JP2000130500A - Vibration suppressing device - Google Patents
Vibration suppressing deviceInfo
- Publication number
- JP2000130500A JP2000130500A JP10303759A JP30375998A JP2000130500A JP 2000130500 A JP2000130500 A JP 2000130500A JP 10303759 A JP10303759 A JP 10303759A JP 30375998 A JP30375998 A JP 30375998A JP 2000130500 A JP2000130500 A JP 2000130500A
- Authority
- JP
- Japan
- Prior art keywords
- spheres
- retainer
- seat
- concave
- concave spherical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Bridges Or Land Bridges (AREA)
- Buildings Adapted To Withstand Abnormal External Influences (AREA)
- Vibration Prevention Devices (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、建築構造物を地震
等から保護する振動抑制装置、より詳しくはころがり支
承部を有する振動抑制装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vibration suppressing device for protecting a building structure from an earthquake or the like, and more particularly to a vibration suppressing device having a rolling bearing.
【0002】[0002]
【従来の技術】従来、この種の振動抑制装置として、例
えば図7に示すようなものが知られている(実開平5−
32505号公報)。この振動抑制装置は、下部構造B
にアンカボルト28とナット29により固定されるとと
もに、上方に向けて凹球面に形成された球面座22を有
する下沓21と、上部構造Gに同様に固定されるととも
に、下方に向けて凹球面に形成された球面座24を有す
る上沓23と、上記下沓21と上沓23との間に介装さ
れ、上面の滑り面27が上記上沓23の球面座24の曲
率に合致し、下面の滑り面26が上記下沓21の球面座
22の曲率に合致した摺接体25からなる。2. Description of the Related Art Conventionally, as a vibration suppressing device of this type, for example, a device as shown in FIG.
No. 32505). This vibration suppression device has a lower structure B
And a lower shoe 21 having a spherical seat 22 formed in an upwardly concave spherical surface while being fixed by an anchor bolt 28 and a nut 29, and similarly fixed to the upper structure G and having a downwardly concave spherical surface. An upper shoe 23 having a spherical seat 24 formed on the upper shoe 23 is interposed between the lower shoe 21 and the upper shoe 23, and a sliding surface 27 on the upper surface matches the curvature of the spherical seat 24 of the upper shoe 23, A sliding surface 26 on the lower surface is formed of a sliding member 25 that matches the curvature of the spherical seat 22 of the lower shoe 21.
【0003】いま、地震により下部構造Bと一体となっ
て下沓21が図中左方向に移動すると、上沓23に逆方
向,即ち右向きに水平方向力H(慣性力)が作用する。摺
接体25は、下面,上面の各滑り面26,27に偶力であ
る法線力F',Fを受け、この法線力の水平分力が上記水
平方向力Hに相当し、この法線力の鉛直分力が上部構造
Gの荷重Vに相当する。従って、摺接体25は、偶力で
ある法線力F',Fを受けて反時計方向に回転し、下沓2
1に対して上部構造Gを載せた上沓23を右方向に摺動
させるとともに上昇させる。その際に、摺接面22,2
6および24,27間に抵抗として働く摩擦力および別
途下部構造体と上部構造体との間に設けられたダンパ
(図示せず)の制動力と相俟って、地震によって上部構造
Gに作用する水平方向力Hが吸収,減衰される。なお、
この水平方向力Hの吸収,減衰作用は、下沓21の球面
座22の球面中心と,摺接体25の中心と,上沓23の球
面座24の球面中心とが一直線に揃って上記偶力F,F'
の腕の長さLが零になる最大摺動位置まで発揮される。Now, when the lower shoe 21 moves leftward in the figure integrally with the lower structure B due to the earthquake, a horizontal force H (inertial force) acts on the upper shoe 23 in the opposite direction, that is, rightward. The sliding contact body 25 receives a normal force F ′, F which is a couple on the sliding surfaces 26, 27 on the lower surface and the upper surface, and the horizontal component of the normal force corresponds to the horizontal force H. The vertical component force of the normal force corresponds to the load V of the superstructure G. Accordingly, the sliding body 25 rotates counterclockwise in response to the normal force F ′, F, which is a couple, and
The upper shoe 23 on which the upper structure G is mounted is slid rightward with respect to 1 and raised. At that time, the sliding contact surfaces 22, 2
Frictional force acting as a resistance between 6 and 24, 27 and a damper separately provided between the lower structure and the upper structure
Together with the braking force (not shown), the horizontal force H acting on the superstructure G due to the earthquake is absorbed and attenuated. In addition,
The horizontal force H is absorbed and attenuated by the spherical center of the spherical seat 22 of the lower shoe 21, the center of the sliding member 25, and the spherical center of the spherical seat 24 of the upper shoe 23 in a straight line. Force F, F '
To the maximum sliding position where the arm length L becomes zero.
【0004】[0004]
【発明が解決しようとする課題】上記下沓21,上沓2
3は、例えば表面である球面座22,24がPTFE(ポ
リテトラフルオロエチレン)で被覆された鋼からなる一
方、摺接体25は、硬質クロムめっきされた鋼からなっ
て、両者間の静摩擦係数を比較的小さくしている。とこ
ろが、上記従来の振動抑制装置では、静摩擦係数が小さ
くても摺接面に加わる上部構造Gの荷重Vが大きいた
め、摺接体25が摺動し始める際の水平方向力Hが大き
くなって、地震時の初期に上部構造Gに過大な水平方向
力が急激に加わるという問題がある。また、摺接体25
が下沓21と上沓23の間の中央に1つしかないので、
偶力F,F'の腕の長さLが短かくなり、単一の振動抑制
装置で上部構造Gを支えるには安定性に欠けるため、上
下構造物の間に少なくとも3個の振動抑制装置を設けな
ければならないという問題もある。Problems to be Solved by the Invention Lower shoe 21 and upper shoe 2
Numeral 3 denotes, for example, the spherical bearings 22, 24, which are the surfaces, are made of steel coated with PTFE (polytetrafluoroethylene), while the sliding contact 25 is made of hard chromium-plated steel, and the coefficient of static friction between them is Is relatively small. However, in the above-described conventional vibration suppressing device, even when the static friction coefficient is small, the load V of the upper structure G applied to the sliding contact surface is large, so that the horizontal force H when the sliding contact body 25 starts sliding increases. However, there is a problem that an excessive horizontal force is suddenly applied to the superstructure G at the beginning of an earthquake. The sliding body 25
There is only one in the center between the lower shoe 21 and the upper shoe 23,
Since the length L of the arms of the couples F and F 'becomes short and the single structure for supporting the upper structure G is not stable, at least three vibration suppressing devices are provided between the upper and lower structures. There is also a problem that it must be provided.
【0005】そこで、本発明の目的は、上沓と下沓の対
向する凹球面間の介装体の構造を工夫することによっ
て、地震時の初期に、過大な水平方向力が上部構造に急
激に加わることを防止できとともに、単一でも大きな上
載荷重を安定して支えることができる振動抑制装置を提
供することにある。Accordingly, an object of the present invention is to devise a structure of an interposition body between the concave spheres of the upper and lower shoes so that an excessive horizontal force is suddenly applied to the upper structure at the beginning of an earthquake. It is an object of the present invention to provide a vibration suppressing device that can prevent the vibration from being applied to the vehicle and can stably support a large overload even if it is single.
【0006】[0006]
【課題を解決するための手段】上記目的を達成するた
め、請求項1の振動抑制装置は、上部凹球面座と、この
上部凹球面座と同一形状の下部凹球面座とを互いに凹球
面が上下に対向するように離間して配置し、上記両凹球
面で形成される空間に複数の球を、それらが両凹球面に
接するように配置し、上記複数の球をリテーナによって
同一径の球が同心状に分布するように保持していること
を特徴とする。According to a first aspect of the present invention, there is provided a vibration suppressing device, comprising: an upper concave spherical seat and a lower concave spherical seat having the same shape as the upper concave spherical seat; A plurality of spheres are arranged in a space formed by the biconcave spheres so as to be opposed to each other vertically, and are arranged so that they are in contact with the biconcave spheres. Are concentrically distributed.
【0007】請求項1の振動抑制装置では、上部と下部
の凹球面座の対向する凹球面間に接するように配置され
た複数の球が、リテーナによって同一径の球が同心状に
分布するように保持されている。従って、これらの球の
転動によって上部と下部の凹球面座が水平方向に相対移
動すると、両凹球面座は水平を保ったまま水平移動距離
に応じて鉛直方向に離間することになる。さて、地震に
より下部凹球面座が下部構造と一体となって水平方向に
移動すると、上部構造の慣性力が上部凹球面座に逆の水
平方向力となって作用する。この水平方向力が、両凹球
面と複数の球との間の静止ころがり摩擦係数に上部構造
に働く重力つまり鉛直荷重を乗じた値を超えると、初め
て複数の球が転動し始める。上記水平方向力と鉛直荷重
の合力は、両凹球面座からこれらに接する複数の球を含
む1つの系としてのリテーナに、法線方向の偶力となっ
て働くので、リテーナに保持された各球は、上記偶力が
リテーナの中心を通って一直線に揃う最大移動位置まで
転動する。この転動に伴って、上部構造を載せた上部凹
球面座は、下部凹球面座に対して水平方向力の方向に移
動するとともに上昇し、この上昇に要する仕事および転
動の際に球と両凹球面との間に働く動ころがり摩擦力
が、地震により上部構造に作用する水平方向力となる。In the vibration suppressing device of the present invention, the plurality of spheres arranged so as to be in contact with the opposing concave spherical surfaces of the upper and lower concave spherical seats are arranged so that the spheres of the same diameter are concentrically distributed by the retainer. Is held in. Accordingly, when the upper and lower concave spherical seats relatively move in the horizontal direction due to the rolling of these spheres, the double concave spherical seats are separated in the vertical direction according to the horizontal movement distance while maintaining the horizontal. When the lower concave spherical seat moves in the horizontal direction integrally with the lower structure due to the earthquake, the inertial force of the upper structure acts on the upper concave spherical seat as an opposite horizontal force. When the horizontal force exceeds a value obtained by multiplying the static rolling friction coefficient between the biconcave spherical surface and the plurality of spheres by the gravity acting on the superstructure, that is, the vertical load, the plurality of spheres start rolling. The resultant force of the horizontal force and the vertical load acts as a couple in the normal direction from the biconcave spherical seat to the retainer as a system including a plurality of spheres in contact with the spherical seats. The ball rolls to the maximum movement position where the couple couples straight through the center of the retainer. Along with this rolling, the upper concave spherical seat on which the upper structure is mounted moves in the direction of the horizontal force with respect to the lower concave spherical seat and rises. The rolling frictional force acting between the biconcave spherical surface becomes a horizontal force acting on the superstructure due to the earthquake.
【0008】ここで、上記球の転動開始に関係する静止
ころがり摩擦係数は、図7の従来例で述べた摺接体の摺
動開始に関係する静止すべり摩擦係数に比べて遥かに小
さいので、従来例に比して地震による水平方向力が小さ
いうちにリテーナの移動と共に球が転動し始めて、上部
構造に過大な水平方向力が急激に加わるのが防止され
る。球が転動し始めるとき、地震の水平方向力は上部構
造に伝達され、上部構造は、その固有周期で振動し始め
るとともに、下部構造には続く地震による水平方向力が
次々と加わる。そのため、上下の凹球面座はリテーナで
保持された複数の球を介して左右に,したがって上下に
も相対運動し、上部構造と一体の上部凹球面座の昇降に
伴う動ころがり摩擦力と仕事が、同様に地震による水平
方向力となって、上部構造に伝達される。この振動抑制
装置では、伝わったこれらの水平方向力によって上部構
造物が大きく振動しないように、上下の凹球面の曲率を
大きくし、振り子運動する上部構造の周期を地震の周期
よりも大きくして、上部構造の地震との共振を防止して
いる。Here, the static rolling friction coefficient related to the start of rolling of the ball is far smaller than the static sliding friction coefficient related to the start of sliding of the sliding contact member described in the conventional example of FIG. However, while the horizontal force due to the earthquake is small as compared with the conventional example, the ball starts rolling with the movement of the retainer, thereby preventing an excessive horizontal force from being suddenly applied to the upper structure. When the sphere begins to roll, the horizontal force of the earthquake is transmitted to the superstructure, which begins to oscillate at its natural period, and the substructure is subjected to successive horizontal forces from the subsequent earthquake. Therefore, the upper and lower concave spherical seats move relative to each other and up and down through a plurality of spheres held by the retainer, and the rolling frictional force and work accompanying the lifting and lowering of the upper concave spherical seat integrated with the upper structure are reduced. Similarly, the horizontal force due to the earthquake is transmitted to the superstructure. In this vibration suppression device, the curvature of the upper and lower concave spheres is increased, and the period of the pendulum-moving upper structure is made larger than the period of the earthquake so that the upper structure does not vibrate greatly due to the transmitted horizontal force. Prevents resonance with superstructure earthquakes.
【0009】請求項1の振動抑制装置は、リテーナが複
数の球を同一径の球が同心状に分布するように保持して
いるので、両凹球面と球の接触点が増えて載荷能力が向
上でき、また、球が両球面座に接触し、球の転動に伴っ
て、上下の球面座は相対的に反対側に同等の距離だけ移
動するので、両球面座は常に平行の関係を保つ。従っ
て、この振動抑制装置は、単一でも上部構造を安定的に
支えて振動を抑制することができる。また、上部,下部
の凹球面座とその間に介装したリテーナで保持される複
数の球によって、上部構造に働く重力を復元力として利
用できるので、復元装置を別途必要としない。In the vibration suppressing device of the first aspect, since the retainer holds the plurality of spheres so that the spheres having the same diameter are concentrically distributed, the contact point between the biconcave spherical surface and the sphere increases, and the loading capacity increases. Can be improved, and the ball contacts the two spherical seats, and as the ball rolls, the upper and lower spherical seats move by the same distance relatively to the opposite side, so the two spherical seats always have a parallel relationship. keep. Therefore, the vibration suppressing device can stably support the upper structure and suppress vibration even if it is a single device. Further, since the gravity acting on the upper structure can be used as a restoring force by the plurality of balls held by the upper and lower concave spherical seats and the retainer interposed therebetween, a restoring device is not separately required.
【0010】請求項2の振動抑制装置は、上部凹円筒面
座と、この上部凹円筒面座と同一形状の下部凹円筒座と
を互いに凹円筒面が上下に対向するように離間して配置
し、上記両凹円筒面で形成される空間に複数の球体また
はローラを、それらが両凹円筒面に接するように配置
し、上記複数の球体またはローラをリテーナによって保
持していることを特徴とする。According to a second aspect of the present invention, the upper concave cylindrical seat and the lower concave cylindrical seat having the same shape as the upper concave cylindrical seat are spaced apart from each other so that the concave cylindrical surfaces are vertically opposed to each other. A plurality of spheres or rollers are arranged in a space formed by the biconcave cylindrical surface so that they are in contact with the biconcave cylindrical surface, and the plurality of spheres or rollers are held by a retainer. I do.
【0011】請求項2の振動抑制装置では、上部と下部
の凹円筒面座の対向する凹円筒面間に接するように配置
された複数の球体またはローラが、リテーナによって保
持されている。従って、これらの球体またはローラの転
動によって上部と下部の凹円筒面座が横方向に相対移動
すると、両円筒面座は水平を保ったまま横移動距離に応
じて離間することになる。請求項2の複数の球体または
ローラを保持したリテーナは、請求項1のリテーナが水
平面内のいずれの方向の力にも応動したのに対して、円
筒軸に直交する横方向にしか応動しない点が異なるだけ
で、球体またはローラの転動開始、両円筒面座から複数
のローラを含む1つに系としてのリテーナに法線方向に
働く偶力が一直線に揃う最大移動位置までのリテーナの
移動、およびこの移動に伴う水平方向力の作用について
は、請求項1で述べたと同じである。従って、請求項1
と同様、上部構造へ過大で急激な横方向力が加わるのが
防止されるとともに、共振が防がれる。In the vibration suppressing device according to the second aspect, a plurality of spheres or rollers arranged so as to be in contact between opposing concave cylindrical surfaces of the upper and lower concave cylindrical surface seats are held by the retainer. Therefore, when the upper and lower concave cylindrical seats relatively move in the horizontal direction due to the rolling of these spheres or rollers, the two cylindrical seats are separated according to the horizontal movement distance while keeping the horizontal. A retainer holding a plurality of spheres or rollers according to claim 2 is characterized in that the retainer according to claim 1 responds to a force in any direction in a horizontal plane, but responds only in a lateral direction perpendicular to the cylindrical axis. Start of rolling of a sphere or a roller only when the retainer moves to the maximum movement position where the couple acting in the normal direction on the retainer as a system from both cylindrical seats to one including a plurality of rollers is aligned. , And the action of the horizontal force accompanying this movement are the same as those described in claim 1. Therefore, claim 1
In the same manner as described above, an excessive and sudden lateral force is applied to the upper structure, and resonance is prevented.
【0012】[0012]
【発明の実施の形態】以下、本発明を図示の実施の形態
により詳細に説明する。図1は、本発明の請求項1に記
載の振動抑制装置の一例を備えた構造系(さらに図示し
ないダンパを備えるのが望ましい)の全体図であり、こ
の振動抑制装置は、基礎等の下部構造Bと建物等の上部
構造Gの間に複数配設され、上部構造Gに固定された上
部凹球面座23と、この上部凹球面座23と同一形状を
有して下部構造Bに固定され,凹球面22が上部凹球面
座23の凹球面24と上下に離間して対向する下部凹球
面座21と、両凹球面22,24で形成される空間にこ
の両凹球面に接するように配置された複数の球1と、こ
れらの球1を一括して回転自在に保持する後述するリテ
ーナ2(図2,3参照)とからなる。なお、図7で述べた
従来例と同じ部材には同一番号を付している。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to the illustrated embodiments. FIG. 1 is an overall view of a structural system (preferably having a damper not shown) provided with an example of the vibration suppressing device according to claim 1 of the present invention. A plurality of upper concave spherical seats 23 are provided between the structure B and the upper structure G of the building and fixed to the upper structure G, and are fixed to the lower structure B having the same shape as the upper concave spherical seat 23. A concave spherical surface 22 in which the concave spherical surface 22 is vertically spaced apart from the concave spherical surface 24 of the upper concave spherical seat 23, and a concave concave spherical surface 22, 24, which is disposed so as to be in contact with the biconcave spherical surface. And a retainer 2 (see FIGS. 2 and 3) to be described later, which holds these balls 1 in a rotatable manner. The same members as those in the conventional example described with reference to FIG. 7 are denoted by the same reference numerals.
【0013】図2は単一の上記振動抑制装置の下半分の
平面図、図3は図2のIII−III線に沿う断面図であり、
複数の球1は、両凹球面22,24で形成される空間の
中心から外側へ順に配置された大径,中径の各3個の球
1a,1bおよび小径の6個の球1cからなり、これらの球
は、図2に示すように同一径の球が同心状に全体として
周方向に均等に分布するようにリテーナ2によって保持
されている。リテーナ2によってこのように保持された
複数の球1のお陰で、地震の際に上部と下部の凹球面座
23,21が水平方向へ相対移動しても、両凹球面座2
3,21は、図5によって次に証明するように、水平を
保ったまま水平移動距離に応じて鉛直方向に離間する。FIG. 2 is a plan view of the lower half of the single vibration suppressing device, and FIG. 3 is a sectional view taken along the line III-III of FIG.
The plurality of spheres 1 are composed of three large-diameter and medium-diameter spheres 1a and 1b and six small-diameter spheres 1c arranged in order from the center of the space formed by the biconcave spherical surfaces 22 and 24 to the outside. These spheres are held by the retainer 2 so that spheres of the same diameter are concentrically and uniformly distributed as a whole in the circumferential direction as shown in FIG. Thanks to the plurality of spheres 1 thus held by the retainer 2, even if the upper and lower concave spherical seats 23, 21 relatively move in the horizontal direction during an earthquake, the biconcave spherical seat 2
3, are separated in the vertical direction according to the horizontal movement distance while maintaining the horizontal level, as will be proved next with reference to FIG.
【0014】図5において、図3の通常位置での上下の
凹球面24,22を、B1,Aを夫々中心とする半径Rの
実線円弧で、図4の移動位置での上の凹球面を、B2を
中心とする半径Rの破線円弧で夫々表すとともに、図3
の通常位置でのリテーナ2で保持された複数の球1を、
凹球面の中央に中心O1を置く半径rの実線円と、これ
に長さLのリテーナで連結され、両凹球面24,22の
左側交点P1に中心を置く無限小半径の円で置き換え
る。そして、通常位置にある半径rの実線円O1がθラ
ジアン回転して破線円O2で示す位置まで移動したと
き、移動後の半径rの円;無限小の円と上下の凹球面2
4',22との接点を、夫々F2,C2;P2とし、上の実線
凹球面24上の円O1との接点が破線凹球面24'上のD
2まで移動したとし、∠P1O1A=π/2とする。する
と、線分AC1と線分B1F1が鉛直方向なので、円O1の
接点D1,F1における接線(破線参照)は水平となる。In FIG. 5, upper and lower concave spheres 24 and 22 at the normal position in FIG. 3 are solid circular arcs having a radius R centered at B 1 and A, respectively, and are upper concave spheres at the movement position in FIG. Are represented by dashed circular arcs of radius R centered on B 2 , respectively, and FIG.
The plurality of balls 1 held by the retainer 2 at the normal position of
A solid line circle having a radius r with the center O 1 at the center of the concave sphere and a circle having an infinitesimal radius connected to this by a retainer having a length L and centered on the left intersection P 1 of the biconcave spheres 24 and 22 are replaced. . When a solid circle O 1 having a radius r at a normal position is rotated by θ radians and moved to a position indicated by a broken circle O 2 , a circle having a radius r after the movement; an infinitesimal circle and an upper and lower concave spherical surface 2
F 2 , C 2 ; P 2 are the contact points with 4 ′, 22 respectively, and the contact point with the circle O 1 on the solid concave spherical surface 24 is D on the broken concave spherical surface 24 ′.
Assuming that it has moved to 2 , ΔP 1 O 1 A = π / 2. Then, since the line segment AC 1 and the line segment B 1 F 1 is vertical, tangential (see dashed line) at the contact point D 1, F 1 circle O 1 becomes horizontal.
【0015】次に、ΔF1O1P1とΔC1O1P1は合同で
あり、転動後のΔF2O2P2とΔC2O2P2も合同である
ので、∠F2O2P2=∠C2O2P2=∠P1O1A=π/2
となり、従って、線分F2C2は直線になる。ここで、線
分AC2と線分B2F2とは、線分F2C2を共有している
ので、線分AB2は直線である。円弧C1C2と円弧D2F
2は転動長であるから等しい。また、線分AC1,AC2,
B2D2,B2F2は夫々半径長Rであるから等しい。従っ
て、ΔAC1C2とΔB2D 2F2は合同であり、∠C1AC
2=∠D2B2F2=Θであるから、線分AB2が直線であ
ることと相俟って、線分AB1と線分B2D2とは平行と
なり、それ故、線分B2D2も鉛直線になる。破線凹球面
24'の点D2における接線は、線分B2D2に直交するか
ら水平となる。こうして、リテーナで保持された複数の
球が転動で通常位置から移動位置まで移動すると、下部
凹球面座22から水平を保ったまま離間した上部球面座
23の上昇距離δは、図中の水平接線23',23の間隔
に等しい。この振動抑制装置は、水平振動力を受けると
一種の振り子振動をするが、その固有振動周期Tは、凹
球面の半径Rと球の半径rによって一意的に次式により
決まる。Next, ΔF1O1P1And ΔC1O1P1Is joint
Yes, ΔF after rollingTwoOTwoPTwoAnd ΔCTwoOTwoPTwoIs also joint
So ∠FTwoOTwoPTwo= ∠CTwoOTwoPTwo= ∠P1O1A = π / 2
And therefore the line segment FTwoCTwoBecomes a straight line. Where the line
Minute ACTwoAnd line segment BTwoFTwoIs the line segment FTwoCTwoIs sharing
So line segment ABTwoIs a straight line. Arc C1CTwoAnd arc DTwoF
TwoAre equal because they are rolling lengths. Also, the line segment AC1, ACTwo,
BTwoDTwo, BTwoFTwoAre equal because they have a radius length R. Follow
And ΔAC1CTwoAnd ΔBTwoD TwoFTwoAre congruent and $ C1AC
Two= ∠DTwoBTwoFTwo= Θ, the line segment ABTwoIs a straight line
Along with that, line segment AB1And line segment BTwoDTwoIs parallel to
And therefore line segment BTwoDTwoIs also vertical. Dashed concave sphere
Point D at 24 'TwoThe tangent at is line segment BTwoDTwoIs orthogonal to
It becomes horizontal. In this way, the multiple
When the ball moves from the normal position to the moving position by rolling, the lower part
Upper spherical seat spaced apart from concave spherical seat 22 while keeping horizontal
23 is the distance between the horizontal tangents 23 'and 23 in the figure.
be equivalent to. When this vibration suppression device receives horizontal vibration force,
It makes a kind of pendulum oscillation, but its natural oscillation period T is concave
The radius R of the sphere and the radius r of the sphere uniquely give
Decided.
【数1】 なお、凹球面と球が滑らないようにするために、夫々の
面を粗面にすることも有効である。(Equation 1) In order to prevent the concave spherical surface and the spherical surface from slipping, it is also effective to make each surface rough.
【0016】上記構成の振動抑制装置の動作について、
図3,4を参照しつつ次に説明する。地震による水平方
向力が作用しない通常時には、振動抑制装置は、図3に
示すように、リテーナ2で保持された複数の球1が下部
凹球面座21と上部凹球面座23の中央にあって、上部
構造Gに働く重力つまり鉛直荷重Vを支えている。地震
により下部構造Bと一体になって下部凹球面座21が水
平に左方向に移動すると、上部凹球面座23に逆方向の
水平方向力(慣性力)Hが作用し、この水平方向力Hが、
両凹球面22,24と球1との間の静止ころがり摩擦係
数μに上記鉛直荷重Vを乗じた値を超えると(H>μ
V)、水平方向力Hと鉛直荷重Vの合力Fは、球1を含
む1つの系としてのリテーナ2に両凹球面22,24か
ら法線方向の偶力となって働くので(図7参照)、リテー
ナ2に保持された各球1a,1b,1cは、上記偶力がリテ
ーナ2の中心を通って一直線に揃う図4に示す最大移動
位置に向かって右回転しつつ右方向に転動する。この転
動に伴って、上部構造Gを載せた上部凹球面座23は、
下部凹球面座21に対して図中の矢印Hで示す右方向に
移動するとともに上述のδだけ上昇する。Regarding the operation of the vibration suppressing device having the above configuration,
Next, a description will be given with reference to FIGS. In a normal state where no horizontal force is exerted by an earthquake, the vibration suppressing device is configured such that the plurality of spheres 1 held by the retainer 2 are located at the center of the lower concave spherical seat 21 and the upper concave spherical seat 23 as shown in FIG. , Which supports the gravity acting on the upper structure G, that is, the vertical load V. When the lower concave spherical seat 21 moves horizontally to the left integrally with the lower structure B due to the earthquake, an opposite horizontal force (inertial force) H acts on the upper concave spherical seat 23, and the horizontal force H But,
When the value exceeds the value obtained by multiplying the static rolling friction coefficient μ between the biconcave spherical surfaces 22 and 24 and the sphere 1 by the vertical load V, (H> μ
V), the resultant force F of the horizontal force H and the vertical load V acts on the retainer 2 as one system including the sphere 1 as a couple in the normal direction from the biconcave spherical surfaces 22 and 24 (see FIG. 7). ), The balls 1a, 1b, and 1c held by the retainer 2 rotate rightward while rotating clockwise toward the maximum movement position shown in FIG. 4 where the couples are aligned through the center of the retainer 2. I do. With this rolling, the upper concave spherical seat 23 on which the upper structure G is mounted,
It moves rightward as indicated by arrow H in the figure with respect to the lower concave spherical seat 21 and rises by the above-mentioned δ.
【0017】ここで、球1の転動開始に関係する上記静
止ころがり摩擦係数μは、図7の従来例で述べた摺接体
25の摺動開始に関係する静止すべり摩擦係数に比べて
遥かに小さいので、地震による水平方向力Hが従来例よ
りも小さいうちに球1が転動してリテーナ2が移動し始
めるので、上部構造Gに過大な水平方向力が急激に加わ
るのが防止される。なお、水平方向力Hが更に増大する
と、これに釣り合うようにリテーナ2が最大移動位置か
ら更に移動して、両凹球面座23,21から外れてしま
うことになるので、両凹球面座の幅と球面の曲率および
リテーナ2の大きさは、想定される地震の最大水平変位
に対応して決められる。球が転動し始めるとき、地震の
水平方向力は上部構造に伝達され、上部構造は、その固
有周期で振動し始めるとともに、下部構造には続く地震
による水平方向力が次々と加わる。そのため、上下の凹
球面座はリテーナで保持された複数の球を介して左右
に,したがって上下にも相対運動し、上部構造と一体の
上部凹球面座の昇降に伴う動ころがり摩擦力と仕事が、
同様に地震による水平方向力となって、上部構造に伝達
される。この振動抑制装置では、伝わったこれらの水平
方向力によって上部構造が大きく振動しないようにする
ために、上下球面座の曲率を大きくし、振り子運動する
上部構造の周期(固有周期)を地震の周期よりも大きくす
ることによって、上部構造の地震との共振を防止してい
る。このようにすることによって、上部構造に左右方向
に伝達される水平力は、上部構造を夫々反対方向に移動
させる力として作用し、互いに打ち消されることにな
る。なお、上部構造物に伝達された水平力を、ダンパを
別途設けて吸収することが望ましい。さらに、この振動
抑制装置の下部構造を建物とし、上部構造をウエイト部
材にし、この装置の固有周期を下部構造建物の固有周期
とすると、地震によって建物が揺れるのも防止(制振)す
ることができる。Here, the static rolling friction coefficient μ related to the start of rolling of the ball 1 is far greater than the static sliding friction coefficient related to the start of sliding of the sliding member 25 described in the conventional example of FIG. Since the ball 1 rolls and the retainer 2 starts to move while the horizontal force H due to the earthquake is smaller than that of the conventional example, an excessive horizontal force is prevented from being suddenly applied to the upper structure G. You. When the horizontal force H further increases, the retainer 2 further moves from the maximum movement position to balance with the horizontal force H, and separates from the biconcave spherical seats 23 and 21. The curvature of the spherical surface and the size of the retainer 2 are determined according to the assumed maximum horizontal displacement of the earthquake. When the sphere begins to roll, the horizontal force of the earthquake is transmitted to the superstructure, which begins to oscillate at its natural period, and the substructure is subjected to successive horizontal forces from the subsequent earthquake. Therefore, the upper and lower concave spherical seats move relative to each other and up and down through the plurality of balls held by the retainer, and the rolling frictional force and work associated with the lifting and lowering of the upper concave spherical seat integrated with the upper structure are reduced. ,
Similarly, a horizontal force due to the earthquake is transmitted to the superstructure. In order to prevent the upper structure from vibrating significantly due to these transmitted horizontal forces, the vibration suppressor increases the curvature of the upper and lower spherical seats, and changes the period of the upper structure that swings pendulum (natural period) to the period of the earthquake. Making it larger than that prevents resonance of the superstructure with the earthquake. In this way, the horizontal force transmitted to the upper structure in the left-right direction acts as a force for moving the upper structure in the opposite direction, and is canceled by each other. In addition, it is desirable to provide a damper and absorb the horizontal force transmitted to the upper structure. Furthermore, if the lower structure of this vibration suppression device is a building, the upper structure is a weight member, and the natural period of this device is the natural period of the lower structure building, it is possible to prevent the building from shaking due to an earthquake (vibration suppression). it can.
【0018】上記構成の振動抑制装置は、リテーナ2に
より合計12個の球1a,1b,1cを同一径の球が同心状
にしかも全体として周方向に均等に分布するように保持
しているので、両凹球面22,24とこれら球との接触
点が増えて載荷能力が向上でき、また、球が両凹球面座
に接触し、球の転動に伴って、上下の凹球面座は相対的
に反対側に同等の距離だけ移動するので、両凹球面座は
常に平行の関係を保つ。従って、この振動抑制装置を単
一設けるだけでも、上部構造Gを極めて安定的に支えて
振動を抑制することができるという利点がある。また、
上部,下部の凹球面座23,21とその間に介装したリテ
ーナ2で保持される複数の球1によって、上部構造Gに
働く重力Vを復元力として利用できるので、復元装置を
別途必要としない。なお、上記実施の形態では、図2に
示すように、リテーナ2によって中心から外側へ順に3
個の大径,3個の中径,6個の小径の球1a,1b,1cを同
一径の球が同心状に,しかも全体として周方向に均等に
分布するように保持したが、同一径の球が同心状に保持
されていれば、周方向に均等に分布させる必要は必ずし
もなく、例えば、大径,中径,小径の各球1つを省略して
も同様の作用効果が得られる。In the vibration suppressing device having the above structure, a total of 12 spheres 1a, 1b, 1c are held by the retainer 2 so that spheres having the same diameter are concentrically distributed evenly in the circumferential direction as a whole. In addition, the contact points between the bi-concave spherical surfaces 22 and 24 and these spheres are increased, so that the loading capacity can be improved, and the spheres come into contact with the bi-concave spherical seats. The bi-concave spherical seats always maintain a parallel relationship because they move the same distance to the opposite side. Therefore, there is an advantage that the vibration can be suppressed by supporting the upper structure G extremely stably even if only a single vibration suppressing device is provided. Also,
With the plurality of balls 1 held by the upper and lower concave spherical seats 23 and 21 and the retainer 2 interposed therebetween, the gravity V acting on the upper structure G can be used as a restoring force, so that a separate restoring device is not required. . In the above embodiment, as shown in FIG.
The three large-diameter, three medium-diameter, and six small-diameter spheres 1a, 1b, and 1c are held so that spheres of the same diameter are concentrically distributed evenly in the circumferential direction as a whole. If the spheres are held concentrically, it is not necessary to distribute them evenly in the circumferential direction. For example, the same operation and effect can be obtained even if one large, medium, and small sphere is omitted. .
【0019】図6は、本発明の請求項2に記載の振動抑
制装置の一例を示す斜視図であり、この振動抑制装置
は、上部凹円筒面座33と、この上部凹円筒面座33と
同一形状を有し、凹円筒面32が上部凹円筒面座33の
凹円筒面34と上下に離間して対向する下部凹円筒面座
31と、両凹円筒面32,34で形成される空間にこの
両凹円筒面に接するように配置された3つのローラ11
と、これらのローラ11を一括して回転自在に保持する
リテーナ12からなる。上記ローラ11は、両凹円筒面
の中央に位置する大径のローラ11aと、その両側に等
距離を隔てて夫々配置された中径のローラ11bからな
り、これらのローラはその両端面で板状の上記リテーナ
12により連結されている。図3と同様、下部凹円筒面
座31は下部構造Bに、上部凹円筒面座33は上部構造
Gに固定されるのは勿論である。FIG. 6 is a perspective view showing an example of the vibration suppressing device according to the second aspect of the present invention. The vibration suppressing device includes an upper concave cylindrical surface seat 33, and an upper concave cylindrical surface seat 33. A space formed by a lower concave cylindrical surface seat 31 having the same shape and having a concave cylindrical surface 32 vertically opposed to a concave cylindrical surface 34 of an upper concave cylindrical surface seat 33 and biconcave cylindrical surfaces 32 and 34; Three rollers 11 arranged in contact with the biconcave cylindrical surface
And a retainer 12 for holding these rollers 11 rotatably collectively. The roller 11 is composed of a large-diameter roller 11a located at the center of the biconcave cylindrical surface, and medium-diameter rollers 11b arranged at equal distances on both sides thereof. Are connected by the above-described retainer 12. 3, the lower concave cylindrical seat 31 is fixed to the lower structure B, and the upper concave cylindrical seat 33 is fixed to the upper structure G, as a matter of course.
【0020】上記リテーナ12で保持された3個のロー
ラ11は、図2,3で述べた球1を保持したリテーナ2
が水平面内のいずれの方向にも応動したのに対して、リ
テーナ12が延びる横方向にしか応動しない点が異なる
だけで、ローラ11の転動開始条件、ローラ11を含む
1つの系としてのリテーナ12が、両円筒面座31,3
3から法線方向に働く偶力を受けてこの偶力が一直線に
揃う最大移動位置まで移動する点、この移動に伴う地震
の水平方向力の作用については、図2,3で述べたと同
じである。従って、この振動抑制装置も、上部構造に過
大で急激な横方向力が加わるのを防止し、共振を防止す
る。なお、図6の振動抑制装置を2つ互いに直交するよ
うに重ねて用いれば、水平面内の直交する2方向の地震
力を吸収,減衰することができる。また、上記説明で
は、ローラをリテーナで連結する場合について説明した
が、ローラに代えて球体をリテーナで連結し、両凹円筒
面に配置するようにしてもよい。The three rollers 11 held by the retainer 12 correspond to the retainer 2 holding the ball 1 described with reference to FIGS.
Responded to any direction in the horizontal plane, but responded only to the lateral direction in which the retainer 12 extends, except that the condition for starting the rolling of the roller 11 and the retainer as one system including the roller 11 are different. 12 is both cylindrical seats 31,3
The point where the couple moves to the maximum movement position where the couple receives a couple acting in the normal direction from 3 and the couple moves in a straight line, and the effect of the horizontal force of the earthquake accompanying this movement is the same as described in FIGS. is there. Therefore, this vibration suppressing device also prevents an excessive and sudden lateral force from being applied to the upper structure, thereby preventing resonance. If two vibration suppression devices shown in FIG. 6 are used so as to be orthogonal to each other, seismic forces in two orthogonal directions in a horizontal plane can be absorbed and attenuated. In the above description, the case where the rollers are connected by the retainer has been described. However, instead of the rollers, the spheres may be connected by the retainer and arranged on the biconcave cylindrical surface.
【0021】[0021]
【発明の効果】以上の説明で明らかなように、請求項1
の振動抑制装置は、上部凹球面座と、この上部凹球面座
と同一形状の下部凹球面座とを互いに凹球面が上下に対
向するように離間して配置し、上記両凹球面で形成され
る空間に複数の球を、それらが両凹球面に接するように
配置し、上記複数の球をリテーナによって同一径の球が
同心状に分布するように保持しているので、リテーナで
保持された球の転動によって上部の凹球面座は下部の凹
球面座に対して水平を保ったまま昇降し、静止ころがり
摩擦係数が静止すべり摩擦係数より遥かに小さいから、
小さい水平方向力で球が転動し始めて上部構造に過大で
急激な水平方向力が加わらず、さらに、上部構造が固有
周期で振動するので、上部構造に伝達されるエネルギが
抑制され,共振が防がれるとともに、複数の球による接
触点の増加により載荷能力の向上および加わる偶力の腕
の長さの増加が図れて、単一の振動抑制装置でも上部構
造を安定的に支えて振動を抑制できるうえ、凹球面座の
お陰で復元装置が要らなくなる。As is apparent from the above description, claim 1
In the vibration suppressing device, an upper concave spherical seat and a lower concave spherical seat having the same shape as the upper concave spherical seat are arranged so as to be separated from each other so that the concave spherical surfaces face each other up and down, and are formed by the biconcave spherical surface. Since a plurality of spheres are arranged in a space that is in contact with the biconcave spherical surface, and the plurality of spheres are held by a retainer so that spheres of the same diameter are concentrically distributed, they are held by the retainer. Due to the rolling of the sphere, the upper concave spherical seat moves up and down while keeping the horizontal position with respect to the lower concave spherical seat, and the static rolling friction coefficient is much smaller than the static sliding friction coefficient,
The ball starts rolling with a small horizontal force, and no excessive and sudden horizontal force is applied to the upper structure.Moreover, the upper structure vibrates at a natural period, so that the energy transmitted to the upper structure is suppressed, and resonance occurs. In addition to increasing the number of contact points with multiple balls, the load capacity is improved and the length of the arm of the couple to be added is increased, so that even a single vibration suppression device stably supports the upper structure and suppresses vibration. In addition to the restraint, a restoring device is not required due to the concave spherical seat.
【0022】請求項2の振動抑制装置は、上部凹円筒面
座と、この上部凹円筒面座と同一形状の下部凹円筒座と
を互いに凹円筒面が上下に対向するように離間して配置
し、上記両凹円筒面で形成される空間に複数の球体また
はローラを、それらが両凹円筒面に接するように配置
し、上記複数の球体またはローラをリテーナによって保
持しているので、リテーナで保持された球体またはロー
ラの転動によって上部の凹球面座は下部の凹球面座に対
して水平を保ったまま昇降し、静止ころがり摩擦係数が
静止すべり摩擦係数より遥かに小さいから、小さい水平
方向力で球体またはローラが転動し始めて上部構造に過
大で急激な横方向力が加わらず、さらに、上部構造が固
有周期で振動するので、上部構造に伝達されるエネルギ
が抑制され,共振が防がれるとともに、複数のローラに
よる接触点の増加により載荷能力の向上および加わる偶
力の腕の長さの増加が図れて、単一の振動抑制装置でも
上部構造を安定的に支えて振動を抑制できるうえ、凹円
筒面座のお陰で復元装置が要らなくなる。According to a second aspect of the present invention, the upper concave cylindrical seat and the lower concave cylindrical seat having the same shape as the upper concave cylindrical seat are spaced apart from each other so that the concave cylindrical surfaces are vertically opposed to each other. A plurality of spheres or rollers are arranged in a space formed by the biconcave cylindrical surface so that they are in contact with the biconcave cylindrical surface, and the plurality of spheres or rollers are held by a retainer. Due to the rotation of the held sphere or roller, the upper concave spherical seat moves up and down while keeping the horizontal position with respect to the lower concave spherical seat, and the static rolling friction coefficient is much smaller than the static sliding friction coefficient. The sphere or roller begins to roll due to the force, and no excessive and sudden lateral force is applied to the upper structure.In addition, since the upper structure vibrates at a natural period, the energy transmitted to the upper structure is suppressed, and resonance is prevented. As a result, the load capacity can be improved by increasing the number of contact points with multiple rollers, and the length of the arm of the couple to be added can be increased, so that even a single vibration suppression device stably supports the upper structure and suppresses vibration. In addition, a concave cylindrical seat eliminates the need for a restoration device.
【図1】 本発明の請求項1に係る振動抑制装置の一例
を備えた構造系の全体図である。FIG. 1 is an overall view of a structural system including an example of a vibration suppressing device according to claim 1 of the present invention.
【図2】 単一の上記振動抑制装置の下半分の平面図で
ある。FIG. 2 is a plan view of a lower half of a single vibration suppression device.
【図3】 図2のIII−III線に沿う断面図である。FIG. 3 is a sectional view taken along the line III-III in FIG. 2;
【図4】 リテーナが図3の通常位置から最大移動位置
まで移動した場合の断面図である。4 is a cross-sectional view when the retainer has moved from a normal position in FIG. 3 to a maximum movement position.
【図5】 球の転動を伴うリテーナの移動で上部凹球面
座が水平を保つことを証明するための説明図である。FIG. 5 is an explanatory diagram for proving that the upper concave spherical seat keeps horizontal by the movement of the retainer accompanying the rolling of the ball.
【図6】 本発明の請求項2に係る振動抑制装置の一例
を示す斜視図である。FIG. 6 is a perspective view showing an example of the vibration suppressing device according to claim 2 of the present invention.
【図7】 従来のすべり支承の振動抑制装置を示す縦断
面図である。FIG. 7 is a longitudinal sectional view showing a conventional vibration suppressing device for a sliding bearing.
1…複数の球、1a…大径の球、1b…中径の球、1c…
小径の球、2…リテーナ、11…複数のローラ、11a
…大径のローラ、11b…中径のローラ、12…リテー
ナ、21…下部凹球面座、22,24…凹球面、23…
上部凹球面座、31…下部凹円筒面座、33…上部凹円
筒面座、32,34…凹円筒面、B…下部構造、G…上
部構造。1 ... multiple spheres, 1a ... large diameter sphere, 1b ... medium diameter sphere, 1c ...
Small ball, 2 ... Retainer, 11 ... Multiple rollers, 11a
... Large-diameter roller, 11b ... Medium-diameter roller, 12 ... Retainer, 21 ... Lower concave spherical seat, 22, 24 ... Concave spherical surface, 23 ...
Upper concave spherical seat, 31: lower concave cylindrical seat, 33: upper concave cylindrical seat, 32, 34: concave cylindrical surface, B: lower structure, G: upper structure.
フロントページの続き (72)発明者 坂本 博三 大阪府大阪市阿倍野区松崎町2丁目2番2 号 株式会社奥村組内 Fターム(参考) 2D059 AA38 GG12 3J048 AA07 BG02 DA01 EA38 Continuation of the front page (72) Inventor Hirozo Sakamoto 2-2-2 Matsuzaki-cho, Abeno-ku, Osaka-shi, Osaka F-term in Okumura Gumi Co., Ltd. F-term (reference) 2D059 AA38 GG12 3J048 AA07 BG02 DA01 EA38
Claims (2)
一形状の下部凹球面座とを互いに凹球面が上下に対向す
るように離間して配置し、 上記両凹球面で形成される空間に複数の球を、それらが
両凹球面に接するように配置し、 上記複数の球をリテーナによって同一径の球が同心状に
分布するように保持していることを特徴とする振動抑制
装置。1. An upper concave spherical seat and a lower concave spherical seat having the same shape as the upper concave spherical seat are spaced apart from each other so that the concave spherical surfaces are vertically opposed to each other, and are formed by the biconcave spherical surface. A plurality of spheres are arranged in a space such that they are in contact with a biconcave spherical surface, and the plurality of spheres are held by a retainer so that spheres of the same diameter are concentrically distributed. .
と同一形状の下部凹円筒座とを互いに凹円筒面が上下に
対向するように離間して配置し、 上記両凹円筒面で形成される空間に複数の球体またはロ
ーラを、それらが両凹円筒面に接するように配置し、上
記複数のローラをリテーナによって保持していることを
特徴とする振動抑制装置。2. An upper concave cylindrical seat and a lower concave cylindrical seat having the same shape as the upper concave cylindrical seat are spaced apart from each other so that the concave cylindrical surfaces are vertically opposed to each other. A vibration suppressing device, wherein a plurality of spheres or rollers are arranged in a space defined by the above so that they contact a biconcave cylindrical surface, and the plurality of rollers are held by a retainer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30375998A JP3976423B2 (en) | 1998-10-26 | 1998-10-26 | Vibration suppression device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30375998A JP3976423B2 (en) | 1998-10-26 | 1998-10-26 | Vibration suppression device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000130500A true JP2000130500A (en) | 2000-05-12 |
JP3976423B2 JP3976423B2 (en) | 2007-09-19 |
Family
ID=17924939
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP30375998A Expired - Lifetime JP3976423B2 (en) | 1998-10-26 | 1998-10-26 | Vibration suppression device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3976423B2 (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000283221A (en) * | 1999-03-30 | 2000-10-13 | Tokkyokiki Corp | Base isolation vibration damping device |
KR100489577B1 (en) * | 2002-01-29 | 2005-05-16 | (주)청룡건설 | Level adjusting bearing for bridge |
JP2009270614A (en) * | 2008-05-07 | 2009-11-19 | Kanpo Steel Kk | Base isolation mechanism and method of manufacturing the same |
JP2012092873A (en) * | 2010-10-26 | 2012-05-17 | Ryozo Yoneda | Earthquake-resisting support device for object |
JP2012097764A (en) * | 2010-10-29 | 2012-05-24 | Yakumo Kk | Seismic isolation device |
KR101317467B1 (en) * | 2011-07-15 | 2013-10-11 | 포인텍이앤씨(주) | Structure supporting apparatus with semicylinder type slide |
JP2014047915A (en) * | 2012-08-31 | 2014-03-17 | Masaharu Ota | Aseismic base isolation table |
JP5497235B1 (en) * | 2013-09-04 | 2014-05-21 | ヤクモ株式会社 | Seismic isolation device |
CN106758792A (en) * | 2016-12-26 | 2017-05-31 | 济南大学 | A kind of bridge pad |
CN112503132A (en) * | 2020-11-27 | 2021-03-16 | 谢一凡 | A high-efficient bumper shock absorber for improving bridge anticollision function |
CN114323437A (en) * | 2021-12-31 | 2022-04-12 | 哈尔滨工业大学 | Floating fulcrum device |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02248737A (en) * | 1989-03-22 | 1990-10-04 | Yokohama Rubber Co Ltd:The | Horizontal omnidirectional type damper |
JPH03224293A (en) * | 1990-01-30 | 1991-10-03 | Fujitsu Ltd | Base leg |
JPH0552238A (en) * | 1991-06-14 | 1993-03-02 | Sumitomo Rubber Ind Ltd | Vibration damping device |
JPH0532505U (en) * | 1991-03-14 | 1993-04-27 | オイレス工業株式会社 | Seismic isolation support for light loads |
JPH10317717A (en) * | 1997-05-23 | 1998-12-02 | Mitsubishi Steel Mfg Co Ltd | Base isolation rolling support having restoring force |
JP2000074139A (en) * | 1998-06-20 | 2000-03-07 | Sankoo Engineering:Kk | Base isolation device |
-
1998
- 1998-10-26 JP JP30375998A patent/JP3976423B2/en not_active Expired - Lifetime
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02248737A (en) * | 1989-03-22 | 1990-10-04 | Yokohama Rubber Co Ltd:The | Horizontal omnidirectional type damper |
JPH03224293A (en) * | 1990-01-30 | 1991-10-03 | Fujitsu Ltd | Base leg |
JPH0532505U (en) * | 1991-03-14 | 1993-04-27 | オイレス工業株式会社 | Seismic isolation support for light loads |
JPH0552238A (en) * | 1991-06-14 | 1993-03-02 | Sumitomo Rubber Ind Ltd | Vibration damping device |
JPH10317717A (en) * | 1997-05-23 | 1998-12-02 | Mitsubishi Steel Mfg Co Ltd | Base isolation rolling support having restoring force |
JP2000074139A (en) * | 1998-06-20 | 2000-03-07 | Sankoo Engineering:Kk | Base isolation device |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000283221A (en) * | 1999-03-30 | 2000-10-13 | Tokkyokiki Corp | Base isolation vibration damping device |
KR100489577B1 (en) * | 2002-01-29 | 2005-05-16 | (주)청룡건설 | Level adjusting bearing for bridge |
JP2009270614A (en) * | 2008-05-07 | 2009-11-19 | Kanpo Steel Kk | Base isolation mechanism and method of manufacturing the same |
JP2012092873A (en) * | 2010-10-26 | 2012-05-17 | Ryozo Yoneda | Earthquake-resisting support device for object |
JP2012097764A (en) * | 2010-10-29 | 2012-05-24 | Yakumo Kk | Seismic isolation device |
KR101317467B1 (en) * | 2011-07-15 | 2013-10-11 | 포인텍이앤씨(주) | Structure supporting apparatus with semicylinder type slide |
JP2014047915A (en) * | 2012-08-31 | 2014-03-17 | Masaharu Ota | Aseismic base isolation table |
JP5497235B1 (en) * | 2013-09-04 | 2014-05-21 | ヤクモ株式会社 | Seismic isolation device |
CN106758792A (en) * | 2016-12-26 | 2017-05-31 | 济南大学 | A kind of bridge pad |
CN106758792B (en) * | 2016-12-26 | 2018-07-06 | 济南大学 | A kind of bridge pad |
CN112503132A (en) * | 2020-11-27 | 2021-03-16 | 谢一凡 | A high-efficient bumper shock absorber for improving bridge anticollision function |
CN114323437A (en) * | 2021-12-31 | 2022-04-12 | 哈尔滨工业大学 | Floating fulcrum device |
Also Published As
Publication number | Publication date |
---|---|
JP3976423B2 (en) | 2007-09-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2000130500A (en) | Vibration suppressing device | |
JPH10318328A (en) | Base isolation device | |
US9879417B2 (en) | Rigidity-controllable seismic-isolation support utilizing gravitational negative rigidity | |
JP3741428B2 (en) | Support foundation structure of structure | |
JPH0254040A (en) | Vibration-free device and response control structure | |
WO2007114072A1 (en) | Negative rigidity device and base isolation structure having the negative rigidity device | |
JP4989488B2 (en) | Negative rigid device and seismic isolation structure provided with the negative rigid device | |
JP2755868B2 (en) | Seismic isolation device | |
JP2603426B2 (en) | Seismic isolation structure | |
JP4822121B2 (en) | Seismic isolation structure | |
JPH08173479A (en) | Magnetic levitation type vibration proof bed for vehicle | |
JPH022995Y2 (en) | ||
JPH0893267A (en) | Supporting device for base isolation | |
JPS62188834A (en) | Vibration damping supporter | |
JP3625047B2 (en) | Seismic isolation shelf | |
JP3074800U (en) | Seismic isolation bearing board | |
JPS6339459Y2 (en) | ||
JPH022994Y2 (en) | ||
JP3951382B2 (en) | Seismic isolation device | |
JP2002061704A (en) | Gravity restorable base isolation structure | |
JPH1122783A (en) | Base isolation device | |
JPH10220066A (en) | Base isolation structure for building | |
JPH10219843A (en) | Bas isolation structure for structure | |
JP3340707B2 (en) | Seismic isolation device | |
JP4580468B2 (en) | Support structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040226 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040323 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040519 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040622 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040819 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20050208 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070619 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100629 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100629 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110629 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130629 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130629 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |