JP2001149873A - Washing apparatus - Google Patents
Washing apparatusInfo
- Publication number
- JP2001149873A JP2001149873A JP33573899A JP33573899A JP2001149873A JP 2001149873 A JP2001149873 A JP 2001149873A JP 33573899 A JP33573899 A JP 33573899A JP 33573899 A JP33573899 A JP 33573899A JP 2001149873 A JP2001149873 A JP 2001149873A
- Authority
- JP
- Japan
- Prior art keywords
- water
- cleaning
- gas
- tank
- washing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Cleaning By Liquid Or Steam (AREA)
- Cleaning Or Drying Semiconductors (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、電子部品・部材お
よび光・磁気記憶媒体の製造におけるウェット洗浄工程
で安定して製品の洗浄を行える洗浄装置に関するもので
ある。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cleaning apparatus capable of stably cleaning a product in a wet cleaning step in the production of electronic parts / members and optical / magnetic storage media.
【0002】[0002]
【従来の技術】電子部品材料や磁気記憶媒体などの製造
工程においては例えば金属や微粒子、有機物、イオン成
分等の不純物が存在すると製品の性能を劣化させること
から該不純物は極力除去されていることが望ましい。例
えばアルミニウムを素材としたハードディスクの製造工
程では、平坦なアルミニウム基板の表面硬度を高めるた
めにニッケルリンメッキを施し、ついで該ニッケルリン
メッキ面にはコバルトなどの金属を製膜して磁力によっ
て情報を記憶させる層を配し、更にその上に磁気ヘッド
との接触から磁性体層を保護するための保護層を製膜す
る。これらの層は数ミクロンから数十ミクロンほどの極
めて薄い層からなり、粒子状のゴミが製膜前の表面に存
在していると製膜後に表面に凸部として表れ、その結
果、均一な磁化ができず、さらには磁気ヘッドと接触し
て破損する虞れもある。2. Description of the Related Art In the manufacturing process of materials for electronic parts and magnetic storage media, the presence of impurities such as metals, fine particles, organic substances and ionic components deteriorates the performance of products, so that these impurities must be removed as much as possible. Is desirable. For example, in the process of manufacturing a hard disk using aluminum as a material, nickel-phosphorous plating is applied to increase the surface hardness of a flat aluminum substrate, and then a metal such as cobalt is formed on the nickel-phosphorus-plated surface, and information is obtained by magnetic force. A storage layer is provided, and a protective layer for protecting the magnetic layer from contact with the magnetic head is formed thereon. These layers consist of extremely thin layers of several microns to several tens of microns, and if particulate dust is present on the surface before film formation, they appear as protrusions on the surface after film formation, resulting in uniform magnetization. And there is also a risk of damage due to contact with the magnetic head.
【0003】微粒子の発生源としては基板を受け入れた
時点での梱包材料などからの汚染のような環境由来のも
ののほかに、基板を平坦化するための研磨工程やニッケ
ルリンメッキの下地を作るために基板に傷をつけるテク
スチュアリングと呼ばれる工程も大きな原因となる。研
磨工程やテクスチュアリング工程では基板にスラリーを
かけながら回転する研磨布や研磨板を押し付けるが、そ
れにより研磨スラリー中の砥粒や基板からの削りかすが
発生する。[0003] Sources of the fine particles include those originating from the environment such as contamination from the packaging material at the time of receiving the substrate, as well as a polishing step for flattening the substrate and a step of forming a base of nickel phosphorus plating. A process called texturing that damages the substrate is also a major cause. In a polishing step or a texturing step, a rotating polishing cloth or a polishing plate is pressed while slurry is applied to a substrate, and as a result, shavings from the abrasive grains in the polishing slurry or the substrate are generated.
【0004】メッキや磁性膜の製膜工程の前には必ず基
板表面に付着している微粒子などを除去するための洗浄
が行われる。洗浄方法には複数枚の基板を一度に洗浄液
の入った洗浄槽に沈めて処理するバッチ処理や基板を一
枚ずつ回転させながら洗浄液と接触させて処理する枚葉
処理などがある。[0004] Before the plating or the magnetic film forming process, cleaning for removing fine particles and the like adhering to the substrate surface is always performed. Examples of the cleaning method include batch processing in which a plurality of substrates are immersed in a cleaning tank containing a cleaning liquid at a time and processing, and single-wafer processing in which substrates are processed by rotating the substrates one by one and contacting the cleaning liquid.
【0005】バッチ処理の場合、一般的に複数の洗浄槽
を配置してなる洗浄装置が用いられる。洗浄水としては
純水や気体溶解水が用いられるが、近年、気体溶解水を
用いた洗浄方法が普及してきている。気体溶解水には還
元性水と酸化性水とがあり、前者は水の酸化還元電位を
還元性領域に調整した水であり、後者は該電位を酸化性
領域に調整した水である。還元性水として一般的に水素
ガスを超純水に溶解してなる水素水が用いられ、該水素
水は微粒子を除去する作用を有する。また酸化性水とし
て一般的にオゾンを超純水に溶解してなるオゾン水が用
いられ、該オゾン水は金属、有機物を除去する作用を有
する。[0005] In the case of batch processing, a cleaning apparatus having a plurality of cleaning tanks is generally used. Pure water or gas-dissolved water is used as the wash water. In recent years, a cleaning method using gas-dissolved water has become widespread. The gas-dissolved water includes reducing water and oxidizing water. The former is water whose oxidation-reduction potential is adjusted to a reducing region, and the latter is water whose potential is adjusted to an oxidizing region. In general, hydrogen water obtained by dissolving hydrogen gas in ultrapure water is used as reducing water, and the hydrogen water has an action of removing fine particles. Generally, ozone water obtained by dissolving ozone in ultrapure water is used as the oxidizing water, and the ozone water has an action of removing metals and organic substances.
【0006】気体溶解水として水素水を用いた場合を例
にとり、従来の洗浄装置につき以下説明する。A conventional cleaning apparatus will be described below, taking as an example the case where hydrogen water is used as gas-dissolved water.
【0007】図5は3つの洗浄槽を配置してなる従来の
洗浄装置を示し、半導体ウエハー等の被洗浄物1を最初
に第一洗浄槽2にて洗浄し、次いで第二洗浄槽3、第三
洗浄槽4に順次移送しながら各洗浄槽にて洗浄を行うも
のである。超純水製造装置5にて製造された超純水は水
素溶解装置6に送られ、ここで水素水が製造され、更に
必要に応じて、アンモニア水添加により弱アルカリ性に
調整された後、該水素水が洗浄水として第三洗浄槽4に
送られる。該槽4にて洗浄に供された洗浄水は槽外に溢
流して下方の受槽7に流れ込み、配管8を通って前段の
第二洗浄槽3に送られる。この際、途中の経路におい
て、洗浄水は活性炭フィルター装置9、微粒子除去用フ
ィルター装置10によって浄化され、洗浄によってもた
らされた汚染物質が除去される。FIG. 5 shows a conventional cleaning apparatus in which three cleaning tanks are arranged. First, an object to be cleaned 1 such as a semiconductor wafer is cleaned in a first cleaning tank 2 and then a second cleaning tank 3. The cleaning is performed in each cleaning tank while being sequentially transferred to the third cleaning tank 4. The ultrapure water produced by the ultrapure water producing apparatus 5 is sent to a hydrogen dissolving apparatus 6, where hydrogen water is produced and, if necessary, adjusted to weak alkaline by adding ammonia water. Hydrogen water is sent to the third washing tank 4 as washing water. The washing water used for washing in the tank 4 overflows the outside of the tank, flows into the lower receiving tank 7, and is sent to the second washing tank 3 in the preceding stage through the pipe 8. At this time, the washing water is purified by the activated carbon filter device 9 and the particulate matter removing filter device 10 along the way, and contaminants brought about by the washing are removed.
【0008】第二洗浄槽3に送られた洗浄水はここで該
槽3内の被洗浄物1を洗浄するための洗浄水として作用
し、該槽3にて洗浄に供された洗浄水は槽外に溢流し、
以後、前記したと同様の経路をたどって第一洗浄槽2に
送られ、ここで該槽2内の被洗浄物1を洗浄する洗浄水
として作用し、洗浄後の溢流水は配管13を通って系外
に流出する。The washing water sent to the second washing tank 3 acts here as washing water for washing the object 1 to be washed in the tank 3, and the washing water provided for washing in the tank 3 is Overflowing outside the tank,
Thereafter, the water is sent to the first cleaning tank 2 by following the same route as described above, where it acts as cleaning water for cleaning the object 1 to be cleaned in the tank 2, and the overflow water after cleaning passes through the pipe 13. Out of the system.
【0009】被洗浄物はローダー14より順次送り出さ
れ、各洗浄槽に搬送され、洗浄された後、アンローダー
15に収納される。16は送水用ポンプである。The objects to be cleaned are sequentially sent out from the loader 14, conveyed to the respective cleaning tanks, cleaned, and stored in the unloader 15. Reference numeral 16 denotes a water pump.
【0010】図6は従来装置の別の態様を示すものであ
る。この装置においては、水素溶解装置6により製造さ
れる水素水は第二洗浄槽3及び第三洗浄槽4に供給さ
れ、第一洗浄槽2には超純水が供給されるように構成さ
れている。第一洗浄槽2及び第三洗浄槽4において、受
槽17、7に流下する溢流水はそれぞれ配管18、11
を通って系外に流出するが、第二洗浄槽3においては受
槽19に流下する溢流水は配管20を経て活性炭フィル
ター装置9、微粒子除去用フィルター装置10による不
純物除去処理が行われた後、再び第二洗浄槽3に導かれ
循環使用される。即ち、前記洗浄槽3に洗浄水を導入す
る配管21は三方弁22を介して、溢流水を流すための
配管20及び水素水を導入する配管23と連結され、溢
流水と水素水との混合水が配管21を通って第二洗浄槽
3に流入するように構成されている。24は受槽19か
らの余剰水を排出するための配管である。FIG. 6 shows another embodiment of the conventional apparatus. In this apparatus, the hydrogen water produced by the hydrogen dissolving device 6 is supplied to the second cleaning tank 3 and the third cleaning tank 4, and the first cleaning tank 2 is supplied with ultrapure water. I have. In the first cleaning tank 2 and the third cleaning tank 4, overflow water flowing down to the receiving tanks 17 and 7 is supplied to pipes 18 and 11, respectively.
After flowing out of the system, the overflow water flowing down to the receiving tank 19 in the second washing tank 3 is subjected to the impurity removal treatment by the activated carbon filter device 9 and the fine particle removal filter device 10 through the pipe 20. It is again guided to the second washing tank 3 and used for circulation. That is, the pipe 21 for introducing the washing water into the washing tank 3 is connected to the pipe 20 for flowing the overflow water and the pipe 23 for introducing the hydrogen water through the three-way valve 22 to mix the overflow water and the hydrogen water. The water is configured to flow into the second cleaning tank 3 through the pipe 21. Reference numeral 24 denotes a pipe for discharging surplus water from the receiving tank 19.
【0011】[0011]
【発明が解決しようとする課題】上記した図5、図6に
示す従来装置において、洗浄槽に供給された洗浄水は大
気圧下に曝されるため、洗浄水中の溶存水素が大気中に
拡散し、同時に空気が洗浄水中に溶解するという現象が
生じ、それによって洗浄水中の溶存水素濃度が低下する
という問題がある。特に、活性炭フィルターや微粒子除
去用フィルターでフィルター濾過処理を行うと溶存水素
の脱泡が促進される不具合がある。このように洗浄水中
の溶存水素濃度が低下する結果、溢流水としての洗浄水
を前段の洗浄槽に送る場合(図5)や、同一槽で繰り返
し循環使用する場合(図6)に、溶存水素濃度の低下し
た洗浄水を用いることによる洗浄能力低下を招き、後段
の洗浄槽への汚染物質の持ち込みを生じるという不具合
があった。In the conventional apparatus shown in FIGS. 5 and 6, since the cleaning water supplied to the cleaning tank is exposed to the atmospheric pressure, the dissolved hydrogen in the cleaning water diffuses into the atmosphere. However, at the same time, a phenomenon occurs in which air dissolves in the washing water, which causes a problem that the concentration of dissolved hydrogen in the washing water decreases. In particular, there is a problem that the defoaming of dissolved hydrogen is promoted when a filter filtration treatment is performed with an activated carbon filter or a filter for removing fine particles. As a result of the decrease in the concentration of dissolved hydrogen in the washing water, the dissolved hydrogen as overflow water is sent to the preceding washing tank (FIG. 5) or when it is repeatedly used in the same tank (FIG. 6). There is a problem in that the use of cleaning water having a reduced concentration causes a reduction in cleaning performance, and contaminants are brought into a subsequent cleaning tank.
【0012】尚、上記したことは水素水の場合に限られ
ず、オゾンや他の気体を溶解した気体溶解水の場合にも
同様に当てはまるものである。一般に、洗浄処理を密閉
系で行うことができないため、洗浄水からの溶解気体の
逃散及びそれによる洗浄能力の低下は避けられない問題
である。気体溶解装置にて製造された気体溶解水を洗浄
槽のそれぞれに連続して供給し、且つ洗浄後の溢流水を
連続して排出する方法を採用すれば、常に新しい洗浄水
が洗浄槽に供給されるので洗浄水からの溶解気体の逃散
があっても所定の洗浄能力を保持できる。しかしなが
ら、かかる方法を採用する場合には洗浄水の使用量が増
大し、処理コストの上昇を招き、経済的に得策でない。The above is not limited to the case of hydrogen water, but also applies to the case of gas-dissolved water in which ozone or another gas is dissolved. In general, since the cleaning process cannot be performed in a closed system, escape of dissolved gas from the cleaning water and a decrease in the cleaning ability due to the escape are problems inevitable. If the method of continuously supplying gas-dissolved water produced by the gas dissolving device to each of the cleaning tanks and continuously discharging the overflow water after cleaning is adopted, new cleaning water is always supplied to the cleaning tank. Therefore, even if dissolved gas escapes from the cleaning water, a predetermined cleaning ability can be maintained. However, when such a method is employed, the amount of washing water used increases, which leads to an increase in processing costs, which is not economically advantageous.
【0013】本発明は叙上の点に鑑みなされたもので、
洗浄水の有効利用を図るため、洗浄槽からの排出水を前
段の洗浄槽に順次送り、該排出水を前段の洗浄槽におけ
る洗浄水として利用するという方法を採用する場合、及
び洗浄水を一つの洗浄槽において循環使用するという方
法を採用する場合のいずれの場合においても、常に所定
の溶存気体濃度に保持された洗浄水を洗浄槽に供給でき
る洗浄装置を提供することを目的としている。The present invention has been made in view of the above points,
In order to make effective use of the washing water, a method of sequentially sending the discharged water from the washing tank to the preceding washing tank and using the discharged water as the washing water in the preceding washing tank is adopted. It is an object of the present invention to provide a cleaning apparatus capable of always supplying cleaning water having a predetermined dissolved gas concentration to a cleaning tank in any case where a method of circulating and using a single cleaning tank is used.
【0014】[0014]
【課題を解決するための手段】本発明は、(1)複数の
洗浄槽を配置して被洗浄物を各洗浄槽に順次送り、気体
溶解水からなる洗浄水を洗浄槽に供給して被洗浄物の洗
浄を行うための洗浄装置において、洗浄槽からの排出水
を前段の洗浄槽又は同一の洗浄槽に導く送液ラインに不
純物除去装置を設けると共に、該不純物除去装置により
不純物除去処理がなされた排出水に気体を溶解するため
の気体溶解装置を設けてなることを特徴とする洗浄装
置、(2)気体が水素ガス又はオゾンガスである前記
(1)記載の洗浄装置、(3)気体溶解装置に連結され
た気体供給装置が水電解装置又はガスボンベである前記
(1)記載の洗浄装置、(4)不純物除去装置と気体溶
解装置との間に脱気装置を設けてなる前記(1)記載の
洗浄装置、(5)複数の洗浄槽を配置して被洗浄物を各
洗浄槽に順次送り、気体溶解水からなる洗浄水を洗浄槽
に供給して被洗浄物の洗浄を行うための洗浄装置におい
て、洗浄槽からの排出水を前段の洗浄槽に導く送液ライ
ンに不純物除去装置と、該不純物除去装置により不純物
除去処理がなされた排出水に気体を溶解するための気体
溶解装置とを設けると共に、最終段の洗浄槽と前段の洗
浄槽との間における送液ラインに、前記不純物除去装置
及び気体溶解装置と共にイオン吸着膜装置を設けてなる
ことを特徴とする洗浄装置を要旨とする。According to the present invention, there are provided (1) a plurality of cleaning tanks arranged, objects to be cleaned are sequentially sent to each of the cleaning tanks, and cleaning water composed of gas-dissolved water is supplied to the cleaning tank to be cleaned. In a cleaning device for cleaning a cleaning object, an impurity removing device is provided in a liquid sending line that guides water discharged from a cleaning tank to a preceding cleaning tank or the same cleaning tank, and an impurity removing process is performed by the impurity removing device. (2) a cleaning device according to (1), wherein the gas is hydrogen gas or ozone gas, and (3) a gas. (1) The cleaning device according to the above (1), wherein the gas supply device connected to the dissolving device is a water electrolysis device or a gas cylinder, and (4) the degassing device provided between the impurity removing device and the gas dissolving device. ) Described washing device, (5) multiple A cleaning device is provided to sequentially wash the objects to be cleaned to each of the cleaning tanks and supply cleaning water composed of gas-dissolved water to the cleaning tank to clean the objects to be cleaned. And a gas dissolving device for dissolving gas in the effluent that has been subjected to the impurity removal treatment by the impurity removal device, and a cleaning tank of the final stage. The gist of the present invention is a washing apparatus characterized in that an ion-adsorbing film apparatus is provided in addition to the impurity removing apparatus and the gas dissolving apparatus in a liquid sending line between the washing tank in the preceding stage.
【0015】[0015]
【発明の実施の形態】図1は本発明の第1の実施例を示
すもので、3つの洗浄槽30、31、32が横方向に配
置され、且つ各洗浄槽30、31、32の下方には、各
洗浄槽からの溢流水を貯留する受槽33、34、35が
それぞれ設けられている。洗浄槽の数はもとより3つに
限定されるものではなく、任意である。36は半導体ウ
エハー等の被洗浄物を保持収納するローダー、37は洗
浄終了後の被洗浄物を保持収納するアンローダーであ
る。FIG. 1 shows a first embodiment of the present invention, in which three cleaning tanks 30, 31, and 32 are arranged in a horizontal direction, and each cleaning tank 30, 31, and 32 is disposed below the cleaning tanks. Are provided with receiving tanks 33, 34, 35 for storing overflow water from the respective washing tanks. The number of washing tanks is not limited to three, but is optional. Reference numeral 36 denotes a loader for holding and storing the object to be cleaned such as a semiconductor wafer, and reference numeral 37 denotes an unloader for holding and storing the object to be cleaned after cleaning.
【0016】最終段の洗浄槽である第三洗浄槽32に気
体溶解水を供給するための配管38が設けられ、該配管
38には超純水製造装置77及び気体溶解装置78が連
結されている。以下、気体溶解水として超純水に水素ガ
スを溶解してなる水素水を用いる場合について本発明の
実施例を説明する。A pipe 38 for supplying gas-dissolved water is provided to the third cleaning tank 32, which is the last-stage cleaning tank, and an ultrapure water producing apparatus 77 and a gas dissolving apparatus 78 are connected to the pipe 38. I have. Hereinafter, an example of the present invention will be described for a case where hydrogen water obtained by dissolving hydrogen gas in ultrapure water is used as gas-dissolved water.
【0017】気体溶解装置78には気体供給装置47が
連結されている。気体供給装置47としては水電解装置
が用いられ、該水電解装置の陰極室に発生した水素ガス
を気体溶解装置78に供給するようになっている。超純
水製造装置77にて製造された超純水を気体溶解装置7
8に導き、一方、気体供給装置47にて製造された水素
ガスを前記装置78に導き、該装置78内で水素ガスを
超純水に溶解し、水素水を製造する。この気体溶解装置
78は、後述するように、洗浄槽からの排出水送液ライ
ンの途中に設ける気体溶解装置43と同一構造のものを
用いることができる。尚、必要に応じてアンモニア水添
加手段(図示せず)を設け、アンモニア水添加により水
素溶解水のPHを弱アルカリ性とする。水素水中の溶存
水素濃度は0.3〜2.0mg/Lが好ましい。該濃度
が0.3mg/L未満であると微粒子の除去効果に劣
り、また2.0mg/Lを超えると洗浄槽内で発泡が顕
著になり、洗浄効果が低下する。A gas supply device 47 is connected to the gas dissolving device 78. A water electrolysis device is used as the gas supply device 47, and the hydrogen gas generated in the cathode chamber of the water electrolysis device is supplied to the gas dissolution device 78. The ultrapure water produced by the ultrapure water producing apparatus 77 is dissolved in the gas dissolving apparatus 7
8, while the hydrogen gas produced by the gas supply device 47 is guided to the device 78, in which the hydrogen gas is dissolved in ultrapure water to produce hydrogen water. As described later, the gas dissolving device 78 may have the same structure as that of the gas dissolving device 43 provided in the middle of the drainage water supply line from the cleaning tank. If necessary, an ammonia water adding means (not shown) is provided, and the pH of the hydrogen-dissolved water is made weakly alkaline by adding the ammonia water. The dissolved hydrogen concentration in the hydrogen water is preferably from 0.3 to 2.0 mg / L. If the concentration is less than 0.3 mg / L, the effect of removing fine particles is inferior. If the concentration exceeds 2.0 mg / L, foaming becomes remarkable in the washing tank, and the washing effect is reduced.
【0018】超純水製造装置77は、凝集沈殿装置、砂
濾過装置、活性炭濾過装置、逆浸透膜装置、2床3塔イ
オン交換装置、精密フィルター装置等を組み合わせてな
る一次処理系装置と、紫外線照射装置、混床式ポリッシ
ャー、限外濾過膜装置等を組み合わせてなる二次処理系
装置とから構成される。原水を一次処理系装置にて処理
して一次純水を得、この一次純水を二次処理系装置にて
二次処理して一次純水中に残留する微粒子、コロイダル
物質、有機物、金属、陰イオン、溶存酸素等を可及的に
取り除いて超純水を得る。The ultrapure water production apparatus 77 includes a primary treatment system apparatus combining a coagulation settling apparatus, a sand filtration apparatus, an activated carbon filtration apparatus, a reverse osmosis membrane apparatus, a two-bed three-column ion exchange apparatus, a precision filter apparatus, and the like. It is composed of a secondary treatment system device combining an ultraviolet irradiation device, a mixed-bed polisher, an ultrafiltration membrane device and the like. Raw water is treated by a primary treatment system to obtain primary pure water, and the primary pure water is secondarily treated by a secondary treatment system to remain in the primary pure water, fine particles, colloidal substances, organic substances, metals, Ultrapure water is obtained by removing as much as possible anions and dissolved oxygen.
【0019】第三洗浄槽32の受槽35と前段の第二洗
浄槽31との間及び第二洗浄槽31の受槽34と前段の
第一洗浄槽30との間には、それぞれ各洗浄槽からの排
出水を前段の洗浄槽に導く送液ライン39、40が設け
られ、各送液ライン39、40には送水用ポンプ41、
不純物除去装置42、気体溶解装置43がそれぞれ順次
設けられている。不純物除去装置42は、活性炭フィル
ター装置44及び微粒子除去用フィルター装置45から
なるが、これに限定されず、要は洗浄によってもたらさ
れた汚染物質を除去できる装置であればいかなるもので
もよい。The distance between the receiving tank 35 of the third cleaning tank 32 and the preceding second cleaning tank 31 and the distance between the receiving tank 34 of the second cleaning tank 31 and the first cleaning tank 30 of the preceding stage are each A liquid sending line 39, 40 for guiding the discharged water of the above to the preceding washing tank is provided, and a water sending pump 41,
An impurity removing device 42 and a gas dissolving device 43 are sequentially provided. The impurity removing device 42 includes an activated carbon filter device 44 and a filter device 45 for removing fine particles, but is not limited thereto. In short, any device can be used as long as it can remove contaminants brought about by washing.
【0020】気体溶解装置43は不純物除去装置42に
より不純物除去処理がなされた排出水に水素ガスを溶解
するためのものであり、前記装置43には該装置に水素
ガスを供給するための気体供給装置46が連結されてい
る。気体供給装置46として水電解装置を用いることが
好ましい。該水電解装置は、隔膜を介して陽極と陰極を
配置してなる電解槽52と該電解槽52の電源装置53
とからなり、陰極室に生じた水素ガスを気体溶解装置4
3に供給し、該装置43内で排出水に水素ガスを溶解す
る。気体供給装置46は送液ライン39に設けた気体溶
解装置43と、送液ライン40に設けた気体溶解装置4
3との両方にそれぞれ配管48、49を介して連結され
ている。The gas dissolving device 43 is for dissolving the hydrogen gas in the effluent water subjected to the impurity removing treatment by the impurity removing device 42, and the device 43 has a gas supply for supplying the hydrogen gas to the device. The device 46 is connected. It is preferable to use a water electrolysis device as the gas supply device 46. The water electrolysis apparatus includes an electrolytic cell 52 having an anode and a cathode disposed through a diaphragm, and a power supply device 53 for the electrolytic cell 52.
The hydrogen gas generated in the cathode chamber is
3 and hydrogen gas is dissolved in the discharged water in the device 43. The gas supply device 46 includes a gas dissolving device 43 provided on the liquid sending line 39 and a gas dissolving device 4 provided on the liquid sending line 40.
3 are connected to both via pipes 48 and 49, respectively.
【0021】尚、排出水を前段の洗浄槽に送るラインに
気体供給装置46を設けずに、水素水供給ラインに設け
た気体供給装置47を利用してもよい。即ち、気体供給
装置47に気体溶解装置78を連結する配管を設ける他
に、該気体供給装置47に、排出水送液ライン39、4
0における各気体溶解装置43、43を連結する配管を
も設け、気体供給装置47から気体溶解装置43、43
に水素ガスを供給するようにしてもよい。The gas supply device 47 provided in the hydrogen water supply line may be used without providing the gas supply device 46 in the line for sending the discharged water to the preceding washing tank. That is, in addition to providing a pipe for connecting the gas dissolving device 78 to the gas supply device 47,
In addition, a pipe connecting the gas dissolving devices 43, 43 at 0 is also provided.
May be supplied with hydrogen gas.
【0022】気体溶解装置43としては、中空糸膜を充
填した気液分離膜モジュールを用いることが好ましい。
この装置においては、中空糸膜の内側又は外側に水素ガ
スを導入し、また中空糸膜の外側又は内側に排出水を導
入する。水素ガスは膜を透過して排出水に溶解し、その
結果、水素ガス濃度の向上した排出水が得られる。As the gas dissolving device 43, it is preferable to use a gas-liquid separation membrane module filled with a hollow fiber membrane.
In this apparatus, hydrogen gas is introduced inside or outside the hollow fiber membrane, and discharged water is introduced outside or inside the hollow fiber membrane. Hydrogen gas permeates the membrane and dissolves in the effluent, and as a result, effluent with an improved hydrogen gas concentration is obtained.
【0023】51は気体溶解装置43の出口側に連結さ
れた溶存気体濃度計であり、気体溶解装置43より流出
する排出水(洗浄水)の水素ガス濃度を検出し、該水素
ガス濃度を制御する働きをする。即ち、排出水の水素ガ
ス濃度が設定値に達していない場合には、溶存気体濃度
計51から気体供給装置46の電源装置53に信号が出
力される。その結果、電源装置53の電流値が増大し、
水素ガス発生量が増加して水素ガス溶解濃度が増大し、
該水素ガス溶解濃度が所定の値に調整される。反対に水
素ガス濃度が設定値を超えている場合には、信号処理に
より電源装置53の電流値を減少させ、水素ガス発生量
を減少させる。それにより水素ガス溶解濃度が減少し、
該水素ガス溶解濃度が所定の値に調整される。Reference numeral 51 denotes a dissolved gas concentration meter connected to the outlet side of the gas dissolving device 43, which detects the hydrogen gas concentration of the discharge water (wash water) flowing out from the gas dissolving device 43 and controls the hydrogen gas concentration. Work. That is, when the hydrogen gas concentration of the discharged water has not reached the set value, a signal is output from the dissolved gas concentration meter 51 to the power supply device 53 of the gas supply device 46. As a result, the current value of the power supply 53 increases,
The amount of hydrogen gas generated increases and the dissolved concentration of hydrogen gas increases,
The concentration of dissolved hydrogen gas is adjusted to a predetermined value. Conversely, when the hydrogen gas concentration exceeds the set value, the current value of the power supply device 53 is reduced by signal processing, and the amount of generated hydrogen gas is reduced. As a result, the concentration of dissolved hydrogen gas decreases,
The concentration of dissolved hydrogen gas is adjusted to a predetermined value.
【0024】気体溶解装置43は上記した中空糸膜構造
のものに限定されるものではなく、例えば排出水貯留タ
ンクに水素ガスを供給してバブリング法により水素ガス
を溶解する装置や、排出水と水素ガスとを混相流の状態
で回転式ポンプに供給して水素ガスを溶解する装置等を
用いてもよい。気体溶解装置43は前述したように、水
素水を供給する配管38に接続された気体溶解装置78
と同一構造の装置を用いることができる。The gas dissolving device 43 is not limited to the one having the hollow fiber membrane structure described above. For example, a device for dissolving hydrogen gas by a bubbling method by supplying hydrogen gas to a discharge water storage tank, An apparatus or the like for dissolving hydrogen gas by supplying hydrogen gas to a rotary pump in a multiphase flow state may be used. As described above, the gas dissolving device 43 is a gas dissolving device 78 connected to the pipe 38 for supplying hydrogen water.
A device having the same structure as described above can be used.
【0025】半導体ウエハー等の被洗浄物50はローダ
ー36より搬送装置によって第一洗浄槽30に移送さ
れ、該槽30内の洗浄水に浸漬され、洗浄される。洗浄
終了後、被洗浄物50は搬送装置によって第二洗浄槽3
1に移送され、洗浄終了後、同様に第三洗浄槽32に移
送され、最終洗浄が行われる。洗浄の終了した被洗浄物
はアンローダー37に移送され、収納保持される。An object 50 to be cleaned, such as a semiconductor wafer, is transferred from the loader 36 to the first cleaning tank 30 by a transfer device, immersed in cleaning water in the tank 30, and cleaned. After the cleaning is completed, the object 50 is transferred to the second cleaning tank 3
After completion of the cleaning, the wafer is similarly transferred to the third cleaning tank 32, where the final cleaning is performed. The object to be cleaned after the cleaning is transferred to the unloader 37 and stored and held.
【0026】洗浄水としての水素水は配管38を通って
ユースポイントである洗浄装置に送られる。洗浄水は最
終段の洗浄槽である第三洗浄槽32に供給され、被洗浄
物の洗浄が行われる。洗浄槽32には連続的に洗浄水が
供給され、該槽32の上方より溢流する洗浄水は排出水
として受槽35に流下し、一時的に貯留される。Hydrogen water as cleaning water is sent through a pipe 38 to a cleaning device which is a use point. The washing water is supplied to the third washing tank 32, which is the last washing tank, and the object to be washed is washed. Wash water is continuously supplied to the washing tank 32, and the washing water overflowing from above the tank 32 flows down to the receiving tank 35 as discharge water, and is temporarily stored.
【0027】受槽35中の排出水は連続的に送液ライン
39の配管54を通して槽外に流出し、ポンプ41によ
り圧送されて送液ライン39中を流れる。排出水は活性
炭フィルター装置44、微粒子除去用フィルター装置4
5に導かれ、排出水中の汚染物質が除去され、次いで気
体溶解装置43に送られる。一方、気体供給装置46よ
り前記装置43に水素ガスが供給され、該装置43内に
おいて排出水に水素ガスが溶解されて、排出水の水素ガ
ス濃度が所定の値(0.3〜2.0mg/Lが好まし
い)に調整される。ここにおいて、洗浄槽32では洗浄
水は大気圧雰囲気下に置かれるため、溶存していた水素
ガスは大気中に逃散する。また洗浄に供された排出水は
ポンプ41による攪拌で脱泡し、且つ脱泡した気泡がフ
ィルター装置44、45により除去される。このように
して排出水の溶存気体濃度は著しく低下するため、気体
溶解装置43において排出水に水素ガスが十分に溶解
し、水素ガス濃度の調整が適確且つ容易に行われる。The discharged water in the receiving tank 35 continuously flows out of the tank through the piping 54 of the liquid sending line 39, is pumped by the pump 41, and flows through the liquid sending line 39. The discharged water is activated carbon filter device 44, and fine particle removal filter device 4
5, the contaminants in the discharged water are removed, and then sent to the gas dissolving device 43. On the other hand, hydrogen gas is supplied from the gas supply device 46 to the device 43, and the hydrogen gas is dissolved in the effluent in the device 43, and the hydrogen gas concentration of the effluent is reduced to a predetermined value (0.3 to 2.0 mg). / L is preferred). Here, in the cleaning tank 32, since the cleaning water is placed under an atmospheric pressure atmosphere, the dissolved hydrogen gas escapes into the atmosphere. The discharged water used for washing is defoamed by agitation by the pump 41, and the defoamed air bubbles are removed by the filter devices 44 and 45. In this way, the concentration of the dissolved gas in the discharged water is remarkably reduced, so that the hydrogen gas is sufficiently dissolved in the discharged water in the gas dissolving device 43, and the concentration of the hydrogen gas can be adjusted accurately and easily.
【0028】水素ガス濃度の調整がなされた排出水は送
液ライン39の配管55を通り、第二洗浄槽31に供給
される。供給された排出水は該洗浄槽31において被洗
浄物50を洗浄するための洗浄水として作用する。The effluent whose hydrogen gas concentration has been adjusted is supplied to the second cleaning tank 31 through the pipe 55 of the liquid sending line 39. The supplied discharge water acts as cleaning water for cleaning the object 50 in the cleaning tank 31.
【0029】上記洗浄槽31における洗浄水も同様に受
槽34を通して槽外に排出され、この排出水は送液ライ
ン40に送られ、前記したと同様、フィルター装置4
4、45によって汚染物質が除去された後、気体溶解装
置43によって水素ガス濃度が調整される。The washing water in the washing tank 31 is similarly discharged to the outside of the tank through the receiving tank 34, and the discharged water is sent to the liquid sending line 40, and the filter device 4 is provided in the same manner as described above.
After the contaminants are removed by 4 and 45, the hydrogen gas concentration is adjusted by the gas dissolving device 43.
【0030】水素ガス濃度が調整された排出水は第一洗
浄槽30に導かれ、ここで該排出水は第一洗浄槽30に
おける被洗浄物50を洗浄するための洗浄水として作用
する。この洗浄槽30において洗浄に供され且つ受槽3
3に溢流した洗浄水は配管56を通して系外に排出され
る。The discharged water whose hydrogen gas concentration has been adjusted is led to the first cleaning tank 30, where the discharged water acts as cleaning water for cleaning the object 50 in the first cleaning tank 30. The cleaning tank 30 is used for cleaning in the cleaning tank 30 and the receiving tank 3
The washing water overflowing to 3 is discharged out of the system through a pipe 56.
【0031】図2は本発明の第2の実施例を示し、第二
洗浄槽31においてのみ洗浄水を循環使用する態様のも
のである。受槽34から排出する排出水を第二洗浄槽3
1に導くための送液ライン57が設けられ、該送液ライ
ン57に送水用ポンプ41、活性炭フィルター装置4
4、微粒子除去用フィルター装置45、気体溶解装置4
3が配置されている。また気体溶解装置43の出口側に
三方弁58が設けられ、該三方弁58には送液ライン5
7の配管59、60、と、気体溶解装置78から導かれ
る洗浄水を供給するための配管93とが連結されてい
る。FIG. 2 shows a second embodiment of the present invention, in which the washing water is circulated only in the second washing tank 31. The discharged water discharged from the receiving tank 34 is supplied to the second washing tank 3
1. A liquid feed line 57 is provided for leading to the liquid supply line 1 and the water feed pump 41 and the activated carbon filter device 4 are connected to the liquid feed line 57.
4. Filter device 45 for removing fine particles, gas dissolving device 4
3 are arranged. A three-way valve 58 is provided on the outlet side of the gas dissolving device 43, and the three-way valve 58
7 are connected to a pipe 93 for supplying cleaning water guided from the gas dissolving device 78.
【0032】この実施例においては、気体供給装置46
として水素ガスボンベ94が用いられている。61は圧
力調整弁である。62は第三洗浄槽32に洗浄水として
の水素水を供給するための配管、63は第一洗浄槽30
に洗浄水としての超純水を供給するための配管である。In this embodiment, the gas supply device 46
A hydrogen gas cylinder 94 is used. 61 is a pressure regulating valve. 62 is a pipe for supplying hydrogen water as cleaning water to the third cleaning tank 32, 63 is a first cleaning tank 30
This is a pipe for supplying ultrapure water as washing water.
【0033】被洗浄物50は第一洗浄槽30において超
純水によって洗浄され、溢流した洗浄水は配管56を通
して排出される。次いで被洗浄物50は第二洗浄槽31
において水素水で洗浄される。該槽31からの排出水は
フィルター装置44、45を通り、且つ気体溶解装置4
3によって水素ガス濃度を調整され、この水素ガス濃度
の調整をされた排出水は、配管93を通して供給される
水素水と混合され、この混合水は配管60を通って第二
洗浄槽31に供給される。The object 50 to be cleaned is cleaned with ultrapure water in the first cleaning tank 30, and the overflowing cleaning water is discharged through a pipe 56. Next, the object 50 to be cleaned is placed in the second cleaning tank 31.
Is washed with hydrogen water. The effluent from the tank 31 passes through the filter devices 44 and 45 and the gas dissolving device 4
The hydrogen gas concentration is adjusted by 3 and the discharged water whose hydrogen gas concentration has been adjusted is mixed with the hydrogen water supplied through the pipe 93, and this mixed water is supplied to the second cleaning tank 31 through the pipe 60. Is done.
【0034】受槽34に溢流した洗浄水の一部は配管6
4を通して排出され、この排出した排水の量と同量の新
しい水素水が配管93を通して供給されるようになって
いる。このように構成することにより、フィルター装置
44、45で除去しきれなかった不純物が次第に濃縮さ
れていくのを防止することができる。A part of the washing water overflowing into the receiving tank 34 is
4, and the same amount of fresh water as the amount of discharged waste water is supplied through a pipe 93. With this configuration, it is possible to prevent the impurities that have not been completely removed by the filter devices 44 and 45 from being gradually concentrated.
【0035】第三洗浄槽32において、被洗浄物50は
配管62を通して供給される水素水により洗浄される。
溢流した洗浄水は配管65を通して排出される。In the third cleaning tank 32, the object 50 to be cleaned is cleaned with hydrogen water supplied through a pipe 62.
The overflowing wash water is discharged through a pipe 65.
【0036】図3は本発明の第3の実施例を示すもの
で、この実施例における洗浄装置は極めて清浄度の高い
洗浄を行うのに適したものである。洗浄において高純度
の仕上げが求められる場合、最終段の洗浄槽とその前段
の洗浄槽においては特に精度の高い洗浄を行う必要があ
る。FIG. 3 shows a third embodiment of the present invention, and the cleaning apparatus in this embodiment is suitable for cleaning with extremely high cleanliness. When high-purity finishing is required in the cleaning, it is necessary to perform particularly high-precision cleaning in the final-stage cleaning tank and the preceding-stage cleaning tank.
【0037】本実施例においては第一実施例と同様、洗
浄後の溢流水(排出水)を前段の洗浄槽に送る送液ライ
ンが各洗浄槽の受槽と前段の洗浄槽との間に設けられて
いる。66は、最終段の洗浄槽68における受槽69と
前段の洗浄槽70との間に設けられた送液ライン、67
は、前段の洗浄槽70の受槽71と該洗浄槽70よりも
前段の洗浄槽との間に設けられた送液ラインである。In this embodiment, as in the first embodiment, a liquid feed line for sending overflow water (discharge water) after washing to the preceding washing tank is provided between the receiving tank of each washing tank and the preceding washing tank. Have been. Reference numeral 66 denotes a liquid sending line provided between the receiving tank 69 and the preceding cleaning tank 70 in the final cleaning tank 68.
Is a liquid sending line provided between the receiving tank 71 of the preceding washing tank 70 and the preceding washing tank.
【0038】各送液ライン66、67及び送液ライン6
7よりも前段に位置する図示しない送液ラインに、送水
用ポンプ41、微粒子除去用フィルター45、脱気膜装
置72、気体溶解装置43がそれぞれ順次設けられてお
り、また各送液ラインにおける脱気膜装置72には真空
ポンプ74が連結されている。脱気膜装置72は気液分
離膜を備え、排水中の溶存気体を分離する作用を行う。Each of the liquid sending lines 66 and 67 and the liquid sending line 6
A pump 41 for water supply, a filter 45 for removing fine particles, a degassing membrane device 72, and a gas dissolving device 43 are sequentially provided in a liquid sending line (not shown) located at a stage preceding the line 7, respectively. A vacuum pump 74 is connected to the film membrane device 72. The degassing membrane device 72 includes a gas-liquid separation membrane, and performs an action of separating dissolved gas in wastewater.
【0039】送液ライン66においては上記構成に加え
て、気体溶解装置43の出口側にイオン吸着膜装置73
が設けられている。イオン吸着膜装置73に備えられる
イオン吸着膜としては、膜内部にイオン交換基を有する
高分子鎖が保持されている中空糸状多孔膜であって、膜
1グラム当たり0.2〜10ミリ当量のイオン交換基を
有し、平均孔径0.01〜1μmの中空糸状多孔膜が好
ましい。イオン吸着膜として、アニオン交換能を有する
アニオン吸着膜と、カチオン交換能を有するカチオン吸
着膜と、キレート能を有するキレート吸着膜とがあり、
これらの吸着膜の2種又は3種を適宜組み合わせて用い
る。イオン吸着膜は排出水中のアンモニウムイオン、塩
素イオン、硫酸イオン等を吸着する作用を行う。In the liquid sending line 66, in addition to the above-described structure, an ion adsorption membrane device 73 is provided at the outlet side of the gas dissolving device 43.
Is provided. The ion-adsorbing membrane provided in the ion-adsorbing membrane device 73 is a hollow fiber-like porous membrane in which a polymer chain having an ion-exchange group is retained inside the membrane, and has a content of 0.2 to 10 meq. A hollow fiber porous membrane having an ion exchange group and having an average pore diameter of 0.01 to 1 μm is preferred. Examples of the ion adsorption membrane include an anion adsorption membrane having an anion exchange ability, a cation adsorption membrane having a cation exchange ability, and a chelate adsorption membrane having a chelation ability.
Two or three of these adsorption films are used in appropriate combination. The ion-adsorbing film has a function of adsorbing ammonium ions, chlorine ions, sulfate ions and the like in the discharged water.
【0040】本実施例において、洗浄水としての水素水
は配管62より最終段の洗浄槽68に供給され、被洗浄
物を洗浄すると共に、該槽68より溢流する洗浄水は排
出水として送液ライン66に送り込まれ、微粒子除去用
フィルター装置45にて不純物除去処理がされた後、脱
気膜装置72にて脱気処理が行われる。ここで分離され
た溶存気体は真空ポンプ74によって系外に排気され
る。このように脱気膜装置72にて排出水中の溶存気体
を分離し且つ真空ポンプ74によって系外に排気するこ
とにより、次工程である気体溶解装置43による水素溶
解処理において、所定の水素溶解濃度にすべく十分な量
の水素ガスを排出水に溶解することができる。In this embodiment, hydrogen water as cleaning water is supplied from a pipe 62 to a cleaning tank 68 at the final stage to clean an object to be cleaned, and cleaning water overflowing from the tank 68 is sent as discharge water. After being sent to the liquid line 66 and subjected to the impurity removal treatment by the particulate removal filter device 45, the deaeration treatment is performed by the deaeration film device 72. The dissolved gas separated here is exhausted out of the system by the vacuum pump 74. As described above, the dissolved gas in the discharged water is separated by the degassing membrane device 72 and exhausted out of the system by the vacuum pump 74. And a sufficient amount of hydrogen gas can be dissolved in the effluent water.
【0041】気体溶解装置43において排出水の水素溶
解濃度を調整した後、排出水はイオン吸着装置73に導
かれ、ここで微粒子除去用フィルター装置45では除去
できなかった微量のアニオン成分、カチオン成分及び金
属の除去が行われる。このようにして高純度に清浄化さ
れた排出水は前段の洗浄槽70における洗浄水として該
槽70に供給される。この槽70での洗浄水は最終段の
洗浄槽68における洗浄水と同等の水質を有しており、
被洗浄物50に対する高精度の洗浄が可能である。即
ち、本実施例の装置によれば、最終段の洗浄槽68及び
その前段の洗浄槽70における洗浄水の比抵抗が17M
Ω・cm以上という洗浄条件を満足する高精度洗浄を実
現することができる。After adjusting the dissolved hydrogen concentration of the discharged water in the gas dissolving device 43, the discharged water is led to the ion adsorbing device 73, where a small amount of anion component and cation component which cannot be removed by the filter device 45 for removing fine particles. And metal removal. The discharged water thus purified with high purity is supplied to the cleaning tank 70 in the preceding stage as cleaning water. The washing water in the tank 70 has the same water quality as the washing water in the final washing tank 68.
High-precision cleaning of the object to be cleaned 50 is possible. That is, according to the apparatus of the present embodiment, the specific resistance of the cleaning water in the final cleaning tank 68 and the preceding cleaning tank 70 is 17M.
High-precision cleaning that satisfies the cleaning condition of Ω · cm or more can be realized.
【0042】洗浄槽70における溢流水としての排出水
は送液ライン67に流出し、該送液ライン67に沿って
送液される過程において前記したフィルター処理、脱気
処理、水素ガス濃度調整処理が順次行われ、各処理後の
排出水は洗浄槽70よりも前段の洗浄槽に導かれ、洗浄
水としての用に供される。以下、同様にして排出水は順
次、前段の洗浄槽に導かれ、第一洗浄槽75に到達す
る。ここでの排出水は配管76を通して系外に排出され
る。The effluent as overflow water in the washing tank 70 flows out to the liquid sending line 67, and in the process of being sent along the liquid sending line 67, the above-described filtering, deaeration, and hydrogen gas concentration adjustment. Are sequentially performed, and the discharged water after each treatment is guided to a cleaning tank in a stage preceding the cleaning tank 70, and is used as cleaning water. Hereinafter, similarly, the discharged water is sequentially guided to the preceding washing tank and reaches the first washing tank 75. The discharged water here is discharged out of the system through a pipe 76.
【0043】本発明は図1、図2に示す実施例におい
て、フィルター装置44、45と気体溶解装置43との
間に、図3に示す実施例において説明したと同様の脱気
膜装置72及び真空ポンプ74を設けてもよい。また本
発明は洗浄水を洗浄槽上部より溢流させる構造のものに
限定されず、例えば受槽を設けずに、洗浄槽に排出管を
設け、該排出管を通して洗浄水(排出水)を送液ライン
に送るようにしてもよい。In the embodiment shown in FIGS. 1 and 2, between the filter devices 44 and 45 and the gas dissolving device 43, the same deaeration membrane device 72 and the same as those described in the embodiment shown in FIG. A vacuum pump 74 may be provided. Further, the present invention is not limited to the structure in which the washing water overflows from the upper part of the washing tank. For example, a drain pipe is provided in the washing tank without providing a receiving tank, and the washing water (discharge water) is sent through the drain pipe. You may make it send to a line.
【0044】本発明は洗浄水として水素水以外にオゾン
水を用いることができるが、オゾン水の場合におけるオ
ゾン溶解濃度は0.05〜100mg/Lが好ましい。
従って、気体溶解装置によって排出水にオゾンガスを溶
解してオゾン溶解濃度を調整するに当っては上記数値の
濃度に調整することが好ましい。In the present invention, ozone water can be used as cleaning water other than hydrogen water. In the case of ozone water, the ozone dissolution concentration is preferably 0.05 to 100 mg / L.
Therefore, when the ozone gas is dissolved in the discharged water by the gas dissolving device to adjust the ozone dissolved concentration, it is preferable to adjust the concentration to the above numerical value.
【0045】実験例1 図4に示す装置において、洗浄槽79、受槽80、配管
81、微粒子除去用フィルター82、脱気膜装置83、
気体溶解装置84、配管85が全て気体溶解水で満たさ
れるまで該気体溶解水を連続的に洗浄槽79に供給し
た。洗浄水としての気体溶解水は超純水製造装置86及
び気体溶解装置87により製造し、供給した。88は水
電解装置、89は真空ポンプ、90は圧力計、91は流
量計、92は三方弁、97は気体供給装置である。溶存
気体としては水素ガスとオゾンガスを用いた。Experimental Example 1 In the apparatus shown in FIG. 4, a cleaning tank 79, a receiving tank 80, a pipe 81, a filter 82 for removing fine particles, a degassing membrane device 83,
The gas-dissolved water was continuously supplied to the cleaning tank 79 until the gas-dissolver 84 and the pipe 85 were all filled with the gas-dissolved water. Gas-dissolved water as cleaning water was produced and supplied by an ultrapure water production device 86 and a gas dissolution device 87. 88 is a water electrolysis device, 89 is a vacuum pump, 90 is a pressure gauge, 91 is a flow meter, 92 is a three-way valve, and 97 is a gas supply device. Hydrogen gas and ozone gas were used as dissolved gases.
【0046】気体溶解装置84から気体を供給すること
なく気体溶解水を循環させ、洗浄を行い、測定点A、
B、C、Dにおいて溶存気体濃度を測定した。循環水量
は3L/minとした。結果を表1に示す。同表より、
溶存気体濃度はA点からD点にかけて次第に低下するこ
とが判る。The gas dissolving water is circulated without supplying the gas from the gas dissolving device 84 to perform cleaning, and the measurement points A and
In B, C, and D, the dissolved gas concentrations were measured. The amount of circulating water was 3 L / min. Table 1 shows the results. From the table,
It can be seen that the dissolved gas concentration gradually decreases from point A to point D.
【0047】次に、気体溶解装置84から気体を供給し
たときの溶存気体濃度を測定点Eにおいて測定した。そ
の結果を同表に示す。同表より、気体溶解装置84によ
って気体を供給することにより、気体溶解装置87の出
口水と同等の溶存気体濃度を有する気体溶解水が得られ
ることが判る。Next, the concentration of the dissolved gas when the gas was supplied from the gas dissolving device 84 was measured at the measurement point E. The results are shown in the same table. From the table, it can be seen that by supplying the gas with the gas dissolving device 84, gas dissolved water having the same dissolved gas concentration as the outlet water of the gas dissolving device 87 can be obtained.
【0048】[0048]
【表1】 [Table 1]
【0049】実験例2 図4に示す装置を用い、洗浄水として水素水を供給し、
且つ系内を循環させてハードディスク用ガラス基板を洗
浄した。ガラス基板は予め平均粒径0.2μmのアルミ
ナ粒子を分散させた溶液中に浸して汚染したものを未処
理品とした。水素水の循環水量は3L/minとした。
気体溶解装置84より水素ガスを供給した場合と供給し
ない場合との洗浄効果の状態を観察した。結果を表2に
示す。同表の結果から、溶存気体濃度の調整を行えば、
洗浄槽から排出した排出水を循環して繰り返し用いて
も、新しい洗浄水を系外から随時供給することなしに清
浄度の高い洗浄を行うことが可能であることが判る。Experimental Example 2 Using the apparatus shown in FIG. 4, hydrogen water was supplied as cleaning water.
Further, the glass substrate for the hard disk was washed by circulating in the system. The glass substrate was immersed in a solution in which alumina particles having an average particle size of 0.2 μm were dispersed in advance and contaminated, and was treated as an untreated product. The circulating water amount of the hydrogen water was 3 L / min.
The state of the cleaning effect when hydrogen gas was supplied from the gas dissolving device 84 and when hydrogen gas was not supplied was observed. Table 2 shows the results. From the results in the table, if you adjust the dissolved gas concentration,
It can be seen that even if the discharged water discharged from the cleaning tank is circulated and used repeatedly, high-purity cleaning can be performed without supplying fresh cleaning water from outside the system as needed.
【0050】[0050]
【表2】 [Table 2]
【0051】[0051]
【発明の効果】本発明は、洗浄槽からの排出水を前段の
洗浄槽又は同一の洗浄槽に導く送液ラインの途中に不純
物除去装置を設けると共に、該不純物除去装置により不
純物除去処理がなされた排出水に気体を溶解するための
気体溶解装置を設けてなるものであるから、洗浄槽に供
給される洗浄水が大気圧下に曝され、洗浄水中の溶存気
体が大気中に拡散し、溶存気体濃度が低下するという状
況にあるとしても、気体溶解装置によって溶存気体濃度
を調整することにより、常に所定の溶存気体濃度に保持
された洗浄水を洗浄槽に供給でき、その結果、常に高い
洗浄能力を維持でき、後段の洗浄槽への汚染物質の持ち
込みを確実に防止できる効果がある。According to the present invention, an impurity removing device is provided in the middle of a liquid sending line for guiding the water discharged from the washing tank to the preceding washing tank or the same washing tank, and the impurity removing treatment is performed by the impurity removing apparatus. Since a gas dissolving device for dissolving gas in the discharged water is provided, the cleaning water supplied to the cleaning tank is exposed to the atmospheric pressure, and the dissolved gas in the cleaning water diffuses into the atmosphere, Even in the situation where the dissolved gas concentration is reduced, by adjusting the dissolved gas concentration by the gas dissolving device, it is possible to always supply the washing water maintained at the predetermined dissolved gas concentration to the washing tank, and as a result, always high The cleaning ability can be maintained, and the effect of reliably preventing contaminants from being brought into the subsequent cleaning tank can be obtained.
【図1】本発明の第一実施例を示す略図である。FIG. 1 is a schematic diagram showing a first embodiment of the present invention.
【図2】本発明の第二実施例を示す略図である。FIG. 2 is a schematic view showing a second embodiment of the present invention.
【図3】本発明の第三実施例を示す略図である。FIG. 3 is a schematic diagram showing a third embodiment of the present invention.
【図4】本発明の実験例を示す略図である。FIG. 4 is a schematic view showing an experimental example of the present invention.
【図5】従来の洗浄装置を示す略図である。FIG. 5 is a schematic view showing a conventional cleaning apparatus.
【図6】従来の別の態様の洗浄装置を示す略図である。FIG. 6 is a schematic view showing another conventional cleaning apparatus.
30、31、32 洗浄槽 39、40 送液ライン 42 不純物除去装置 43 気体溶解装置 50 被洗浄物 30, 31, 32 Cleaning tank 39, 40 Liquid sending line 42 Impurity removing device 43 Gas dissolving device 50 Object to be cleaned
Claims (5)
浄槽に順次送り、気体溶解水からなる洗浄水を洗浄槽に
供給して被洗浄物の洗浄を行うための洗浄装置におい
て、洗浄槽からの排出水を前段の洗浄槽又は同一の洗浄
槽に導く送液ラインに不純物除去装置を設けると共に、
該不純物除去装置により不純物除去処理がなされた排出
水に気体を溶解するための気体溶解装置を設けてなるこ
とを特徴とする洗浄装置。1. A cleaning apparatus for arranging a plurality of cleaning tanks, sequentially sending an object to be cleaned to each of the cleaning tanks, and supplying cleaning water comprising gas-dissolved water to the cleaning tank to wash the objects to be cleaned. , An impurity removing device is provided in a liquid sending line for guiding discharged water from the washing tank to the preceding washing tank or the same washing tank,
A cleaning device comprising a gas dissolving device for dissolving a gas in effluent water subjected to an impurity removing process by the impurity removing device.
求項1記載の洗浄装置。2. The cleaning apparatus according to claim 1, wherein the gas is hydrogen gas or ozone gas.
が水電解装置又はガスボンベである請求項1記載の洗浄
装置。3. The cleaning device according to claim 1, wherein the gas supply device connected to the gas dissolving device is a water electrolysis device or a gas cylinder.
脱気装置を設けてなる請求項1記載の洗浄装置。4. The cleaning device according to claim 1, further comprising a degassing device provided between the impurity removing device and the gas dissolving device.
浄槽に順次送り、気体溶解水からなる洗浄水を洗浄槽に
供給して被洗浄物の洗浄を行うための洗浄装置におい
て、洗浄槽からの排出水を前段の洗浄槽に導く送液ライ
ンに不純物除去装置と、該不純物除去装置により不純物
除去処理がなされた排出水に気体を溶解するための気体
溶解装置とを設けると共に、最終段の洗浄槽と前段の洗
浄槽との間における送液ラインに、前記不純物除去装置
及び気体溶解装置と共にイオン吸着膜装置を設けてなる
ことを特徴とする洗浄装置。5. A cleaning apparatus for arranging a plurality of cleaning tanks, sequentially sending an object to be cleaned to each of the cleaning tanks, and supplying cleaning water comprising gas-dissolved water to the cleaning tank to wash the objects to be cleaned. An impurity removing device and a gas dissolving device for dissolving gas in the discharged water subjected to the impurity removing process by the impurity removing device are provided in a liquid feed line for guiding the discharged water from the cleaning tank to the preceding cleaning tank. A cleaning device comprising an ion-adsorbing film device, together with the impurity removing device and the gas dissolving device, provided in a liquid sending line between a final cleaning bath and a preceding cleaning bath.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33573899A JP2001149873A (en) | 1999-11-26 | 1999-11-26 | Washing apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33573899A JP2001149873A (en) | 1999-11-26 | 1999-11-26 | Washing apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2001149873A true JP2001149873A (en) | 2001-06-05 |
Family
ID=18291931
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP33573899A Pending JP2001149873A (en) | 1999-11-26 | 1999-11-26 | Washing apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2001149873A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010117412A (en) * | 2008-11-11 | 2010-05-27 | Shin-Etsu Chemical Co Ltd | Method for cleaning photomask-related substrate |
JP2010117403A (en) * | 2008-11-11 | 2010-05-27 | Shin-Etsu Chemical Co Ltd | Method for cleaning photomask-related substrate |
JP2014090087A (en) * | 2012-10-30 | 2014-05-15 | Mitsubishi Electric Corp | Manufacturing method for solar battery and solar battery manufacturing apparatus used therefor |
US8956463B2 (en) | 2008-10-08 | 2015-02-17 | Shin-Etsu Chemical Co., Ltd. | Method for cleaning photomask-related substrate, cleaning method, and cleaning fluid supplying apparatus |
-
1999
- 1999-11-26 JP JP33573899A patent/JP2001149873A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8956463B2 (en) | 2008-10-08 | 2015-02-17 | Shin-Etsu Chemical Co., Ltd. | Method for cleaning photomask-related substrate, cleaning method, and cleaning fluid supplying apparatus |
JP2010117412A (en) * | 2008-11-11 | 2010-05-27 | Shin-Etsu Chemical Co Ltd | Method for cleaning photomask-related substrate |
JP2010117403A (en) * | 2008-11-11 | 2010-05-27 | Shin-Etsu Chemical Co Ltd | Method for cleaning photomask-related substrate |
JP2014090087A (en) * | 2012-10-30 | 2014-05-15 | Mitsubishi Electric Corp | Manufacturing method for solar battery and solar battery manufacturing apparatus used therefor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6290777B1 (en) | Method and device for washing electronic parts member, or the like | |
JP4109455B2 (en) | Hydrogen dissolved water production equipment | |
US5783790A (en) | Wet treatment method | |
US5635053A (en) | Method and apparatus for cleaning electronic parts | |
JP3296405B2 (en) | Cleaning method and cleaning device for electronic component members | |
TWI408107B (en) | Extra-pure water production equipment and operating method thereof | |
JP2010069460A (en) | Method for reducing hydrogen peroxide, device for reducing the same, device for manufacturing ultrapure water and cleaning method | |
JP2004122020A (en) | Ultrapure water manufacturing apparatus and method for washing ultrapure water manufacturing and supplying system of the apparatus | |
JP4034668B2 (en) | Ultrapure water production system and operation method thereof | |
JP2009255203A (en) | The reclaiming method of polishing slurry | |
JP2001149873A (en) | Washing apparatus | |
JP3639102B2 (en) | Wet processing equipment | |
JP4119040B2 (en) | Functional water production method and apparatus | |
JP2009240943A (en) | Conditioning method of ion-exchange resin | |
US20050211632A1 (en) | Base dosing water purification system and method | |
JP3332323B2 (en) | Cleaning method and cleaning device for electronic component members | |
JP3928484B2 (en) | Functional water recovery method | |
JP3507588B2 (en) | Wet processing method and processing apparatus | |
JPH10128253A (en) | Washing method for electronic members and device therefor | |
JP2003145148A (en) | Ultrapure water supply apparatus and ultrapure water supply method | |
JP3963319B2 (en) | Ultrapure water production equipment | |
JP3507590B2 (en) | Wet processing method and processing apparatus | |
JP2001025715A (en) | Production of functional water and device therefor | |
JPH10235358A (en) | Apparatus and method for electrolytic water-making | |
JPS6336899A (en) | Apparatus for producing pure water |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060724 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20081209 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090107 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090304 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090701 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20091118 |