる電流の量に無視し得ない偏りが生じることがある。このような偏流の発生は、充填形態が異なるイオン交換体が被処理水の流れ方向に沿って積層されている場合にも起こり得るが、一般的には、脱塩室によるイオン成分の除去性能を低下させることにつながる。しかしながら、本実施形態では、脱塩室D内でこのような偏流を発生させることで、後述する実施例で示すように、第1の実施形態に比べて、電気式脱イオン水製造装置10の処理性能をより向上させることができる。   By the way, when ion exchangers with different signs are stacked along the flow direction of the water to be treated in the desalination chamber as in this embodiment, a difference occurs in the electric resistance of each layer, and the current flowing through each layer There may be non-negligible bias in quantity. Such drift can occur even when ion exchangers with different filling forms are stacked along the flow direction of the water to be treated, but in general, the removal performance of ion components in the desalination chamber Leads to lowering. However, in this embodiment, by generating such a drift in the demineralization chamber D, the electric deionized water production apparatus 10 can be compared with the first embodiment, as shown in Examples described later. Processing performance can be further improved.

なお、脱塩室内でのイオン交換体の積層数や積層順、各領域に充填されるイオン交換体の充填形態は、図示した例に限定されるものではなく、使用する目的や用途、要求性能に応じて、適宜変更可能である。すなわち、脱塩室は、被処理水の流れ方向に沿って複数の領域に区画されていればよく、脱塩室に流入する被処理水が異なるイオン交換体を順次通過するように、各領域にはカチオン交換体とアニオン交換体との少なくとも一方が充填されていればよい。したがって、図示した例では、脱塩室Dは被処理水の流れ方向に沿って3つの領域に区画されているが、2つの領域に区画されていてもよく、その場合、上流側の領域にアニオン交換体が単床形態で充填され、下流側の領域にカチオン交換体とアニオン交換体とが混床形態で充填されていてもよい。   The number of ion exchangers stacked in the desalting chamber, the stacking order, and the filling form of the ion exchangers filled in each region are not limited to the illustrated examples, but the purpose, application, and required performance to be used. It can be changed as appropriate. That is, the demineralization chamber only needs to be partitioned into a plurality of regions along the flow direction of the water to be treated, and each region so that the water to be treated flowing into the desalting chamber sequentially passes through different ion exchangers. May be filled with at least one of a cation exchanger and an anion exchanger. Therefore, in the illustrated example, the desalination chamber D is divided into three regions along the flow direction of the water to be treated, but may be divided into two regions. The anion exchanger may be filled in a single bed form, and the downstream region may be filled with a cation exchanger and an anion exchanger in a mixed bed form.

(第3の実施形態)
次に、本発明の第3の実施形態による純水製造装置の構成について説明する。図4は、本実施形態の電気式脱イオン水製造装置の構成を概略的に示す図である。
(Third embodiment)
Next, the structure of the pure water manufacturing apparatus by the 3rd Embodiment of this invention is demonstrated. FIG. 4 is a diagram schematically showing the configuration of the electric deionized water production apparatus of the present embodiment.

本実施形態は、第2の実施形態と同様に、第1の実施形態の変形例であって、電気式脱イオン水製造装置における脱塩室の構成を変更した変形例である。したがって、本実施形態の純水製造装置は、電気式脱イオン水製造装置の脱塩室の構成以外、第1の実施形態(および第2の実施形態)と同様の構成を有している。以下、第1の実施形態と同様の構成については、図面に同じ符号を付して説明は省略し、第1の実施形態と異なる構成のみ説明する。   As in the second embodiment, the present embodiment is a modification of the first embodiment, and is a modification in which the configuration of the demineralization chamber in the electric deionized water production apparatus is changed. Therefore, the pure water manufacturing apparatus of this embodiment has the same configuration as that of the first embodiment (and the second embodiment) except for the configuration of the demineralization chamber of the electric deionized water manufacturing apparatus. In the following, the same components as those in the first embodiment are denoted by the same reference numerals in the drawings, description thereof is omitted, and only components different from those in the first embodiment are described.

本実施形態では、脱塩室Dが、カチオン交換膜c1と隣接する第1の小脱塩室D1と、アニオン交換膜a1と隣接する第2の小脱塩室D2と、を有している。第1の小脱塩室D1と第2の小脱塩室D2とは、中間イオン交換膜mを介して互いに隣接し、直列流路を形成している。   In the present embodiment, the desalting chamber D has a first small desalting chamber D1 adjacent to the cation exchange membrane c1 and a second small desalting chamber D2 adjacent to the anion exchange membrane a1. . The first small desalting chamber D1 and the second small desalting chamber D2 are adjacent to each other via the intermediate ion exchange membrane m and form a series flow path.

第1の小脱塩室D1には、アニオン交換体AEが単床形態で充填されている。第2の小脱塩室D2には、カチオン交換体CEとアニオン交換体AEとが複床形態で充填されている。具体的には、第2の小脱塩室D2は、被処理水の流れ方向に沿って2つの領域に区画され、上流側の領域に、カチオン交換体CEが単床形態で充填され、下流側の領域に、アニオン交換体AEが単床形態で充填されている。したがって、本実施形態では、脱塩室Dに流入する被処理水は、アニオン交換体AEとカチオン交換体CEとアニオン交換体AEとをこの順で通過するようになっている。   The first small desalting chamber D1 is filled with the anion exchanger AE in a single bed form. The second small desalting chamber D2 is filled with a cation exchanger CE and an anion exchanger AE in a double bed form. Specifically, the second small desalting chamber D2 is divided into two regions along the flow direction of the water to be treated, and the upstream region is filled with the cation exchanger CE in the form of a single bed. In the region on the side, the anion exchanger AE is filled in a single bed form. Accordingly, in the present embodiment, the water to be treated that flows into the desalting chamber D passes through the anion exchanger AE, the cation exchanger CE, and the anion exchanger AE in this order.

中間イオン交換膜mは、被処理水の水質、脱イオン水に求められる水質、第1の小脱塩室D1または第2の小脱塩室D2に充填するイオン交換体の種類等を勘案して選択することができる。中間イオン交換膜mは、アニオン交換膜またはカチオン交換膜の単一膜であってよく、または、アニオン交換膜とカチオン交換膜の両方を備えた複合膜であってもよい。   The intermediate ion exchange membrane m takes into consideration the quality of the water to be treated, the water quality required for deionized water, the type of ion exchanger filled in the first small demineralization chamber D1 or the second small demineralization chamber D2, and the like. Can be selected. The intermediate ion exchange membrane m may be a single membrane of an anion exchange membrane or a cation exchange membrane, or may be a composite membrane having both an anion exchange membrane and a cation exchange membrane.

本実施形態では、脱塩室Dを第1の小脱塩室D1と第2の小脱塩室D2とに区画した上で、第2の小脱塩室D2内で上述の偏流を発生させている。このような構成により、後述する実施例で示すように、第2の実施形態に比べて、さらに電気式脱イオン水製造装置10の処理性能を向上させることができる。   In this embodiment, after the desalting chamber D is divided into a first small desalting chamber D1 and a second small desalting chamber D2, the above-described drift is generated in the second small desalting chamber D2. ing. Such a configuration can further improve the processing performance of the electrical deionized water production apparatus 10 as compared to the second embodiment, as shown in the examples described later.

なお、本実施形態のように、脱塩室が2つの小脱塩室に区画されている場合、各小脱塩室に充填されるイオン交換体の充填形態は、図示した例に限定されるものではなく、使用する目的や用途、要求性能に応じて、適宜変更可能である。すなわち、脱塩室に流入する被処理水が異なるイオン交換体を順次通過するように、第1の小脱塩室には少なくともアニオン交換体が充填され、第2の小脱塩室には少なくともカチオン交換体が充填されていればよい。したがって、図示した例では、第2の小脱塩室D2には、カチオン交換体CEとアニオン交換体AEとが複床形態で充填されているが、混床形態で充填されていてもよい。   When the desalting chamber is divided into two small desalting chambers as in this embodiment, the filling mode of the ion exchanger filled in each small desalting chamber is limited to the illustrated example. It can be changed as appropriate according to the purpose and application of use, and the required performance. That is, the first small desalting chamber is filled with at least an anion exchanger and the second small desalting chamber is at least filled so that the water to be treated flowing into the desalting chamber sequentially passes through different ion exchangers. What is necessary is just to be filled with a cation exchanger. Therefore, in the illustrated example, the second small desalting chamber D2 is filled with the cation exchanger CE and the anion exchanger AE in a double bed form, but may be filled in a mixed bed form.

また、図示した例では、第1の小脱塩室D1と第2の小脱塩室D2とは、被処理水が第1の小脱塩室D1と第2の小脱塩室D2とをこの順で通過するように接続されているが、通水順はこの逆であってもよい。したがって、その場合、第1の小脱塩室には、カチオン交換体とアニオン交換体とが複床形態または混床形態で充填され、第2の小脱塩室には、カチオン交換体が単床形態で充填されていてもよい。   Further, in the illustrated example, the first small desalting chamber D1 and the second small desalting chamber D2 are configured such that the water to be treated is divided into the first small desalting chamber D1 and the second small desalting chamber D2. Although they are connected so as to pass through in this order, the order of water flow may be reversed. Therefore, in that case, the first small desalting chamber is filled with the cation exchanger and the anion exchanger in a double bed form or a mixed bed form, and the second small desalting chamber has a single cation exchanger. It may be filled in a floor form.

次に、具体的な実施例を挙げて、本発明をより詳細に説明する。   Next, the present invention will be described in more detail with reference to specific examples.

(実施例1)
本実施例では、第1の実施形態による純水製造装置を用いて、1000時間の運転を行い、処理水質(処理水比抵抗)を測定した。純水製造装置に供給した被処理水の水質は、導電率が150〜200μS/cmであり、遊離炭酸濃度(CO含有量)が10〜20mg/Lである。
(Example 1)
In this example, the pure water production apparatus according to the first embodiment was used for 1000 hours of operation, and the quality of treated water (treated water specific resistance) was measured. The quality of the water to be treated supplied to the pure water production apparatus has a conductivity of 150 to 200 μS / cm and a free carbonic acid concentration (CO 2 content) of 10 to 20 mg / L.

第1のRO膜分離装置および第2のRO膜分離装置では共に、日東電工株式会社製のRO膜(品番:ES−20)を使用し、第1のRO膜分離装置の回収率(透過水の流量と濃縮排水の流量との和に対する透過水の流量の割合)を70%とし、第2のRO膜分離装置の回収率を90%とした。   Both the first RO membrane separation device and the second RO membrane separation device use a RO membrane (product number: ES-20) manufactured by Nitto Denko Corporation, and the recovery rate (permeate water) of the first RO membrane separation device. The ratio of the flow rate of the permeated water to the sum of the flow rate of the concentrated waste water and the flow rate of the concentrated waste water was 70%, and the recovery rate of the second RO membrane separation device was 90%.

脱炭酸装置として膜脱気装置を用い、脱気膜としては、ポリポア株式会社製の「リキセル(登録商標)X50」を使用し、スウィープガスとしては、高純度空気を使用した。   A membrane deaerator was used as the decarboxylation device, “Lixel (registered trademark) X50” manufactured by Polypore Co., Ltd. was used as the deaeration membrane, and high-purity air was used as the sweep gas.

電気式脱イオン水製造装置として、脱塩室が3室設けられた電気式脱イオン水製造装置を用いた。各脱塩室内のカチオン交換体とアニオン交換体との混合比は、1:1である。   As the electric deionized water production apparatus, an electric deionized water production apparatus provided with three demineralization chambers was used. The mixing ratio of the cation exchanger and the anion exchanger in each desalting chamber is 1: 1.

(実施例2)
本実施例では、第2の実施形態による純水製造装置を用いて、実施例1と同様の条件で測定を行った。すなわち、本実施例の純水製造装置は、電気式脱イオン水製造装置の脱塩室の構成以外、実施例1の純水製造装置と同様である。なお、本実施例においても、電気式脱イオン水製造装置としては、脱塩室が3室設けられた電気式脱イオン水製造装置を用いた。各脱塩室内のカチオン交換体とアニオン交換体とカチオン交換体との積層比(体積比)は、1:1:1である。
(Example 2)
In this example, measurements were performed under the same conditions as in Example 1 using the pure water production apparatus according to the second embodiment. That is, the pure water production apparatus of the present embodiment is the same as the pure water production apparatus of Embodiment 1 except for the configuration of the demineralization chamber of the electric deionized water production apparatus. Also in this example, an electrical deionized water production apparatus provided with three demineralization chambers was used as the electrical deionized water production apparatus. The lamination ratio (volume ratio) of the cation exchanger, the anion exchanger, and the cation exchanger in each desalting chamber is 1: 1: 1.

(実施例3)
本実施例では、第3の実施形態による純水製造装置を用いて、実施例1と同様の条件で測定を行った。すなわち、本実施例の純水製造装置は、電気式脱イオン水製造装置の脱塩室の構成以外、実施例1,2の純水製造装置と同様である。なお、本実施例においても、電気式脱イオン水製造装置としては、脱塩室が3室設けられた電気式脱イオン水製造装置を用いた。
(Example 3)
In this example, measurements were performed under the same conditions as in Example 1 using the pure water production apparatus according to the third embodiment. That is, the pure water production apparatus of the present embodiment is the same as the pure water production apparatus of Examples 1 and 2 except for the configuration of the demineralization chamber of the electric deionized water production apparatus. Also in this example, an electrical deionized water production apparatus provided with three demineralization chambers was used as the electrical deionized water production apparatus.

(比較例1)
本比較例では、被処理水の通過順を変更した以外、実施例1と同様の条件で測定を行った。具体的には、本比較例の純水製造装置は、被処理水が、第1のRO膜分離装置と第2のRO膜分離装置と脱炭酸装置とをこの順で通過した後で、電気式脱イオン水製造装置に流入するようになっている点で、実施例1の純水製造装置と異なっている。
(Comparative Example 1)
In this comparative example, the measurement was performed under the same conditions as in Example 1 except that the passage order of the water to be treated was changed. Specifically, in the pure water production apparatus of this comparative example, after the water to be treated passes through the first RO membrane separation device, the second RO membrane separation device, and the decarboxylation device in this order, This is different from the pure water production apparatus of Example 1 in that it flows into the deionized water production apparatus.

(比較例2)
本比較例では、被処理水の通過順を比較例1と同様に変更した以外、実施例2と同様の条件で測定を行った。
(Comparative Example 2)
In this comparative example, the measurement was performed under the same conditions as in Example 2 except that the passage order of the water to be treated was changed in the same manner as in Comparative Example 1.

(比較例3)
本比較例では、被処理水の通過順を比較例1と同様に変更した以外、実施例3と同様の条件で測定を行った。
(Comparative Example 3)
In this comparative example, the measurement was performed under the same conditions as in Example 3 except that the passage order of the water to be treated was changed in the same manner as in Comparative Example 1.

(比較例4)
本比較例では、電気式脱イオン水製造装置をイオン交換装置で置き換えた以外、実施例1と同様の条件で測定を行った。イオン交換装置の充填材としては、カチオン交換体とアニオン交換体とを混床形態の充填したものを用いた。
(Comparative Example 4)
In this comparative example, the measurement was performed under the same conditions as in Example 1 except that the electric deionized water production apparatus was replaced with an ion exchange apparatus. As a filler for the ion exchange device, a cation exchanger and an anion exchanger packed in a mixed bed form were used.

(比較例5)
本比較例では、被処理水の通過順を変更した以外、比較例4と同様の条件で測定を行った。具体的には、本比較例の純水製造装置は、被処理水が、第1のRO膜分離装置と第2のRO膜分離装置と脱炭酸装置とをこの順で通過した後で、イオン交換装置に流入するようになっている点で、比較例4の純水製造装置と異なっている。
(Comparative Example 5)
In this comparative example, the measurement was performed under the same conditions as in Comparative Example 4 except that the passage order of the water to be treated was changed. Specifically, in the pure water production apparatus of this comparative example, after the treated water passes through the first RO membrane separation device, the second RO membrane separation device, and the decarboxylation device in this order, It differs from the pure water production apparatus of Comparative Example 4 in that it flows into the exchange apparatus.

表1に、実施例1〜3および比較例1〜5における測定結果を示す。なお、表1における比抵抗上昇率は、実施例1〜3および比較例4の処理水比抵抗の、それぞれ対応する比較例1〜3,5の処理水比抵抗に対する増加分を百分率で表したものである。   Table 1 shows the measurement results in Examples 1 to 3 and Comparative Examples 1 to 5. In addition, the specific resistance increase rate in Table 1 represented the increase in the treated water specific resistance of Examples 1-3 and Comparative Example 4 with respect to the treated water specific resistance of the corresponding Comparative Examples 1-3, 5 as a percentage. Is.

Figure 2015080765
Figure 2015080765

実施例1〜3では、それぞれ対応する比較例1〜3と比べて、良好な処理水質が得られていることが確認された。これは、電気式脱イオン水製造装置に供給される被処理水が、比較例1〜3では、第1のRO膜分離装置と第2のRO膜分離装置と脱炭酸装置とをこの順で通過するのに対し、実施例1〜3では、第1のRO膜分離装置と脱炭酸装置と第2のRO膜分離装置とをこの順で通過することによる効果であると考えられる。このような効果は、比較例4と比較例5とでは処理水質にほとんど変化が見られなかったことから、電気式脱イオン水製造装置の場合に特有の効果であると考えられる。   In Examples 1 to 3, it was confirmed that better treated water quality was obtained as compared with the corresponding Comparative Examples 1 to 3. This is because the treated water supplied to the electrical deionized water production apparatus is the first RO membrane separation device, the second RO membrane separation device, and the decarbonation device in this order in Comparative Examples 1 to 3. On the other hand, in Examples 1-3, it is thought that it is an effect by passing a 1st RO membrane separator, a decarboxylation apparatus, and a 2nd RO membrane separator in this order. Such an effect is considered to be a unique effect in the case of the electric deionized water production apparatus, since almost no change was seen in the quality of treated water between Comparative Example 4 and Comparative Example 5.

また、実施例2および実施例3では、実施例1と比べて、比抵抗上昇率に関して良好な結果が得られている。これは、脱塩室に流入した被処理水がカチオン交換体とアニオン交換体とを交互に通過すること、すなわち、脱塩室内で偏流が発生していることによる効果であると考えられる。一方、実施例2と実施例3とを比較すると、実施例3でより良好な結果が得られているが、これは、実施例3では、上述の偏流が発生していることに加えて、脱塩室が2つの小脱塩室に区画されているためであると考えられる。   Moreover, in Example 2 and Example 3, compared with Example 1, a favorable result was obtained regarding the specific resistance increase rate. This is considered to be due to the fact that the water to be treated that has flowed into the desalting chamber alternately passes through the cation exchanger and the anion exchanger, that is, the occurrence of drift in the desalting chamber. On the other hand, when Example 2 and Example 3 are compared, better results are obtained in Example 3. In Example 3, in addition to the occurrence of the above-mentioned drift, This is probably because the desalting chamber is divided into two small desalting chambers.

1 純水製造装置
2 第1のRO膜分離装置
3 脱炭酸装置
4 第2のRO膜分離装置
10 電気式脱イオン水製造装置
11 陽極
12 陰極
D 脱塩室
D1 第1の小脱塩室
D2 第2の小脱塩室
C1 陽極側濃縮室
C2 陰極側濃縮室
E1 陽極室
E2 陰極室
a1,a2 アニオン交換膜
c1,c2 カチオン交換膜
m 中間イオン交換膜
DESCRIPTION OF SYMBOLS 1 Pure water manufacturing apparatus 2 1st RO membrane separation apparatus 3 Decarbonation apparatus 4 2nd RO membrane separation apparatus 10 Electric deionized water manufacturing apparatus 11 Anode 12 Cathode D Desalination chamber D1 1st small desalination chamber D2 Second small desalination chamber C1 Anode-side enrichment chamber C2 Cathode-side enrichment chamber E1 Anode chamber E2 Cathode chamber a1, a2 Anion exchange membrane c1, c2 Cation exchange membrane m Intermediate ion exchange membrane

Claims (9)

被処理水を順次処理して純水を製造する純水製造装置であって、
第1の逆浸透膜分離装置と第2の逆浸透膜分離装置とを含み、直列に接続された複数の逆浸透膜分離装置と、
前記第1の逆浸透膜分離装置と前記第2の逆浸透膜分離装置との間で、該第1の逆浸透膜分離装置と該第2の逆浸透膜分離装置とに直列に接続された脱炭酸装置と、
被処理水の流れ方向に対して前記複数の逆浸透膜分離装置の下流側に接続された電気式脱イオン水製造装置と、
を有する純水製造装置。
A pure water production apparatus for producing pure water by sequentially treating water to be treated,
A plurality of reverse osmosis membrane separation devices connected in series, including a first reverse osmosis membrane separation device and a second reverse osmosis membrane separation device;
Between the first reverse osmosis membrane separation device and the second reverse osmosis membrane separation device, the first reverse osmosis membrane separation device and the second reverse osmosis membrane separation device are connected in series. A decarboxylation device;
An electrical deionized water production device connected to the downstream side of the plurality of reverse osmosis membrane separation devices with respect to the flow direction of the water to be treated;
A pure water production apparatus having:
前記電気式脱イオン水製造装置が、陽極と陰極との間に位置し、前記陽極側のアニオン交換膜と前記陰極側のカチオン交換膜とで区画された脱塩室であって、カチオン交換体とアニオン交換体とが充填された脱塩室を有する、請求項1に記載の純水製造装置。   The electric deionized water production apparatus is a demineralization chamber located between an anode and a cathode and partitioned by the anion exchange membrane on the anode side and the cation exchange membrane on the cathode side, and comprising a cation exchanger The apparatus for producing pure water according to claim 1, comprising a desalting chamber filled with an anion exchanger. 前記脱塩室には、前記カチオン交換体と前記アニオン交換体とが混床形態で充填されている、請求項2に記載の純水製造装置。   The device for producing pure water according to claim 2, wherein the desalting chamber is filled with the cation exchanger and the anion exchanger in a mixed bed form. 前記脱塩室が、被処理水の流れ方向に沿って区画された複数の領域を有し、該各領域には、前記カチオン交換体または前記アニオン交換体が単床形態で充填されているか、あるいは前記カチオン交換体と前記アニオン交換体とが混床形態で充填されている、請求項2に記載の純水製造装置。   The desalination chamber has a plurality of regions partitioned along the flow direction of the water to be treated, and each region is filled with the cation exchanger or the anion exchanger in a single bed form, Or the pure water manufacturing apparatus of Claim 2 with which the said cation exchanger and the said anion exchanger are filled with the mixed bed form. 前記脱塩室が、3つ以上の前記領域を有し、該各領域には、前記カチオン交換体または前記アニオン交換体が単床形態で充填され、
前記カチオン交換体が充填された前記領域と、前記アニオン交換体が充填された前記領域とが、前記流れ方向に沿って交互に配置されている、請求項4に記載の純水製造装置。
The desalting chamber has three or more regions, and each region is filled with the cation exchanger or the anion exchanger in a single bed form,
The pure water production apparatus according to claim 4, wherein the region filled with the cation exchanger and the region filled with the anion exchanger are alternately arranged along the flow direction.
前記脱塩室が、前記アニオン交換膜と隣接し、少なくとも前記アニオン交換体が充填された第1の小脱塩室と、前記カチオン交換膜と隣接するとともに、中間イオン交換膜を介して前記第1の小脱塩室と隣接し、少なくとも前記カチオン交換体が充填され、前記第1の小脱塩室と直列流路を形成する第2の小脱塩室と、を有する、請求項2に記載の純水製造装置。   The desalting chamber is adjacent to the anion exchange membrane, and is adjacent to the first small desalting chamber filled with at least the anion exchanger, the cation exchange membrane, and the first ion exchange membrane through the intermediate ion exchange membrane. A second small desalting chamber adjacent to one small desalting chamber and filled with at least the cation exchanger and forming a series flow path with the first small desalting chamber. The pure water manufacturing apparatus of description. 一方の前記小脱塩室には、前記カチオン交換体と前記アニオン交換体とが充填され、他方の前記小脱塩室には、前記カチオン交換体または前記アニオン交換体が単床形態で充填されている、請求項6に記載の純水製造装置。   One small desalting chamber is filled with the cation exchanger and the anion exchanger, and the other small desalting chamber is filled with the cation exchanger or the anion exchanger in a single bed form. The pure water manufacturing apparatus according to claim 6. 前記一方の小脱塩室が、被処理水の流れ方向に沿って区画された複数の領域を有し、該各領域には、前記カチオン交換体または前記アニオン交換体が単床形態で充填されているか、あるいは前記カチオン交換体と前記アニオン交換体とが混床形態で充填されている、請求項7に記載の純水製造装置。   The one small desalination chamber has a plurality of regions partitioned along the flow direction of the water to be treated, and each region is filled with the cation exchanger or the anion exchanger in a single bed form. The pure water production apparatus according to claim 7, wherein the cation exchanger and the anion exchanger are packed in a mixed bed form. 前記一方の小脱塩室が、2つの前記領域を有し、一方の前記領域には、前記カチオン交換体が単床形態で充填され、他方の前記領域には、前記アニオン交換体が単床形態で充填されている、請求項8に記載の純水製造装置。   The one small desalination chamber has two regions, and the one region is filled with the cation exchanger in a single bed form, and the other region is filled with the anion exchanger. The device for producing pure water according to claim 8, which is filled in a form.
JP2013220140A 2013-10-23 2013-10-23 Pure water production equipment Active JP6181510B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013220140A JP6181510B2 (en) 2013-10-23 2013-10-23 Pure water production equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013220140A JP6181510B2 (en) 2013-10-23 2013-10-23 Pure water production equipment

Publications (2)

Publication Number Publication Date
JP2015080765A true JP2015080765A (en) 2015-04-27
JP6181510B2 JP6181510B2 (en) 2017-08-16

Family

ID=53011672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013220140A Active JP6181510B2 (en) 2013-10-23 2013-10-23 Pure water production equipment

Country Status (1)

Country Link
JP (1) JP6181510B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018176033A (en) * 2017-04-06 2018-11-15 オルガノ株式会社 Pure water producing apparatus

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06312175A (en) * 1993-04-28 1994-11-08 Japan Organo Co Ltd Ultra-pure water making apparatus
JPH08150326A (en) * 1994-11-29 1996-06-11 Japan Organo Co Ltd Production of deionized water by electrolytic deionization method
JP2001259376A (en) * 2000-03-16 2001-09-25 Japan Organo Co Ltd Deionized water making apparatus
JP2002307067A (en) * 2001-04-11 2002-10-22 Ebara Corp Electric regeneration type desalting apparatus
JP2004057935A (en) * 2002-07-29 2004-02-26 Kurita Water Ind Ltd Ultrapure-water making system
JP2011251266A (en) * 2010-06-03 2011-12-15 Japan Organo Co Ltd Apparatus for electrically producing deionized water
JP2012183485A (en) * 2011-03-04 2012-09-27 Miura Co Ltd Water treatment method and water treatment system
JP2012192364A (en) * 2011-03-17 2012-10-11 Miura Co Ltd Water treatment method, and water treatment system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06312175A (en) * 1993-04-28 1994-11-08 Japan Organo Co Ltd Ultra-pure water making apparatus
JPH08150326A (en) * 1994-11-29 1996-06-11 Japan Organo Co Ltd Production of deionized water by electrolytic deionization method
JP2001259376A (en) * 2000-03-16 2001-09-25 Japan Organo Co Ltd Deionized water making apparatus
JP2002307067A (en) * 2001-04-11 2002-10-22 Ebara Corp Electric regeneration type desalting apparatus
JP2004057935A (en) * 2002-07-29 2004-02-26 Kurita Water Ind Ltd Ultrapure-water making system
JP2011251266A (en) * 2010-06-03 2011-12-15 Japan Organo Co Ltd Apparatus for electrically producing deionized water
JP2012183485A (en) * 2011-03-04 2012-09-27 Miura Co Ltd Water treatment method and water treatment system
JP2012192364A (en) * 2011-03-17 2012-10-11 Miura Co Ltd Water treatment method, and water treatment system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018176033A (en) * 2017-04-06 2018-11-15 オルガノ株式会社 Pure water producing apparatus

Also Published As

Publication number Publication date
JP6181510B2 (en) 2017-08-16

Similar Documents

Publication Publication Date Title
JP5719842B2 (en) Electric deionized water production equipment
JP2023549031A (en) Electrodialysis equipment and electrodialysis system for recovering CO2 from ocean water
JP5145305B2 (en) Electric deionized water production equipment
JP6105005B2 (en) Electric deionized water production apparatus and deionized water production method
WO2012108310A1 (en) Electric device for producing deionized water
JP2012239965A (en) Electric deionized water producing apparatus
JP5385457B2 (en) Electric deionized water production equipment
JP6148675B2 (en) Desalination system and method
JP5489867B2 (en) Electric deionized water production equipment
JP5379025B2 (en) Electric deionized water production equipment
KR102075598B1 (en) Water treatment device and water treatment method
JP6181510B2 (en) Pure water production equipment
KR20190079851A (en) Electrodeionization with excellent boron removal efficiency
JP2009208046A (en) Apparatus for producing electrodeionization water
JP6571312B2 (en) Pure water production method
JP5415966B2 (en) Electric deionized water production apparatus and deionized water production method
JP2018199136A (en) Pure water production method
TW201348144A (en) Desalination system and method
JP5355460B2 (en) Electric deionized water production equipment
WO2013018818A1 (en) Electric deionized water production device
JP2018143922A (en) Water treating device
JP6034736B2 (en) Electric deionized water production equipment
JP5719707B2 (en) Electric deionized water production equipment
JP5689032B2 (en) Electric deionized water production equipment
JP5689031B2 (en) Electric deionized water production equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160516

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170711

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170720

R150 Certificate of patent or registration of utility model

Ref document number: 6181510

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250