HRP930856A2 - Nivo prekidač - Google Patents
Nivo prekidač Download PDFInfo
- Publication number
- HRP930856A2 HRP930856A2 HRP930856AA HRP930856A HRP930856A2 HR P930856 A2 HRP930856 A2 HR P930856A2 HR P930856A A HRP930856A A HR P930856AA HR P930856 A HRP930856 A HR P930856A HR P930856 A2 HRP930856 A2 HR P930856A2
- Authority
- HR
- Croatia
- Prior art keywords
- operational amplifier
- output
- resistance
- capacitor
- electrode
- Prior art date
Links
- 239000003990 capacitor Substances 0.000 claims abstract description 60
- 239000000523 sample Substances 0.000 claims abstract description 21
- 230000001681 protective effect Effects 0.000 claims description 27
- 239000000463 material Substances 0.000 description 88
- 239000004020 conductor Substances 0.000 description 12
- 239000007788 liquid Substances 0.000 description 6
- 239000012811 non-conductive material Substances 0.000 description 5
- 230000001419 dependent effect Effects 0.000 description 3
- 230000001965 increasing effect Effects 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 239000012153 distilled water Substances 0.000 description 2
- 239000006260 foam Substances 0.000 description 2
- 230000010363 phase shift Effects 0.000 description 2
- 239000011253 protective coating Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 241000273930 Brevoortia tyrannus Species 0.000 description 1
- 230000035508 accumulation Effects 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 239000012237 artificial material Substances 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002706 hydrostatic effect Effects 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000002285 radioactive effect Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F23/00—Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
- G01F23/22—Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
- G01F23/24—Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of resistance of resistors due to contact with conductor fluid
- G01F23/241—Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of resistance of resistors due to contact with conductor fluid for discrete levels
- G01F23/242—Mounting arrangements for electrodes
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F23/00—Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
- G01F23/22—Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
- G01F23/24—Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of resistance of resistors due to contact with conductor fluid
- G01F23/241—Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of resistance of resistors due to contact with conductor fluid for discrete levels
- G01F23/243—Schematic arrangements of probes combined with measuring circuits
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F23/00—Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
- G01F23/22—Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
- G01F23/24—Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of resistance of resistors due to contact with conductor fluid
- G01F23/241—Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of resistance of resistors due to contact with conductor fluid for discrete levels
- G01F23/243—Schematic arrangements of probes combined with measuring circuits
- G01F23/244—Schematic arrangements of probes combined with measuring circuits comprising oscillating circuits
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F23/00—Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
- G01F23/22—Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
- G01F23/26—Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of capacity or inductance of capacitors or inductors arising from the presence of liquid or fluent solid material in the electric or electromagnetic fields
- G01F23/263—Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of capacity or inductance of capacitors or inductors arising from the presence of liquid or fluent solid material in the electric or electromagnetic fields by measuring variations in capacitance of capacitors
- G01F23/265—Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of capacity or inductance of capacitors or inductors arising from the presence of liquid or fluent solid material in the electric or electromagnetic fields by measuring variations in capacitance of capacitors for discrete levels
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F23/00—Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
- G01F23/22—Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
- G01F23/26—Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of capacity or inductance of capacitors or inductors arising from the presence of liquid or fluent solid material in the electric or electromagnetic fields
- G01F23/263—Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of capacity or inductance of capacitors or inductors arising from the presence of liquid or fluent solid material in the electric or electromagnetic fields by measuring variations in capacitance of capacitors
- G01F23/266—Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of capacity or inductance of capacitors or inductors arising from the presence of liquid or fluent solid material in the electric or electromagnetic fields by measuring variations in capacitance of capacitors measuring circuits therefor
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F23/00—Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
- G01F23/22—Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
- G01F23/26—Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of capacity or inductance of capacitors or inductors arising from the presence of liquid or fluent solid material in the electric or electromagnetic fields
- G01F23/263—Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of capacity or inductance of capacitors or inductors arising from the presence of liquid or fluent solid material in the electric or electromagnetic fields by measuring variations in capacitance of capacitors
- G01F23/268—Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of capacity or inductance of capacitors or inductors arising from the presence of liquid or fluent solid material in the electric or electromagnetic fields by measuring variations in capacitance of capacitors mounting arrangements of probes
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K17/00—Electronic switching or gating, i.e. not by contact-making and –breaking
- H03K17/94—Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the way in which the control signals are generated
- H03K17/945—Proximity switches
- H03K17/955—Proximity switches using a capacitive detector
Landscapes
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Fluid Mechanics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Electromagnetism (AREA)
- Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)
- Oscillators With Electromechanical Resonators (AREA)
- Electronic Switches (AREA)
- Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
- Measurement Of Current Or Voltage (AREA)
- Lock And Its Accessories (AREA)
- Switch Cases, Indication, And Locking (AREA)
- Amplifiers (AREA)
Abstract
U nivo prekidaču je invertirajući ulaz operacijskog pojačala (1) vezanog u pozitivnu i negativnu povratnu petlju, priključen na prstenastu ploču (rp) i neinvertirajući ulaz na elektrodu (e) te izlaz preko kondenzatora (5) na masu. Na masu vezana nasuprotna elektroda (oe) obuhvača jedan kraj dielektričnog tijela (db) ticala (s4), u koje je blizu njegovog drugog kraja u istoj osi ugrađena prstenasta ploča (rp) i obodom na tijelu (db) između nesuprotne elektrode (oe) te prstenaste ploče (rp) izvedena zaštitna elektroda (se), koja je preko kondenzatora (6) priključena na izlaz pojačala(1). Drugi kraj tijela (db) se završava s elektrodom (e). Izlaz pojačala (1) je preko serijski vezanog niskopojasnog filtra (7), usmjerivača (8), amplitudnog ograničivača (9) i pojačala (10) vezan na izlaz (o) nivo prekidača.
Description
Područje tehnike
Izum spada u područje električnih prekidača. Predmet izuma je po Međunarodnoj klasifikaciji patenata uvršten u razred H01H 36/00
Tehnički problem
Zbog nedostatka dosadašnjih znanih nivo prekidača, tehnički problem koji se rješava ovim izumom je u tome, kako konstruirati nivo prekidač, koji bi osjetio pad nivoa materijala s najrazličitijim svojstvima, tekućih, zrnatih ili praškastih materijala, električno provodnih i električno neprovodnih materijala te prijemljivih ili neprijemljivih materijala, ispod nivoa ticala tog nivo prekidača pomoću visine frekvencije signala, kojeg generira sklop nivo prekidača prema izumu, kod čega nije potrebno svaki put posebno podešavati nivo prekidač kod promjene jednog materijala u spremniku s drugim materijalom.
Stanje tehnike
S nivo prekidačima se ustanovljava, da li je materijal u spremniku dostigao nivo ticala. Kod toga spremnici, kao što su silosi, bunkeri ili rezervoari, otvoreni ili zatvoreni pod atmosferskim, promjenjivim ili stalnim tlakom. Materijali mogu biti najraznovrsniji: tekućine, praškastog ili zrnatog sastava, različite gustoće, viskoznosti ili prijemljivosti, čvrsti ili pomiješani s tvrdim dijelovima različite veličine, s mjehurićima zraka, s pjenom na gornjoj površini razine, homogeni ili nehomogeni, sa stalnim ili promjenjivim električnim svojstvima. Ustanovljavanje nivoa temelji se na različitim fizikalnim osnovama. Tako su poznati mehanički, elektromehanički, hidrostatski, ultrazvučni, kapacitivni, provodljivi, mikrovalni, optički i radioaktivni nivo prekidači. Mehanički ili elektromehanički nivo prekidači primjenjuju se samo za tekućine. Zbog plovka ili polužja, osjetljivi su na nakupine i tvrde dijelove u tekućini, na vrtloge ili pjenu na gornjoj površini razine.
Kapacitivni nivo prekidači su univerzalniji. Kapacitet mjernog kondenzatora u ticalu s vrijednosti 1 mijenja se s nivoom materijala u drugu vrijednost zbog dielektričnosti materijala u spremniku.
Poznati je kapacitivni prekidač sa sklopkom (FTC 968, opisan u Das Handbuch für Ingeniere, Sensoren, Messaufnehmer, Neue Verfahren und produkte für Praxis, 2. izdanje, str. 521 do 529, Expert Verlag, Ehningen bei Boblingen, 1988) za ustanovljavanje stanja napunjenosti spremnika sipkim ili sitno zrnatim materijalom (veličine zrna do 10 mm), kod kojega dielektričnost premašuje vrijednost 1,6. Ticalo je konstruirano tako da automatski odstranjuje utjecaj nakupine materijala koji se nakupi na ticalu. Ticalo je iz umjetnog materijala izrađeno s otvorom u kojem je na jednoj strani zatvoren valjak i u čijoj unutrašnjosti je na osnovici i dijelu plašta postavljena zaštitna elektroda i zatvorena prstenasta elektroda, koja je povezana s masom. Povezanost s multivibratorom sa stalnom frekvencijom do 0,5 kHz uspostavlja na zaštitnoj elektrodi potencijal, koji se mijenja s faznim pomakom za potencijalom na mjernoj elektrodi. S tim se postiže, da zaštitna elektroda istisne silnice između mjerne i zatvorene prstenaste elektrode koje dosežu izvan plašta materijala na ticalu. Opisano ticalo je pogodno za suhe materijale, ali nije pogodno za električno vodljive vlažne materijale.
Nadalje je poznat kapacitivni nivo prekidač (tip 23 i 25 firme VEGA iz Njemačke) koji prikladan za električno vodljive i vrlo prijemljive materijale. Potpuno izolirano štapno ticalo obuhvaća zaštitnu oblogu koja kompenzira utjecaj sloja nataloženog materijala. Zaštitna obloga odvaja neželjeni električni tok kroz taj sloj od vrha prema mjestu pričvršćenja ticala.
Svi znani kapacitivni nivo prekidači trebaju podesiti prema materijalu u spremniku i izbjeći greške koje se pojavljuju kod promjene parametara materijala. Također nije poznat nivo prekidač koji bi bez prethodnog podešavanja mogao biti upotrijebljen kod zamjene provodljivog materijala s neprovodljivim materijalom, od prijemljivog na neprijemljiv materijal i tako dalje. Osim toga, način na koji je kod poznatih nivo prekidača riješen prijenos podataka o padu nivoa materijala, koji ima električnu vodljivost manju od 0,1 Ms/cm i ne prianja na ticalo nivo prekidača, te je za prijemljive materijale neizvodljiva upotreba bilo kojeg poznatog bilo kapacitivnog bilo provodljivog nivo prekidača. U takvom slučaju se primjenjuje ultrazvučni ili radiometrijski mjerač nivoa, koji je skuplji i mnogo složeniji, ali konstrukcijski i izvedbeno mogući.
Poznati provodljivi nivo prekidači se upotrebljavaju za materijale s električnom vodljivošću većom od 3Ms/cm i potrebno ih je podešavati prema materijalu u spremniku. Upotrebljavaju ticala s međusobno razmaknutim elektrodama, koju okružuje materijal u spremniku i koji su priključeni na oscilator sa stalnom frekvencijom od 3 kHz do 4 kHz. Oscilator napaja most koji ima u jednoj petlji spojeno ticalo a u drugoj potenciometar za podešavanje ovisno o materijalu u spremniku. Signal s mosta vodi se u prijemnik i to preko filtra, koji izdvaja smetnje, u ulazno pojačalo. Moguće je električni otpor materijala između elektroda ticala prikazati kao pad napona na unutarnjem stalnom otporu i dovesti ga na prijemnik. U prijemniku se s potenciometrom postavi preklopna radna točka.
Poznati je provodljiv nivo prekidač (VEGATOR 261 A firme VEGA iz Njemačke) koji jedini između poznatih nivo te vrste kod prelaska s jednog na drugi materijal u spremniku ne zahtjeva podešavanje. Ticalo je opremljeno s tri međusobno razmaknutim prstenastim elektrodama različitih površina, koje su priključene na oscilator stalne frekvencije 4 kHz. Ravnoteža otpora materijala između elektroda omogućuje da prekidač djeluje u materijalu s malom električnom provodljivošću između 1 Ms/cm i 15 Ms/cm. Opisani nivo prekidač nije pogodan za šipke električnih provodnika kao što je na primjer destilirana voda.
Opis rješenja tehničkog problema s primjerima izvođenja
Navedeni tehnički problem je riješen s nivo prekidačem prema ovom izumu i po prvom primjeru izvođenja, koji je naznačen time, da je neinvertirajući izlaz operacijskog pojačala, kod kojeg je pozitivna i negativna povratna petlja izvedena s prvim odnosno drugim otporom, preko trećeg otpora priključenog na izdanak prve elektrode na ticalu i invertirajućeg izlaza operacijskog pojačala preko prvog kondenzatora vezanog za masu i da prstenasta nasuprotna elektroda, koja je priključena na masu, okružuje jedan kraj valjkastog dielektričnog tijela ticala, čiji drugi kraj se zatvara s prvom elektrodom, tako da izdanak prolazi kroz dielektrično tijelo, i da je izlaz operacijskog pojačala preko oblikovanih veza, koja postoji iz usporedno vezanih niskopojasnih filtra, usmjerivača, amplitudnog ograničivača i pojačala, vezan na izlaz nivo prekidača. Kod toga je izlaz operacionog pojačala vezan na izlaz niskopojasnog filtra preko drugog kondenzatora.
Drugi primjer izvedbe nivo prekidača po ovom izumu je naznačen time, da je invertirajući izlaz operacijskog pojačala s pozitivnom i negativnom povratnom petljom priključen na prstenastu ploču ticala i da prstenasta nasuprotna elektroda, koja je priključena na masu, okružuje kraj valjkastog dielektričnog tijela ticala i blizu je njegovog drugog kraja u dielektrično tijelo u istoj osi postavljena prstenasta ploča i da je izlaz operacijskog pojačalo priključen na izlaz nivo prekidača na prije opisan način.
Treći izvedbeni primjer nivo prekidača po ovom izumu je naznačen time, da je invertirajući izlaz operacijskog pojačala s pozitivnom i negativnom povratnom petljom priključen na prstenastu ploču ticala i da prstenasta nasuprotna elektroda, koja je priključena na masu, okružuje jedan kraj valjkastog dielektričnog tijela ticala i blizu je njegovog drugog kraja u dielektrično tijelo u istoj osi postavljena prstenasta ploča i na obodu dielektričnog tijela između nasuprotne elektrode te prstenaste ploče postavljena je zaštitna elektroda, koja je preko trećeg kondenzatora priključena na izlaz operacijskog pojačala, i da je izlaz operacijskog pojačala priključen na izlaz nivo prekidača na prije opisan način.
Četvrti izvedbeni primjer nivo prekidača po ovom izumu je naznačen time, da je invertirajući izlaz operacijskog pojačala s pozitivnom i negativnom petljom priključen u prstenastu ploču ticala i neinvertirajući izlaz operacijskog pojačala preko uzastopno vezanog trećeg i četvrtog otpora priključen na izdanak prve elektrode na ticalu i da prstenasta nasuprotna elektroda okružuje jedan kraj valjkastog dielektričnog tijela ticala i blizu je njegovog drugog kraja u dielektrično tijelo u istoj osi postavljena prstenasta ploča i na obodu dielektričnog tijela između nasuprotne elektrode te prstenaste ploče postavljena zaštitna elektroda, koja je preko trećeg kondenzatora priključena na izlaz operacijskog pojačala, te drugi kraj dielektričnog tijela završava s prvom elektrodom, čiji izdanak osno prolazi kroz dielektrično tijelo, i da je izlaz operacijskog pojačala priključen na izlaz nivo prekidača na prije opisan način. Kod toga je izlaz operacijskog pojačala preko međusobno uzastopno vezanog petog otpora i nastavljajućeg otpora vezan na zajedničku vezu trećeg i četvrtog otpora. Prstenasta nasuprotna elektroda je priključena na masu i preko filtra koji postoji iz međusobno usporedno vezanih otpora i kondenzatora, na masu uređaja.
Za drugi, treći i četvrti primjer izvedbe nivo prekidača po ovom izumu još je značajno da je na masu vezan šesti otpor sa svojim drugim krajem vezan na neinvertirajući izlaz operacijskog pojačala, kojem je izlaz preko četvrtog kondenzatora vezan na masu.
Prednosti svih predloženih primjera izvođenja nivo prekidača po ovom izumu prema poznatim nivo prekidačima je u tome, da ih nije potrebno podešavati svaki puta, kada se promjeni materijal u spremniku, nego se mogu upotrijebiti za materijale različitih svojstava i pogotovo za električno vodljive i električno nevodljive, prijemljive i neprijemljive, tekuće, praškaste, zrnate ili kašaste materijale. Prednosti nivo prekidača po ovom izumu pred poznatim nivo prekidačima je još u tome, da je njegov elektronski dio jednostavan i sadrži malo komponenti.
Izum ćemo nadalje detaljno opisati na osnovu primjera izvođenja te pripadajućih crteža, koji su prikazani na:
Slika 1 Provodljivi nivo prekidač kao prvi primjer izvođenja nivo prekidača po ovom izumu
Slika 2 Kapacitivni nivo prekidač kao osnovni izvedbeni oblik prema drugom primjeru izvedbe nivo prekidača po ovom izumu
Slika 3 Kapacitivni nivo prekidač kao izvedbeni oblik prema trećem primjeru izvedbe nivo prekidača po ovom izumu, i
Slika 4 Kombinirani nivo prekidač prema četvrtom primjeru izvedbe nivo prekidača po ovom izumu.
Kod sva četiri primjera izvođenja nivo prekidač je predstavljen s ticalom sj (j=1 do 4) i s pripadajućom oznakom (slika 1, 2, 3 i 4), na kojem je izlaz o priključen na relej ili/i alarmni sistem (nije prikazan). Kod toga je ticalo sj svaki puta izvedeno iz valjkastog dielektričnog tijela db, koje je opremljeno s prstenastom nasuprotnom elektrodom oe, koju po obodu okružuje jedan kraj dielektričnog tijela db, te je priključena na masu odnosno u praksi na spremnik koji sadrži uskladišten materijal. Kod svih primjera izvođenja nivo prekidača po ovom izumu je operacijsko pojačalo 1 vezano s pozitivnom i negativnom povratnom petljom, kod čega je petlja izvedena s otporom 21 odnosno otporom 31 i zajedno s ticalom sj čini oscilator. Frekvencija oscilatora ovisi od fizikalnih odnocsa okoline ticala sj, dok je izlazni napon oscilatora stalan i prednosno je izabran kao napon zasićenja upotrebljenoga operacijskog pojačala 1. Izlaz operacijskog pojačala 1, čije napajanje je izvedeno na poznati način, je neposredno ili posredno vezano za ulaz oblikovanih veza, čiji izlaz je ujedno izlaz nivo prekidača. Oblikovane veze sastavljene su iz uzastopno vezanih niskonaponskih filtra 7, usmjerivača 8, amplitudnog ograničivača 9, koji je u biti veza Zener diode i kondenzatora, koji odvode još preostale vršne napone, i pojačala 10.
Nivo prekidač po ovom izumu je u prvom primjeru izvođenja izveden kao provodljivi nivo prekidač (slika 1). Valjkasto dielektrično tijelo db ticala s1 završava sa svojim slobodnim dijelom s elektrodom e. Izdanak es elektrode e prolazi kroz dielektrično tijelo db po njegovoj osi i na drugom kraju izlazi iz dielektričnoga tijela db.
Izdanak es i s time elektroda e su preko otpora 23 priključeni na neinvertirajući ulaz operacijskog pojačala 1, čiji je invertirajući ulaz vezan za masu preko kondenzatora 32. Izlaz operacijskog pojačala 1 vezan je na ulaz niskopojasnog filtra 7 preko kondenzatora 4 kao visokofrekventnog filtra.
Napon na neinvertirajućem ulazu operacijskog pojačala 1 je ovisan o otporu materijala između elektrode e, oe, te je preko otpora 23, elektrode e, materijala između elektroda e i oe, te preko elektrode oe povezan s masom. Taj napon utječe na brzinu punjenja odnosno pražnjenja kondenzatora 32 preko otpora 31. Na taj način provodljivost i raspored materijala oko ticala s1 utječe na frekvenciju oscilatora.
Parametre pasivnih elemenata oscilatora, prema tome također površinu elektroda e, oe i na njezino međusobno rastojanje, odabere se na osnovi zahtjeva, tako da bi bila amplituda izmjeničnog signala na elektrodama e, oe u obje poluperiode jednaka, što isključuje prema tome utjecaj galvanskih pojava. Tada se frekvencija oscilatora podesi na oko 3 kHz za materijale s visokom električnom provodljivošću oko 0,1 S/cm, odnosno frekvencija oscilatora se podesi na oko 300 Hz za materijale s niskom električnom provodljivošću oko 10 μS/cm. Te veze su stručnjaku poznate i objašnjavaju se kompleksnošću pojava kod prolaza električnog toka između dviju elektrode, kada dolazi do frekvencijsko ovisnog faznog pomaka između toka i napona.
Potrebno je također odabirati otpor 31 i kondenzator 32 tako, da napon na izlazu operacijskog pojačala uvijek dosiže vrijednost zasićenja. To je bilo dostignuto za materijale s električnom vodljivošću u granicama između 10 μS/cm i 0,1 S/cm. S tim da promjenom pasivnih elemenata oscilatora, prethodnu granicu provodljivosti intervala materijala lako snizimo do električne provodljivosti destilirane vode od 2 μS/cm. U tom slučaju se snižava gornja granica tog intervala na 0,01 S/cm.
Kada se razina prijemljivog materijala spusti ispod nivoa ticala s1 provodljivog nivo prekidača, ostaje na ticalu s1 tanki sloj materijala. Omski i induktivni otpor tog sloja za izmjenični tok između elektrode e, oe naraste i frekvencija oscilatora padne. Kondenzator 4 tada propusti malo električnog toka, koji snažno utječe na napon na izlazu o. Za materijale s malom prijemljivošću, upotrebljava se kondenzator 4 s istim kapacitetom za električnom vodljivošću između 1 Ms/cm i 100 Ms/cm, kapacitet kondenzatora 4 smanjiti tako, da bude signal jako prigušen, ako je materijal tako prijemljiv, da ostane ticalo s1 jako obloženo kada se razina materijala spusti ispod nivoa ticala s1.
Provodljivi nivo prekidač kao prvi primjer izvođenja nivo prekidača po ovom izumu prema tome radi sa stalnom naponskom amplitudom na izlazu oscilatora, te se frekvencija oscilatora promjeni kada padne razina materijala u spremniku ispod nivoa ticala s1. Odziv nivo prekidača se prema tome jednostavno podešava s kapacitetom kondenzatora 4. S istom elektronskom povezanošću se pokriva materijal s električnom provodljivošću između 10 μS/cm i 0,1 S/cm kao sve tehnički zanimljive materijale u industriji i drugdje.
Provodljivi nivo prekidač po ovom izumu odlikuje se s time, da ga nije potrebno podešavati prema materijalu u spremniku i da je pouzdan. Izvanredna prednost tog nivo prekidača dolazi posebno do izražaja kada djeluje kao osiguranje kod istjecanja odnosno nedostatka materijala u spremniku.
Nivo prekidač prema ovom izumu je u drugom primjeru izvođenja izveden kao osnovni oblik kapacitivnog nivo prekidača (slika 2). U valjkasto dielektrično tijelo db ticala s2 je na njegovom slobodnom kraju u istoj osi ugrađena prstenasta ploča rp, koja je priključena na invertirajući izlaz operacijskog pojačala 1. Prstenasta ploča rp je dakle sa slojem dielektrika odvojena od materijala u spremniku, koji okružuje ticalo s2.
U drugom kao i trećem i četvrtom primjeru izvedbe nivo prekidača po ovom izumu je na masu vezan otpor 22 koji sa svojom drugom vezom povezuje neinvertirajući izlaz operacijskog pojačala 1, kojega je izlaz preko kondenzatora 5 povezan s masom.
Izlazni napon operacijskog pojačala 1 u negativnoj povratnoj petlji preko otpora 31 puni ili prazni kondenzator C, koji nastane između prstenaste ploče rp i nasuprotne elektrode oe. Brzina punjenja odnosno pražnjenja kondenzatora C naravno ovisi od kapaciteta C, dakle o dielektričnosti, vodljivosti i rasporedu materijala, koji okružuje dielektrično tijelo db u prostoru po kojem protječu silnice između prstenaste ploče rp i nasuprotne elektrode oe, te od napona na invertirajućem izlazu operacijskog pojačala 1. Ona se lako podesi u odnosu na napon na izlazu iz operacijskog pojačala 1 pomoću pravilnog odnosa otpora 21, 22. Kod izbora parametara pasivnih elemenata u tom kapacitivnom nivo prekidaču je dakle frekvencija oscilatora ovisna od svojstava i rasporeda materijala oko ticala s2. Kod izvedbe samog ticala s2 na frekvenciju oscilatora utječu površina i promjer prstenaste nasuprotne elektrode oe te prstenaste ploče rp, njen uzdužni razmak te dielektričnost valjkastog dielektričnog tijela db.
Zahtjev po jednakosti amplituda izmjeničnog signala kod obje poluperiode kod kapacitivnog nivo prekidača nije tako velika kao kod provodljivih nivo prekidača. Parametre pasivnih elemenata odredi se tako, da amplituda izlaznog napona operacijskog pojačala 1 dosiže točku zasićenja.
Kapacitivni nivo prekidač u osnovnoj izvedbi po ovom izumu radi u slučaju električno dobro vodljivog materijala u spremniku na slijedeći način. Radi električne vodljivosti se nasuprotna elektroda oe prividno preseli nasuprot prstenaste ploče rp, čime poraste kapacitet kondenzatora C, i to još bolje što je veća električna provodljivost materijala. Kako je dakle ticalo s2 okruženo s električno provodljivim materijalom, frekvencija oscilatora pada, i to bolje što je veća električna vodljivost, npr. 0,1 S/cm, a manja električna vodljivost, npr. 2 µS/cm. Kada razina materijala padne ispod nivoa ticala s2, ostane na ticalu s2 materijala u obliku tankog sloja i zbog toga kapacitet kondenzatora C padne te frekvencija oscilatora naraste. Kondenzator 5 taj visokofrekventni signal na izlazu operacijskog pojačala 1 odvede prema masi. Kondenzator 5 također djeluje kao niskofrekventni filtar. U primjeru električno slabo vodljivog i prijemljivog materijala se poveća kapacitet kondenzatora 5.
Kapacitivni nivo prekidač opisane izvedbe je vrlo pogodan kod električno nevodljivih materijala. Kada je dielektričnost materijala veća od 1, prisutnost materijala se održava na povećanju kapaciteta kondenzatora C i sa smanjenjem frekvencije oscilatora u slučaju, kada se razina materijala spusti ispod nivoa ticala s2.
Prednost u odnosu na poznate kapacitivne nivo prekidače je u tome, da se kod promjene materijala s različitom električnom vodljivošću prema dielektričnosti automatski prilagođava frekvencija oscilatora, kod čega nije potreban nikakav potenciometar za prilagođavanje nivo prekidača na novi materijal.
Nivo prekidač prema ovom izumu je u trećem primjeru izvođenja izveden kao slijedeći izvedbeni oblik nivo prekidača (sl. 3). Ticalo s3 i pripadajuća povezanost su obzirom na nivo prekidač sa slike 2 dopunjeni na slijedeći način. Na valjkastom dielektričnom tijelu db ticala s3 je između nasuprotne elektrode oe i prstenaste ploče rp izvedena zaštitna elektroda se, koja je preko kondenzatora 6 priključena na izlaz operacijskog pojačala 1.
Kod opisa djelovanja trećeg primjera izvođenja nivo prekidača sa slike 2. Uzmimo kao primjer električno dobro vodljiv i primjenjiv materijal. Kada razina materijala padne ispod nivoa ticala s3, sloj materijala, koji je ostao prilijepljen između elektrode oe i zaštitne elektrode se dielektričnog tijela db, uspostavi električni spoj izlaza operacijskog pojačala 1 preko kondenzatora 6 kod niskofrekventnog filtra, zaštitne elektrode se i nasuprotne elektrode oe s masom i time amplitudu napetosti na izlazu operacijskog pojačala 1. Pored toga se zaštitna elektroda se prividno pomakne prema prstenastoj ploči rp i između njih se stvori prividan kondenzator C’, čiji je kapacitet nizak, te je njegov prostor ograničen na sloj materijala na ticalu s3. Frekvencija oscilatora je zato visoka i jedna njegova ploča, to jest zaštitna elektroda se, je zato preko kondenzatora 6 spojena s izlazom operacijskog pojačala 1. Osim toga je prstenasta ploča rp kondenzatora C’ preko otpora 31 vezana na izlaz operacijskog pojačala 1. Ukratko, kapacitet kondenzatora C’ je vrlo mali. Zato frekvencija oscilatora ostaje visoka i kondenzator 5 odvodi visokofrekventni signal na masu. Signal, koji dođe na izlaz nivo prekidača, je vrlo slab, za razliku od signala u slučaju kada je razina materijala iznad nivo prekidača s3. Tada je frekvencija oscilatora niža, te je kapacitet kondenzatora C’ radi dimenzioniranosti raspoloživog prostora u materijalu veća.
Sa zaštitnom elektrodom se se mogućnost nivo prekidača sa slike 3 prema nivo prekidaču sa slike 2 jako povećava, te je primjenjiv za električno vrlo dobro vodljive materijale, koji su ujedno jako prijemljivi na valjkasto dielektrično tijelo db ticala s3. Kapacitivni nivo prekidač u trećem primjeru izvođenja po ovom izumu premašuje u odnosu na različite materijala za koje se primjenjuje, sve poznate kapacitivne nivo prekidače.
Nivo prekidač po ovom izumu u četvrtom primjeru izvođenja izveden je kao kombinirani vodljivo-kapacitivni nivo prekidač (slika 4). Ticalo s4 obuhvaća elektrodu e, nasuprotnu elektrodu oe, zaštitnu elektrodu se i prstenastu ploču rp, koje su sve smještene na valjkastom dielektričnom ticalu db. Kod toga prestenasta nasuprotna elektroda oe okružuje jedan kraj dielektričnog tijela db i blizu je njegovog drugog dijela, koji se završava s elektrodom e, u dielektrično tijelo u istoj osi je postavljena prstenasta ploča rp. Po opsegu na dielektričnom tijelu db između nasuprotne elektrode oe i prstenaste ploče rp izvedena je zaštitna elektroda se. Metalni izdanak es elektrode e prolazi kroz os dielektričnog tijela db i na drugom kraju izviruje iz dielektričnog tijela db.
U povezivanju četvrtog primjera izvođenja nivo prekidača po ovom izumu je invertirajući ulaz operacijskog pojačala 1, kod kojeg su pozitivna i negativna povratna petlja izvedena s otporom 21 odnosno otporom 31, priključeni na prstenastu ploču rp ticala s4 i neinvertirajući ulaz operacijskog pojačala 1 je preko serijski vezanih otpora 23, 24 priključen na slobodni kraj izdanka es elektrode e. Zaštitna elektroda se je preko kondenzatora 6 priključena na izlaz operacijskog pojačala 1. Izlaz operacijskog pojačala 1 je preko međusobno serijski povezanih otpora 25 i podesivog otpora 251 vezan na zajedničku vezu otpora 23, 24. Na masu vezani otpor 22 je sa svojom drugom vezom spojen na invertirajući ulaz operacijskog pojačala 1, čiji je izlaz preko kondenzatora 5 vezan na masu. Izlaz operacijskog pojačala 1 je preko serijski vezanog niskopojasnog filtra 7, usmjerivača 8, amplitudnog ograničivača 9 i pojačala 10 vezan na izlaz o nivo prekidača.
Prstenasta nasuprotna elektroda oe je kod upotrebe za električno vrlo dobro vodljive materijale s električnom vodljivošću od 0,1 S/cm do 1 S/cm i više, da bi se spriječilo izobličenje amplitude napona prema vodljivom dijelu ticala s4, priključena na masu ec te preko filtra 11, koji se sastoji iz međusobno paralelno vezanog otpora 111 i kondenzatora 112, na masu.
S podesivim otporom 251 podesi se nivo prekidač na jednaki odziv kod različito velikih ticala s4.
Zaštitna elektroda se djeluje tako na vodljivi kao i kapacitivni dio kombiniranog nivo prekidača, kod čega su naravno oba djelovanja kompleksno prepletena. U vodljivom dijelu se uspostavi od električne vodljivosti materijala ovisna pozitivna povratna veza od izlaza operacijskog pojačala 1 preko kondenzatora 6 i preko materijala između zaštitne elektrode se i elektrode e natrag na neinvertirajući ulaz operacijskog pojačala 1. Zaštitna elektroda se djeluje preko materijala, koji okružuje ticalo s4, također kao djelitelj napona između nasuprotne elektrode oe i elektrode e i tako utječe na napon na neinvertirajućem ulazu operacijskog pojačala 1. U kapacitivnom dijelu pa utječe na oblikovanje prividnog kondenzatora C’’, čije su ploče prstenasta ploča rp i nasuprotna elektroda oe. Zaštitna elektroda se, s time što je povezana s izlazom operacijskog pojačala 1, smanjuje kapacitet kondenzatora C’’. S time se prije svega kod električno vrlo dobro vodljivih materijala spriječi preniska frekvencija oscilatora. Ipak na kapacitet kondenzatora C’’ na jednaki način utječe također nasuprotna elektroda oe. Ona je po jednoj strani povezana s neinvertirajućim ulazom operacijskog pojačala 1, a po drugoj strani ima spoj sa zaštitnom elektrodom se preko električno dobro vodljivog materijala.
Na ta razmišljanja se oslanjamo kod opisa djelovanja kombiniranog nivo prekidača po ovom izumu. Uzmimo prvo, da je ticalo s4 potopljeno u materijal, koji je prijemljiv na ticalu s4 i električno je dobro vodljiv, kao na primjer slano tijesto. Oscilator u spoju prekidača se na takav materijal odazove. Električno je dobro vodljiv materijal prividno približi prstenastu ploču rp i nasuprotnu elektrodu oe, koji tvore prividan kondenzator C’’. Kondenzator C’’ je priključen na invertirajući ulaz operacijskog pojačala 1. Njegov neinvertirajući ulaz je preko materijala između elektrode e i nasuprotne elektrode oe povezan s masom. U isto vrijeme je elektroda e povezana s drugim ulazom operacijskog pojačala 1 kao prstenasta ploča rp i s time smanjuje kapacitet kondenzatora C’’. Zaštitna elektroda se na jednoj strani djeluje kao dodatna povratna veza, a po drugoj strani ovisno od električne vodljivosti djeluje kao djelitelj napona i utječe na napon na neinvertirajućem ulazu. Frekvencija Oscilatora je smanjena navedenim regulacijskim utjecajem, koji proizlazi od prisutnosti materijala. Kad razina materijala padne ispod nivoa ticala s4, kombinirani nivo prekidač po ovom izumu se ne odazove obzirom na to da li je nešto tog električno dobro vodljivog materijala ostalo prilijepljenog na ticalu s4. Sloj prilijepljenog električno vodljivog materijala na opisani način pomogne uspostavi prividnog kondenzatora C’’, čiji kapacitet snažno smanjuje elektroda e i zaštitna elektroda se. Zaštitna elektroda se naime prostorno leži između prstenaste ploče rp i nasuprotne elektrode oe, s time kada je elektroda e i zaštitna elektroda se na ulazu odnosno izlazu u povratnoj petlji spoja operacijskog pojačala 1. Zbog toga što je debljina sloja prilijepljenog materijala ograničena, a nastanak kondenzatora C’’ je vezan za slojeve, čija debljina premašuje najmanju vrijednost. U odsutnosti kondenzatora C’’ prestaje raditi oscilator, što prepozna oblikovano povezivanje, koji slijedi izlazu operacijskog pojačala 1, i to se pokaže na signalu na izlazu o kombiniranog nivo prekidača po ovom izumu. Ako je ipak debljina sloja prilijepljenog materijala takova, da se uspostavi kondenzator C’’, njegov je kapacitet mali i prema tome frekvencija oscilatorskog signala visoka, recimo iznad 20 kHz. Taj signal se preko kondenzatora 6, zaštitne elektrode se i preko materijala u prilijepljenom sloju između nje i nasuprotne elektrode oe odvede na masu.
Iz iznijetoga slijedi, da je za dobro djelovanje kombiniranog nivo prekidača po ovom izumu u svim proizvoljnim okolnostima potrebno pažljivo proračunavanje elemenata spojeva i ticala s4. Tako je potrebno pažljivo odabrati razmak elektrode oe, se, e i prstenaste ploče rp te veličinu ove ploče, da zaštitna elektroda se ne bi spriječila nastanak kondenzatora C’’. Značajan je također kvaliteta dielektrika, iz kojega je izrađeno dielektrično tijelo db. Promjer izdanka es utječe na njegov parazitni kapacitet prema prstenastoj ploči rp. Utvrdili smo, da je frekvencija oscilatora, kada je razina materijala iznad nivoa ticala s4, između 1 kHz i 20 kHz, kod čega je bila električna vodljivost materijala između 10Ps/cm i 1 S/cm; kombinirani nivo prekidač dakle pouzdano djeluje za električno nevodljive materijale kao i za električno vrlo dobro vodljive materijale.
Kombinirani nivo prekidač kao četvrti izvedbeni primjer nivo prekidača po ovom izumu je svestrano upotrebljiv. Oscilator u spoju nivo prekidača se njiše, ukoliko je ticalo s4 potopljeno u materijal s električnom vodljivošću od zanemarljive vrijednosti do vrijednosti 1 S/cm bez obzira na prijemljivost materijala i da li je materijal tekuć, praškast ili zrnat. Naravno kombinirani nivo prekidač po ovom izumu djeluje dobro tada, kada dosada znani kapacitivni prekidači otkažu, kao u primjeru praškastog materijala, koji se nataložio i zbog toga postao prijemljiv i električno vodljiv.
Nivo prekidač prema ovom izumu dakle bez obzira na primjer izvođenja djeluje sa stalnom naponskom amplitudom na izlazu oscilatora, ali se frekvencija oscilatora promjeni, kad padne razina materijala u spremniku ispod nivoa ticala sj (j=1,2,3,4). Odziv nivo prekidača se jednostavno podesi s kapacitetom kondenzatora 4 ili 5 kao frekvencijskog filtra, koji povezuje izlaz operacijskog pojačala 1 s ulazom niskonaponskog filtra 7. S istim elektronskim spojem se pokrivaju tehnički i industrijski i drugi zanimljivi materijali.
Claims (6)
1. Nivo prekidač, naznačen time, da je neinvertirajući ulaz operacijskog pojačala (1), kod kojeg su pozitivna i negativna povratna petlja izvedeni s otporom (21) odnosno s otporom (31), preko otpora (23) priključen na izdanak (es) elektrode (e) na ticalu (s1) i invertirajući ulaz operacijskog pojačala (1) preko kondenzatora (32) je vezan na masu i ulaz operacijskog pojačala (1) je vezen na ulaz niskopojasnog filtera (7) preko kondenzatora (4), zatim da prstenasta nasuprotna elektroda (oe), koje je priključena na masu, okružuje jedan kraj valjkastog dielektričnog tijela (db) ticala (s1), čiji drugi kraj završava s elektrodom (e), čiji nastavak je izdanak (es) koji osno prolazi kroz dielektrično tijelo (db), i zatim da je izlaz operacijskog pojačala (1) preko serijski vezanog nisko-pojasnog filtera (7), usmjerivača (8), amplitudnog ograničivača (9) i pojačala (10) vezan na izlaz (o) nivo prekidača.
2. Nivo prekidač, naznačen time, da je invertirajući ulaz operacijskog pojačala (l), kod kojeg su pozitivna i negativna povratna petlja izvedeni s otporom (21) odnosno s otporom (31), priključen ne prstenastu ploču (rp) ticala (s2) i izlaz operacijskog pojačala (1) preko kondenzatora (5) vezan na masu, zatim da prstenaste nasuprotna elektroda (oe), koja je priključena ne masu, okružuje jeden kraj valjkastoga dielektričnog tijela (db) ticala (s2) i blizu njegovog drugog kraja je u dielektrično tijelo (db) u istoj osi izvedena prstenasta ploča (rp) i zatim da je izlaz operacijskog pojačala (1) preko serijski vezanog niskonaponskog filtera (7), usmjerivača (8), amplitudnog ograničivača (9) i pojačala (10) vezan na izlaz (o) nivo prekidača.
3. Nivo prekidač, naznačen time, da je invertira jući ulaz operacijskog pojačala (1), kod kojega su pozitivne i negativna povratna petlja izvedeni s otporom (21) odnosno s otporom (31?, priključen na prstenastu ploču (rp) ticala (s2) i izlaz operacijskog pojačala (1) je preko kondenzatora (5) vezan na masu, zatim da prstenasta nasuprotna elektroda (oe), koja je priključena na masu, okružuje jedan kraj valjkastog dielektričrng tijela (db) ticala (s3) i blizu njegovog drugog kraja je u električno tijelo (db) u istoj osi izvedene prstenaste ploče (rp) i na obodu dielektričnog tijela (db) između nasuprotne elektrode (oe) te prstenaste ploče (rp) izvedena je zaštitna elektrode (se), koja je preko kondenzatora (6) priključena na izlaz operacijskog pojačala (1), i zatim da je izlaz operacijskog pojačala (1) preko serijski vezanog niskopojasnog filtera (7), usmjerivača (8), amplitudnog ograničivača (9) i pojačala (1C) vezan na izlaz (o) nivo prekidača.
4. Nivo prekidač, naznačen time, da je invertira jući ulaz operacijskog pojačala (1), kod kojega su pozitivna i negativne povratna petlja izvedeni s otporom (21) odnosno s otporm (31), priključen na prstenastu ploču (rp) ticala (s4) i neinvertirajući ulaz operacijskog pojačala (1) je preko serijski vezanih otpora (23, 24) priključen ne izdanak (es) elektrode (e) na ticalu (s4) i izlaz operacijskog pojačala (1) je preko kondenzatora (5) vezan na nasu, zatim da prstenasta nasuprotna elektroda (oe), koja je priključena na masu (ec) i preko filtera (11), koji postoji iz međusobno serijski vezanih otpora (111) i kondenzatore (112), na masu veze, okružuje jedan kraj valjkastog dielektričnog tijela (db) ticala (s4) i blizu njegovog drugog kraja je u dielektrično tijelo (db) u istoj osi izvedena prstenasta ploča (rp) i na obodu dielektričnog tijela (db) između nasuprotne elektrode (oe) te prstenaste ploče (rp) izvedena je zaštitna elektroda (se), koja je preko kondenzatora (6) priključena na izlaz operacijskog poječala (1), te drugi kraj dielektričnog tijela (db) završava s elektrodom (e), čiji izdanak (es) osno prolazi kroz dielektrično tijelo (db), i zatim da je izlaz operacijskog pojačala (1) preko serijski vezanog niskopojasnog filtera (7), usmjerivača (8), amplitudnog ograničivača (9) i pojačala (10) vezan ne izlaz (o) nivo prekidača.
5. Nivo prekidač prema zahtjevu 4, naznačen time, da je izlaz operacijskog pojačala (1) preko međusobno serijski vezanih otpora (25) i podesivog otpora (251) vezan ne zajedničku vezu otpora (23, 24).
6. Nivo prekidač prema zahtjevu 2, 3 ili 5, naznačen time, da je na masu vezan otpor (22) sa svojom drugom vezom spojen na neinvertirajući ulaz operacijskog pojačala (1).
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SI9200073A SI9200073A (sl) | 1992-05-06 | 1992-05-06 | Nivojsko stikalo |
DE4217305A DE4217305C2 (de) | 1992-05-06 | 1992-05-25 | Niveauschalter |
Publications (1)
Publication Number | Publication Date |
---|---|
HRP930856A2 true HRP930856A2 (hr) | 1995-02-28 |
Family
ID=39537883
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
HRP930856AA HRP930856A2 (hr) | 1992-05-06 | 1993-05-05 | Nivo prekidač |
Country Status (12)
Country | Link |
---|---|
US (1) | US5532527A (hr) |
EP (1) | EP0568973B1 (hr) |
JP (1) | JPH06258128A (hr) |
CN (1) | CN1080395A (hr) |
AT (1) | ATE141405T1 (hr) |
AU (1) | AU668929B2 (hr) |
BR (1) | BR9301754A (hr) |
CZ (1) | CZ83093A3 (hr) |
DE (1) | DE4217305C2 (hr) |
HR (1) | HRP930856A2 (hr) |
HU (1) | HUT66527A (hr) |
SI (1) | SI9200073A (hr) |
Families Citing this family (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SI9200073A (sl) * | 1992-05-06 | 1993-12-31 | Andrej Zatler | Nivojsko stikalo |
US5739598A (en) * | 1993-07-30 | 1998-04-14 | Zatler; Andrej | Selfadjusting capacitive level switch for a non-contact or contact sensing of media or objects |
DE19502195A1 (de) | 1995-01-25 | 1996-08-01 | Grieshaber Vega Kg | Verfahren und Anordnung zur Auswertung der Signale eines kapazitiven Füllstandsensors |
DE19528384C2 (de) * | 1995-08-02 | 1999-09-30 | Ulrich Pok | Kapazitive Meßeinrichtung zur kontinuierlichen Standregelung für Medien unterschiedlicher Dielektrizitätskonstanten |
US5802728A (en) * | 1995-08-17 | 1998-09-08 | Watson Industries, Inc. | Liquid level and angle detector |
US5765434A (en) * | 1996-07-18 | 1998-06-16 | Scepter Scientific, Inc. | Capacitive water height gauge and method |
US5844491A (en) * | 1997-04-30 | 1998-12-01 | Endress + Hauser Gmbh + Co. | Apparatus for establishing and/or monitoring a predetermined filling level in a container |
DE19749884C1 (de) * | 1997-11-12 | 1999-08-19 | Rechner Ind Elektronik Gmbh | Schaltungsanordnung zur linearen, materialunabhängigen kapazitiven Standmessung |
DE19756161B4 (de) * | 1997-12-17 | 2010-08-05 | Hiss, Eckart, Dr. | Auswertungsverfahren |
DE19949985C2 (de) * | 1999-10-15 | 2001-08-16 | Sie Sensorik Ind Elektronik Gm | Kapazitiver Sensor zur Detektion des Füllstandes eines Mediums in einem Behälter |
US6499961B1 (en) | 2000-03-16 | 2002-12-31 | Tecumseh Products Company | Solid state liquid level sensor and pump controller |
US6362632B1 (en) * | 2000-05-24 | 2002-03-26 | Becs Technology, Inc. | Balanced charge pump capacitive material sensor |
DE10309769B4 (de) * | 2002-03-08 | 2017-10-05 | Ust Umweltsensortechnik Gmbh | Anordnung zur Bestimmung von Zustandsgrößen für Flüssigkeiten in einem geschlossenen nichtmetallischen Behälter |
US20060191154A1 (en) * | 2004-08-27 | 2006-08-31 | Thilo Kraemer | Method for measuring the thickness and/or length of objects and devices for this purpose |
TW200816551A (en) * | 2006-09-18 | 2008-04-01 | Syspotek Corp | Fluid measuring device |
JP4737453B2 (ja) | 2006-12-06 | 2011-08-03 | Smc株式会社 | 流体圧シリンダ |
JP4737454B2 (ja) | 2006-12-06 | 2011-08-03 | Smc株式会社 | 流体圧シリンダに用いられる止め輪 |
DE102007008358A1 (de) * | 2007-02-16 | 2008-08-21 | Endress + Hauser Gmbh + Co. Kg | Vorrichtung zur Bestimmung und/oder Überwachung einer Prozessgröße |
US9692411B2 (en) * | 2011-05-13 | 2017-06-27 | Flow Control LLC | Integrated level sensing printed circuit board |
US8756992B2 (en) | 2011-09-14 | 2014-06-24 | Alstom Technology Ltd | Level detector for measuring foam and aerated slurry level in a wet flue gas desulfurization absorber tower |
EP3593097B1 (en) * | 2017-03-09 | 2022-10-19 | King Abdullah University Of Science And Technology | Fluid characteristic sensor system and method |
DE102018101206A1 (de) | 2018-01-19 | 2019-07-25 | Endress+Hauser SE+Co. KG | Sondeneinheit |
US10635228B2 (en) * | 2018-02-22 | 2020-04-28 | Samsung Display Co., Ltd. | System and method for mutual capacitance sensing |
AU2019257251B2 (en) | 2018-04-18 | 2023-04-13 | Pitco Frialator, Inc. | Capacitive sensor device |
JP7187953B2 (ja) * | 2018-10-04 | 2022-12-13 | 株式会社豊田中央研究所 | バッファ回路 |
US11674838B2 (en) | 2019-04-04 | 2023-06-13 | Poseidon Systems Llc | Capacitive fringe field oil level sensor with integrated humidity and temperature sensing |
US20230048795A1 (en) * | 2020-01-24 | 2023-02-16 | Vega Grieshaber Kg | Electronic unit for a fill level measuring probe |
Family Cites Families (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE282515C (hr) * | 1914-03-08 | 1915-03-05 | ||
US3412220A (en) * | 1963-11-26 | 1968-11-19 | Sprague Electric Co | Voltage sensitive switch and method of making |
US3956760A (en) * | 1975-03-12 | 1976-05-11 | Liquidometer Corporation | Liquid level gauge |
CA1053778A (en) * | 1976-05-06 | 1979-05-01 | Frank Kitzinger | Froth level monitor |
DE2751864A1 (de) * | 1976-11-22 | 1978-05-24 | Drexelbrook Controls | Leitwert-messanordnung zur ueberwachung des zustandes von materialien |
US4188549A (en) * | 1977-11-11 | 1980-02-12 | Federal Screw Works | Acoustically responsive sensor switch |
DE2819731C2 (de) * | 1978-05-05 | 1982-08-12 | Vega Vertrieb und Fertigung elektronischer Geräte und Apparate Grieshaber KG, 7620 Wolfach | Anordnung zur kapazitiven Füllstandsmessung in einem Behälter |
JPS5528157A (en) * | 1978-08-19 | 1980-02-28 | Fuji Electric Co Ltd | Displacement converter |
US4214479A (en) * | 1979-05-21 | 1980-07-29 | Simmonds Precision Products, Inc. | Capacitive type fuel probe compensation circuit |
JPH0233967B2 (ja) * | 1982-04-03 | 1990-07-31 | Ricoh Kk | Ekimenkenshutsusochi |
US4601201A (en) * | 1984-03-14 | 1986-07-22 | Tokyo Tatsuno Co., Ltd. | Liquid level and quantity measuring apparatus |
US5097703A (en) * | 1984-11-30 | 1992-03-24 | Aisin Seiki Kabushiki Kaisha | Capacitive probe for use in a system for remotely measuring the level of fluids |
DE3878973D1 (de) * | 1987-04-24 | 1993-04-15 | Simmonds Precision Products | Bestimmung von elektrischer kapazitaet und elektrischem widerstand. |
US4855706A (en) * | 1987-09-11 | 1989-08-08 | Hauptly Paul D | Organic liquid detector |
DD282551A5 (de) * | 1989-04-21 | 1990-09-12 | Transform Roentgen Matern Veb | Transistor-wechselrichter in brueckenschaltung |
JP2731240B2 (ja) * | 1989-05-25 | 1998-03-25 | 富士重工業株式会社 | オイルセンサ |
US4952914A (en) * | 1989-10-13 | 1990-08-28 | General Motors Corporation | Washer fluid monitor |
US5287086A (en) * | 1990-01-02 | 1994-02-15 | Raptor, Inc. | Proximity detection system and oscillator |
JPH03233391A (ja) * | 1990-02-08 | 1991-10-17 | Aisin Seiki Co Ltd | 人員検出装置 |
US5166679A (en) * | 1991-06-06 | 1992-11-24 | The United States Of America As Represented By The Administrator Of The National Aeronautics & Space Administration | Driven shielding capacitive proximity sensor |
WO1992022801A1 (en) * | 1991-06-13 | 1992-12-23 | Abbott Laboratories | Automated specimen analyzing apparatus and method |
SI9200073A (sl) * | 1992-05-06 | 1993-12-31 | Andrej Zatler | Nivojsko stikalo |
-
1992
- 1992-05-06 SI SI9200073A patent/SI9200073A/sl unknown
- 1992-05-25 DE DE4217305A patent/DE4217305C2/de not_active Expired - Fee Related
-
1993
- 1993-01-13 US US08/003,768 patent/US5532527A/en not_active Expired - Fee Related
- 1993-04-29 HU HU9301249A patent/HUT66527A/hu unknown
- 1993-04-30 JP JP10441293A patent/JPH06258128A/ja active Pending
- 1993-05-04 AU AU38379/93A patent/AU668929B2/en not_active Ceased
- 1993-05-04 AT AT93107207T patent/ATE141405T1/de not_active IP Right Cessation
- 1993-05-04 EP EP93107207A patent/EP0568973B1/de not_active Expired - Lifetime
- 1993-05-05 HR HRP930856AA patent/HRP930856A2/hr not_active Application Discontinuation
- 1993-05-05 CZ CZ93830A patent/CZ83093A3/cs unknown
- 1993-05-05 CN CN93105020A patent/CN1080395A/zh active Pending
- 1993-05-05 BR BR9301754A patent/BR9301754A/pt not_active Application Discontinuation
Also Published As
Publication number | Publication date |
---|---|
US5532527A (en) | 1996-07-02 |
EP0568973B1 (de) | 1996-08-14 |
CN1080395A (zh) | 1994-01-05 |
ATE141405T1 (de) | 1996-08-15 |
CZ83093A3 (en) | 1994-11-16 |
AU3837993A (en) | 1993-11-11 |
BR9301754A (pt) | 1993-11-09 |
SI9200073A (sl) | 1993-12-31 |
JPH06258128A (ja) | 1994-09-16 |
DE4217305C2 (de) | 1999-11-04 |
DE4217305A1 (de) | 1993-12-02 |
EP0568973A2 (de) | 1993-11-10 |
AU668929B2 (en) | 1996-05-23 |
HUT66527A (en) | 1994-12-28 |
HU9301249D0 (en) | 1993-08-30 |
EP0568973A3 (de) | 1994-12-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
HRP930856A2 (hr) | Nivo prekidač | |
US2375084A (en) | Liquid level measuring apparatus | |
US4499766A (en) | Capacitance-type material level indicator | |
US4201085A (en) | Apparatus for determining the liquid level in a tank | |
US4676100A (en) | Capacitance-type material level indicator | |
US4555941A (en) | Capacitance-type material level indicator | |
US3944917A (en) | Electrical sensing circuitry for particle analyzing device | |
US6943566B2 (en) | Method and device for measuring levels | |
US5739598A (en) | Selfadjusting capacitive level switch for a non-contact or contact sensing of media or objects | |
EP0101580B1 (en) | Capacitance-type material level indicator | |
US3254333A (en) | Liquid condition and level detector | |
JP2018017726A (ja) | 静電容量及び導電率を組み合わせた流体レベルセンサ | |
IL106829A (en) | Soil moisture sensor | |
US5245873A (en) | Capacitance-type material level indicator and method of operation | |
US4499767A (en) | Capacitance-type material level indicator | |
WO1995006881A1 (en) | Soil moisture sensor | |
CN112041644A (zh) | 阻抗点物位传感器 | |
US6502460B1 (en) | Fluid level measuring system | |
US3215900A (en) | Fluid monitoring system | |
US3821900A (en) | Proportional bin level sensor | |
IE61520B1 (en) | Arrangement for capactive filling level measurement | |
US3910118A (en) | Probe for controlling the level of electrically conductive liquids | |
RU1838775C (ru) | Устройство дл определени плотности жидкостей | |
US4789822A (en) | Three-electrode sensor for phase comparison and pulse phase adjusting circuit for use with the sensor | |
CN110501051B (zh) | 阻抗限位传感器及用于操作阻抗限位传感器的方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A1OB | Publication of a patent application | ||
AIPI | Request for the grant of a patent on the basis of a substantive examination of a patent application | ||
ODBC | Application rejected |