[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH10128253A - Washing method for electronic members and device therefor - Google Patents

Washing method for electronic members and device therefor

Info

Publication number
JPH10128253A
JPH10128253A JP30362696A JP30362696A JPH10128253A JP H10128253 A JPH10128253 A JP H10128253A JP 30362696 A JP30362696 A JP 30362696A JP 30362696 A JP30362696 A JP 30362696A JP H10128253 A JPH10128253 A JP H10128253A
Authority
JP
Japan
Prior art keywords
cleaning
ultrapure water
gas
dissolved
acidic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30362696A
Other languages
Japanese (ja)
Other versions
JP3296407B2 (en
Inventor
Takayuki Imaoka
孝之 今岡
Kofuku Yamashita
幸福 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FURONTETSUKU KK
Frontec Inc
Organo Corp
Original Assignee
FURONTETSUKU KK
Frontec Inc
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP30362696A priority Critical patent/JP3296407B2/en
Application filed by FURONTETSUKU KK, Frontec Inc, Organo Corp, Japan Organo Co Ltd filed Critical FURONTETSUKU KK
Priority to CNB2004100020073A priority patent/CN1299333C/en
Priority to KR10-1999-7001345A priority patent/KR100424541B1/en
Priority to PCT/JP1997/002852 priority patent/WO1998008248A1/en
Priority to US09/242,601 priority patent/US6290777B1/en
Priority to CNB971973342A priority patent/CN1163946C/en
Priority to TW086111903A priority patent/TW348078B/en
Publication of JPH10128253A publication Critical patent/JPH10128253A/en
Priority to JP2000352815A priority patent/JP3409849B2/en
Application granted granted Critical
Publication of JP3296407B2 publication Critical patent/JP3296407B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Cleaning By Liquid Or Steam (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent generation of an oxidized film and surface roughness on the surface of electronic members by washing the electronic members with an acidic washing liq. obtained by dissolving gaseous hydrogen to ultrapure water and dissolving an acid or an acidic gas to the ultrapure water and having negative oxidation-reduction potential. SOLUTION: Before introducing the ultrapure water produced with an ultrapure water production device 1 to a gas dissolving tank 2, a dissolved oxygen is removed in a degasing device 5 and the ultrapure water is supplied to the gas dissolving tank 2, and the gaseous hydrogen supplied from an ultrapure water electrolyzing device through a gas permeating membrane is dissolved in the ultrapure water. The ultrapure water dissolving the gaseous hydrogen is supplied to a pH adjusting device 3 from a feed pipe 13, and the acid or the acidic gas is dissolved in the ultrapure water to obtain an acidic washing liq. having negative oxidation-reduction potential. This acidic washing liq. is sent to the washing tank 4, and a material 6 to be washed is washed with the acidic washing liq. In this way, a sure washing is executed without generating the oxidized film and the surface dry spot on the surface of the electronic members.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は半導体基板、ガラス
基板、電子部品、或いはこれらの製造装置部品等の如き
電子部品部材類の洗浄方法及び洗浄装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for cleaning electronic parts such as a semiconductor substrate, a glass substrate, an electronic part, and parts for manufacturing these components.

【0002】[0002]

【従来の技術】LSI等の電子部品部材類の製造工程等
においては、表面を極めて清浄にすることが求められる
ことがある。例えばLSIは、シリコンウエハ上に酸化
ケイ素の絶縁被膜を形成し、次いでこの被膜上に所定の
パターンにレジスト層を設け、レジスト層を設けていな
い部分の絶縁被膜をエッチング等によって除去して金属
シリコンを露出させ、この表面を洗浄した後、目的に応
じてp型あるいはn型の元素を導入し、アルミニウム等
の金属配線を埋め込む工程(リソグラフィプロセス)を
繰り返して素子が製造されるが、p型、n型の元素を導
入する際や金属配線を埋め込む際に、金属シリコン表面
に、微粒子等の異物や、金属、有機物、自然酸化膜等が
付着していると、金属シリコンと金属配線との接触不良
や、接触抵抗増大により素子の特性が不良となることが
ある。このためLSI製造工程において、シリコンウエ
ハ表面の洗浄工程は高性能な素子を得る上で非常に重要
な工程であり、シリコンウエハ上の付着不純物は可能な
限り取り除くことが必要である。
2. Description of the Related Art In the process of manufacturing electronic parts such as LSIs, it is sometimes required to make the surface extremely clean. For example, in LSI, a silicon oxide insulating film is formed on a silicon wafer, a resist layer is provided in a predetermined pattern on the silicon film, and the insulating film in a portion where the resist layer is not provided is removed by etching or the like to remove metal silicon. After exposing the surface and cleaning the surface, a step (lithography process) of introducing a p-type or n-type element according to the purpose and embedding a metal wiring such as aluminum is repeated to manufacture an element. When introducing an n-type element or embedding metal wiring, if foreign matter such as fine particles, metal, organic matter, natural oxide film, etc. adhere to the metal silicon surface, the metal silicon and the metal wiring may The characteristics of the element may be poor due to poor contact or increased contact resistance. For this reason, in the LSI manufacturing process, the step of cleaning the surface of the silicon wafer is a very important step for obtaining a high-performance device, and it is necessary to remove impurities adhering to the silicon wafer as much as possible.

【0003】従来、シリコンウエハの洗浄は、硫酸・過
酸化水素水混合溶液、塩酸・過酸化水素水混合溶液、フ
ッ酸溶液、フッ化アンモニウム溶液等による洗浄と、超
純水による洗浄とを組み合わせて行い、シリコンウエハ
表面の原子レベルでの平坦性を損なうことなく、シリコ
ンウエハ表面に付着している有機物、微粒子、金属、自
然酸化膜等を除去している。
Conventionally, the cleaning of a silicon wafer is a combination of cleaning with a mixed solution of sulfuric acid and hydrogen peroxide, a mixed solution of hydrochloric acid and hydrogen peroxide, a hydrofluoric acid solution, an ammonium fluoride solution, and the like, and cleaning with ultrapure water. This removes organic substances, fine particles, metals, natural oxide films and the like adhering to the silicon wafer surface without deteriorating the flatness of the silicon wafer surface at the atomic level.

【0004】以下の(1)〜(13)は、従来のシリコン
ウエハの洗浄工程の具体的な一例である。 (1)硫酸・過酸化水素洗浄工程;硫酸:過酸化水素水
=4:1(体積比)の混合溶液により、130℃で10
分洗浄。 (2)超純水洗浄工程;超純水で10分洗浄。 (3)フッ酸洗浄工程;0.5%のフッ酸により1分洗
浄。 (4)超純水洗浄工程;超純水で10分洗浄。 (5)アンモニア・過酸化水素水洗浄工程;アンモニア
水:過酸化水素水:超純水=0.05:1:5(体積
比)の混合溶液により、80℃で10分洗浄。 (6)超純水洗浄工程;超純水で10分洗浄。 (7)フッ酸洗浄工程;0.5%のフッ酸により1分洗
浄。 (8)超純水洗浄工程;超純水で10分洗浄。 (9)塩酸・過酸化水素水洗浄工程;塩酸:過酸化水素
水:超純水=1:1:6(体積比)の混合溶液により、
80℃で10分洗浄。 (10)超純水洗浄工程;超純水で10分洗浄。 (11)フッ酸洗浄工程;0.5%のフッ酸により1分洗
浄。 (12)超純水洗浄工程;超純水で10分洗浄。 (13)スピン乾燥又はIPA蒸気乾燥
The following (1) to (13) are specific examples of a conventional silicon wafer cleaning process. (1) Sulfuric acid / hydrogen peroxide washing step: a mixed solution of sulfuric acid: hydrogen peroxide = 4: 1 (volume ratio) at 130 ° C. for 10
Minute wash. (2) Ultrapure water washing step; washing with ultrapure water for 10 minutes. (3) Hydrofluoric acid washing step; washing with 0.5% hydrofluoric acid for 1 minute. (4) Ultrapure water washing step; washing with ultrapure water for 10 minutes. (5) Ammonia / hydrogen peroxide water washing step; washing with a mixed solution of ammonia water / hydrogen peroxide / ultra pure water = 0.05: 1: 5 (volume ratio) at 80 ° C. for 10 minutes. (6) Ultrapure water washing step; washing with ultrapure water for 10 minutes. (7) Hydrofluoric acid washing step: washing with 0.5% hydrofluoric acid for 1 minute. (8) Ultrapure water washing step: washing with ultrapure water for 10 minutes. (9) Hydrochloric acid / hydrogen peroxide water washing step: a mixed solution of hydrochloric acid: hydrogen peroxide water: ultra pure water = 1: 1: 6 (volume ratio)
Wash at 80 ° C for 10 minutes. (10) Ultrapure water washing step; washing with ultrapure water for 10 minutes. (11) Hydrofluoric acid washing step; washing with 0.5% hydrofluoric acid for 1 minute. (12) Ultrapure water washing step; washing with ultrapure water for 10 minutes. (13) Spin drying or IPA vapor drying

【0005】上記(1)の工程は、主にシリコンウエハ
表面に付着している有機物の除去を行うためのもの、
(5)の工程は、主にシリコンウエハ表面に付着してい
る微粒子を除去するためのもの、(9)の工程は、主に
シリコンウエハ表面の金属不純物を除去するためのもの
であり、また(3)、(7)、(11)の工程はシリコ
ンウエハ表面の自然酸化膜を除去するために行うもので
ある。尚、上記各工程における洗浄液には、上記した主
目的以外の他の汚染物質除去能力がある場合が多く、例
えば(1)の工程で用いる硫酸・過酸化水素水混合溶液
は、有機物の他に金属不純物の強力な除去作用も有して
いるため、上記したような各洗浄液によって異なる不純
物を除去する方法の他に、一種類の洗浄液で複数の不純
物を除去するようにした方法もある。
The step (1) is mainly for removing organic substances adhering to the surface of the silicon wafer,
The step (5) is mainly for removing fine particles adhering to the silicon wafer surface, and the step (9) is mainly for removing metal impurities on the silicon wafer surface. Steps (3), (7) and (11) are performed to remove the natural oxide film on the surface of the silicon wafer. In addition, the cleaning liquid in each of the above steps often has a contaminant removing ability other than the above-mentioned main purpose. For example, the mixed solution of sulfuric acid and hydrogen peroxide used in the step (1) is not only organic but also organic substances. Since it also has a strong action of removing metal impurities, in addition to the above-described method of removing different impurities by each cleaning solution, there is also a method of removing a plurality of impurities with one type of cleaning solution.

【0006】シリコンウエハの洗浄工程において、シリ
コンウエハ表面に洗浄液や超純水を接触させる方法とし
ては、一般に洗浄液や超純水を貯めた洗浄槽に複数のシ
リコンウエハを浸漬するバッチ洗浄法と呼ばれる方法が
採用されているが、洗浄液の汚染を防止するために洗浄
液を循環ろ過しながら洗浄する方法、洗浄液による処理
後の超純水による洗浄方式として、超純水を洗浄槽底部
から供給して洗浄槽上部から溢れさせながら行うオーバ
ーフロー洗浄法、一旦ウエハ全面が超純水に浸漬するま
で洗浄槽内に超純水を貯めた後、一気に超純水を洗浄槽
底部から排出するクイックダンプ洗浄法等も採用されて
いる。また近年はバッチ洗浄法の他に、ウエハ表面に洗
浄液や超純水をシャワー状に吹き掛けて洗浄する方法
や、ウエハを高速回転させてその中央に洗浄液や超純水
を吹き掛けて洗浄する方法等の、所謂枚葉洗浄法も採用
されている。
In the silicon wafer cleaning step, a method of bringing a cleaning liquid or ultrapure water into contact with the silicon wafer surface is generally called a batch cleaning method in which a plurality of silicon wafers are immersed in a cleaning tank containing the cleaning liquid or ultrapure water. Although the method is adopted, in order to prevent contamination of the cleaning liquid, a method of cleaning while circulating and filtering the cleaning liquid, and a cleaning method using ultrapure water after treatment with the cleaning liquid, supplying ultrapure water from the bottom of the cleaning tank. An overflow cleaning method that overflows from the top of the cleaning tank and a quick dump cleaning method that stores ultrapure water in the cleaning tank until the entire surface of the wafer is immersed in ultrapure water, and then discharges the ultrapure water from the bottom of the cleaning tank at once Etc. have also been adopted. In recent years, in addition to the batch cleaning method, a method of spraying a cleaning liquid or ultrapure water on a wafer surface in a shower shape or cleaning the wafer by rotating the wafer at a high speed and spraying a cleaning liquid or ultrapure water on the center thereof. A so-called single wafer cleaning method such as a method is also employed.

【0007】上記超純水による洗浄は、ウエハ表面に残
留する洗浄液等をすすぐ(リンス)ために行うものであ
る。このためすすぎに用いる超純水は微粒子、コロイド
状物質、有機物、金属イオン、陰イオン、溶存酸素等を
極限レベルまで除去した高純度の超純水が使用されてい
る。この超純水は洗浄液の溶媒としても用いられてい
る。
The cleaning with ultrapure water is performed to rinse (rinse) a cleaning liquid or the like remaining on the wafer surface. Therefore, the ultrapure water used for rinsing is high purity ultrapure water from which fine particles, colloidal substances, organic substances, metal ions, anions, dissolved oxygen and the like have been removed to an extremely low level. This ultrapure water is also used as a solvent for the cleaning liquid.

【0008】[0008]

【発明が解決しようとする課題】ところで、近年LSI
の集積度は飛躍的に向上し、初期の頃にはLSI製造工
程におけるリソグラフィプロセスが数回程度であったも
のが、20回から30回にも増大し、ウエハの洗浄回数
もリソグラフィプロセスの増大に伴って増加している。
このためウエハの洗浄に用いる洗浄液や超純水の原材料
コスト、使用後の洗浄液や超純水の処理コスト、更には
高温での洗浄処理によってクリーンルーム内に生じた洗
浄液ガスをクリーンルーム内から排出するためのエアー
コスト等が増大し、製品コストの増大につながってい
る。
By the way, in recent years, LSI
The lithography process in the LSI manufacturing process was about several times in the early days, but increased from 20 to 30 times. With the increase.
For this reason, the cost of the cleaning liquid and ultrapure water used for cleaning the wafer, the cost of processing the used cleaning liquid and ultrapure water, and the cleaning liquid gas generated in the clean room due to the high temperature cleaning process are discharged from the clean room. The air cost etc. of this product increase, which leads to an increase in product cost.

【0009】このため洗浄液の低濃度化や使用量の低減
化、洗浄プロセスの低温化、洗浄プロセスの1回当たり
の工程数の削減、すすぎに用いる超純水の使用量の低減
化等が課題となっているが、このような洗浄プロセスに
おけるコスト低減化とともに、シリコンウエハ等の表面
を、表面荒れのない完全に清浄な表面に洗浄することも
重要な課題である。
Therefore, it is necessary to reduce the concentration and use amount of the cleaning solution, lower the temperature of the cleaning process, reduce the number of steps per cleaning process, and reduce the amount of ultrapure water used for rinsing. However, it is also important to reduce the cost in such a cleaning process and to clean the surface of a silicon wafer or the like to a completely clean surface without surface roughness.

【0010】しかしながら、上記したように従来の洗浄
プロセスにおいて、シリコンウエハ表面に形成される自
然酸化膜をフッ酸洗浄によって除去した後、超純水です
すぎを行っているが、超純水によるすすぎを行うと、以
下のような幾つかの問題を生じる虞れがあった。
However, as described above, in the conventional cleaning process, the natural oxide film formed on the surface of the silicon wafer is removed by hydrofluoric acid cleaning and then rinsed with ultrapure water. , There is a possibility that the following problems may occur.

【0011】第一に、溶存酸素によるシリコンウエハ表
面の酸化を防止するために、超純水としては溶存酸素濃
度を10ppm以下に脱ガスしたものが使用されている
が、通常、洗浄槽は気密構造となっていないため、洗浄
槽内で大気中の酸素ガスが超純水中に瞬時に溶解し(溶
存酸素濃度が100ppm程度までに上昇する。)、こ
のような超純水を用いて洗浄を行うとシリコンウエハ表
面が酸化され易く、特に酸化され易いn+シリコンの場
合には、数オングストロームもの酸化膜が容易に形成さ
れてしまうという問題があった。
First, in order to prevent oxidation of the silicon wafer surface due to dissolved oxygen, ultrapure water that has been degassed to a dissolved oxygen concentration of 10 ppm or less is used. Since it is not structured, oxygen gas in the atmosphere is instantaneously dissolved in ultrapure water in the cleaning tank (the dissolved oxygen concentration rises to about 100 ppm), and cleaning is performed using such ultrapure water. Is performed, the surface of the silicon wafer is easily oxidized. In particular, in the case of n + silicon, which is easily oxidized, there is a problem that an oxide film of several angstroms is easily formed.

【0012】第二に、大気中の酸素ガスが超純水へ溶解
することに起因した上記問題を解決するために洗浄槽を
気密構造に構成したとしても、中性の超純水中には水酸
イオンが1リットルあたり10-7モル存在し、この水酸
イオンによってシリコンウエハ表面がエッチングされ、
深さ数オングストロームにもおよぶ表面荒れを生じ易い
という問題があった。また水酸イオンによってエッチン
グされたシリコンがシリコンウエハ表面に付着して、シ
リコンウエハ表面にくもり等を生じるといった問題があ
った。
Second, even if the cleaning tank is constructed in an airtight structure in order to solve the above-mentioned problem caused by the dissolution of oxygen gas in the atmosphere into ultrapure water, even if the ultrapure water is neutral, There are 10 -7 moles of hydroxyl ions per liter, and the hydroxyl ions etch the silicon wafer surface,
There has been a problem that the surface is easily roughened to a depth of several angstroms. In addition, there is a problem that silicon etched by hydroxyl ions adheres to the surface of the silicon wafer, causing clouding and the like on the surface of the silicon wafer.

【0013】本発明者等は上記の問題点を解決するため
種々検討した結果、超純水に水素ガスを溶解せしめて、
負の酸化還元電位を有するようにするとともに、pHを
7未満の酸性側に調整した酸性洗浄液を用いてすすぎを
行うと、溶存酸素によるシリコンウエハ表面の酸化膜形
成の虞れがないとともに、シリコンウエハの表面荒れも
防止できるという知見を得、この知見に基づき本発明を
完成するに至った。
The present inventors have conducted various studies to solve the above problems, and as a result, dissolved hydrogen gas in ultrapure water.
When the rinsing is performed using an acidic cleaning solution whose pH is adjusted to an acidic side of less than 7 while having a negative oxidation-reduction potential, there is no possibility of forming an oxide film on the silicon wafer surface due to dissolved oxygen, and silicon The inventors have found that the surface roughness of the wafer can be prevented, and have completed the present invention based on this finding.

【0014】本発明は、シリコンウエハ等の電子部品部
材類の表面に酸化膜や表面荒れを生じることなく、確実
な洗浄を行うことができる電子部品部材類の洗浄方法及
び洗浄装置を提供することを目的とするものである。
An object of the present invention is to provide a method and an apparatus for cleaning electronic component members, which can perform reliable cleaning without causing an oxide film or surface roughness on the surface of electronic component members such as silicon wafers. It is intended for.

【0015】[0015]

【課題を解決するための手段】本発明は、(1)電子部
品部材類を、超純水に水素ガスを溶解せしめてなり、且
つ負の酸化還元電位を有する酸性洗浄液により洗浄する
ことを特徴とする電子部品部材類の洗浄方法、(2)酸
性洗浄液が、0.05ppm以上の水素ガスを溶解して
いることを特徴とする(1)記載の電子部品部材類の洗
浄方法、(3)酸性洗浄液のpHが7未満、3以上であ
ることを特徴とする(1)又は(2)記載の電子部品部
材類の洗浄方法、(4)酸性洗浄液は、溶存ガス濃度が
10ppm未満となるように脱ガスされた超純水を用い
るものである(1)〜(3)のいずれかに記載の電子部
品部材類の洗浄方法、(5)超音波を照射しながら洗浄
することを特徴とする(1)〜(4)のいずれかに記載
の電子部品部材類の洗浄方法、(6)酸性洗浄液の温度
を、20℃〜60℃に温度調節して洗浄することを特徴
とする(1)〜(5)のいずれかに記載の電子部品部材
類の洗浄方法、(7)ガス透過膜を介して水素ガスを超
純水に溶解させることを特徴とする(1)〜(6)のい
ずれかに記載の電子部品部材類の洗浄方法、(8)超純
水製造装置と、超純水中に水素ガスを溶解させるための
ガス溶解手段と、pHを7未満に調製するためのpH調
製手段と、超純水に水素ガスを溶解してなり、負の酸化
還元電位を有する酸性洗浄液で、電子部品部材類を洗浄
する洗浄部とからなることを特徴とする電子部品部材類
の洗浄装置、(9)酸性洗浄液中に溶解している溶存水
素濃度及び溶液のpHをそれぞれ検知する溶存水素濃度
検知手段、pH検知手段と、それらの溶存水素濃度及び
pHの検知結果に基づき、酸性洗浄液中の溶存水素濃度
及びpHをそれぞれ制御する溶存水素濃度制御手段、p
H制御手段を有することを特徴とする(8)記載の電子
部品部材類の洗浄装置、(10)洗浄部に超音波を照射
するための超音波照射手段を有することを特徴とする
(8)又は(9)に記載の電子部品部材類の洗浄装置を
要旨とする。
The present invention is characterized in that (1) electronic component members are cleaned by dissolving hydrogen gas in ultrapure water and using an acidic cleaning solution having a negative oxidation-reduction potential. (2) The method for cleaning electronic parts and members according to (1), wherein the acidic cleaning liquid dissolves 0.05 ppm or more of hydrogen gas. (1) The method for cleaning electronic component members according to (1) or (2), wherein the acidic cleaning solution has a pH of less than 7 or 3 or more, and (4) the acidic cleaning solution has a dissolved gas concentration of less than 10 ppm. (1) The method for cleaning electronic component members according to any one of (1) to (3), wherein (5) cleaning is performed while irradiating ultrasonic waves. Electronic component members according to any one of (1) to (4) (6) The method for cleaning electronic component members according to any one of (1) to (5), wherein the temperature of the acidic cleaning solution is adjusted to 20 ° C. to 60 ° C. for cleaning. (7) The method for cleaning electronic component members according to any one of (1) to (6), wherein hydrogen gas is dissolved in ultrapure water through a gas permeable membrane, (8) ultrapure water A production apparatus, gas dissolving means for dissolving hydrogen gas in ultrapure water, pH adjusting means for adjusting pH to less than 7, and hydrogen gas dissolved in ultrapure water, and A cleaning unit for cleaning electronic parts and components with an acidic cleaning liquid having a reduction potential; and (9) a concentration of dissolved hydrogen dissolved in the acidic cleaning liquid and a solution of the solution. Dissolved hydrogen concentration detection means for detecting pH, pH detection means, Based on the dissolved hydrogen concentration and pH of the detection results, the dissolved hydrogen concentration control means for controlling each of the dissolved hydrogen concentration and pH of the acidic cleaning solution, p
(8) The apparatus for cleaning electronic components and members according to (8), characterized by having H control means, (10) Ultrasonic irradiation means for irradiating ultrasonic waves to the cleaning section (8) Alternatively, the gist is a cleaning device for electronic component members described in (9).

【0016】[0016]

【発明の実施の形態】本発明方法において、洗浄の対象
となる電子部品部材類(被洗浄物)としては、電子部品
製造分野等において用いられる種々の部品、材料等が挙
げられ、例えばシリコン基板、III-V 族半導体ウエハ等
の半導体基板、液晶用ガラス基板等の基板材料、メモリ
素子、CPU、センサー素子等の電子部品等の完成品や
その半製品、石英反応管、洗浄槽、基板キャリヤ等の電
子部品製造装置用部品等が例示される。本発明におい
て、超純水とは、工業用水、上水、井水、河川水、湖沼
水等の原水を凝集沈殿、ろ過、凝集ろ過、活性炭処理等
の前処理装置で処理することにより、原水中の粗大な懸
濁物質、有機物等を除去し、次いでイオン交換装置、逆
浸透膜装置等の脱塩装置を主体とする一次純水製造装置
で処理することにより、微粒子、コロイド物質、有機
物、金属イオン、陰イオン等の不純物の大部分を除去
し、更にこの一次純水を紫外線照射装置、混床式ポリッ
シャー、限外ろ過膜や逆浸透膜を装着した膜処理装置か
らなる二次純水製造装置で循環処理することにより、残
留する微粒子、コロイド物質、有機物、金属イオン、陰
イオン等の不純物を可及的に除去した高純度純水を指
し、その水質としては、例えば電気抵抗率が17.0M
Ω・cm以上、全有機炭素が100μgC/リットル以
下、微粒子数(粒径0.07μm以上のもの)が50ケ
/ミリリットル以下、生菌数が50ケ/リットル以下、
シリカが10μgSiO2 /リットル以下、ナトリウム
0.1μgNa/リットル以下のものを指す。また本発
明装置において超純水製造装置とは、前記した前処理装
置、一次純水製造装置、二次純水製造装置を組み合わせ
たものを指す。尚、一次純水製造装置の後段に、真空脱
気装置やガス透過膜を用いた膜脱気装置等の脱気装置が
追加される場合も含み、また原水としては、工業用水、
上水、井水、河川水、湖沼水などに工場内で回収された
各種回収水を混合したものが用いられることもある。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the method of the present invention, various components and materials used in the electronic component manufacturing field and the like are listed as electronic component members (objects to be cleaned) to be cleaned. Substrate materials such as semiconductor substrates such as III-V semiconductor wafers, glass substrates for liquid crystal, etc., finished products and semi-finished products such as electronic components such as memory devices, CPUs and sensor devices, quartz reaction tubes, cleaning tanks, substrate carriers And the like for an electronic component manufacturing apparatus. In the present invention, ultrapure water is obtained by treating raw water such as industrial water, clean water, well water, river water, lake water, etc. with a pretreatment device such as coagulation sedimentation, filtration, coagulation filtration, and activated carbon treatment. By removing coarse suspended substances, organic substances, etc. in the water, and then treating with a primary pure water production apparatus mainly composed of a desalination apparatus such as an ion exchange apparatus and a reverse osmosis membrane apparatus, fine particles, colloidal substances, organic substances, Most of the impurities such as metal ions and anions are removed, and the primary pure water is further purified by an ultraviolet irradiation device, a mixed-bed polisher, a membrane treatment device equipped with an ultrafiltration membrane or a reverse osmosis membrane. It refers to high-purity pure water from which impurities such as fine particles, colloidal substances, organic substances, metal ions, and anions have been removed as much as possible by circulating treatment in the production equipment. 17.0M
Ω · cm or more, total organic carbon is 100 μgC / liter or less, the number of fine particles (particle size of 0.07 μm or more) is 50 / ml or less, the viable bacterial count is 50 / liter or less,
It refers to silica having a silica content of 10 μg SiO 2 / liter or less and sodium of 0.1 μg Na / liter or less. In the apparatus of the present invention, the ultrapure water production apparatus refers to a combination of the above-described pretreatment apparatus, primary pure water production apparatus, and secondary pure water production apparatus. In addition, after the primary pure water production apparatus, a case where a deaerator such as a vacuum deaerator or a membrane deaerator using a gas permeable membrane is added may be added, and the raw water may be industrial water,
Water, well water, river water, lake water, etc. may be used in which various types of recovered water collected in the factory are mixed.

【0017】図1は本発明の電子部品部材類の洗浄装置
の一例を示し、図中、1は超純水製造装置、2はガス溶
解槽、3はpH調整装置、4は洗浄槽を示し、この装置
には更に必要に応じ、超純水製造装置1で製造された超
純水中に溶解しているガスを除去するための脱ガス装置
5、洗浄槽4内で洗浄される被洗浄物6に超音波を照射
するための超音波照射装置7が設けられる。
FIG. 1 shows an example of an apparatus for cleaning electronic parts and members of the present invention. In the figure, reference numeral 1 denotes an ultrapure water production apparatus, 2 denotes a gas dissolving tank, 3 denotes a pH adjusting apparatus, and 4 denotes a cleaning tank. The apparatus further includes a degassing apparatus 5 for removing gas dissolved in the ultrapure water produced by the ultrapure water producing apparatus 1 and a cleaning target to be cleaned in the cleaning tank 4, if necessary. An ultrasonic irradiation device 7 for irradiating the object 6 with ultrasonic waves is provided.

【0018】超純水製造装置1には、原水を凝集沈殿装
置、砂ろ過装置、活性炭ろ過装置で処理する前処理装置
と、この前処理水を逆浸透膜装置、2床3塔イオン交換
装置、混床式イオン交換装置、精密フィルターで処理し
て一次純水を得る一次純水製造装置と、一次純水に紫外
線照射、混床式ポリッシャー、限外ろ過膜処理を施し
て、一次純水中に残留する微粒子、コロイド物質、有機
物、金属イオン、陰イオン等を除去する二次純水製造装
置とを備え、更に必要に応じて脱ガス装置を備えている
(いずれも図示せず。)。
The ultrapure water producing apparatus 1 includes a pretreatment device for treating raw water with a coagulating sedimentation device, a sand filtration device, and an activated carbon filtration device, and a reverse osmosis membrane device, a two-bed three-column ion exchange device. , A mixed-bed ion exchange device, a primary-pure water production device that obtains primary purified water by processing with a precision filter, and a primary-purified water that is subjected to ultraviolet irradiation, a mixed-bed polisher, and an ultrafiltration membrane treatment. A secondary pure water producing apparatus for removing fine particles, colloidal substances, organic substances, metal ions, anions and the like remaining in the apparatus is provided, and a degassing apparatus is further provided if necessary (neither is shown). .

【0019】上記超純水製造装置1で製造される超純水
は、例えば下記表1に示す水質を有しているものが好ま
しく、このような水質の超純水であれば、超純水中の汚
染物質がウエハ表面に付着することはないとされてい
る。
The ultrapure water produced by the ultrapure water production apparatus 1 preferably has, for example, the water qualities shown in Table 1 below. It is said that no contaminants therein adhere to the wafer surface.

【0020】[0020]

【表1】 [Table 1]

【0021】上記超純水製造装置1で製造された超純水
には、ガス溶解槽2において水素ガスが溶解される。超
純水は、製造時に通常、脱ガス処理が施されているた
め、超純水中の溶存酸素濃度は非常に低くなっている
が、完全に溶存酸素が除去されているわけではない。し
かしながら、超純水に水素ガスを溶解せしめることによ
り、液の酸化還元電位を負の値として溶存酸素による前
記した悪影響を除くことができ、通常、25℃、1気圧
下での溶存水素濃度が0.05ppm以上、特に0.8
〜1.6ppmとなるように、ガス溶解槽2において水
素ガスを溶解せしめることが好ましい。溶存水素濃度が
0.05ppm未満であると、液の酸化還元電位を確実
に負の値とすることができなくなる場合がある。尚、超
純水中の溶存水素濃度が0.05ppm未満の場合や、
超純水中の溶存酸素の除去が不充分の場合等には、超純
水をガス溶解槽2に導入する前に、脱ガス装置5によっ
て超純水中に残存する溶存酸素を更に除去しておくこと
が好ましい。
Hydrogen gas is dissolved in the ultrapure water produced by the ultrapure water producing apparatus 1 in a gas dissolving tank 2. Since ultrapure water is usually subjected to degassing at the time of production, the dissolved oxygen concentration in the ultrapure water is very low, but the dissolved oxygen is not completely removed. However, by dissolving hydrogen gas in ultrapure water, the above-mentioned adverse effect of dissolved oxygen can be eliminated by setting the oxidation-reduction potential of the liquid to a negative value, and usually, the dissolved hydrogen concentration at 25 ° C. and 1 atm. 0.05 ppm or more, especially 0.8
It is preferable to dissolve hydrogen gas in the gas dissolving tank 2 so that the concentration becomes about 1.6 ppm. If the dissolved hydrogen concentration is less than 0.05 ppm, the oxidation-reduction potential of the liquid may not be able to be reliably set to a negative value. In addition, when the dissolved hydrogen concentration in ultrapure water is less than 0.05 ppm,
In the case where the removal of dissolved oxygen in the ultrapure water is insufficient, for example, the dissolved oxygen remaining in the ultrapure water is further removed by the degassing device 5 before the ultrapure water is introduced into the gas dissolving tank 2. It is preferable to keep it.

【0022】また超純水製造工程において、各種処理を
施す処理槽内には通常、窒素ガスが封入されているた
め、超純水は窒素ガスを溶解している。超純水中の溶存
窒素は、シリコンウエハ表面を酸化したりエッチングし
たりする等の虞れがないため必ずしも除去しなくても良
いが、窒素ガスが溶解した状態で洗浄時に超音波を照射
すると、アンモニウムイオンを生じて液のpHを上昇さ
せる虞れがある。このため、洗浄時に超音波を照射する
場合には、超純水を脱ガス装置5によって処理して超純
水中の溶存窒素も除去しておくことが好ましい。
In the process of producing ultrapure water, nitrogen gas is usually enclosed in a treatment tank for performing various treatments, so that ultrapure water dissolves nitrogen gas. Dissolved nitrogen in ultrapure water does not necessarily need to be removed because there is no risk of oxidizing or etching the silicon wafer surface, etc.However, when irradiating ultrasonic waves during cleaning with nitrogen gas dissolved, In addition, ammonium ions may be generated to increase the pH of the solution. For this reason, when irradiating an ultrasonic wave at the time of washing, it is preferred that ultrapure water is treated by the degassing device 5 to remove dissolved nitrogen in the ultrapure water.

【0023】脱ガス装置5においては、超純水中に溶存
している特に酸素ガス、窒素ガスを除去することが好ま
しく、これらの1種又は2種以上の溶存ガス濃度が10
ppm未満、好ましくは2ppm以下となるように脱ガ
スしておくことが好ましい。尚、溶存ガス濃度が10p
pm以上となると洗浄時に気泡が発生して被洗浄物に気
泡が付着し、気泡が付着した部分の洗浄効果が低下する
傾向となる。脱ガス装置5において、超純水中の溶存ガ
スの脱ガスを行う方法としては、ガス透過膜を介して真
空脱ガスする方法が好ましい。
In the degassing device 5, it is preferable to remove particularly oxygen gas and nitrogen gas dissolved in the ultrapure water, and the concentration of one or more of these dissolved gases is 10% or less.
It is preferable to degas so as to be less than ppm, preferably 2 ppm or less. The dissolved gas concentration is 10p
When the pressure is equal to or more than pm, air bubbles are generated at the time of cleaning, the air bubbles adhere to the object to be cleaned, and the cleaning effect on the portion where the air bubbles are adhered tends to decrease. In the degassing device 5, as a method for degassing the dissolved gas in the ultrapure water, a method of vacuum degassing via a gas permeable membrane is preferable.

【0024】超純水に水素ガスを溶解させる方法として
は、超純水にガス透過膜を介して水素ガスを注入して溶
解させる方法、超純水中に水素ガスをバブリングして溶
解させる方法、超純水中にエジェクターを介して水素ガ
スを溶解させる方法、ガス溶解槽2に超純水を供給する
ポンプの上流側に水素ガスを供給し、ポンプ内の攪拌に
よって溶解させる方法等が挙げられる。ガス溶解槽2に
おいて超純水に溶解せしめる水素ガスは、超純水を電気
分解して生成させた高純度水素ガスを用いることが好ま
しい。
As a method of dissolving hydrogen gas in ultrapure water, a method of injecting hydrogen gas into ultrapure water via a gas permeable membrane and dissolving the same, and a method of dissolving hydrogen gas in ultrapure water by bubbling hydrogen gas A method in which hydrogen gas is dissolved in ultrapure water through an ejector, a method in which hydrogen gas is supplied to the upstream side of a pump that supplies ultrapure water to the gas dissolving tank 2, and the gas is dissolved by stirring in the pump. Can be As the hydrogen gas dissolved in the ultrapure water in the gas dissolving tank 2, it is preferable to use a high-purity hydrogen gas generated by electrolyzing ultrapure water.

【0025】ガス溶解槽2や前記脱ガス装置5における
ガス透過膜としては、シリコン等の親ガス性素材からな
るものや、フッ素系樹脂等の撥水性素材からなる膜にガ
スの透過できる多数の微細孔を設け、ガスは透過するが
水は透過しないように構成したもの等が用いられる。ガ
ス透過膜は中空糸状構造として使用することができ、ガ
ス透過膜を中空糸状構造に形成した場合、脱ガスやガス
溶解の方法として中空糸の内空部側から外側にガスを透
過させる方法、中空糸の外側から内空部側にガスを透過
させる方法のいずれの方法のいずれの方法も採用するこ
とができる。図2は超純水を電気分解して得た水素ガス
を、ガス溶解槽2において超純水中に溶解させる場合の
一例を示す。図2において、8は超純水電解装置で、超
純水供給管9から超純水電解装置8に導入された超純水
は、該電解装置8内で電気分解され、電解装置8のカソ
ード室で生成した高純度水素ガスは、水素ガス供給管1
0によりガス溶解槽2に送られる。
As the gas permeable membrane in the gas dissolving tank 2 or the degassing device 5, a large number of gas permeable materials such as silicon or a film made of a water-repellent material such as a fluororesin can be used. For example, a member provided with fine holes and configured to transmit gas but not water can be used. The gas permeable membrane can be used as a hollow fiber structure, and when the gas permeable membrane is formed in a hollow fiber structure, a method of allowing gas to permeate from the inner side of the hollow fiber to the outside as a method of degassing or gas dissolving, Any of the methods of transmitting gas from the outside of the hollow fiber to the inner space side can be adopted. FIG. 2 shows an example in which hydrogen gas obtained by electrolyzing ultrapure water is dissolved in ultrapure water in a gas dissolving tank 2. In FIG. 2, reference numeral 8 denotes an ultrapure water electrolyzer, and ultrapure water introduced into the ultrapure water electrolyzer 8 from the ultrapure water supply pipe 9 is electrolyzed in the electrolyzer 8, and a cathode of the electrolyzer 8 is used. The high-purity hydrogen gas generated in the chamber is supplied to the hydrogen gas supply pipe 1
By 0, it is sent to the gas dissolving tank 2.

【0026】ガス溶解槽2では、超純水供給管12から
ガス溶解槽2に供給される超純水に、ガス透過膜11を
介して前記超純水電解装置8から供給される水素ガスが
溶解され、水素ガスを溶解した超純水は、供給管13か
らpH調整装置3に送られる。尚、図2において14は
電気分解した後の超純水を排出する排水弁、15はガス
溶解槽2内の水素ガス圧を測定する圧力計、16はガス
溶解槽2に供給した水素ガスを排気処理するための排気
処理装置、17は供給水素ガス量制御装置である。
In the gas dissolving tank 2, the hydrogen gas supplied from the ultrapure water electrolysis device 8 through the gas permeable membrane 11 is added to the ultrapure water supplied from the ultrapure water supply pipe 12 to the gas dissolving tank 2. The ultrapure water in which the hydrogen gas is dissolved is sent from the supply pipe 13 to the pH adjusting device 3. In FIG. 2, reference numeral 14 denotes a drain valve for discharging ultrapure water after electrolysis, 15 a pressure gauge for measuring the hydrogen gas pressure in the gas dissolving tank 2, and 16 a hydrogen gas supplied to the gas dissolving tank 2. An exhaust processing device 17 for performing exhaust processing is a supply hydrogen gas amount control device.

【0027】ガス溶解槽2において超純水に水素ガスを
溶解せしめた後、pH調整装置3においてpHを7未満
に調整するが、好ましくはpHを7未満、3以上、より
好ましくは4〜6の範囲に調整する。
After dissolving the hydrogen gas in the ultrapure water in the gas dissolving tank 2, the pH is adjusted to less than 7 in the pH adjuster 3, preferably the pH is less than 7, 3 or more, more preferably 4 to 6 Adjust to the range.

【0028】pHを調整するためには、水素ガスを溶解
させた超純水に酸又は酸性ガスを溶解せしめる方法が採
用される。酸としては例えば塩酸、硫酸、硝酸、リン
酸、フッ酸等が用いられ、酸性ガスとしては例えば二酸
化炭素ガスが用いられるが、二酸化炭素ガスを溶解させ
てpH調整する方法が、共存イオンによる影響が少ない
ため好ましい。pH調整のために酸を用いる場合、pH
調整装置3は図3に示すように、例えば酸貯留槽23
と、ポンプ24とから構成することができ、ガス溶解槽
2から洗浄槽4に液を供給する配管の途中で、酸を添加
混合するようにする方法が採用される。尚、図3におい
て25は酸の供給量を調整するための制御弁である。
In order to adjust the pH, a method of dissolving an acid or acidic gas in ultrapure water in which hydrogen gas is dissolved is employed. As the acid, for example, hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, hydrofluoric acid, etc. are used, and as the acid gas, for example, carbon dioxide gas is used. However, the method of dissolving the carbon dioxide gas and adjusting the pH is affected by coexisting ions. Is preferred because of the small amount. When using an acid for pH adjustment,
The adjusting device 3 is, for example, as shown in FIG.
And a pump 24, and a method is adopted in which an acid is added and mixed in the middle of a pipe for supplying a liquid from the gas dissolving tank 2 to the cleaning tank 4. In FIG. 3, reference numeral 25 denotes a control valve for adjusting the supply amount of the acid.

【0029】またpH調整のために二酸化炭素等の酸性
ガスを添加する場合、pH調整装置3は図4に示すよう
に、例えば酸性ガス供給装置26とガス溶解槽27とか
ら構成することができる。このガス溶解槽27として
は、前記水素ガスを溶解させるためのガス溶解槽2と同
様の構造のものを用いることができる。
When an acidic gas such as carbon dioxide is added for pH adjustment, the pH adjusting device 3 can be composed of, for example, an acid gas supply device 26 and a gas dissolving tank 27 as shown in FIG. . As the gas dissolving tank 27, one having the same structure as the gas dissolving tank 2 for dissolving the hydrogen gas can be used.

【0030】pH調整装置3にてpHを調整した酸性洗
浄液は、洗浄槽4に送られるが、上記したように洗浄液
は、pHが7未満であり、且つ水素ガスを溶存して負の
酸化還元電位を有していることが必要である。このた
め、洗浄槽4に洗浄液を供給する洗浄液供給管22の途
中に、酸化還元電位計18、溶存水素濃度計19、水素
イオン濃度計20を設け、洗浄液中の酸化還元電位、溶
存水素濃度及びpHを常時監視し、ガス溶解槽2におい
て超純水に溶解させる水素ガス量及びpH調整装置3に
おいて添加する酸や酸性ガスの量を制御できるように構
成することが好ましい。
The acidic cleaning solution whose pH has been adjusted by the pH adjusting device 3 is sent to the cleaning tank 4. As described above, the cleaning solution has a pH of less than 7 and dissolves hydrogen gas to produce a negative oxidation-reduction solution. It is necessary to have a potential. For this reason, an oxidation-reduction potentiometer 18, a dissolved hydrogen concentration meter 19, and a hydrogen ion concentration meter 20 are provided in the middle of the cleaning liquid supply pipe 22 for supplying the cleaning liquid to the cleaning tank 4, and the oxidation-reduction potential, the dissolved hydrogen concentration, and the It is preferable that the pH is constantly monitored to control the amount of hydrogen gas dissolved in ultrapure water in the gas dissolving tank 2 and the amount of acid or acid gas added in the pH adjusting device 3.

【0031】洗浄槽4において被洗浄物6を酸性洗浄液
によって洗浄する方法としては、洗浄液中に被洗浄物6
を浸漬して洗浄するバッチ洗浄法、洗浄液を循環させな
がら被洗浄物6と接触させて洗浄する循環洗浄法、洗浄
槽4の底部側から洗浄液を供給し、洗浄槽4の上部から
オーバーフローさせながら洗浄するフロー洗浄法、被洗
浄物6に洗浄液をシャワー状に吹き掛けて洗浄する方
法、高速回転させた被洗浄物6に洗浄液を吹き掛けて洗
浄する方法等が挙げられる。
As a method of cleaning the object 6 to be cleaned in the cleaning tank 4 with an acidic cleaning liquid, the method of cleaning the object 6
Washing method, in which the cleaning liquid is supplied from the bottom side of the cleaning tank 4 and overflows from the upper part of the cleaning tank 4, while the cleaning liquid is supplied from the bottom side of the cleaning tank 4. Examples of the method include a flow cleaning method of cleaning, a method of spraying a cleaning liquid onto the object 6 to be cleaned in a shower shape, and a method of spraying a cleaning liquid on the object 6 rotated at a high speed to perform cleaning.

【0032】洗浄槽4にはヒーター21が設けら、必要
に応じて洗浄液の温度を調整できるようになっている。
より優れた洗浄効果を得るために、洗浄液を20〜60
℃に温度調節して洗浄することが好ましい。また洗浄時
に超音波照射を併用するとより効果的である。超音波照
射装置7から発生する超音波としては30kHz以上の
周波数のものが用いられる。超音波を照射する場合、例
えばバッチ洗浄法では洗浄槽4内に供給した洗浄液に被
洗浄物6を浸漬した状態で照射する等の方法が採用さ
れ、洗浄液を被洗浄物6にノズル等から吹き掛けて洗浄
する方法の場合には、洗浄液噴射ノズルの上流部におい
て洗浄液に超音波を照射する方法が採用される。
The cleaning tank 4 is provided with a heater 21 so that the temperature of the cleaning liquid can be adjusted as required.
In order to obtain a better cleaning effect, the cleaning solution should be 20 to 60
It is preferable that the temperature is adjusted to ° C. for washing. It is more effective to use ultrasonic irradiation at the time of cleaning. The ultrasonic wave generated from the ultrasonic irradiation device 7 has a frequency of 30 kHz or more. When irradiating ultrasonic waves, for example, in a batch cleaning method, a method of irradiating the object to be cleaned 6 in a state where the object to be cleaned 6 is immersed in the cleaning liquid supplied into the cleaning tank 4 is adopted. In the case of the method of washing by spraying, a method of irradiating the cleaning liquid with ultrasonic waves at an upstream portion of the cleaning liquid injection nozzle is adopted.

【0033】洗浄時に超音波照射を併用する場合、洗浄
液中には更に稀ガスを溶解していることが好ましい。稀
ガスとしては、ヘリウム、ネオン、アルゴン、クリプト
ン、キセノンの1種又はこれらの2種以上の混合物が挙
げられ、稀ガスは0.05ppm以上洗浄液中に溶解し
ていることが好ましい。稀ガスの溶解は、超純水中に溶
存している酸素ガス、窒素ガス等を脱ガス装置5におい
て脱ガスした後の工程で行うことが好ましく、超純水に
水素ガスを溶解させるガス溶解槽2において水素ガスの
溶解と同時に又は連続して行うことが好ましい。稀ガス
を溶解させる方法としては、超純水に水素ガスを溶解さ
せるための方法と同様の方法を採用することができる。
When using ultrasonic irradiation at the time of cleaning, it is preferable that a rare gas is further dissolved in the cleaning liquid. Examples of the rare gas include helium, neon, argon, krypton, and xenon, or a mixture of two or more of them. It is preferable that the rare gas is dissolved in the cleaning solution at 0.05 ppm or more. Dissolution of the rare gas is preferably performed in a step after degassing oxygen gas, nitrogen gas, and the like dissolved in the ultrapure water in the degassing device 5. It is preferable to perform the dissolution of the hydrogen gas in the tank 2 simultaneously or continuously. As a method for dissolving the rare gas, a method similar to the method for dissolving hydrogen gas in ultrapure water can be employed.

【0034】尚、本発明の洗浄装置は、超純水や洗浄液
中に大気中の酸素ガスが混入するのを防止するため、ガ
スシール構造を有していることが好ましい。また上記し
た例ではガス溶解槽2において超純水に水素ガスを溶解
した後、pH調整装置3にてpH調整を行う場合につい
て示したが、pH調整を行った後に水素ガスを溶解する
ようにしても良い。
The cleaning apparatus of the present invention preferably has a gas seal structure in order to prevent oxygen gas from the atmosphere from being mixed into ultrapure water or the cleaning liquid. In the above example, the case where the hydrogen gas is dissolved in the ultrapure water in the gas dissolving tank 2 and then the pH is adjusted by the pH adjusting device 3 is shown. However, the hydrogen gas is dissolved after the pH adjustment is performed. May be.

【0035】[0035]

【実施例】以下、実施例、比較例を挙げて本発明を更に
詳細に説明する。 実施例1 RCA洗浄を行って表面の不純物を除去した6インチの
シリコンウエハ基板(n+Si100)を、0.5%希
フッ酸に10分間浸漬してウエハ表面を処理した。次い
でこのウエハを、図1に示す洗浄装置を用いて表2に示
す組成の洗浄液により洗浄した後、スピンドライ乾燥し
た。尚、洗浄液のpH調整は、塩酸により図3に示すp
H調整装置を用いて行った。洗浄液で処理前と処理後の
ウエハ表面の酸化膜厚、表面粗さを測定した結果を表2
にあわせて示した。
The present invention will be described below in further detail with reference to examples and comparative examples. Example 1 A 6-inch silicon wafer substrate (n + Si100) from which surface impurities were removed by RCA cleaning was immersed in 0.5% diluted hydrofluoric acid for 10 minutes to treat the wafer surface. Next, the wafer was washed with a cleaning solution having the composition shown in Table 2 using the cleaning apparatus shown in FIG. 1, and then spin-dried. The pH of the cleaning solution was adjusted with hydrochloric acid as shown in FIG.
This was performed using an H adjusting device. Table 2 shows the results of measuring the oxide film thickness and surface roughness of the wafer surface before and after the treatment with the cleaning liquid.
It is shown along with

【0036】[0036]

【表2】 [Table 2]

【0037】表2のウエハ表面の酸化膜厚の値は、25
枚のウエハについて光電子X線分析装置(セイコー電子
工業製:ESCA−200)を用いて測定し、その平均
値を示した。またウエハ表面の粗度の値は、25枚のウ
エハについて原子間力顕微鏡(セイコー電子工業製:S
PI−3600)を用いて測定し、その平均値を示し
た。
The value of the oxide film thickness on the wafer surface in Table 2 is 25
The average value was measured for each of the wafers using a photoelectron X-ray analyzer (ESCA-200 manufactured by Seiko Instruments Inc.). Further, the value of the roughness of the wafer surface was determined by using an atomic force microscope (Seiko Denshi Kogyo: S
PI-3600), and the average value was shown.

【0038】比較例1 酸性洗浄液の代わりに表2に示す超純水を用いた他は、
実施例1と同様の処理を行った。超純水で処理前と処理
後のウエハ表面の酸化膜厚、表面粗さを測定した結果を
表2にあわせて示した。
Comparative Example 1 Except for using ultrapure water shown in Table 2 in place of the acidic cleaning solution,
The same processing as in Example 1 was performed. The results of measuring the oxide film thickness and surface roughness of the wafer surface before and after treatment with ultrapure water are also shown in Table 2.

【0039】実施例2 RCA洗浄を行って表面の不純物を除去した6インチの
シリコンウエハ基板(n+Si100)を、0.5%希
フッ酸に10分間浸漬してウエハ表面を処理した。次い
でこのウエハを、図1に示す洗浄装置を用いて表2に示
す組成の洗浄液により洗浄した後、スピンドライ乾燥し
た。尚、洗浄液のpH調整は、図4に示すpH調整装置
を用いて二酸化炭素によって行った。洗浄液で処理前と
処理後のウエハ表面の酸化膜厚、表面粗さを測定した結
果を表2にあわせて示した。
Example 2 A 6-inch silicon wafer substrate (n + Si100) from which surface impurities were removed by RCA cleaning was immersed in 0.5% diluted hydrofluoric acid for 10 minutes to treat the wafer surface. Next, the wafer was washed with a cleaning solution having the composition shown in Table 2 using the cleaning apparatus shown in FIG. 1, and then spin-dried. The pH of the cleaning solution was adjusted with carbon dioxide using the pH adjusting device shown in FIG. The results of measuring the oxide film thickness and surface roughness of the wafer surface before and after the treatment with the cleaning liquid are also shown in Table 2.

【0040】[0040]

【発明の効果】本発明の洗浄方法によれば、シリコンウ
エハ等の電子部品部材類を洗浄するプロセスにおいて、
超純水によりウエハ表面を洗浄する従来の方法に比べ、
電子部品部材類の表面を荒らしたり、表面に厚い酸化膜
を形成する等の虞れがなく、電子部品部材類の表面を、
完全に清浄な表面に容易に洗浄することができる効果が
ある。
According to the cleaning method of the present invention, in a process of cleaning electronic parts such as a silicon wafer,
Compared to the conventional method of cleaning the wafer surface with ultrapure water,
There is no danger of roughening the surface of electronic component members or forming a thick oxide film on the surface,
There is an effect that a completely clean surface can be easily washed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明洗浄装置の一例を示す構成図である。FIG. 1 is a configuration diagram showing an example of a cleaning device of the present invention.

【図2】水素ガスの溶解手段の一例を示す構成図であ
る。
FIG. 2 is a configuration diagram illustrating an example of a hydrogen gas dissolving unit.

【図3】pH調整装置の一例を示す構成図である。FIG. 3 is a configuration diagram illustrating an example of a pH adjusting device.

【図4】pH調整装置の異なる例を示す構成図である。FIG. 4 is a configuration diagram showing a different example of the pH adjusting device.

【符号の説明】[Explanation of symbols]

1 超純水製造装置 2 ガス溶解槽 3 pH調整装置 4 洗浄槽 6 被洗浄物 7 超音波照射装置 19 溶存水素濃度計 20 水素イオン濃度計 DESCRIPTION OF SYMBOLS 1 Ultrapure water production apparatus 2 Gas dissolution tank 3 pH adjustment apparatus 4 Cleaning tank 6 Object to be cleaned 7 Ultrasonic irradiation apparatus 19 Dissolved hydrogen concentration meter 20 Hydrogen ion concentration meter

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 電子部品部材類を、超純水に水素ガスを
溶解せしめてなり、且つ負の酸化還元電位を有する酸性
洗浄液により洗浄することを特徴とする電子部品部材類
の洗浄方法。
1. A method for cleaning electronic component members, wherein the electronic component members are cleaned by dissolving hydrogen gas in ultrapure water and using an acidic cleaning liquid having a negative oxidation-reduction potential.
【請求項2】 酸性洗浄液が、0.05ppm以上の水
素ガスを溶解していることを特徴とする請求項1記載の
電子部品部材類の洗浄方法。
2. The method for cleaning electronic component members according to claim 1, wherein the acidic cleaning solution dissolves hydrogen gas of 0.05 ppm or more.
【請求項3】 酸性洗浄液のpHが7未満、3以上であ
ることを特徴とする請求項1又は2記載の電子部品部材
類の洗浄方法。
3. The method for cleaning electronic component members according to claim 1, wherein the pH of the acidic cleaning solution is less than 7 and 3 or more.
【請求項4】 酸性洗浄液は、溶存ガス濃度が10pp
m未満となるように脱ガスされた超純水を用いるもので
ある請求項1〜3のいずれかに記載の電子部品部材類の
洗浄方法。
4. The acidic cleaning solution has a dissolved gas concentration of 10 pp.
The method for cleaning electronic component members according to any one of claims 1 to 3, wherein ultrapure water degassed so as to be less than m is used.
【請求項5】 30kHz以上の超音波を照射しながら
洗浄することを特徴とする請求項1〜4のいずれかに記
載の電子部品部材類の洗浄方法。
5. The method for cleaning electronic component members according to claim 1, wherein the cleaning is performed while irradiating ultrasonic waves of 30 kHz or more.
【請求項6】 酸性洗浄液の温度を、20℃〜60℃に
温度調節して洗浄することを特徴とする請求項1〜5の
いずれかに記載の電子部品部材類の洗浄方法。
6. The method for cleaning electronic parts and components according to claim 1, wherein the temperature of the acidic cleaning liquid is adjusted to 20 ° C. to 60 ° C. for cleaning.
【請求項7】 ガス透過膜を介して水素ガスを超純水に
溶解させることを特徴とする請求項1〜6のいずれかに
記載の電子部品部材類の洗浄方法。
7. The method for cleaning electronic component members according to claim 1, wherein hydrogen gas is dissolved in ultrapure water through a gas permeable membrane.
【請求項8】 超純水製造装置と、超純水中に水素ガス
を溶解させるためのガス溶解手段と、pHを7未満に調
製するためのpH調製手段と、超純水に水素ガスを溶解
してなり、負の酸化還元電位を有する酸性洗浄液で、電
子部品部材類を洗浄する洗浄部とからなることを特徴と
する電子部品部材類の洗浄装置。
8. An ultrapure water production apparatus, gas dissolving means for dissolving hydrogen gas in ultrapure water, pH adjusting means for adjusting pH to less than 7, and hydrogen gas in ultrapure water. A cleaning unit for cleaning electronic component members with an acidic cleaning solution having a negative oxidation-reduction potential and dissolved therein, the cleaning device for electronic component members.
【請求項9】 酸性洗浄液中に溶解している溶存水素濃
度及び溶液のpHをそれぞれ検知する溶存水素濃度検知
手段、pH検知手段と、それらの溶存水素濃度及びpH
の検知結果に基づき、酸性洗浄液中の溶存水素濃度及び
pHをそれぞれ制御する溶存水素濃度制御手段、pH制
御手段を有することを特徴とする請求項8記載の電子部
品部材類の洗浄装置。
9. A dissolved hydrogen concentration detecting means and a pH detecting means for detecting the concentration of dissolved hydrogen dissolved in the acidic cleaning solution and the pH of the solution, respectively, and the dissolved hydrogen concentration and pH thereof.
9. The cleaning device for electronic parts and components according to claim 8, further comprising a dissolved hydrogen concentration control means and a pH control means for controlling the dissolved hydrogen concentration and the pH in the acidic cleaning liquid based on the detection result of the above.
【請求項10】 洗浄部に超音波を照射するための超音
波照射手段を有することを特徴とする請求項8又は9記
載の電子部品部材類の洗浄装置。
10. The cleaning apparatus for electronic parts and members according to claim 8, further comprising an ultrasonic wave irradiator for irradiating the cleaning section with ultrasonic waves.
JP30362696A 1996-08-20 1996-10-29 Cleaning method and cleaning device for electronic component members Expired - Lifetime JP3296407B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP30362696A JP3296407B2 (en) 1996-10-29 1996-10-29 Cleaning method and cleaning device for electronic component members
KR10-1999-7001345A KR100424541B1 (en) 1996-08-20 1997-08-19 Method and device for washing electronic parts member, or the like
PCT/JP1997/002852 WO1998008248A1 (en) 1996-08-20 1997-08-19 Method and device for washing electronic parts member, or the like
US09/242,601 US6290777B1 (en) 1996-08-20 1997-08-19 Method and device for washing electronic parts member, or the like
CNB2004100020073A CN1299333C (en) 1996-08-20 1997-08-19 Method and device for cleaning electronic element or its mfg. equipment element
CNB971973342A CN1163946C (en) 1996-08-20 1997-08-19 Method and device for washing electronic parts member or like
TW086111903A TW348078B (en) 1996-08-20 1997-08-20 Cleaning method and cleaning apparatus for electronic components
JP2000352815A JP3409849B2 (en) 1996-08-20 2000-11-20 Manufacturing equipment for cleaning liquid for cleaning electronic components

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30362696A JP3296407B2 (en) 1996-10-29 1996-10-29 Cleaning method and cleaning device for electronic component members

Publications (2)

Publication Number Publication Date
JPH10128253A true JPH10128253A (en) 1998-05-19
JP3296407B2 JP3296407B2 (en) 2002-07-02

Family

ID=17923256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30362696A Expired - Lifetime JP3296407B2 (en) 1996-08-20 1996-10-29 Cleaning method and cleaning device for electronic component members

Country Status (1)

Country Link
JP (1) JP3296407B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10172941A (en) * 1996-12-16 1998-06-26 Dainippon Screen Mfg Co Ltd Substrate cleaning method and equipment therefor
WO2000033367A1 (en) * 1998-12-01 2000-06-08 Organo Corporation Wet cleaning apparatus
JP2000262991A (en) * 1999-03-16 2000-09-26 Nippon Sheet Glass Co Ltd Method of washing multicomponent glass substrate
US6943115B2 (en) 2000-06-23 2005-09-13 Fujitsu Limited Semiconductor device and method of manufacture thereof
JP2006528841A (en) * 2003-07-24 2006-12-21 ケムトレース プレシジョン クリーニング, インコーポレイテッド Cleaning method and apparatus for silicate materials
WO2007119745A1 (en) * 2006-04-14 2007-10-25 Tohoku University Feeder for drug solution or ultrapurified water, board treating system, board treating device or board treating method
JP2014022599A (en) * 2012-07-19 2014-02-03 Kurita Water Ind Ltd Cleaning method of electronic material
JP2019147112A (en) * 2018-02-27 2019-09-05 栗田工業株式会社 MANUFACTURING DEVICE FOR pH AND OXIDATION REDUCTION POTENTIAL ADJUSTMENT WATER

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10172941A (en) * 1996-12-16 1998-06-26 Dainippon Screen Mfg Co Ltd Substrate cleaning method and equipment therefor
WO2000033367A1 (en) * 1998-12-01 2000-06-08 Organo Corporation Wet cleaning apparatus
US6494223B1 (en) 1998-12-01 2002-12-17 Tadahiro Ohmi Wet cleaning apparatus utilizing ultra-pure water rinse liquid with hydrogen gas
JP2000262991A (en) * 1999-03-16 2000-09-26 Nippon Sheet Glass Co Ltd Method of washing multicomponent glass substrate
US6943115B2 (en) 2000-06-23 2005-09-13 Fujitsu Limited Semiconductor device and method of manufacture thereof
JP2006528841A (en) * 2003-07-24 2006-12-21 ケムトレース プレシジョン クリーニング, インコーポレイテッド Cleaning method and apparatus for silicate materials
JP4774367B2 (en) * 2003-07-24 2011-09-14 アプライド マテリアルズ インコーポレイテッド Method for treating the surface of a quartz semiconductor manufacturing substrate
WO2007119745A1 (en) * 2006-04-14 2007-10-25 Tohoku University Feeder for drug solution or ultrapurified water, board treating system, board treating device or board treating method
JP2014022599A (en) * 2012-07-19 2014-02-03 Kurita Water Ind Ltd Cleaning method of electronic material
JP2019147112A (en) * 2018-02-27 2019-09-05 栗田工業株式会社 MANUFACTURING DEVICE FOR pH AND OXIDATION REDUCTION POTENTIAL ADJUSTMENT WATER
WO2019167289A1 (en) * 2018-02-27 2019-09-06 栗田工業株式会社 Manufacturing device for water with adjusted ph and oxidation–reduction potential
KR20200125576A (en) * 2018-02-27 2020-11-04 쿠리타 고교 가부시키가이샤 Manufacturing equipment of pH·redox potential adjusted water

Also Published As

Publication number Publication date
JP3296407B2 (en) 2002-07-02

Similar Documents

Publication Publication Date Title
JP3409849B2 (en) Manufacturing equipment for cleaning liquid for cleaning electronic components
JP3296405B2 (en) Cleaning method and cleaning device for electronic component members
JP3198899B2 (en) Wet treatment method
JP4109455B2 (en) Hydrogen dissolved water production equipment
WO2009128327A1 (en) Cleaning water for electronic material, method of cleaning electronic material, and system for supplying water containing dissolved gases
JPH08187474A (en) Washing method
US11325851B2 (en) Diluted chemical liquid production apparatus capable of controlling pH and oxidation-reduction potential
JP2018049872A (en) Diluted chemical liquid producing device and diluted chemical liquid producing method
JP3296407B2 (en) Cleaning method and cleaning device for electronic component members
JP3332323B2 (en) Cleaning method and cleaning device for electronic component members
JP3639102B2 (en) Wet processing equipment
JP3940967B2 (en) Method for producing cleaning water for electronic material and method for cleaning electronic material
JP2000290693A (en) Cleaning of electronic parts and members
JP4273440B2 (en) Cleaning water for electronic material and cleaning method for electronic material
JP2001157879A (en) METHOD AND APPARATUS FOR CONTROLLING pH OF AQUEOUS SOLUTION
JP2006073747A (en) Method and device for treating semiconductor wafer
JP3507588B2 (en) Wet processing method and processing apparatus
JP2001157879A5 (en)
KR100424541B1 (en) Method and device for washing electronic parts member, or the like
JP3196963B2 (en) How to remove organic matter
JP3507590B2 (en) Wet processing method and processing apparatus
JP5358910B2 (en) Carbonated water manufacturing apparatus and manufacturing method
JP3797775B2 (en) Wet cleaning device for electronic material and processing method for cleaning liquid for electronic material
JPH03228328A (en) Water washing method of semiconductor substrate
JPH10235358A (en) Apparatus and method for electrolytic water-making

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020312

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090412

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090412

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100412

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110412

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110412

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120412

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130412

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140412

Year of fee payment: 12

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term