[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3332323B2 - Cleaning method and cleaning device for electronic component members - Google Patents

Cleaning method and cleaning device for electronic component members

Info

Publication number
JP3332323B2
JP3332323B2 JP30362796A JP30362796A JP3332323B2 JP 3332323 B2 JP3332323 B2 JP 3332323B2 JP 30362796 A JP30362796 A JP 30362796A JP 30362796 A JP30362796 A JP 30362796A JP 3332323 B2 JP3332323 B2 JP 3332323B2
Authority
JP
Japan
Prior art keywords
cleaning
ultrapure water
gas
dissolved
electronic component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP30362796A
Other languages
Japanese (ja)
Other versions
JPH10128254A (en
Inventor
孝之 今岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Organo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP30362796A priority Critical patent/JP3332323B2/en
Application filed by Alps Electric Co Ltd, Organo Corp filed Critical Alps Electric Co Ltd
Priority to CNB971973342A priority patent/CN1163946C/en
Priority to PCT/JP1997/002852 priority patent/WO1998008248A1/en
Priority to KR10-1999-7001345A priority patent/KR100424541B1/en
Priority to US09/242,601 priority patent/US6290777B1/en
Priority to CNB2004100020073A priority patent/CN1299333C/en
Priority to TW086111903A priority patent/TW348078B/en
Publication of JPH10128254A publication Critical patent/JPH10128254A/en
Priority to JP2000352815A priority patent/JP3409849B2/en
Application granted granted Critical
Publication of JP3332323B2 publication Critical patent/JP3332323B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Cleaning By Liquid Or Steam (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は半導体基板、ガラス
基板、電子部品、或いはこれらの製造装置部品等の如き
電子部品部材類の洗浄方法及び洗浄装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for cleaning electronic parts such as a semiconductor substrate, a glass substrate, an electronic part, and parts for manufacturing these components.

【0002】[0002]

【従来の技術】LSI等の電子部品部材類の製造工程等
においては、表面を極めて清浄にすることが求められる
ことがある。例えばLSIは、シリコンウエハ上に酸化
ケイ素の絶縁被膜を形成し、次いでこの被膜上に所定の
パターンにレジスト層を設け、レジスト層を設けていな
い部分の絶縁被膜をエッチング等によって除去して金属
シリコンを露出させ、この表面を洗浄した後、目的に応
じてp型あるいはn型の元素を導入し、アルミニウム等
の金属配線を埋め込む工程(リソグラフィプロセス)を
繰り返して素子が製造されるが、p型、n型の元素を導
入する際や金属配線を埋め込む際に、金属シリコン表面
に、微粒子等の異物や、金属、有機物、自然酸化膜等が
付着していると、金属シリコンと金属配線との接触不良
や、接触抵抗増大により素子の特性が不良となることが
ある。このためLSI製造工程において、シリコンウエ
ハ表面の洗浄工程は高性能な素子を得る上で非常に重要
な工程であり、シリコンウエハ上の付着不純物は可能な
限り取り除くことが必要である。
2. Description of the Related Art In the process of manufacturing electronic parts such as LSIs, it is sometimes required to make the surface extremely clean. For example, in LSI, a silicon oxide insulating film is formed on a silicon wafer, a resist layer is provided in a predetermined pattern on the silicon film, and the insulating film in a portion where the resist layer is not provided is removed by etching or the like to remove metal silicon. After exposing the surface and cleaning the surface, a step (lithography process) of introducing a p-type or n-type element according to the purpose and embedding a metal wiring such as aluminum is repeated to manufacture an element. When introducing an n-type element or embedding metal wiring, if foreign matter such as fine particles, metal, organic matter, natural oxide film, etc. adhere to the metal silicon surface, the metal silicon and the metal wiring may The characteristics of the element may be poor due to poor contact or increased contact resistance. For this reason, in the LSI manufacturing process, the step of cleaning the surface of the silicon wafer is a very important step for obtaining a high-performance device, and it is necessary to remove impurities adhering to the silicon wafer as much as possible.

【0003】従来、シリコンウエハの洗浄は、硫酸・過
酸化水素水混合溶液、塩酸・過酸化水素水混合溶液、フ
ッ酸溶液、フッ化アンモニウム溶液等による洗浄と、超
純水による洗浄とを組み合わせて行い、シリコンウエハ
表面の原子レベルでの平坦性を損なうことなく、シリコ
ンウエハ表面に付着している有機物、微粒子、金属、自
然酸化膜等を除去している。
Conventionally, the cleaning of a silicon wafer is a combination of cleaning with a mixed solution of sulfuric acid and hydrogen peroxide, a mixed solution of hydrochloric acid and hydrogen peroxide, a hydrofluoric acid solution, an ammonium fluoride solution, and the like, and cleaning with ultrapure water. This removes organic substances, fine particles, metals, natural oxide films and the like adhering to the silicon wafer surface without deteriorating the flatness of the silicon wafer surface at the atomic level.

【0004】以下の(1)〜(13)は、従来のシリコン
ウエハの洗浄工程の具体的な一例である。 (1)硫酸・過酸化水素水洗浄工程;硫酸:過酸化水素
水=4:1(体積比)の混合溶液により、130℃で1
0分洗浄。 (2)超純水洗浄工程;超純水で10分洗浄。 (3)フッ酸洗浄工程;0.5%のフッ酸により1分洗
浄。 (4)超純水洗浄工程;超純水で10分洗浄。 (5)アンモニア・過酸化水素水洗浄工程;アンモニア
水:過酸化水素水:超純水=0.05:1:5(体積
比)の混合溶液により、80℃で10分洗浄。 (6)超純水洗浄工程;超純水で10分洗浄。 (7)フッ酸洗浄工程;0.5%のフッ酸により1分洗
浄。 (8)超純水洗浄工程;超純水で10分洗浄。 (9)塩酸・過酸化水素水洗浄工程;塩酸:過酸化水素
水:超純水=1:1:6(体積比)の混合溶液により、
80℃で10分洗浄。 (10)超純水洗浄工程;超純水で10分洗浄。 (11)フッ酸洗浄工程;0.5%のフッ酸により1分洗
浄。 (12)超純水洗浄工程;超純水で10分洗浄。 (13)スピン乾燥又はIPA蒸気乾燥
The following (1) to (13) are specific examples of a conventional silicon wafer cleaning process. (1) Sulfuric acid / hydrogen peroxide solution washing step; a mixed solution of sulfuric acid: hydrogen peroxide solution = 4: 1 (volume ratio) at 130 ° C.
Wash for 0 minutes. (2) Ultrapure water washing step; washing with ultrapure water for 10 minutes. (3) Hydrofluoric acid washing step; washing with 0.5% hydrofluoric acid for 1 minute. (4) Ultrapure water washing step; washing with ultrapure water for 10 minutes. (5) Ammonia / hydrogen peroxide water washing step; washing with a mixed solution of ammonia water / hydrogen peroxide / ultra pure water = 0.05: 1: 5 (volume ratio) at 80 ° C. for 10 minutes. (6) Ultrapure water washing step; washing with ultrapure water for 10 minutes. (7) Hydrofluoric acid washing step: washing with 0.5% hydrofluoric acid for 1 minute. (8) Ultrapure water washing step: washing with ultrapure water for 10 minutes. (9) Hydrochloric acid / hydrogen peroxide water washing step: a mixed solution of hydrochloric acid: hydrogen peroxide water: ultra pure water = 1: 1: 6 (volume ratio)
Wash at 80 ° C for 10 minutes. (10) Ultrapure water washing step; washing with ultrapure water for 10 minutes. (11) Hydrofluoric acid washing step; washing with 0.5% hydrofluoric acid for 1 minute. (12) Ultrapure water washing step; washing with ultrapure water for 10 minutes. (13) Spin drying or IPA vapor drying

【0005】上記(1)の工程は、主にシリコンウエハ
表面に付着している有機物の除去を行うためのもの、
(5)の工程は、主にシリコンウエハ表面に付着してい
る微粒子を除去するためのもの、(9)の工程は、主に
シリコンウエハ表面の金属不純物を除去するためのもの
であり、また(3)、(7)、(11)の工程はシリコ
ンウエハ表面の自然酸化膜を除去するために行うもので
ある。尚、上記各工程における洗浄液には、上記した主
目的以外の他の汚染物質除去能力がある場合が多く、例
えば(1)の工程で用いる硫酸・過酸化水素水混合溶液
は、有機物の他に金属不純物の強力な除去作用も有して
いるため、上記したような各洗浄液によって異なる不純
物を除去する方法の他に、一種類の洗浄液で複数の不純
物を除去するようにした方法もある。
The step (1) is mainly for removing organic substances adhering to the surface of the silicon wafer,
The step (5) is mainly for removing fine particles adhering to the silicon wafer surface, and the step (9) is mainly for removing metal impurities on the silicon wafer surface. Steps (3), (7) and (11) are performed to remove the natural oxide film on the surface of the silicon wafer. In addition, the cleaning liquid in each of the above steps often has a contaminant removing ability other than the above-mentioned main purpose. For example, the mixed solution of sulfuric acid and hydrogen peroxide used in the step (1) is not only organic but also organic substances. Since it also has a strong action of removing metal impurities, in addition to the above-described method of removing different impurities by each cleaning solution, there is also a method of removing a plurality of impurities with one type of cleaning solution.

【0006】シリコンウエハの洗浄工程において、シリ
コンウエハ表面に洗浄液や超純水を接触させる方法とし
ては、一般に洗浄液や超純水を貯めた洗浄槽に複数のシ
リコンウエハを浸漬するバッチ洗浄法と呼ばれる方法が
採用されているが、洗浄液の汚染を防止するために洗浄
液を循環ろ過しながら洗浄する方法、洗浄液による処理
後の超純水による洗浄方式として、超純水を洗浄槽底部
から供給して洗浄槽上部から溢れさせながら行うオーバ
ーフロー洗浄法、一旦ウエハ全面が超純水に浸漬するま
で洗浄槽内に超純水を貯めた後、一気に超純水を洗浄槽
底部から排出するクイックダンプ洗浄法等も採用されて
いる。また近年はバッチ洗浄法の他に、ウエハ表面に洗
浄液や超純水をシャワー状に吹き掛けて洗浄する方法
や、ウエハを高速回転させてその中央に洗浄液や超純水
を吹き掛けて洗浄する方法等の、所謂枚葉洗浄法も採用
されている。
In the silicon wafer cleaning step, a method of bringing a cleaning liquid or ultrapure water into contact with the silicon wafer surface is generally called a batch cleaning method in which a plurality of silicon wafers are immersed in a cleaning tank containing the cleaning liquid or ultrapure water. Although the method is adopted, in order to prevent contamination of the cleaning liquid, a method of cleaning while circulating and filtering the cleaning liquid, and a cleaning method using ultrapure water after treatment with the cleaning liquid, supplying ultrapure water from the bottom of the cleaning tank. An overflow cleaning method that overflows from the top of the cleaning tank, a quick dump cleaning method that stores ultrapure water in the cleaning tank until the entire surface of the wafer is immersed in ultrapure water, and then discharges the ultrapure water from the bottom of the cleaning tank at a stretch Etc. have also been adopted. In recent years, in addition to the batch cleaning method, a method of spraying a cleaning liquid or ultrapure water on a wafer surface in a shower shape or cleaning the wafer by rotating the wafer at a high speed and spraying a cleaning liquid or ultrapure water on the center thereof. A so-called single wafer cleaning method such as a method is also employed.

【0007】上記超純水による洗浄は、ウエハ表面に残
留する洗浄液等をすすぐ(リンス)ために行うものであ
る。このためすすぎに用いる超純水は微粒子、コロイド
状物質、有機物、金属イオン、陰イオン、溶存酸素等を
極限レベルまで除去した高純度の超純水が使用されてい
る。この超純水は洗浄液の溶媒としても用いられてい
る。
The cleaning with ultrapure water is performed to rinse (rinse) a cleaning liquid or the like remaining on the wafer surface. Therefore, the ultrapure water used for rinsing is high purity ultrapure water from which fine particles, colloidal substances, organic substances, metal ions, anions, dissolved oxygen and the like have been removed to an extremely low level. This ultrapure water is also used as a solvent for the cleaning liquid.

【0008】[0008]

【発明が解決しようとする課題】近年LSIの集積度は
飛躍的に向上し、初期の頃にはLSI製造工程における
リソグラフィプロセスが数回程度であったものが、20
回から30回にも増大し、ウエハの洗浄回数もリソグラ
フィプロセスの増大に伴って増加している。このためウ
エハの洗浄に用いる洗浄液や超純水の原材料コスト、使
用後の洗浄液や超純水の処理コスト、更には高温での洗
浄処理によってクリーンルーム内に生じた洗浄液ガスを
クリーンルーム内から排出するためのエアーコスト等が
増大し、製品コストの増大につながっており、洗浄液の
低濃度化や使用量の低減化、洗浄工程の低温化、洗浄工
程1回当たりの工程数の削減、すすぎに用いる超純水の
使用量の低減化等が課題となっている。
In recent years, the degree of integration of LSI has been dramatically improved. In the early days, the number of lithography processes in the LSI manufacturing process was about several times.
From 30 times to 30 times, and the number of times of cleaning of the wafer also increases with the increase in the lithography process. For this reason, the cost of the cleaning liquid and ultrapure water used for cleaning the wafer, the cost of processing the used cleaning liquid and ultrapure water, and the cleaning liquid gas generated in the clean room due to the high temperature cleaning process are discharged from the clean room. The air cost, etc. of the products has increased, which has led to an increase in product costs. The lowering of the concentration and use amount of the cleaning solution, the lowering of the cleaning process, the reduction in the number of processes per cleaning process, and the super- A challenge is to reduce the amount of pure water used.

【0009】上記LSI等の洗浄工程において、シリコ
ンウエハ表面に付着した有機物分子は、LSIの性能を
劣化させ、LSIの歩留りを著しく低下させる。また有
機物が被膜状となって、その被膜の内側に金属不純物や
微粒子が付着していたり、自然酸化膜が形成されていた
りすると、フッ酸洗浄、塩酸過酸化水素水洗浄、アンモ
ニア過酸化水素水洗浄等をおこなっても、充分に金属不
純物や微粒子、自然酸化膜等を除去することができない
という問題があった。
[0009] In the above-described cleaning process of the LSI or the like, the organic substances adhering to the surface of the silicon wafer deteriorate the performance of the LSI and significantly reduce the yield of the LSI. If the organic substance is in the form of a film and metal impurities or fine particles adhere to the inside of the film, or if a natural oxide film is formed, cleaning with hydrofluoric acid, cleaning with hydrochloric acid hydrogen peroxide, aqueous ammonia hydrogen peroxide, etc. Even if cleaning is performed, there is a problem that metal impurities, fine particles, natural oxide films and the like cannot be sufficiently removed.

【0010】このため、従来から行われている洗浄工程
では、その第一番目に有機物の除去を行っているのが普
通である。有機物の除去には、従来、上記した例におけ
るような硫酸過酸化水素水洗浄を行う方法が主として採
用されていたが、数十%という濃厚な硫酸過酸化水素水
を用いるため、薬品(硫酸及び過酸化水素水)使用量が
かさむとともに、洗浄後のすすぎを行うために多量の超
純水を必要とする。このため硫酸過酸化水素水調製に用
いる薬品コストが高くなるだけでなく、使用済の硫酸過
酸化水素水の処理や、すすぎに用いた超純水の廃棄処理
のために大規模な廃液・廃水処理施設が必要となり、こ
のような処理施設の設置コスト、運転コストも膨大とな
るため製品の製造コストを引き上げてしまうという問題
がある。また硫酸過酸化水素水洗浄は、高温下で行うた
め熱源が必要となるばかりか、処理薬品のガスが発生す
るため、クリーンルーム内から薬品ガスを排出する必要
があり、この結果、熱源や排気のためのコストもかかる
という問題があった。
[0010] For this reason, in the conventional washing process, the organic matter is usually removed first. Conventionally, for removing organic substances, a method of washing with a sulfuric acid hydrogen peroxide solution as in the above-described example has been mainly employed. However, since a concentrated sulfuric acid solution of tens of percent is used, chemicals (sulfuric acid and sulfuric acid) are used. (Hydrogen peroxide solution) The amount of use increases, and a large amount of ultrapure water is required for rinsing after washing. This not only increases the cost of chemicals used to prepare the sulfuric acid hydrogen peroxide solution, but also causes large-scale wastewater and wastewater to be used for the treatment of used sulfuric acid hydrogen peroxide solution and the disposal of ultrapure water used for rinsing. A processing facility is required, and the installation cost and operating cost of such a processing facility become enormous, which raises the problem of raising the manufacturing cost of products. In addition, since the sulfuric acid / hydrogen peroxide solution cleaning is performed at a high temperature, not only a heat source is required, but also a chemical gas is generated, so it is necessary to discharge the chemical gas from the clean room. There is a problem that the cost for the operation is high.

【0011】一方、最近はオゾンガスを溶解した超純水
によって洗浄して有機物を除去する方法も実用化され始
めており、例えば2〜10ppmのオゾンガスを溶解し
た超純水で、室温下で10分程度洗浄する方法も提案さ
れている。しかしながら、オゾンガスを溶解した超純水
によって室温下で洗浄する方法では、有機物の付着量が
多い場合や、有機物が難分解性のものの場合等には、有
機物を充分に除去することが困難であり、長時間の洗浄
を行っても有機物が残留する虞れがあった。
On the other hand, recently, a method of removing organic substances by washing with ultrapure water in which ozone gas is dissolved has begun to be put into practical use. For example, ultrapure water in which 2 to 10 ppm of ozone gas is dissolved is used for about 10 minutes at room temperature. Cleaning methods have also been proposed. However, in the method of cleaning at room temperature with ultrapure water in which ozone gas is dissolved, it is difficult to sufficiently remove organic substances when the amount of organic substances attached is large or when organic substances are hardly decomposable. In addition, there is a possibility that organic matter remains even after long-time cleaning.

【0012】本発明者等は上記の問題点を解決するため
種々検討した結果、単にオゾンガスを溶解した超純水で
洗浄するだけでなく、超純水にオゾンガスを溶解したア
ルカリ性洗浄液で洗浄することにより、容易且つ確実な
有機物除去が行えることを見出し、このような知見に基
づき本発明を完成するに至った。
As a result of various studies to solve the above problems, the present inventors have found that not only washing with ultrapure water in which ozone gas is dissolved but also washing with an alkaline cleaning solution in which ozone gas is dissolved in ultrapure water. As a result, it has been found that organic substances can be easily and reliably removed, and the present invention has been completed based on such findings.

【0013】本発明は、洗浄に要する薬品や超純水の使
用量の低減化に寄与でき、しかも低温においても電子部
品部材類の表面の有機物を確実かつ容易に除去すること
のできる電子部品部材類の洗浄方法及び洗浄装置を提供
することを目的とするものである。
The present invention can contribute to reducing the amount of chemicals required for cleaning and ultrapure water, and can reliably and easily remove organic substances on the surface of electronic component members even at a low temperature. It is an object of the present invention to provide a kind of cleaning method and a cleaning device.

【0014】[0014]

【課題を解決するための手段】本発明は、(1)電子部
品部材類を、溶存ガス濃度が10ppm未満となるよう
に脱ガスされた超純水にオゾンガスを溶解せしめてな
り、且つ正の酸化還元電位を有するアルカリ性洗浄液に
より洗浄することを特徴とする電子部品部材類の洗浄方
法、(2)アルカリ性洗浄液が、0.05ppm以上の
オゾンガスを溶解していることを特徴とする(1)記載
の電子部品部材類の洗浄方法、(3)アルカリ性洗浄液
のpHが7を超え、11以下であることを特徴とする
(1)又は(2)記載の電子部品部材類の洗浄方法、
(4)超音波を照射しながら洗浄することを特徴とする
(1)〜(3)のいずれかに記載の電子部品部材類の洗
浄方法、(5)アルカリ性洗浄液の温度を、20℃〜6
0℃に温度調節して洗浄することを特徴とする(1)〜
(4)のいずれかに記載の電子部品部材類の洗浄方法、
(6)ガス透過膜を介してオゾンガスを超純水に溶解さ
せることを特徴とする(1)〜(5)のいずれかに記載
の電子部品部材類の洗浄方法、(7)超純水装置と、
存ガス濃度が10ppm未満となるように脱ガスされた
超純水中にオゾンガスを溶解させるためのガス溶解手段
と、溶液をアルカリ性に調製するためのpH調製手段
と、超純水にオゾンガスを溶解した正の酸化還元電位を
有するアルカリ性洗浄液で電子部品部材類を洗浄する洗
浄部とからなることを特徴とする電子部品部材類の洗浄
装置、(8)アルカリ性洗浄液中に溶解している溶存オ
ゾン濃度及び溶液のpHをそれぞれ検知する溶存オゾン
濃度検知手段、pH検知手段と、それらの溶存オゾン濃
度及びpHの検知結果に基づき、アルカリ性洗浄液中の
溶存オゾン濃度及びpHをそれぞれ制御する溶存オゾン
濃度制御手段、pH制御手段を有することを特徴とする
(7)記載の電子部品部材類の洗浄装置、(9)洗浄部
に超音波を照射するための超音波照射手段を有すること
を特徴とする(7)又は(8)記載の電子部品部材類の
洗浄装置を要旨とする。
According to the present invention, there is provided (1) an electronic component member having a dissolved gas concentration of less than 10 ppm.
Ozone gas is dissolved in ultrapure water which has been degassed , and is cleaned with an alkaline cleaning solution having a positive oxidation-reduction potential. (1) The method for cleaning electronic component members according to (1), wherein ozone gas of 0.05 ppm or more is dissolved, (3) The pH of the alkaline cleaning liquid is more than 7 and 11 or less ( (1) The method for cleaning electronic component members according to (2),
(4) The method of cleaning electronic component members according to any one of (1) to (3) , wherein the cleaning is performed while irradiating ultrasonic waves. (5) The temperature of the alkaline cleaning liquid is set to 20 ° C to 6 ° C.
It is characterized by washing at a temperature of 0 ° C. (1) to
(4) The method for cleaning electronic component members according to any of (4) ,
(6) The method for cleaning electronic component members according to any one of (1) to (5) , wherein the ozone gas is dissolved in ultrapure water via a gas permeable membrane, (7) an ultrapure water apparatus If, soluble
Gas dissolving means for dissolving ozone gas in ultrapure water degassed to a concentration of less than 10 ppm , pH adjusting means for adjusting the solution to alkaline, ultrapure water A cleaning unit for cleaning electronic parts and components with an alkaline cleaning liquid having a positive oxidation-reduction potential in which ozone gas is dissolved in a cleaning device for electronic parts and components, (8) dissolving in an alkaline cleaning liquid Dissolved ozone concentration detecting means and pH detecting means for detecting the dissolved ozone concentration and the pH of the solution, respectively, and controlling the dissolved ozone concentration and the pH in the alkaline cleaning liquid based on the detection results of the dissolved ozone concentration and the pH, respectively. Characterized by having dissolved ozone concentration control means and pH control means
(7) The apparatus for cleaning electronic component members according to (7) , (9) The electronic component members according to (7) or (8) , further including an ultrasonic irradiation unit for irradiating the cleaning unit with ultrasonic waves. The gist of the cleaning device is as follows.

【0015】[0015]

【発明の実施の形態】本発明方法において、洗浄の対象
となる電子部品部材類(被洗浄物)としては、電子部品
製造分野等において用いられる種々の部品、材料等が挙
げられ、例えばシリコン基板、III-V 族半導体ウエハ等
の半導体基板、液晶用ガラス基板等の基板材料、メモリ
素子、CPU、センサー素子等の電子部品等の完成品や
その半製品、石英反応管、洗浄槽、基板キャリヤ等の電
子部品製造装置用部品等が例示される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the method of the present invention, various components and materials used in the electronic component manufacturing field and the like are listed as electronic component members (objects to be cleaned) to be cleaned. Substrate materials such as semiconductor substrates such as III-V semiconductor wafers, glass substrates for liquid crystal, etc., finished products and semi-finished products such as electronic components such as memory devices, CPUs and sensor devices, quartz reaction tubes, cleaning tanks, substrate carriers And the like for an electronic component manufacturing apparatus.

【0016】本発明において、超純水とは、工業用水、
上水、井水、河川水、湖沼水等の原水を凝集沈殿、ろ
過、凝集ろ過、活性炭処理等の前処理装置で処理するこ
とにより、原水中の粗大な懸濁物質、有機物等を除去
し、次いでイオン交換装置、逆浸透膜装置等の脱塩装置
を主体とする一次純水製造装置で処理することにより、
微粒子、コロイド物質、有機物、金属イオン、陰イオン
等の不純物の大部分を除去し、更にこの一次純水を紫外
線照射装置、混床式ポリッシャー、限外ろ過膜や逆浸透
膜を装着した膜処理装置からなる二次純水製造装置で循
環処理することにより、残留する微粒子、コロイド物
質、有機物、金属イオン、陰イオン等の不純物を可及的
に除去した高純度純水を指し、その水質としては、例え
ば電気抵抗率が17.0MΩ・cm以上、全有機炭素が
100μgC/リットル以下、微粒子数(粒径0.07
μm以上のもの)が50ケ/ミリリットル以下、生菌数
が50ケ/リットル以下、シリカが10μgSiO2
リットル以下、ナトリウム0.1μgNa/リットル以
下のものを指す。また本発明装置において超純水製造装
置とは、前記した前処理装置、一次純水製造装置、二次
純水製造装置を組み合わせたものを指す。尚、一次純水
製造装置の後段に、真空脱気装置やガス透過膜を用いた
膜脱気装置等の脱気装置が追加される場合も含み、また
原水としては、工業用水、上水、井水、河川水、湖沼水
などに工場内で回収された各種回収水を混合したものが
用いられることもある。
In the present invention, ultrapure water is industrial water,
Raw water such as tap water, well water, river water, lake water, etc. is treated with a pretreatment device such as coagulation sedimentation, filtration, coagulation filtration, activated carbon treatment, etc. to remove coarse suspended substances, organic matter, etc. in the raw water. Then, by processing in a primary pure water producing apparatus mainly comprising a desalination apparatus such as an ion exchange apparatus and a reverse osmosis membrane apparatus,
Removal of most of impurities such as fine particles, colloidal substances, organic substances, metal ions and anions, and treatment of this primary pure water with an ultraviolet irradiation device, mixed-bed polisher, ultrafiltration membrane and reverse osmosis membrane It refers to high-purity pure water in which impurities such as fine particles, colloidal substances, organic substances, metal ions, and anions have been removed as much as possible by circulating in a secondary pure water production system. Is, for example, an electric resistivity of 17.0 MΩ · cm or more, a total organic carbon of 100 μgC / liter or less, and a number of fine particles (particle size 0.07
μm or less), the number of viable bacteria is 50 or less, silica is 10 μg SiO 2 /
Liter or less, sodium 0.1 μg Na / liter or less. In the apparatus of the present invention, the ultrapure water production apparatus refers to a combination of the above-described pretreatment apparatus, primary pure water production apparatus, and secondary pure water production apparatus. In addition, a case where a deaerator such as a vacuum deaerator or a membrane deaerator using a gas permeable membrane is added at the subsequent stage of the primary pure water production apparatus is included, and as raw water, industrial water, clean water, A mixture of well water, river water, lake water, etc. mixed with various types of recovered water collected in the factory may be used.

【0017】図1は本発明の電子部品部材類の洗浄装置
の一例を示し、図中、1は超純水製造装置、2はガス溶
解槽、3はpH調整装置、4は洗浄槽を示し、この装置
には更に必要に応じ、超純水製造装置1で製造された超
純水中に溶解しているガスを除去するための脱ガス装置
5、洗浄槽4内で洗浄される被洗浄物6に超音波を照射
するための超音波照射装置7が設けられる。
FIG. 1 shows an example of an apparatus for cleaning electronic parts and members of the present invention. In the figure, reference numeral 1 denotes an ultrapure water production apparatus, 2 denotes a gas dissolving tank, 3 denotes a pH adjusting apparatus, and 4 denotes a cleaning tank. The apparatus further includes a degassing apparatus 5 for removing gas dissolved in the ultrapure water produced by the ultrapure water producing apparatus 1 and a cleaning target to be cleaned in the cleaning tank 4, if necessary. An ultrasonic irradiation device 7 for irradiating the object 6 with ultrasonic waves is provided.

【0018】超純水製造装置1には、原水を凝集沈殿装
置、砂ろ過装置、活性炭ろ過装置で処理する前処理装置
と、この前処理水を逆浸透膜装置、2床3塔イオン交換
装置、混床式イオン交換装置、精密フィルターで処理し
て一次純水を得る一次純水製造装置と、一次純水に紫外
線照射、混床式ポリッシャー、限外ろ過膜処理を施し
て、一次純水中に残留する微粒子、コロイド物質、有機
物、金属イオン、陰イオン等を除去する二次純水製造装
置とを備え、更に必要に応じて脱ガス装置を備えている
(いずれも図示せず。)。
The ultrapure water producing apparatus 1 includes a pretreatment device for treating raw water with a coagulating sedimentation device, a sand filtration device, and an activated carbon filtration device, and a reverse osmosis membrane device, a two-bed three-column ion exchange device. , A mixed-bed ion exchange device, a primary-pure water production device that obtains primary purified water by processing with a precision filter, and a primary-purified water that is subjected to ultraviolet irradiation, a mixed-bed polisher, and an ultrafiltration membrane treatment. A secondary pure water producing apparatus for removing fine particles, colloidal substances, organic substances, metal ions, anions and the like remaining in the apparatus is provided, and a degassing apparatus is further provided if necessary (neither is shown). .

【0019】上記超純水製造装置1で製造される超純水
は、例えば下記表1に示す水質を有しているものが好ま
しく、このような水質の超純水であれば、超純水中の汚
染物質がウエハ表面に付着することはないとされてい
る。
The ultrapure water produced by the ultrapure water production apparatus 1 preferably has, for example, the water qualities shown in Table 1 below. It is said that no contaminants therein adhere to the wafer surface.

【0020】[0020]

【表1】 [Table 1]

【0021】上記超純水製造装置1で製造された超純水
には、ガス溶解槽2においてオゾンガスが溶解される。
超純水にオゾンガスを溶解することにより、ウエハ等の
表面の有機物の除去に好適な正の酸化還元電位を有する
洗浄液とすることができるが、通常、25℃、1気圧下
での溶存オゾン濃度が0.05ppm以上、特に1pp
m〜10ppmとなるように、ガス溶解槽2においてオ
ゾンガスを溶解せしめることが好ましい。ガス溶解槽2
に供給する超純水は、製造時に通常、脱ガス処理が施さ
れているため、超純水中の溶存ガス濃度は非常に低くな
っているが、窒素や二酸化炭素はオゾンと反応してイオ
ン化したり、水中で解離してイオン化したりして抵抗率
を低下させるため、超純水をガス溶解槽2に導入する前
に、脱ガス装置5によって超純水中に残存する溶存窒素
や溶存二酸化炭素を更に除去する。
Ozone gas is dissolved in the ultrapure water produced by the ultrapure water producing apparatus 1 in the gas dissolving tank 2.
By dissolving ozone gas in ultrapure water, a cleaning liquid having a positive redox potential suitable for removing organic substances on the surface of a wafer or the like can be obtained. Is 0.05 ppm or more, especially 1 pp
It is preferable that the ozone gas is dissolved in the gas dissolving tank 2 so that the concentration becomes 10 to 10 ppm. Gas dissolving tank 2
The ultrapure water supplied to the plant is usually degassed during production, so the dissolved gas concentration in the ultrapure water is very low, but nitrogen and carbon dioxide react with ozone and ionize. Before the ultrapure water is introduced into the gas dissolving tank 2, dissolved nitrogen or dissolved nitrogen remaining in the ultrapure water is introduced before the ultrapure water is introduced into the gas dissolving tank 2. Further removal of carbon dioxide .

【0022】上記脱ガス装置5において、ガス溶解槽2
に供給する超純水中の全溶存ガス濃度が10ppm未
満、好ましくは2ppm以下となるように脱ガスされ
る。尚、溶存ガス濃度が10ppm以上となると洗浄時
に気泡が発生して被洗浄物に気泡が付着し、気泡が付着
した部分の洗浄効果が低下する傾向となる。脱ガス装置
5において、超純水中の溶存ガスの脱ガスを行う方法と
しては、ガス透過膜を介して真空脱ガスする方法が好ま
しい。
In the degassing apparatus 5, the gas dissolving tank 2
Total dissolved gas concentration of the ultrapure water is less than 10ppm supplied to, preferably degassed so that 2ppm or less
You. If the dissolved gas concentration is 10 ppm or more, bubbles are generated during cleaning, the bubbles adhere to the object to be cleaned, and the cleaning effect on the portion to which the bubbles are adhered tends to decrease. In the degassing device 5, as a method for degassing the dissolved gas in the ultrapure water, a method of vacuum degassing via a gas permeable membrane is preferable.

【0023】超純水にオゾンガスを溶解させる方法とし
ては、超純水にガス透過膜を介してオゾンガスを注入し
て溶解させる方法、超純水中にオゾンガスをバブリング
して溶解させる方法、超純水中にエジェクターを介して
オゾンガスを溶解させる方法、ガス溶解槽2に超純水を
供給するポンプの上流側にオゾンガスを供給し、ポンプ
内の攪拌によって溶解させる方法等が挙げられる。ガス
溶解槽2において超純水に溶解せしめるオゾンガスとし
ては、超純水の電気分解により超純水中の水酸イオンを
還元して生成したオゾンガスが高純度であるため好まし
い。
As a method of dissolving ozone gas in ultrapure water, a method of injecting and dissolving ozone gas into ultrapure water via a gas permeable membrane, a method of dissolving ozone gas by bubbling ozone gas in ultrapure water, A method of dissolving ozone gas in water via an ejector, a method of supplying ozone gas upstream of a pump for supplying ultrapure water to the gas dissolving tank 2, and dissolving the ozone gas by stirring in the pump are exemplified. As the ozone gas to be dissolved in ultrapure water in the gas dissolving tank 2, ozone gas generated by reducing hydroxyl ions in ultrapure water by electrolysis of ultrapure water is preferable because of its high purity.

【0024】ガス溶解槽2や前記脱ガス装置5における
ガス透過膜としては、シリコン等の親ガス性素材からな
るものや、フッ素系樹脂等の撥水性素材からなる膜にガ
スの透過できる多数の微細孔を設け、ガスは透過するが
水は透過しないように構成したもの等が用いられる。ガ
ス透過膜は中空糸状構造として使用することができ、ガ
ス透過膜を中空糸状構造に形成した場合、脱ガスやガス
溶解の方法として中空糸の内空部側から外側にガスを透
過させる方法、中空糸の外側から内空部側にガスを透過
させる方法のいずれの方法のいずれの方法も採用するこ
とができる。
As the gas permeable membrane in the gas dissolving tank 2 and the degassing device 5, a large number of gas permeable materials such as silicon and a water-repellent material such as fluorine resin can be used. For example, a member provided with fine holes and configured to transmit gas but not water can be used. The gas permeable membrane can be used as a hollow fiber structure, and when the gas permeable membrane is formed in a hollow fiber structure, a method of allowing gas to permeate from the inner side of the hollow fiber to the outside as a method of degassing or gas dissolving, Any of the methods of transmitting gas from the outside of the hollow fiber to the inner space side can be adopted.

【0025】ガス溶解槽2では、超純水供給管8からガ
ス溶解槽2に供給される超純水に、ガス透過膜9を介し
てオゾンガスが溶解され、オゾンガスを溶解した超純水
は、供給管10からpH調整装置3に送られる。
In the gas dissolving tank 2, ozone gas is dissolved in ultrapure water supplied from the ultrapure water supply pipe 8 to the gas dissolving tank 2 via the gas permeable membrane 9, and the ultrapure water in which the ozone gas is dissolved is It is sent from the supply pipe 10 to the pH adjusting device 3.

【0026】ガス溶解槽2において超純水にオゾンガス
を溶解せしめた後、pH調整装置3においてアルカリ性
に調整する。本発明洗浄方法は、アルカリ性洗浄液中の
オゾンが分解し、この分解したオゾンによってシリコン
ウエハ等の表面の有機物が除去されることを利用したも
のであり、洗浄液のpHが高い程、オゾンの分解速度が
高くなって、単位時間当たりの有機物の除去効果は向上
するが、あまりpHを高くし過ぎると、有機物の除去効
果が短時間で消失してしまう。このため洗浄液は好まし
くはpHを11以下とすることであり、より好ましくは
pHを9〜11、特に好ましくは10〜10.5の範囲
に調整することである。また上記した理由から、オゾン
ガスを溶解した超純水をアルカリ性とするのは、洗浄を
行う直前が好ましい。
After the ozone gas is dissolved in the ultrapure water in the gas dissolving tank 2, the pH is adjusted to be alkaline in the pH adjusting device 3. The cleaning method of the present invention utilizes the fact that ozone in an alkaline cleaning solution is decomposed and organic substances on the surface of a silicon wafer or the like are removed by the decomposed ozone. And the effect of removing organic substances per unit time is improved. However, if the pH is too high, the effect of removing organic substances disappears in a short time. For this reason, the pH of the cleaning solution is preferably adjusted to 11 or less, more preferably adjusted to 9 to 11, particularly preferably 10 to 10.5. For the reasons described above, it is preferable that the ultrapure water in which the ozone gas is dissolved is made alkaline immediately before the cleaning.

【0027】pHを調整するためには、オゾンガスを溶
解させた超純水に液状又はガス状のアルカリを溶解せし
める方法が採用される。アルカリとしてはアンモニア水
溶液やアンモニアガスが好ましい。pH調整のために液
状アルカリを用いる場合、pH調整装置3は図2に示す
ように、例えばアルカリ貯留槽11と、ポンプ12とか
ら構成することができ、ガス溶解槽2から洗浄槽4に液
を供給する配管の途中で、液状アルカリを添加混合する
ようにする方法が採用される。尚、図2において13は
アルカリの供給量を調整するための制御弁である。
In order to adjust the pH, a method is employed in which a liquid or gaseous alkali is dissolved in ultrapure water in which ozone gas is dissolved. As the alkali, an aqueous ammonia solution or ammonia gas is preferable. When a liquid alkali is used for pH adjustment, as shown in FIG. 2, the pH adjustment device 3 can be composed of, for example, an alkali storage tank 11 and a pump 12. A method is adopted in which a liquid alkali is added and mixed in the middle of a pipe for supplying the liquid alkali. In FIG. 2, reference numeral 13 denotes a control valve for adjusting the supply amount of alkali.

【0028】またpH調整のためにガス状アルカリを添
加する場合、pH調整装置3は図3に示すように、例え
ばアルカリ性ガス供給装置14とガス溶解槽15とから
構成することができる。このガス溶解槽15としては、
前記オゾンガスを溶解させるためのガス溶解槽2と同様
のガス透過膜9を備えた構造のものを用いることができ
る。
When adding a gaseous alkali for pH adjustment, the pH adjusting device 3 can be constituted by, for example, an alkaline gas supply device 14 and a gas dissolving tank 15 as shown in FIG. As the gas dissolving tank 15,
A structure having a gas permeable membrane 9 similar to the gas dissolving tank 2 for dissolving the ozone gas can be used.

【0029】pH調整装置3にてpHを調整したアルカ
リ性洗浄液は、洗浄槽4に送られるが、上記したように
洗浄液は、アルカリ性であり、且つオゾンガスを溶存し
て正の酸化還元電位を有していることが必要である。こ
のため、洗浄槽4に洗浄液を供給する洗浄液供給管16
の途中に、酸化還元電位計17、溶存オゾン濃度計1
8、水素イオン濃度計19を設け、洗浄液中の酸化還元
電位、溶存オゾン濃度及びpHを常時監視し、ガス溶解
槽2において超純水に溶解させるオゾンガス量及びpH
調整装置3において添加するアルカリの量を制御できる
ように構成することが好ましい。
The alkaline cleaning liquid whose pH has been adjusted by the pH adjusting device 3 is sent to the cleaning tank 4. As described above, the cleaning liquid is alkaline and has a positive oxidation-reduction potential by dissolving ozone gas. It is necessary to be. Therefore, the cleaning liquid supply pipe 16 for supplying the cleaning liquid to the cleaning tank 4 is provided.
Of oxidation-reduction potentiometer 17 and dissolved ozone concentration meter 1
8. A hydrogen ion concentration meter 19 is provided to constantly monitor the oxidation-reduction potential, dissolved ozone concentration and pH in the cleaning solution, and to measure the amount and pH of ozone gas dissolved in ultrapure water in the gas dissolving tank 2.
It is preferable that the adjusting device 3 be configured so that the amount of alkali added can be controlled.

【0030】洗浄槽4において被洗浄物6をアルカリ性
洗浄液によって洗浄する方法としては、洗浄液中に被洗
浄物6を浸漬して洗浄するバッチ洗浄法、洗浄液を循環
させながら被洗浄物6と接触させて洗浄する循環洗浄
法、洗浄槽4の底部側から洗浄液を供給し、洗浄槽4の
上部からオーバーフローさせながら洗浄するフロー洗浄
法、被洗浄物6に洗浄液をシャワー状に吹き掛けて洗浄
する方法、高速回転させた被洗浄物6に洗浄液を吹き掛
けて洗浄する方法等が挙げられる。
The method of cleaning the object 6 to be cleaned in the cleaning tank 4 with an alkaline cleaning liquid includes a batch cleaning method in which the object to be cleaned 6 is immersed in the cleaning liquid for cleaning, or a method in which the cleaning liquid is circulated and brought into contact with the object 6 to be cleaned. Circulating cleaning method in which the cleaning liquid is supplied from the bottom side of the cleaning tank 4 and the cleaning liquid is washed while overflowing from the upper part of the cleaning tank 4; And a method of spraying a cleaning liquid onto the cleaning object 6 rotated at a high speed to perform cleaning.

【0031】洗浄槽4にはヒーター20が設けられ、必
要に応じて洗浄液の温度を調整できるようになってい
る。より優れた洗浄効果を得るために、洗浄液を20〜
60℃に温度調節して洗浄することが好ましい。また洗
浄時に超音波照射を併用するとより効果的である。超音
波照射装置7から発生する超音波としては30kHz以
上の周波数のものが用いられる。超音波を照射する場
合、例えばバッチ洗浄法では洗浄槽4内に供給した洗浄
液に被洗浄物6を浸漬した状態で照射する等の方法が採
用され、洗浄液を被洗浄物6にノズル等から吹き掛けて
洗浄する方法の場合には、洗浄液噴射ノズルの上流部に
おいて洗浄液に超音波を照射する方法が採用される。
A heater 20 is provided in the cleaning tank 4 so that the temperature of the cleaning liquid can be adjusted as required. In order to obtain a better cleaning effect, the cleaning solution should be 20 ~
It is preferred that the temperature be adjusted to 60 ° C. for washing. It is more effective to use ultrasonic irradiation at the time of cleaning. The ultrasonic wave generated from the ultrasonic irradiation device 7 has a frequency of 30 kHz or more. When irradiating ultrasonic waves, for example, in a batch cleaning method, a method of irradiating the object to be cleaned 6 in a state where the object to be cleaned 6 is immersed in the cleaning liquid supplied into the cleaning tank 4 is adopted. In the case of the method of washing by spraying, a method of irradiating the cleaning liquid with ultrasonic waves at an upstream portion of the cleaning liquid injection nozzle is adopted.

【0032】洗浄時に超音波照射を併用する場合、洗浄
液中には更に稀ガスを溶解していることが好ましい。稀
ガスとしては、ヘリウム、ネオン、アルゴン、クリプト
ン、キセノンの1種又はこれらの2種以上の混合物が挙
げられ、稀ガスは0.05ppm以上洗浄液中に溶解し
ていることが好ましい。稀ガスの溶解は、超純水中の酸
素ガス、窒素ガス、二酸化炭素ガス等の溶存ガスを脱ガ
ス装置5において脱ガスした後の工程で行うことが好ま
しく、超純水にオゾンガスを溶解させるガス溶解槽2に
おいてオゾンガスの溶解と同時に又は連続して行うこと
が好ましい。稀ガスを溶解させる方法としては、超純水
にオゾンガスを溶解させるための方法と同様の方法を採
用することができる。
When using ultrasonic irradiation at the time of cleaning, it is preferable that a rare gas is further dissolved in the cleaning liquid. Examples of the rare gas include helium, neon, argon, krypton, and xenon, or a mixture of two or more of them. It is preferable that the rare gas is dissolved in the cleaning solution at 0.05 ppm or more. It is preferable to dissolve the rare gas in a step after degassing dissolved gases such as oxygen gas, nitrogen gas, and carbon dioxide gas in the ultrapure water in the degassing device 5, and dissolve the ozone gas in the ultrapure water. It is preferable that the ozone gas is dissolved in the gas dissolving tank 2 simultaneously or continuously. As a method for dissolving the rare gas, a method similar to the method for dissolving ozone gas in ultrapure water can be employed.

【0033】尚、本発明の洗浄装置は、超純水や洗浄液
中に大気中の酸素、窒素等が混入するのを防止するた
め、ガスシール構造を有していることが好ましい。また
上記した例ではガス溶解槽2において超純水にオゾンガ
スを溶解した後、pH調整装置3にてpH調整を行う場
合について示したが、pH調整を行った後にオゾンガス
を溶解するようにしても良い。尚、pHを調製した後に
オゾンガスを溶解させる場合、オゾンガスの溶解は洗浄
を行う直前に行うことが好ましい。
The cleaning apparatus of the present invention preferably has a gas seal structure in order to prevent atmospheric oxygen, nitrogen and the like from being mixed into ultrapure water or the cleaning liquid. In the above-described example, the case where the pH is adjusted by the pH adjuster 3 after dissolving the ozone gas in the ultrapure water in the gas dissolving tank 2 has been described. However, the ozone gas may be dissolved after the pH is adjusted. good. When the ozone gas is dissolved after adjusting the pH, the ozone gas is preferably dissolved immediately before the washing.

【0034】[0034]

【実施例】以下、実施例、比較例を挙げて本発明を更に
詳細に説明する。 実施例1〜6、比較例1〜3 6インチのシリコンウエハ基板(n−Si100)を、
RCA洗浄して表面の不純物を除去し、0.5%希フッ
酸に10分間浸漬し、次いでオーバーフローリンス法
で、5分間超純水ですすぎ、更に130℃で硫酸過酸化
水素(体積比で98%硫酸:30%過酸化水素水=4:
1の混合物)洗浄を行った。このシリコンウエハを超純
水ですすぎ、乾燥させた後、市販のポリエチレンラップ
フィルムをウエハ表面に気泡が入らないように密着させ
てクリーンルーム内で1日間放置し、ポリエチレンラッ
プフィルム表面に付着している有機物をシリコンウエハ
表面に転写させた。シリコンウエハに密着させたポリエ
チレンラップフィルムを剥がし、シリコンウエハ表面へ
の有機物付着程度の指標として、超純水水滴滴下による
表面接触角を測定した後、表2に示す洗浄液及び条件で
ウエハを洗浄して乾燥させた後、有機物の除去効果を調
べるために再度表面の接触角を測定した。結果を表2に
あわせて示す。尚、ポリエチレンラップフィルムと接触
させて汚染させる前のシリコンウエハの表面接触角は2
1°(25枚のウエハの平均値)であった。
The present invention will be described below in further detail with reference to examples and comparative examples. Examples 1 to 6, Comparative Examples 1 to 36 A silicon wafer substrate (n-Si100) of 36 inches was prepared.
RCA cleaning to remove impurities on the surface, immersion in 0.5% dilute hydrofluoric acid for 10 minutes, rinsing with ultrapure water for 5 minutes by overflow rinsing method, and further, sulfuric acid hydrogen peroxide at 130 ° C (volume ratio) 98% sulfuric acid: 30% hydrogen peroxide solution = 4:
1 mixture). After rinsing this silicon wafer with ultrapure water and drying, a commercially available polyethylene wrap film is stuck in a clean room for 1 day so that air bubbles do not enter the wafer surface, and the silicon wrap film adheres to the polyethylene wrap film surface. Organic substances were transferred to the surface of the silicon wafer. After peeling off the polyethylene wrap film adhered to the silicon wafer, and measuring the surface contact angle by dropping ultrapure water drops as an index of the degree of organic substance adhesion on the silicon wafer surface, the wafer was washed with the cleaning liquid and conditions shown in Table 2. After drying, the contact angle of the surface was measured again to examine the effect of removing organic substances. The results are shown in Table 2. The surface contact angle of the silicon wafer before contacting and contaminating with the polyethylene wrap film is 2
1 ° (average value of 25 wafers).

【0035】[0035]

【表2】 [Table 2]

【0036】比較例4 洗浄液として超純水にオゾンを5ppm溶解させたもの
を用いた他は、上記実施例1〜6及び比較例1〜3と同
様にして洗浄した。洗浄前後のウエハ表面の接触角を測
定した結果を表2にあわせて示す。
Comparative Example 4 Washing was carried out in the same manner as in Examples 1 to 6 and Comparative Examples 1 to 3, except that 5 ppm of ozone was dissolved in ultrapure water as a cleaning liquid. Table 2 shows the measurement results of the contact angles of the wafer surface before and after the cleaning.

【0037】比較例5 洗浄液として硫酸過酸化水素水(体積比で98%硫酸:
30%過酸化水素水=4:1の混合物)を用い、130
℃でバッチ式によって洗浄した他は、上記実施例1〜6
及び比較例1〜3と同様にして洗浄した。洗浄前後のウ
エハ表面の接触角を測定した結果を表2にあわせて示
す。
Comparative Example 5 Sulfuric acid and hydrogen peroxide solution (98% sulfuric acid in volume ratio)
30% hydrogen peroxide solution = 4: 1 mixture) and 130
Examples 1 to 6 except that washing was performed by a batch method at
And it wash | cleaned similarly to Comparative Examples 1-3. Table 2 shows the measurement results of the contact angles of the wafer surface before and after the cleaning.

【0038】実施例7〜12、比較例6〜8 上記実施例1〜6と同様にして、RCA洗浄、希フッ酸
洗浄、超純水によるすすぎを行った後、表面にポリエチ
レンラップフィルムを密着させて有機物汚染させたシリ
コンウエハを、表面の接触角を測定した後、950kH
z、1200wの超音波を照射しながら表3に示す洗浄
液及び条件で洗浄して乾燥させた後、再度表面の接触角
を測定した。結果を表3にあわせて示す。
Examples 7 to 12 and Comparative Examples 6 to 8 After performing RCA cleaning, dilute hydrofluoric acid cleaning and rinsing with ultrapure water in the same manner as in Examples 1 to 6, a polyethylene wrap film was adhered to the surface. After measuring the contact angle of the surface of the silicon wafer contaminated with organic substances,
After irradiating ultrasonic waves of 1,200 w with z and washing with the washing liquids and conditions shown in Table 3, and drying, the surface contact angle was measured again. The results are shown in Table 3.

【0039】[0039]

【表3】 [Table 3]

【0040】比較例9 洗浄液として超純水にオゾンを5ppm溶解させたもの
を用いた他は、上記実施例1〜6及び比較例1〜3と同
様にして洗浄した。洗浄前後のウエハ表面の接触角を測
定した結果を表23あわせて示す。
Comparative Example 9 Washing was carried out in the same manner as in Examples 1 to 6 and Comparative Examples 1 to 3, except that 5 ppm of ozone was dissolved in ultrapure water as a cleaning liquid. Table 23 also shows the measurement results of the contact angles of the wafer surface before and after the cleaning.

【0041】比較例10 洗浄液として硫酸過酸化水素水(体積比で98%硫酸:
30%過酸化水素水=4:1の混合物)を用い、130
℃でバッチ式によって洗浄した他は、上記実施例1〜6
及び比較例1〜3と同様にして洗浄した。洗浄前後のウ
エハ表面の接触角を測定した結果を表3にあわせて示
す。
Comparative Example 10 Sulfuric acid hydrogen peroxide solution (98% sulfuric acid in volume ratio:
30% hydrogen peroxide solution = 4: 1 mixture) and 130
Examples 1 to 6 except that washing was performed by a batch method at
And it wash | cleaned similarly to Comparative Examples 1-3. Table 3 shows the measurement results of the contact angles of the wafer surface before and after the cleaning.

【0042】[0042]

【発明の効果】本発明方法によれば、シリコンウエハ等
の電子部品部材類の洗浄工程において、硫酸過酸化水素
による洗浄やオゾンガスを溶解しただけの超純水によっ
て有機物を洗浄する従来法に比べ、短時間で確実に表面
の有機物を除去することができる。また本発明方法によ
れば、洗浄に使用する薬品や洗浄後のすすぎに使用する
超純水の使用量を低減化することができ、薬品や超純水
にかかるコストの低減化、使用後の廃液処理コスト等の
低減化を図ることができ、ひいては電子部品部材類の製
造コストの低減化を図ることができる等の効果を有す
る。
According to the method of the present invention, in the step of cleaning electronic parts such as silicon wafers, compared with the conventional method of cleaning organic substances with sulfuric acid hydrogen peroxide or ultrapure water in which only ozone gas is dissolved, in the cleaning step. The organic matter on the surface can be reliably removed in a short time. According to the method of the present invention, the amount of chemicals used for cleaning and the amount of ultrapure water used for rinsing after cleaning can be reduced, and the cost of chemicals and ultrapure water can be reduced. It is possible to reduce the waste liquid treatment cost and the like, and thus to reduce the manufacturing cost of electronic component members.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明洗浄装置の一例を示す構成図である。FIG. 1 is a configuration diagram showing an example of a cleaning device of the present invention.

【図2】pH調整装置の一例を示す構成図である。FIG. 2 is a configuration diagram illustrating an example of a pH adjusting device.

【図3】pH調整装置の異なる例を示す構成図である。FIG. 3 is a configuration diagram showing a different example of the pH adjusting device.

【符号の説明】[Explanation of symbols]

1 超純水製造装置 2 ガス溶解槽 3 pH調整装置 4 洗浄槽 6 被洗浄物 7 超音波照射装置 18 溶存水素濃度計 19 水素イオン濃度計 DESCRIPTION OF SYMBOLS 1 Ultrapure water production apparatus 2 Gas dissolution tank 3 pH adjustment apparatus 4 Cleaning tank 6 Object to be cleaned 7 Ultrasonic irradiation apparatus 18 Dissolved hydrogen concentration meter 19 Hydrogen ion concentration meter

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平5−166776(JP,A) 特開 平7−161672(JP,A) 特開 平7−256260(JP,A) 国際公開95/6712(WO,A1) (58)調査した分野(Int.Cl.7,DB名) B08B 1/00 - 7/04 H01L 21/304 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-5-166776 (JP, A) JP-A-7-161672 (JP, A) JP-A-7-256260 (JP, A) International Publication 95/6712 (WO, A1) (58) Fields investigated (Int. Cl. 7 , DB name) B08B 1/00-7/04 H01L 21/304

Claims (9)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】電子部品部材類を、溶存ガス濃度が10p
pm未満となるように脱ガスされた超純水にオゾンガス
を溶解せしめてなり、且つ正の酸化還元電位を有するア
ルカリ性洗浄液により洗浄することを特徴とする電子部
品部材類の洗浄方法。
An electronic component member having a dissolved gas concentration of 10 p.
A method for cleaning electronic parts and components, characterized by dissolving ozone gas in ultrapure water degassed to less than pm and cleaning with an alkaline cleaning liquid having a positive oxidation-reduction potential.
【請求項2】アルカリ性洗浄液が、0.05ppm以上
のオゾンガスを溶解していることを特徴とする請求項1
記載の電子部品部材類の洗浄方法。
2. The method according to claim 1, wherein the alkaline cleaning liquid dissolves at least 0.05 ppm of ozone gas.
The method for cleaning electronic component members according to the above.
【請求項3】アルカリ性洗浄液のpHが7を超え、11
以下であることを特徴とする請求項1又は2記載の電子
部品部材類の洗浄方法。
3. The pH of the alkaline cleaning solution exceeds 7, and
3. The method for cleaning electronic component members according to claim 1, wherein:
【請求項4】30kHzの超音波を照射しながら洗浄す
ることを特徴とする請求項1〜のいずれかに記載の電
子部品部材類の洗浄方法。
4. The electronic component members such cleaning method according to any one of claims 1 to 3, characterized in that washing while applying 30kHz ultrasound.
【請求項5】アルカリ性洗浄液の温度を、20℃〜60
℃に温度調節して洗浄することを特徴とする請求項1〜
のいずれかに記載の電子部品部材類の洗浄方法。
5. The temperature of the alkaline cleaning solution is from 20.degree.
Washing by adjusting the temperature to ℃.
5. The method for cleaning electronic component members according to any one of 4 .
【請求項6】ガス透過膜を介してオゾンガスを超純水に
溶解させることを特徴とする請求項1〜のいずれかに
記載の電子部品部材類の洗浄方法。
6. The method of cleaning electronic components members acids according to any one of claims 1 to 5, characterized in that dissolving through the gas permeable membrane ozone gas in ultrapure water.
【請求項7】超純水装置と、溶存ガス濃度が10ppm
未満となるように脱ガスされた超純水中にオゾンガスを
溶解させるためのガス溶解手段と、溶液をアルカリ性に
調製するためのpH調製手段と、超純水にオゾンガスを
溶解した正の酸化還元電位を有するアルカリ性洗浄液で
電子部品部材類を洗浄する洗浄部とからなることを特徴
とする電子部品部材類の洗浄装置。
7. An ultrapure water apparatus and a dissolved gas concentration of 10 ppm
Gas dissolving means for dissolving ozone gas in ultrapure water degassed to less than , pH adjusting means for adjusting the solution to alkaline, and positive redox dissolving ozone gas in ultrapure water A cleaning unit for cleaning electronic component members with an alkaline cleaning liquid having a potential;
【請求項8】アルカリ性洗浄液中に溶解している溶存オ
ゾン濃度及び溶液のpHをそれぞれ検知する溶存オゾン
濃度検知手段、pH検知手段と、それらの溶存オゾン濃
度及びpHの検知結果に基づき、アルカリ性洗浄液中の
溶存オゾン濃度及びpHをそれぞれ制御する溶存オゾン
濃度制御手段、pH制御手段を有することを特徴とする
請求項記載の電子部品部材類の洗浄装置。
8. A dissolved ozone concentration detecting means and a pH detecting means for respectively detecting the concentration of dissolved ozone dissolved in the alkaline cleaning liquid and the pH of the solution. 8. The cleaning device for electronic component members according to claim 7 , further comprising a dissolved ozone concentration control means and a pH control means for controlling a dissolved ozone concentration and a pH in the cleaning liquid, respectively.
【請求項9】洗浄部に超音波を照射するための超音波照
射手段を有することを特徴とする請求項又は記載の
電子部品部材類の洗浄装置。
9. The cleaning section to the electronic component member such cleaning apparatus according to claim 7 or 8, wherein the having the ultrasonic wave irradiation means for irradiating ultrasonic waves.
JP30362796A 1996-08-20 1996-10-29 Cleaning method and cleaning device for electronic component members Expired - Lifetime JP3332323B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP30362796A JP3332323B2 (en) 1996-10-29 1996-10-29 Cleaning method and cleaning device for electronic component members
PCT/JP1997/002852 WO1998008248A1 (en) 1996-08-20 1997-08-19 Method and device for washing electronic parts member, or the like
KR10-1999-7001345A KR100424541B1 (en) 1996-08-20 1997-08-19 Method and device for washing electronic parts member, or the like
US09/242,601 US6290777B1 (en) 1996-08-20 1997-08-19 Method and device for washing electronic parts member, or the like
CNB971973342A CN1163946C (en) 1996-08-20 1997-08-19 Method and device for washing electronic parts member or like
CNB2004100020073A CN1299333C (en) 1996-08-20 1997-08-19 Method and device for cleaning electronic element or its mfg. equipment element
TW086111903A TW348078B (en) 1996-08-20 1997-08-20 Cleaning method and cleaning apparatus for electronic components
JP2000352815A JP3409849B2 (en) 1996-08-20 2000-11-20 Manufacturing equipment for cleaning liquid for cleaning electronic components

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30362796A JP3332323B2 (en) 1996-10-29 1996-10-29 Cleaning method and cleaning device for electronic component members

Publications (2)

Publication Number Publication Date
JPH10128254A JPH10128254A (en) 1998-05-19
JP3332323B2 true JP3332323B2 (en) 2002-10-07

Family

ID=17923270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30362796A Expired - Lifetime JP3332323B2 (en) 1996-08-20 1996-10-29 Cleaning method and cleaning device for electronic component members

Country Status (1)

Country Link
JP (1) JP3332323B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010135810A (en) * 1999-08-31 2010-06-17 Tadahiro Omi METHOD OF CONTROLLING pH VALUE OF SOLUTION AND OXIDATION-REDUCTION POTENTIAL, AND APPARATUS
JP4519234B2 (en) * 2000-01-19 2010-08-04 野村マイクロ・サイエンス株式会社 Article surface cleaning method and cleaning apparatus therefor
JP2002052322A (en) 2000-08-10 2002-02-19 Kurita Water Ind Ltd Cleaning method
JP4826864B2 (en) * 2001-04-12 2011-11-30 栗田工業株式会社 Ultrapure water production equipment
JP2008300429A (en) * 2007-05-29 2008-12-11 Toshiba Corp Method and apparatus for semiconductor substrate cleaning, and apparatus for mixing air bubbles into liquid
JP5412135B2 (en) * 2009-02-23 2014-02-12 野村マイクロ・サイエンス株式会社 Ozone water supply device
JP6299913B1 (en) 2017-03-30 2018-03-28 栗田工業株式会社 pH / redox potential adjustment water production equipment
JP6471816B2 (en) * 2018-02-14 2019-02-20 栗田工業株式会社 pH / redox potential adjustment water production equipment

Also Published As

Publication number Publication date
JPH10128254A (en) 1998-05-19

Similar Documents

Publication Publication Date Title
JP3409849B2 (en) Manufacturing equipment for cleaning liquid for cleaning electronic components
JP3296405B2 (en) Cleaning method and cleaning device for electronic component members
JP3198899B2 (en) Wet treatment method
JP3920429B2 (en) Method and apparatus for cleaning phase shift photomask
JP4484980B2 (en) Photomask cleaning method, cleaning apparatus, and photomask cleaning liquid
JPH08250460A (en) Surface treating solution for semiconductor substrate and method and device for treating surface of semiconductor substrate using the solution
JP2002543976A (en) Method for cleaning microelectronic substrates using ultra-dilute cleaning solution
JP2003205299A (en) Hydrogen dissolved water manufacturing system
JPH09255998A (en) Cleaning method and apparatus
JPH08187474A (en) Washing method
KR19990067948A (en) Wash water for electronic material
JPH0878372A (en) Organic matter removing method and its apparatus
JP3332323B2 (en) Cleaning method and cleaning device for electronic component members
JP3296407B2 (en) Cleaning method and cleaning device for electronic component members
JP3639102B2 (en) Wet processing equipment
EP0641742A1 (en) Method of producing pure water, system therefor and cleaning method
JP2000290693A (en) Cleaning of electronic parts and members
JP4482844B2 (en) Wafer cleaning method
JP3940967B2 (en) Method for producing cleaning water for electronic material and method for cleaning electronic material
JP4273440B2 (en) Cleaning water for electronic material and cleaning method for electronic material
JP2006073747A (en) Method and device for treating semiconductor wafer
JP3507588B2 (en) Wet processing method and processing apparatus
KR100424541B1 (en) Method and device for washing electronic parts member, or the like
JPS6072233A (en) Washing device for semiconductor wafer
JPH03228328A (en) Water washing method of semiconductor substrate

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020703

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080726

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090726

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100726

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100726

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110726

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110726

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120726

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120726

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130726

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term