[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

ES2831831T3 - Convertidor de energía monolítico con múltiples uniones - Google Patents

Convertidor de energía monolítico con múltiples uniones Download PDF

Info

Publication number
ES2831831T3
ES2831831T3 ES15704681T ES15704681T ES2831831T3 ES 2831831 T3 ES2831831 T3 ES 2831831T3 ES 15704681 T ES15704681 T ES 15704681T ES 15704681 T ES15704681 T ES 15704681T ES 2831831 T3 ES2831831 T3 ES 2831831T3
Authority
ES
Spain
Prior art keywords
junction
semiconductor layer
gainnassb
certain embodiments
junctions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
ES15704681T
Other languages
English (en)
Inventor
Arias Ferran Suarez
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Array Photonics Inc
Original Assignee
Array Photonics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Array Photonics Inc filed Critical Array Photonics Inc
Application granted granted Critical
Publication of ES2831831T3 publication Critical patent/ES2831831T3/es
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F10/00Individual photovoltaic cells, e.g. solar cells
    • H10F10/10Individual photovoltaic cells, e.g. solar cells having potential barriers
    • H10F10/16Photovoltaic cells having only PN heterojunction potential barriers
    • H10F10/161Photovoltaic cells having only PN heterojunction potential barriers comprising multiple PN heterojunctions, e.g. tandem cells
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F10/00Individual photovoltaic cells, e.g. solar cells
    • H10F10/10Individual photovoltaic cells, e.g. solar cells having potential barriers
    • H10F10/14Photovoltaic cells having only PN homojunction potential barriers
    • H10F10/142Photovoltaic cells having only PN homojunction potential barriers comprising multiple PN homojunctions, e.g. tandem cells
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F77/00Constructional details of devices covered by this subclass
    • H10F77/10Semiconductor bodies
    • H10F77/12Active materials
    • H10F77/124Active materials comprising only Group III-V materials, e.g. GaAs
    • H10F77/1248Active materials comprising only Group III-V materials, e.g. GaAs having three or more elements, e.g. GaAlAs, InGaAs or InGaAsP
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F77/00Constructional details of devices covered by this subclass
    • H10F77/10Semiconductor bodies
    • H10F77/12Active materials
    • H10F77/124Active materials comprising only Group III-V materials, e.g. GaAs
    • H10F77/1248Active materials comprising only Group III-V materials, e.g. GaAs having three or more elements, e.g. GaAlAs, InGaAs or InGaAsP
    • H10F77/12485Active materials comprising only Group III-V materials, e.g. GaAs having three or more elements, e.g. GaAlAs, InGaAs or InGaAsP comprising nitride compounds, e.g. InGaN
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F77/00Constructional details of devices covered by this subclass
    • H10F77/20Electrodes
    • H10F77/206Electrodes for devices having potential barriers
    • H10F77/211Electrodes for devices having potential barriers for photovoltaic cells
    • H10F77/215Geometries of grid contacts
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F77/00Constructional details of devices covered by this subclass
    • H10F77/30Coatings
    • H10F77/306Coatings for devices having potential barriers
    • H10F77/311Coatings for devices having potential barriers for photovoltaic cells
    • H10F77/315Coatings for devices having potential barriers for photovoltaic cells the coatings being antireflective or having enhancing optical properties
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F77/00Constructional details of devices covered by this subclass
    • H10F77/40Optical elements or arrangements
    • H10F77/42Optical elements or arrangements directly associated or integrated with photovoltaic cells, e.g. light-reflecting means or light-concentrating means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F77/00Constructional details of devices covered by this subclass
    • H10F77/40Optical elements or arrangements
    • H10F77/42Optical elements or arrangements directly associated or integrated with photovoltaic cells, e.g. light-reflecting means or light-concentrating means
    • H10F77/488Reflecting light-concentrating means, e.g. parabolic mirrors or concentrators using total internal reflection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Semiconductor Lasers (AREA)
  • Sustainable Development (AREA)
  • Engineering & Computer Science (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)

Abstract

Convertidor de energía láser con cavidad resonante, que comprende: un reflector de Bragg distribuido inferior; una primera capa semiconductora que recubre el reflector de Bragg distribuido inferior; múltiples uniones de GaInNAsSb que recubren la primera capa semiconductora, estando cada una de las uniones separada por una unión túnel, donde cada una de las múltiples uniones de GaInNASb presenta un grosor de entre aproximadamente 100 nm y aproximadamente 1 micra; una segunda capa semiconductora que recubre las múltiples uniones de GaInNAsSb; y un reflector de Bragg distribuido superior que recubre la segunda capa semiconductora, donde cada una de la primera capa semiconductora y la segunda capa semiconductora es GaAs.

Description

DESCRIPCIÓN
Convertidor de energía monolítico con múltiples uniones
CAMPO
[0001] La exposición hace referencia al campo de la conversión de energía.
ANTECEDENTES
[0002] Los convertidores de energía pueden utilizarse en un número de aplicaciones para cargar dispositivos electrónicos, como teléfonos móviles, sistemas de audio, cine en casa o cualquier otro dispositivo electrónico, desde una fuente de energía. En la técnica, se sabe que las pérdidas óhmicas están inversamente relacionadas con un aumento de la tensión y directamente relacionadas con un aumento de la corriente. Entonces, es ventajoso aumentar el factor de carga de los dispositivos convertidores de energía mediante el aumento de la tensión de los dispositivos.
[0003] Los convertidores de energía de la técnica anterior en el campo incluyen convertidores de capa única con conexión en serie monolíticos hechos de obleas semiconductoras, como GaAs. Dichos convertidores de energía pueden conectarse en serie mediante cableado o sectorizarse mediante la fabricación del convertidor en un sustrato semiaislante utilizando zanjas aislantes para proporcionar aislamiento eléctrico entre cada convertidor sectorizado. La fuente de energía para dichos convertidores de energía es una luz monocromática, como un láser que funciona a una longitud de onda o energía concreta. En esta aplicación en concreto, la luz monocromática oscila entre 1 micra y 1,55 micras, en la región infrarroja del espectro. Cerca de 1 micra es menos ventajoso para uso doméstico, debido a los peligros potenciales de la fuente de luz para el ojo humano, por lo que los modos de realización expuestos en la presente memoria se centran en fuentes de luz de entre 1,3 - 1,55 micras y, en determinados modos de realización, de alrededor de 1,3 micras. No obstante, los expertos en la materia pueden fácilmente modificar la invención expuesta en la presente memoria para convertir la luz de un número de longitudes de onda. Los siguientes documentos forman parte de la técnica anterior pertinente para la invención: US2010/116318A1, US2012/153417A1, ANDREEV et al: "High current density GaAs and GaSb photovoltaic cells for laser power beaming", PROCEEDINGS OF THE 3RD WORLD CONFERENCE ON PHOTOVOLTAIC ENERGY CONVERSION, 18 de mayo de 2003, páginas 761-764 y SCHUBERT et al: "High-Voltage GaAs Photovoltaic Laser Power Converters", IEEE TRANSACTIONS ON ELECTRON DEVICES, vol. 56, n.° 2, febrero de 2009, páginas 170-175.
SUMARIO
[0004] La invención comprende un convertidor de energía monolítico y compacto con múltiples uniones, con dos o más capas epitaxiales del mismo material apiladas una encima de la otra con uniones túnel entre cada capa epitaxial. Dado que las capas epitaxiales están apiladas una encima de la otra, se reduce el grosor de cada capa epitaxial para recoger la máxima cantidad de luz y convierte la energía en serie para aumentar el factor de carga al aumentar la tensión del dispositivo en general y disminuir las pérdidas óhmicas (que aumentan con el aumento de corriente). Debido a las capas epitaxiales apiladas, la luz que no es absorbida en una capa es absorbida en la siguiente capa directamente por debajo de la primera capa y así continuamente. El convertidor de energía puede alcanzar una eficiencia general de aproximadamente un 50 %. Se producen pérdidas de corriente mínimas en estos dispositivos, dado que se evitan los circuitos complejos mediante la utilización del apilamiento vertical de las capas epitaxiales, en comparación con la técnica anterior, lo que requiere interconexiones entre los sectores de absorción de luz semiconductores.
[0005] La materia de la presente invención se define en la reivindicación independiente 1. Algunos modos de realización concretos de la invención dan a conocer convertidores de energía láser con cavidad resonante, tal y como se establece en las reivindicaciones dependientes adjuntas.
BREVE DESCRIPCIÓN DE LOS DIBUJOS
[0006] Los dibujos descritos en la presente memoria se ofrecen a modo ilustrativo únicamente. No se pretende que los dibujos limiten el alcance de la presente exposición. Las figuras 2B, 6B y 8B muestran modos de realización de la invención. Las figuras 1, 2A, 3A, 3B, 4A, 4B, 5A, 5B, 6A, 7A, 7B y 8A muestran modos de realización que no son parte de la invención.
La figura 1 muestra un modo de realización de un convertidor de energía monolítico con múltiples uniones en el que E1, E2 y E3 representan materiales semiconductores que presentan la misma banda prohibida.
Las figuras 2a y 2B muestran convertidores de energía resonantes de unión única y de triple unión, respectivamente, con reflectores de Bragg distribuidos (DBR, por sus siglas en inglés) duales, de acuerdo con algunos modos de realización.
Las figuras 3A y 3B muestran convertidores de energía resonantes de unión única y de triple unión, respectivamente, con DBR únicos, de acuerdo con diversos modos de realización.
Las figuras 4A y 4B muestran convertidores de energía resonantes de unión única y de triple unión, respectivamente, con un DBR superior y un espejo trasero, de acuerdo con diversos modos de realización.
Las figuras 5A y 5B muestran convertidores de energía resonantes de unión única y de triple unión, respectivamente, con un espejo trasero, de acuerdo con diversos modos de realización.
Las figuras 6A y 6B muestran convertidores de energía resonantes de unión única y de triple unión, respectivamente, con dos DBR y un sustrato superior, de acuerdo con diversos modos de realización. Las figuras 7A y 8B muestran convertidores de energía resonantes de unión única y de triple unión, respectivamente, con un sustrato que recubre un DBR superior y un espejo trasero, de acuerdo con diversos modos de realización.
Las figuras 8A y 8B muestran convertidores de energía resonantes de unión única y de triple unión, respectivamente, con dos DBR y unos contactos traseros grabados en capas conductoras laterales (LCL, por sus siglas en inglés), de acuerdo con diversos modos de realización.
La figura 9 muestra una vista superior de una estructura de tarta que presenta múltiples convertidores de energía interconectados en serie, de acuerdo con diversos modos de realización.
Las figuras 10A y 10B muestran convertidores de energía de triple unión que presentan una configuración de paso doble y que se caracterizan por una única área (figura 10A) o por un área de cuatro cuadrantes (figura 10B), de acuerdo con diversos modos de realización.
Las figuras 11A y 11B muestran fotografías de la vista superior de los convertidores de energía de triple unión mostrados esquemáticamente en las figuras 10A y 10B, respectivamente.
La figura 12 muestra la eficiencia, la potencia de salida y la tensión en el punto de máxima potencia (Mpp, por sus siglas en inglés) en función de la potencia de entrada de láser para convertidores de energía de unión única, de doble unión y de triple unión de GaInNAsSb con ajuste en red.
La figura 13 muestra la densidad normalizada de la corriente (J) en función de la tensión para diversos niveles de potencia de entrada de láser para convertidores de energía de unión única, de doble unión y de triple unión de GaInNAsSb con ajuste en red.
[0007] Ahora, se hace referencia en detalle a modos de realización de la presente exposición. Si bien se describen diversos modos de realización de la presente exposición, se observará que no se pretende limitar los modos de realización de la presente exposición a los modos de realización dados a conocer. Al contrario, la referencia a modos de realización de la presente exposición pretende cubrir alternativas, modificaciones y equivalentes que puedan incluirse en el espíritu y alcance de los modos de realización de la presente exposición, tal y como se define en las reivindicaciones adjuntas.
DESCRIPCIÓN DETALLADA
[0008] En determinados modos de realización proporcionados en la presente exposición, dos o más capas epitaxiales del mismo material semiconductor que se han hecho crecer en un sustrato, como GaInNAs, GaInNAsSb, GaAs, Ge, GaSb, InP u otro sustrato conocido en la técnica, se apilan una sobre otra con uniones túnel entre cada capa epitaxial. La figura 1 muestra un modo de realización de un convertidor de energía monolítico con múltiples uniones en el que E1, E2 y E3 representan materiales semiconductores que presentan la misma banda prohibida. Cada capa epitaxial presenta la misma banda prohibida, que se ajusta aproximadamente a la energía de la fuente de luz monocromática para minimizar el portador minoritario y las pérdidas térmicas. En diversos modos de realización, la fuente de luz alcanza la capa epitaxial más alta y más alejada del sustrato. En algunos modos de realización, el material de capa epitaxial puede ser un material de nitruro diluido, como GaInNAs o GaInNAsSb u otro nitruro diluido conocido en la técnica. En algunos modos de realización, la fuente de luz monocromática oscila entre 1 micra y 1,55 micras y, en determinados modos de realización, la fuente de luz es de aproximadamente 1,3 micras. Si bien puede perderse algo de corriente mediante la absorción de luz por parte de la(s) unión(es) de túnel, la luz que no es recogida en la primera capa epitaxial es recogida en la segunda capa epitaxial, y así continuamente. La eficiencia general de dicho dispositivo puede alcanzar al menos un 50 % de eficiencia energética, por ejemplo, entre un 50 % y un 60 % o entre un 50 % y un 70 %. En determinados modos de realización, la eficiencia de conversión energética de un convertidor de energía de unión única es de al menos un 20 %, por ejemplo, de entre un 20 % y un 40 %. En determinados modos de realización, la eficiencia de conversión energética de un convertidor de energía de unión única es de al menos un 30 %, por ejemplo, de entre un 30 % y un 50 %. En determinados modos de realización, los dispositivos de tres uniones proporcionados por la presente exposición muestran una eficiencia de conversión de entre aproximadamente un 23 % y aproximadamente un 25 % con una potencia de entrada de entre aproximadamente 0,6 W y aproximadamente 6 W cuando se irradiaron con una radiación de 1,32 micras.
[0009] En determinados modos de realización, tres o más capas epitaxiales del mismo material semiconductor que se han hecho crecer en un sustrato, como GaInNAs, GaInNAsSb, GaAs, Ge, GaSb, InP u otro sustrato conocido en la técnica, se apilan una sobre la otra con uniones túnel entre cada capa epitaxial. El aumento de la cantidad de uniones en un dispositivo de convertidor de energía puede dar lugar a un aumento del factor de carga, un aumento de la tensión en circuito abierto (Voc) y una disminución de la corriente de cortocircuito (Jsc). Cada capa epitaxial presenta la misma banda prohibida, que se ajusta aproximadamente a la energía de la fuente de luz monocromática para minimizar el portador minoritario y las pérdidas térmicas. En determinados modos de realización, la fuente de luz alcanza la capa epitaxial más baja y más cercana al sustrato primero. El sustrato presenta una banda prohibida superior a la banda prohibida de las capas epitaxiales. Dado que el sustrato presenta una banda prohibida superior a la de las capas epitaxiales, la fuente de luz pasa a través del sustrato y la luz es absorbida por las capas epitaxiales. Un ejemplo de esto emplea capas epitaxiales de GaInNAs (banda prohibida de 0,95 eV) y un sustrato GaAs (banda prohibida 1,42 eV). La fuente de luz en este ejemplo no será absorbida por el sustrato GaAs y será absorbida por la región activa GaInNAs. Un disipador de calor puede acoplarse a la parte superior de la capa epitaxial más alta y puede servir para enfriar el dispositivo y prevenir defectos provocados por el sobrecalentamiento. En algunos modos de realización, el material de capa epitaxial puede ser un material de nitruro diluido, como GaInNAs o GaInNAsSb u otro nitruro diluido conocido en la técnica. En algunos modos de realización, la fuente de luz monocromática presenta una longitud de onda que oscila entre 1 micra hasta 1,55 micras y, en determinados modos de realización, desde 1 micra hasta 1,4 micras y, en determinados modos de realización, la fuente de luz es de aproximadamente 1,3 micras. Si bien puede perderse algo de corriente mediante la absorción de luz por parte de la(s) unión(es) de túnel, la luz que no es recogida en la primera capa epitaxial puede ser recogida en la segunda capa epitaxial, y así continuamente. La eficiencia general de dicho dispositivo puede alcanzar al menos un 50 % de eficiencia energética.
[0010] En determinados modos de realización, la(s) capa(s) absorbente(s) de luz comprenden GaInNAsSb. En algunos de los modos de realización, una unión de GaInNAsSb comprende Ga-i-xInxNyAs-i-y-zSbz, en la que los valores para x, y, y z son 0 < x < 0,24, 0,01 < y < 0,07 y 0,001 < z < 0,20; en determinados modos de realización, 0,02 < x < 0,24, 0,01 < y < 0,07 y 0,001 < z < 0,03; en determinados modos de realización, 0,02 < x < 0,18, 0,01 < y < 0,04 y 0,001 < z < 0,03; en determinados modos de realización, 0,08 < x < 0,18, 0,025< y < 0,04 y 0,001 < z < 0,03; y en determinados modos de realización, 0,06 < x < 0,20, 0,02 < y < 0,05 y 0,005 < z < 0,02.
[0011] En determinados modos de realización, una unión de GaInNAsSb comprende Ga-i-xInxNyAs-i-y-zSbz, en la que los valores para x, y, y z son 0 < x < 0,18, 0,001 < y < 0,05 y 0,001 < z < 0,15, y en determinados modos de realización, 0 < x < 0,18, 0,001 < y < 0,05 y 0,001 < z < 0,03; en determinados modos de realización, 0,02 < x < 0,18, 0,005 < y < 0,04 y 0,001 < z < 0,03; en determinados modos de realización, 0,04 < x < 0,18, 0,01 < y < 0,04 y 0,001 < z < 0,03; en determinados modos de realización, 0,06 < x < 0,18, 0,015< y < 0,04 y 0,001 < z < 0,03; y en determinados modos de realización, 0,08 < x < 0,18, 0,025< y < 0,04 y 0,001 < z < 0,03.
[0012] En determinados modos de realización, una unión de GaInNAsSb se caracteriza por una banda prohibida de 0,92 eV y comprende Ga-iJnxNyAs-i-y-zSbz, en la que los valores para x, y, y z son: x es 0,175, y es 0,04, y 0,012 < z < 0,019.
[0013] En determinados modos de realización, una unión de GaInNAsSb se caracteriza por una banda prohibida de 0,90 eV y comprende Ga-iJnxNyAs-i-y-zSbz, en la que los valores para x, y, y z son: x es 0,18, y es 0,045, y 0,012 < z < 0,019.
[0014] En determinados modos de realización, una unión de GaInNAsSb es comprende Ga-iJnxNyAs-i-y-zSbz, en la que los valores para x, y, y z son: 0,13 < x < 0,19, 0,03 < y < 0,048, y 0,007 < z < 0,02.
[0015] En determinados modos de realización, una unión de GaInNAsSb comprende Ga-iJnxNyAs-i-y-zSbz, en la que los valores para x, y, y z son seleccionados para tener una banda prohibida que se ajusta o casi se ajusta a la energía de la radiación utilizada para suministrar energía al dispositivo. En determinados modos de realización, la unión de GaInNAsSb se ajusta sustancialmente en red a un sustrato GaAs. Cabe observar que la comprensión general de "se ajusta sustancialmente en red" es que las constantes reticulares en el plano de los materiales en sus estados completamente relajados difieren en menos de un 0,6 % cuando los materiales están presentes en grosores superiores a 100 nm. Asimismo, subcélulas que se ajustan sustancialmente en red entre sí, tal y como se utiliza en la presente memoria, significa que todos los materiales en las subcélulas que están presentes en grosores superiores a 100 nm presentan constantes reticulares en el plano en sus estados completamente relajados que difieren en menos de un 0,6 %.
[0016] En determinados modos de realización, cada una de las capas epitaxiales en el convertidor de energía se ajusta en red a un sustrato GaAs.
[0017] En determinados modos de realización, el uso de materiales de recubrimiento con diferentes índices de refracción puede producir reflectores de Bragg distribuidos (DBR) en la estructura y se utiliza para aumentar la eficiencia del convertidor de energía. Uno de dichos ejemplos utiliza un material de nitruro diluido que, en determinados modos de realización, es un material GaInNAsSb, como material absorbente en la pila epitaxial de la estructura. Puede hacerse crecer una cavidad mediante la utilización de un material como GaAs / AlGaAs como DBR por debajo de la capa de nitruro diluido y por encima del sustrato y puede hacerse crecer otro DBR por encima de la capa de nitruro diluido, que puede hacerse de semiconductores o de un número de óxidos.
[0018] En determinados modos de realización, en los que el sustrato presenta una banda prohibida superior que el material absorbente, puede utilizarse un metal trasero como espejo estructurado, que permite que la luz no absorbida se refleje desde el metal trasero para ser reabsorbida en las capas epitaxiales de arriba. En las figuras 2A y 2B, se muestran algunos ejemplos de convertidores de energía con cavidad resonante que utilizan la configuración de paso doble. La figura 2A muestra una cavidad resonante de unión única con un DBR superior y un DBR inferior. Una unión de GaInNAsSb única se dispone entre los dos DBR y está separada de los DBR por las capas semiconductoras d1 y d2. Las capas semiconductoras pueden formarse a partir de un material que no absorbe considerablemente la radiación incidente y que puede unirse en red a GaAs y la capa absorbente y, en determinados modos de realización, son GaAs. Los grosores de d1, d2 y una unión de GaInNAsSb pueden seleccionarse para proporcionar una onda estacionaria en la longitud de onda de la radiación incidente. La figura 2B muestra una configuración similar a la que se muestra en la figura 2A, pero incluye múltiples uniones de GaInNAsSb, estando cada una de las uniones separadas por una unión túnel. El grosor de la unión de GaInNAsSb es de entre 100 nm y aproximadamente 1 micra. En determinados modos de realización, el sustrato es un sustrato GaAs semiaislante o con dopaje de tipo N con un metal trasero como capa más baja de la estructura.
[0019] Para el uso con una radiación de 1 micra a 1,55 micras, la capa de espejo puede ser, por ejemplo, de oro o de aleaciones oro/níquel.
[0020] En determinados modos de realización, la estructura del convertidor de energía utiliza un DBR en lugar de dos. En las figuras 3A y 3B, se muestran convertidores de energía resonantes que emplean un único DBR. La figura 3A muestra una unión de GaInNAsSb única dispuesta entre dos capas semiconductoras d1 y d2. Estas capas recubren un DBR inferior, que recubre un sustrato. La superficie superior del dispositivo, tal como la superficie superior de la capa d1 orientada a la radiación incidente puede recubrirse con un revestimiento antirreflectante. El revestimiento antirreflectante puede optimizarse para la longitud de onda de la radiación incidente para reducir la dispersión. La figura 3B muestra una configuración de cavidad resonante de DBR único que presenta múltiples uniones de GaInNAsSb.
[0021] En determinados modos de realización, la estructura de convertidor de energía incluye un DBR y un espejo trasero por debajo del sustrato. Dichas configuraciones de dispositivo se muestran en las figuras 4A, 4B, 5A y 5B. Las figuras 4A y 4B muestran convertidores de energía que presentan un DBR superior una cavidad resonante que incluye una unión de GaInNAsSb única entre dos capas semiconductoras d1 y d2, y un espejo trasero por debajo de la capa semiconductora d2. En determinados modos de realización, el espejo trasero puede servir también como contacto eléctrico. En la figura 4B, se muestra un convertidor de energía con múltiples uniones, en el que múltiples uniones de GaInNAsSb están dispuestas entre un DBR superior y un espejo trasero.
[0022] En los convertidores de energía mostrados en las figuras 5A y 5B, se utiliza tanto un DBR como un espejo trasero en la parte inferior del dispositivo. En esta configuración, el grosor del DBR puede reducirse en comparación con una configuración con un DBR inferior sin el espejo trasero. Al igual que con otros dispositivos, la superficie superior de la capa D1 puede incluir un revestimiento antirreflectante. En determinados modos de realización, el sustrato se elimina y se utiliza un metal en su lugar como espejo trasero. En dichas estructuras, la luz pasa a través del DBR superior y, a continuación, a través de las capas epitaxiales y, a continuación, a través del DBR inferior y, por último, llega al espejo trasero. En estos modos de realización, la capa epitaxial comprende GaInNAsSb como una o más capas absorbentes.
[0023] En determinados modos de realización, la capa más alta de la estructura comprende una interfaz airesemiconductor por encima de las capas epitaxiales, que puede comprender una o varias capas de GaInNAsSb. Por debajo de la capa epitaxial, se encuentra un DBR inferior, que recubre un espejo trasero. En estos modos de realización, la luz llega a la capa más alta de la interfaz aire-semiconductor y avanza a la capa epitaxial y, a continuación, llega al DBR y, por último, se refleja de vuelta a través de la estructura después de ser reflejada por el espejo trasero.
[0024] En las figuras 6A y 6B, se muestran configuraciones de cavidad resonante con dos DBR y una capa de sustrato superior. La capa de sustrato superior es sustancialmente transparente a la radiación incidente utilizada para generar la energía. En determinados modos de realización, el sustrato puede ser GaAs, como un GaAs de tipo N y puede presentar un grosor de entre 150 micras y alrededor de 250 micras, por ejemplo, entre 175 micras y 225 micras. El grosor del sustrato puede reducirse, por ejemplo, mediante molturación o grabado para minimizar la absorción y, en dichos modos de realización, puede ser de 50 micras o inferior. En determinados modos de realización, el DBR inferior puede unirse a un disipador de calor. La unión del DBR directamente al disipador de calor puede reducir la temperatura del convertidor de energía.
[0025] Las figuras 7A y 7B muestran configuraciones de dispositivo similares a las que se muestran en las figuras 6a y 6B, pero con el DBR inferior sustituido por un espejo trasero.
[0026] En determinados modos de realización, la estructura presenta contactos en el interior de la cavidad para evitar la resistividad desde las estructuras de DBR. El contacto se realiza en la cavidad a través de capas conductoras de transporte laterales (LCL, por sus siglas en inglés) que bordean las estructuras de DBR. En las figuras 8A y 8B, se muestran convertidores de energía que presentan contactos en el interior de la cavidad. En estas estructuras de dispositivo, las capas epitaxiales son grabadas en una LCL que recubre el DBR inferior o en una LCL que recubre la capa semiconductora d1. Las LCL mejoran la movilidad de los portadores a los contactos eléctricos (contacto trasero y contacto superior) y pueden formarse, por ejemplo, a partir de GaAs dopado, como GaAs de tipo N. Las LCL y otros contactos eléctricos traseros de grabado similares pueden emplearse con otras estructuras de dispositivo proporcionadas por la presente exposición.
[0027] En determinados modos de realización, la estructura puede hacerse crecer invertida. En dichos casos, el sustrato puede reducirse hasta un grosor determinado o eliminarse después del crecimiento mediante la utilización de una variedad de técnicas de despegue. La luz pasa a través del sustrato primero antes de pasar a través de las capas epitaxiales. En dichas estructuras, la banda prohibida del sustrato es mayor que la banda prohibida de las capas epitaxiales.
[0028] Múltiples convertidores fotovoltaicos formados por un número de subcélulas conectadas en serie pueden construirse para aumentar la tensión de salida. Las subcélulas pueden conectarse en paralelo para aumentar la corriente de salida. Un ejemplo es una estructura Pi, como se muestra en la figura 9. Los absorbentes de infrarrojos se caracterizan normalmente por una tensión baja; sin embargo, en determinadas aplicaciones, es deseable aumentar la tensión del convertidor de energía. Esto puede conseguirse mediante la conexión de múltiples convertidores de energía en serie. Dicha configuración, de la que se muestra una vista de arriba abajo en la figura 9, se denomina estructura de tarta, en la que múltiples células de convertidor de energía están dispuestas en anillos concéntricos alrededor de un eje central, donde cada célula está separada por un aislante y las múltiples células o subconjuntos de las múltiples células están conectados en serie. Dichas estructuras pueden fabricarse mediante la utilización de uniones únicas y proporcionan una alta densidad de células. Las tensiones más altas proporcionan una eficiencia de convertidor CC-CC mejorada y menos pérdidas óhmicas. Aunque las corrientes posteriores pueden producir pérdidas óhmicas, esto puede compensarse porque el número mayor de subcélulas da lugar a corrientes inferiores.
[0029] Otras estructuras de dispositivo se muestran en las figuras 10A y 10B. La figura 10A muestra un convertidor de energía de paso doble de triple unión con una única área. La figura 10B muestra un convertidor de energía de paso doble de triple unión con cuatro cuadrantes. Las dimensiones de los dispositivos son 300 micras por 300 micras. Los cuatro convertidores pueden interconectarse en serie para hacer aumentar la tensión y/o hacer disminuir la corriente. La interconexión en serie también puede reducir la sensibilidad a la orientación espacial de la radiación incidente. Asimismo, para convertidores de energía de área grande, la separación del área de recogida en cuadrantes u otras subáreas puede reducir las pérdidas óhmicas al acercar los contactos eléctricos más a las superficies que generan energía. En las figuras 11A y 11B, se muestran fotografías de los dispositivos de único cuadrante y de cuatro cuadrantes.
[0030] Los convertidores de energía mostrados en las figuras 10A, 10B, 11A y 11B fueron fabricados utilizando uniones de GaInNAsSb. Todas las capas epitaxiales se unieron en red a un sustrato GaAs. Un espejo trasero está dispuesto en la parte inferior del sustrato GaAs. La cavidad resonante de las estructuras de tres uniones fue configurada para soportar una onda estacionaria en alrededor de 1,3 micras, tal como en 1,32 micras o en 1,342 micras. La banda prohibida de las uniones de GaInNAsSb era de alrededor de 0,92 eV para dispositivos configurados para una conversión de energía en 1,32 micras. Algunos de dichos dispositivos mostraron un factor de carga de entre aproximadamente un 65 % y aproximadamente un 75 %, un Voc de entre aproximadamente 1,47V y aproximadamente 1,5 V y un Jsc de entre aproximadamente 0,6 A y aproximadamente 1,4 A. La eficiencia de conversión energética era de entre un 23 % y un 25 % con una potencia de entrada de entre aproximadamente 0,6 W y aproximadamente 6 W.
[0031] En determinados modos de realización, las dos o más capas epitaxiales del mismo material semiconductor presentan grosores diferentes. En concreto, las capas epitaxiales pueden disminuir de grosor cuanto más lejos estén de la fuente de luz. En determinados modos de realización, los grosores de cada una de las capas epitaxiales son los mismos. En determinados modos de realización, los grosores de las capas epitaxiales varían, aumentando, no disminuyendo en función de la ubicación de la fuente de luz.
[0032] En algunos modos de realización, existe una capa de ventana encima de la capa más alta.
[0033] En determinados modos de realización, el grosor o la altura del dispositivo completo puede ser de entre 1 micra y 10 micras. El área del convertidor de energía puede ser, por ejemplo, de entre 100 micras x 100 micras y hasta de 1 cm x 1 cm, o más grande. Por ejemplo, el área total es de entre 10-4 cm2 y 1 cm2. El grosor de cada capa epitaxial puede ser de entre algunos cientos de nanómetros hasta unas pocas micras.
[0034] La figura 12 muestra la eficiencia, la potencia de salida y la tensión en el punto de máxima potencia (Mpp, por sus siglas en inglés) en función de la potencia de entrada de láser para convertidores de energía de unión única (círculo abierto), de doble unión (cuadrado) y de triple unión (más) de GaInNAsSb.
[0035] La figura 13 muestra la densidad normalizada de la corriente (J) en función de la tensión para diversos niveles de potencia de entrada de láser para convertidores de energía de unión única (círculo abierto), de doble unión (cuadrado) y de triple unión (más) de GaInNAsSb con ajuste en red.

Claims (3)

REIVINDICACIONES
1. Convertidor de energía láser con cavidad resonante, que comprende:
un reflector de Bragg distribuido inferior;
una primera capa semiconductora que recubre el reflector de Bragg distribuido inferior;
múltiples uniones de GaInNAsSb que recubren la primera capa semiconductora, estando cada una de las uniones separada por una unión túnel, donde cada una de las múltiples uniones de GaInNASb presenta un grosor de entre aproximadamente 100 nm y aproximadamente 1 micra;
una segunda capa semiconductora que recubre las múltiples uniones de GaInNAsSb; y
un reflector de Bragg distribuido superior que recubre la segunda capa semiconductora,
donde cada una de la primera capa semiconductora y la segunda capa semiconductora es GaAs.
2. Convertidor de energía láser con cavidad resonante de acuerdo con la reivindicación 1, donde el grosor de la primera capa semiconductora, la segunda capa semiconductora y las uniones de GaInNAsSb son seleccionados para proporcionar una onda estacionaria en una longitud de onda incidente.
3. Convertidor de energía láser con cavidad resonante de acuerdo con la reivindicación 1, donde cada una de la primera y la segunda capa semiconductora se ajusta en red a las capas de GaInNAsSb.
ES15704681T 2014-02-05 2015-02-05 Convertidor de energía monolítico con múltiples uniones Active ES2831831T3 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201461936222P 2014-02-05 2014-02-05
PCT/US2015/014650 WO2015120169A1 (en) 2014-02-05 2015-02-05 Monolithic multijunction power converter

Publications (1)

Publication Number Publication Date
ES2831831T3 true ES2831831T3 (es) 2021-06-09

Family

ID=52472636

Family Applications (1)

Application Number Title Priority Date Filing Date
ES15704681T Active ES2831831T3 (es) 2014-02-05 2015-02-05 Convertidor de energía monolítico con múltiples uniones

Country Status (8)

Country Link
US (4) US20150221803A1 (es)
EP (2) EP3103142B1 (es)
CN (2) CN106133923B (es)
ES (1) ES2831831T3 (es)
SA (1) SA516371606B1 (es)
SG (1) SG11201606353TA (es)
TW (1) TWI656651B (es)
WO (1) WO2015120169A1 (es)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2416254B1 (es) 2009-02-09 2014-12-29 Semprius, Inc. Módulos fotovoltaicos de tipo concentrador (cpv), receptores y sub-receptores y métodos para formar los mismos
ES2831831T3 (es) 2014-02-05 2021-06-09 Array Photonics Inc Convertidor de energía monolítico con múltiples uniones
DE102015012007A1 (de) * 2015-09-19 2017-03-23 Azur Space Solar Power Gmbh Skalierbare Spannungsquelle
US20170110613A1 (en) * 2015-10-19 2017-04-20 Solar Junction Corporation High efficiency multijunction photovoltaic cells
DE102016013749A1 (de) * 2016-11-18 2018-05-24 Azur Space Solar Power Gmbh Stapelförmige Halbleiterstruktur
WO2019010037A1 (en) 2017-07-06 2019-01-10 Solar Junction Corporation HYBRID MOCVD / MBE EPITAXIAL GROWTH OF MULTI-JUNCTION SOLAR CELLS ADAPTED TO THE HIGH-PERFORMANCE NETWORK
WO2019067553A1 (en) 2017-09-27 2019-04-04 Solar Junction Corporation SHORT-LENGTH WAVELENGTH INFRARED OPTOELECTRONIC DEVICES HAVING DILUTED NITRIDE LAYER
WO2019177962A1 (en) * 2018-03-12 2019-09-19 Solar Junction Corporation Chirped distributed bragg reflectors for photovoltaic cells and other light absorption devices
US10797197B2 (en) 2018-06-18 2020-10-06 Alta Devices, Inc. Thin-film, flexible optoelectronic devices incorporating a single lattice-matched dilute nitride junction and methods of fabrication
WO2020047069A1 (en) * 2018-08-30 2020-03-05 Array Photonics, Inc. Multijunction solar cells and multicolor photodetectors having an integrated edge filter
US11211514B2 (en) 2019-03-11 2021-12-28 Array Photonics, Inc. Short wavelength infrared optoelectronic devices having graded or stepped dilute nitride active regions
US11575055B2 (en) 2019-07-15 2023-02-07 SLT Technologies, Inc Methods for coupling of optical fibers to a power photodiode
WO2021011705A1 (en) * 2019-07-15 2021-01-21 Slt Technologies, Inc. Power photodiode structures, methods of making, and methods of use
US11569398B2 (en) 2019-07-15 2023-01-31 SLT Technologies, Inc Power photodiode structures and devices
US11670735B2 (en) * 2020-12-14 2023-06-06 Lumileds Llc Monolithic electrical power converter formed with layers
CN118103996A (zh) * 2021-10-15 2024-05-28 艾迈斯-欧司朗国际有限责任公司 光电器件

Family Cites Families (159)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4127862A (en) 1977-09-06 1978-11-28 Bell Telephone Laboratories, Incorporated Integrated optical detectors
US4179702A (en) 1978-03-09 1979-12-18 Research Triangle Institute Cascade solar cells
US4404421A (en) 1982-02-26 1983-09-13 Chevron Research Company Ternary III-V multicolor solar cells and process of fabrication
GB2132016B (en) 1982-12-07 1986-06-25 Kokusai Denshin Denwa Co Ltd A semiconductor device
JPS6061516A (ja) 1983-09-14 1985-04-09 Sansho Seiyaku Kk パ−マネントウエ−ブ用第1液
JPS6061513A (ja) 1983-09-14 1985-04-09 Sansho Seiyaku Kk 化粧料
US4547622A (en) 1984-04-27 1985-10-15 Massachusetts Institute Of Technology Solar cells and photodetectors
US4881979A (en) 1984-08-29 1989-11-21 Varian Associates, Inc. Junctions for monolithic cascade solar cells and methods
JPS63100781A (ja) 1986-10-17 1988-05-02 Nippon Telegr & Teleph Corp <Ntt> 半導体素子
US5016562A (en) 1988-04-27 1991-05-21 Glasstech Solar, Inc. Modular continuous vapor deposition system
US4935384A (en) 1988-12-14 1990-06-19 The United States Of America As Represented By The United States Department Of Energy Method of passivating semiconductor surfaces
JPH02218174A (ja) 1989-02-17 1990-08-30 Mitsubishi Electric Corp 光電変換半導体装置
US5223043A (en) 1991-02-11 1993-06-29 The United States Of America As Represented By The United States Department Of Energy Current-matched high-efficiency, multijunction monolithic solar cells
US5166761A (en) 1991-04-01 1992-11-24 Midwest Research Institute Tunnel junction multiple wavelength light-emitting diodes
US5330585A (en) 1992-10-30 1994-07-19 Spectrolab, Inc. Gallium arsenide/aluminum gallium arsenide photocell including environmentally sealed ohmic contact grid interface and method of fabricating the cell
US5342453A (en) 1992-11-13 1994-08-30 Midwest Research Institute Heterojunction solar cell
US5316593A (en) 1992-11-16 1994-05-31 Midwest Research Institute Heterojunction solar cell with passivated emitter surface
US5800630A (en) 1993-04-08 1998-09-01 University Of Houston Tandem solar cell with indium phosphide tunnel junction
US5376185A (en) 1993-05-12 1994-12-27 Midwest Research Institute Single-junction solar cells with the optimum band gap for terrestrial concentrator applications
US5405453A (en) 1993-11-08 1995-04-11 Applied Solar Energy Corporation High efficiency multi-junction solar cell
US5689123A (en) 1994-04-07 1997-11-18 Sdl, Inc. III-V aresenide-nitride semiconductor materials and devices
FR2722612B1 (fr) 1994-07-13 1997-01-03 Centre Nat Rech Scient Procede de fabrication d'un materiau ou dispositif photovoltaique, materiau ou dispositif ainsi obteu et photopile comprenant un tel materiau ou dispositif
JPH1012905A (ja) 1996-06-27 1998-01-16 Hitachi Ltd 太陽電池及びその製造方法
KR19980046586A (ko) 1996-12-12 1998-09-15 양승택 공진파장 제어 기능을 구비한 고분자 광검출기
US5911839A (en) 1996-12-16 1999-06-15 National Science Council Of Republic Of China High efficiency GaInP NIP solar cells
JP3683669B2 (ja) 1997-03-21 2005-08-17 株式会社リコー 半導体発光素子
US6281426B1 (en) 1997-10-01 2001-08-28 Midwest Research Institute Multi-junction, monolithic solar cell using low-band-gap materials lattice matched to GaAs or Ge
US5944913A (en) 1997-11-26 1999-08-31 Sandia Corporation High-efficiency solar cell and method for fabrication
US6150603A (en) 1999-04-23 2000-11-21 Hughes Electronics Corporation Bilayer passivation structure for photovoltaic cells
US6252287B1 (en) 1999-05-19 2001-06-26 Sandia Corporation InGaAsN/GaAs heterojunction for multi-junction solar cells
US6340788B1 (en) 1999-12-02 2002-01-22 Hughes Electronics Corporation Multijunction photovoltaic cells and panels using a silicon or silicon-germanium active substrate cell for space and terrestrial applications
JP4064592B2 (ja) 2000-02-14 2008-03-19 シャープ株式会社 光電変換装置
AU2002216611A1 (en) 2000-09-29 2002-04-08 Board Of Regents, The University Of Texas System A theory of the charge multiplication process in avalanche photodiodes
US7345327B2 (en) 2000-11-27 2008-03-18 Kopin Corporation Bipolar transistor
US6815736B2 (en) 2001-02-09 2004-11-09 Midwest Research Institute Isoelectronic co-doping
US7233028B2 (en) 2001-02-23 2007-06-19 Nitronex Corporation Gallium nitride material devices and methods of forming the same
US6787385B2 (en) 2001-05-31 2004-09-07 Midwest Research Institute Method of preparing nitrogen containing semiconductor material
US6586669B2 (en) 2001-06-06 2003-07-01 The Boeing Company Lattice-matched semiconductor materials for use in electronic or optoelectronic devices
US20030070707A1 (en) 2001-10-12 2003-04-17 King Richard Roland Wide-bandgap, lattice-mismatched window layer for a solar energy conversion device
US7119271B2 (en) 2001-10-12 2006-10-10 The Boeing Company Wide-bandgap, lattice-mismatched window layer for a solar conversion device
US6764926B2 (en) 2002-03-25 2004-07-20 Agilent Technologies, Inc. Method for obtaining high quality InGaAsN semiconductor devices
US6660928B1 (en) 2002-04-02 2003-12-09 Essential Research, Inc. Multi-junction photovoltaic cell
US6756325B2 (en) 2002-05-07 2004-06-29 Agilent Technologies, Inc. Method for producing a long wavelength indium gallium arsenide nitride(InGaAsN) active region
US8067687B2 (en) 2002-05-21 2011-11-29 Alliance For Sustainable Energy, Llc High-efficiency, monolithic, multi-bandgap, tandem photovoltaic energy converters
US8173891B2 (en) 2002-05-21 2012-05-08 Alliance For Sustainable Energy, Llc Monolithic, multi-bandgap, tandem, ultra-thin, strain-counterbalanced, photovoltaic energy converters with optimal subcell bandgaps
US20060162768A1 (en) 2002-05-21 2006-07-27 Wanlass Mark W Low bandgap, monolithic, multi-bandgap, optoelectronic devices
US6967154B2 (en) 2002-08-26 2005-11-22 Micron Technology, Inc. Enhanced atomic layer deposition
US7255746B2 (en) 2002-09-04 2007-08-14 Finisar Corporation Nitrogen sources for molecular beam epitaxy
US7122733B2 (en) 2002-09-06 2006-10-17 The Boeing Company Multi-junction photovoltaic cell having buffer layers for the growth of single crystal boron compounds
US6765238B2 (en) 2002-09-12 2004-07-20 Agilent Technologies, Inc. Material systems for semiconductor tunnel-junction structures
US7126052B2 (en) 2002-10-02 2006-10-24 The Boeing Company Isoelectronic surfactant induced sublattice disordering in optoelectronic devices
US7122734B2 (en) 2002-10-23 2006-10-17 The Boeing Company Isoelectronic surfactant suppression of threading dislocations in metamorphic epitaxial layers
US7071407B2 (en) 2002-10-31 2006-07-04 Emcore Corporation Method and apparatus of multiplejunction solar cell structure with high band gap heterojunction middle cell
AU2003297649A1 (en) 2002-12-05 2004-06-30 Blue Photonics, Inc. High efficiency, monolithic multijunction solar cells containing lattice-mismatched materials and methods of forming same
US7161170B1 (en) 2002-12-12 2007-01-09 Triquint Technology Holding Co. Doped-absorber graded transition enhanced multiplication avalanche photodetector
JP2004296658A (ja) 2003-03-26 2004-10-21 Sharp Corp 多接合太陽電池およびその電流整合方法
US7812249B2 (en) 2003-04-14 2010-10-12 The Boeing Company Multijunction photovoltaic cell grown on high-miscut-angle substrate
US7123638B2 (en) 2003-10-17 2006-10-17 Avago Technologies General Ip (Singapore) Pte. Ltd. Tunnel-junction structure incorporating N-type layer comprising nitrogen and a group VI dopant
GB2409572B (en) 2003-12-24 2006-02-15 Intense Photonics Ltd Generating multiple bandgaps using multiple epitaxial layers
JP5248782B2 (ja) 2004-01-20 2013-07-31 シリアム・テクノロジーズ・インコーポレーテッド エピタキシャルに成長させた量子ドット材料を有する太陽電池
US7807921B2 (en) 2004-06-15 2010-10-05 The Boeing Company Multijunction solar cell having a lattice mismatched GrIII-GrV-X layer and a composition-graded buffer layer
US20060048811A1 (en) * 2004-09-09 2006-03-09 Krut Dimitri D Multijunction laser power converter
DE102005000767A1 (de) 2005-01-04 2006-07-20 Rwe Space Solar Power Gmbh Monolithische Mehrfach-Solarzelle
JP5008874B2 (ja) 2005-02-23 2012-08-22 住友電気工業株式会社 受光素子と受光素子を用いた光通信用受信モジュールおよび受光素子を用いた計測器
WO2006099171A2 (en) 2005-03-11 2006-09-21 The Arizona Boar Of Regents, A Body Corporate Acting On Behalf Of Arizona State University NOVEL GeSiSn-BASED COMPOUNDS, TEMPLATES, AND SEMICONDUCTOR STRUCTURES
US7473941B2 (en) 2005-08-15 2009-01-06 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. Structures for reducing operating voltage in a semiconductor device
US20070113887A1 (en) 2005-11-18 2007-05-24 Lih-Hong Laih Material system of photovoltaic cell with micro-cavity
CN1979901A (zh) * 2005-12-02 2007-06-13 中国科学院半导体研究所 具有双吸收区结构的高效可调谐光探测器
US11211510B2 (en) 2005-12-13 2021-12-28 The Boeing Company Multijunction solar cell with bonded transparent conductive interlayer
US20070227588A1 (en) 2006-02-15 2007-10-04 The Regents Of The University Of California Enhanced tunnel junction for improved performance in cascaded solar cells
US20070212510A1 (en) 2006-03-13 2007-09-13 Henry Hieslmair Thin silicon or germanium sheets and photovoltaics formed from thin sheets
US20090078310A1 (en) 2007-09-24 2009-03-26 Emcore Corporation Heterojunction Subcells In Inverted Metamorphic Multijunction Solar Cells
US20100229926A1 (en) 2009-03-10 2010-09-16 Emcore Solar Power, Inc. Four Junction Inverted Metamorphic Multijunction Solar Cell with a Single Metamorphic Layer
US7872252B2 (en) 2006-08-11 2011-01-18 Cyrium Technologies Incorporated Method of fabricating semiconductor devices on a group IV substrate with controlled interface properties and diffusion tails
US7842881B2 (en) 2006-10-19 2010-11-30 Emcore Solar Power, Inc. Solar cell structure with localized doping in cap layer
US20080149173A1 (en) 2006-12-21 2008-06-26 Sharps Paul R Inverted metamorphic solar cell with bypass diode
US20100116318A1 (en) * 2007-03-08 2010-05-13 Hrl Laboratories, Llc Pixelated photovoltaic array method and apparatus
JP5515162B2 (ja) 2007-03-23 2014-06-11 住友電気工業株式会社 半導体ウエハの製造方法
US7825328B2 (en) 2007-04-09 2010-11-02 Taiwan Semiconductor Manufacturing Company, Ltd. Nitride-based multi-junction solar cell modules and methods for making the same
US20080257405A1 (en) 2007-04-18 2008-10-23 Emcore Corp. Multijunction solar cell with strained-balanced quantum well middle cell
JP2009010175A (ja) 2007-06-28 2009-01-15 Sumitomo Electric Ind Ltd 受光素子およびその製造方法
WO2009009111A2 (en) * 2007-07-10 2009-01-15 The Board Of Trustees Of The Leland Stanford Junior University GaInNAsSB SOLAR CELLS GROWN BY MOLECULAR BEAM EPITAXY
JP5260909B2 (ja) 2007-07-23 2013-08-14 住友電気工業株式会社 受光デバイス
JP5417694B2 (ja) 2007-09-03 2014-02-19 住友電気工業株式会社 半導体素子およびエピタキシャルウエハの製造方法
US8895342B2 (en) 2007-09-24 2014-11-25 Emcore Solar Power, Inc. Heterojunction subcells in inverted metamorphic multijunction solar cells
GB0719554D0 (en) 2007-10-05 2007-11-14 Univ Glasgow semiconductor optoelectronic devices and methods for making semiconductor optoelectronic devices
TW200924214A (en) 2007-11-16 2009-06-01 Univ Nat Chunghsing Solar cell
US20090155952A1 (en) 2007-12-13 2009-06-18 Emcore Corporation Exponentially Doped Layers In Inverted Metamorphic Multijunction Solar Cells
US20090188561A1 (en) 2008-01-25 2009-07-30 Emcore Corporation High concentration terrestrial solar array with III-V compound semiconductor cell
JP5303962B2 (ja) * 2008-02-28 2013-10-02 三菱電機株式会社 半導体受光素子
US20090255575A1 (en) 2008-04-04 2009-10-15 Michael Tischler Lightweight solar cell
US20090255576A1 (en) 2008-04-04 2009-10-15 Michael Tischler Window solar cell
US20090272438A1 (en) 2008-05-05 2009-11-05 Emcore Corporation Strain Balanced Multiple Quantum Well Subcell In Inverted Metamorphic Multijunction Solar Cell
US20090288703A1 (en) 2008-05-20 2009-11-26 Emcore Corporation Wide Band Gap Window Layers In Inverted Metamorphic Multijunction Solar Cells
WO2009157870A1 (en) 2008-06-26 2009-12-30 Nanyang Technological University Method for fabricating ganassb semiconductor
US9080425B2 (en) * 2008-10-17 2015-07-14 Foro Energy, Inc. High power laser photo-conversion assemblies, apparatuses and methods of use
WO2010042577A2 (en) 2008-10-07 2010-04-15 Applied Materials, Inc. Advanced platform for processing crystalline silicon solar cells
WO2010044978A1 (en) 2008-10-15 2010-04-22 Arizona Board of Regents, a body corporate acting for and on behalf of Arizona State University Hybrid group iv/iii-v semiconductor structures
US7915639B2 (en) 2008-10-20 2011-03-29 Aerius Photonics Llc InGaAsSbN photodiode arrays
US8912428B2 (en) 2008-10-22 2014-12-16 Epir Technologies, Inc. High efficiency multijunction II-VI photovoltaic solar cells
US8093559B1 (en) 2008-12-02 2012-01-10 Hrl Laboratories, Llc Methods and apparatus for three-color infrared sensors
US9018521B1 (en) 2008-12-17 2015-04-28 Solaero Technologies Corp. Inverted metamorphic multijunction solar cell with DBR layer adjacent to the top subcell
US20150357501A1 (en) 2008-12-17 2015-12-10 Solaero Technologies Corp. Four junction inverted metamorphic solar cell
US20100147366A1 (en) * 2008-12-17 2010-06-17 Emcore Solar Power, Inc. Inverted Metamorphic Multijunction Solar Cells with Distributed Bragg Reflector
KR20100084843A (ko) 2009-01-19 2010-07-28 삼성전자주식회사 다중접합 태양전지
US9105783B2 (en) 2009-01-26 2015-08-11 The Aerospace Corporation Holographic solar concentrator
US20100282306A1 (en) 2009-05-08 2010-11-11 Emcore Solar Power, Inc. Multijunction Solar Cells with Group IV/III-V Hybrid Alloys
US20100282305A1 (en) 2009-05-08 2010-11-11 Emcore Solar Power, Inc. Inverted Multijunction Solar Cells with Group IV/III-V Hybrid Alloys
EP2251912A1 (de) 2009-05-11 2010-11-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Tunneldioden aus spannungskompensierten Verbindungshalbleiterschichten
US20100319764A1 (en) 2009-06-23 2010-12-23 Solar Junction Corp. Functional Integration Of Dilute Nitrides Into High Efficiency III-V Solar Cells
IT1394853B1 (it) 2009-07-21 2012-07-20 Cesi Ct Elettrotecnico Sperimentale Italiano Giacinto Motta S P A Cella fotovoltaica ad elevata efficienza di conversione
US8378209B2 (en) 2009-07-29 2013-02-19 Cyrium Technologies Incorporated Solar cell and method of fabrication thereof
JP5649157B2 (ja) 2009-08-01 2015-01-07 住友電気工業株式会社 半導体素子およびその製造方法
JP5444994B2 (ja) * 2009-09-25 2014-03-19 三菱電機株式会社 半導体受光素子
US20110114163A1 (en) 2009-11-18 2011-05-19 Solar Junction Corporation Multijunction solar cells formed on n-doped substrates
US8895838B1 (en) 2010-01-08 2014-11-25 Magnolia Solar, Inc. Multijunction solar cell employing extended heterojunction and step graded antireflection structures and methods for constructing the same
TWI436488B (zh) 2010-03-12 2014-05-01 Epistar Corp 一種具有漸變緩衝層太陽能電池
US20110232730A1 (en) 2010-03-29 2011-09-29 Solar Junction Corp. Lattice matchable alloy for solar cells
US8269223B2 (en) 2010-05-27 2012-09-18 The United States Of America As Represented By The Secretary Of The Army Polarization enhanced avalanche photodetector and method thereof
US20110303268A1 (en) 2010-06-15 2011-12-15 Tan Wei-Sin HIGH EFFICIENCY InGaAsN SOLAR CELL AND METHOD OF MAKING
US8642883B2 (en) 2010-08-09 2014-02-04 The Boeing Company Heterojunction solar cell
US20190013430A1 (en) 2010-10-28 2019-01-10 Solar Junction Corporation Optoelectronic devices including dilute nitride
US9214580B2 (en) 2010-10-28 2015-12-15 Solar Junction Corporation Multi-junction solar cell with dilute nitride sub-cell having graded doping
TWI412149B (zh) 2010-12-16 2013-10-11 Univ Nat Central Laser energy conversion device
TWI430491B (zh) * 2010-12-31 2014-03-11 Au Optronics Corp 堆疊式太陽能電池模組
US8962991B2 (en) 2011-02-25 2015-02-24 Solar Junction Corporation Pseudomorphic window layer for multijunction solar cells
US8927857B2 (en) 2011-02-28 2015-01-06 International Business Machines Corporation Silicon: hydrogen photovoltaic devices, such as solar cells, having reduced light induced degradation and method of making such devices
US20120255600A1 (en) 2011-04-06 2012-10-11 International Business Machines Corporation Method of bonding and formation of back surface field (bsf) for multi-junction iii-v solar cells
US20130112239A1 (en) * 2011-04-14 2013-05-09 Cool Earh Solar Solar energy receiver
US8766087B2 (en) 2011-05-10 2014-07-01 Solar Junction Corporation Window structure for solar cell
US20130074901A1 (en) 2011-09-22 2013-03-28 Rosestreet Labs Energy, Inc. Compositionally graded dilute group iii-v nitride cell with blocking layers for multijunction solar cell
FR2981195B1 (fr) 2011-10-11 2024-08-23 Soitec Silicon On Insulator Multi-jonctions dans un dispositif semi-conducteur forme par differentes techniques de depot
WO2013074530A2 (en) 2011-11-15 2013-05-23 Solar Junction Corporation High efficiency multijunction solar cells
EP2618385A1 (de) 2012-01-20 2013-07-24 AZUR SPACE Solar Power GmbH Halbzeug einer Mehrfachsolarzelle und Verfahren zur Herstellung einer Mehrfachsolarzelle
US9153724B2 (en) 2012-04-09 2015-10-06 Solar Junction Corporation Reverse heterojunctions for solar cells
SG11201408432YA (en) 2012-06-22 2015-01-29 Epiworks Inc Manufacturing semiconductor-based multi-junction photovoltaic devices
US8636844B1 (en) 2012-07-06 2014-01-28 Translucent, Inc. Oxygen engineered single-crystal REO template
GB2504977B (en) 2012-08-16 2017-10-04 Airbus Defence & Space Gmbh Laser power converter
CN102829884B (zh) * 2012-09-10 2014-10-08 清华大学 具有强吸收结构的高速snspd及其制备方法
US20140182667A1 (en) 2013-01-03 2014-07-03 Benjamin C. Richards Multijunction solar cell with low band gap absorbing layer in the middle cell
TWI602315B (zh) 2013-03-08 2017-10-11 索泰克公司 具有經組構成效能更佳之低帶隙主動層之感光元件及相關方法
US20140290737A1 (en) 2013-04-02 2014-10-02 The Regents Of The University Of California Thin film vls semiconductor growth process
US20160300973A1 (en) 2013-05-24 2016-10-13 U.S. Army Research Laboratory Attn: Rdrl-Loc-I Variable range photodetector with enhanced high photon energy response and method thereof
ITMI20131297A1 (it) 2013-08-01 2015-02-02 Cesi Ct Elettrotecnico Sperim Entale Italian Cella fotovoltaica con banda proibita variabile
US8957376B1 (en) 2013-08-07 2015-02-17 Bah Holdings, Llc Optopairs with temperature compensable electroluminescence for use in optical gas absorption analyzers
CN103426965B (zh) * 2013-08-16 2016-12-28 中国科学院苏州纳米技术与纳米仿生研究所 太阳能电池及其制作方法
US10388817B2 (en) 2013-12-09 2019-08-20 Avago Technologies International Sales Pte. Limited Transducer to convert optical energy to electrical energy
ES2831831T3 (es) 2014-02-05 2021-06-09 Array Photonics Inc Convertidor de energía monolítico con múltiples uniones
CN104282793A (zh) 2014-09-30 2015-01-14 中山大学 一种三台面p-π-n结构III族氮化物半导体雪崩光电探测器及其制备方法
US9768339B2 (en) 2015-06-22 2017-09-19 IQE, plc Optoelectronic detectors having a dilute nitride layer on a substrate with a lattice parameter nearly matching GaAs
US9669740B2 (en) 2015-08-04 2017-06-06 Toyota Motor Engineering & Manufacturing North America, Inc. Vehicle having interchangeably storable and mountable stowable folding seat and center console
US20170110613A1 (en) 2015-10-19 2017-04-20 Solar Junction Corporation High efficiency multijunction photovoltaic cells
US9954128B2 (en) 2016-01-12 2018-04-24 The Boeing Company Structures for increased current generation and collection in solar cells with low absorptance and/or low diffusion length
WO2017205100A1 (en) 2016-05-23 2017-11-30 Solar Junction Corporation Exponential doping in lattice-matched dilute nitride photovoltaic cells
GB2555409B (en) 2016-10-25 2020-07-15 Iqe Plc Photovoltaic Device
CN106711253B (zh) 2016-12-14 2018-07-27 江苏华功第三代半导体产业技术研究院有限公司 一种iii族氮化物半导体雪崩光电二极管探测器
WO2019067553A1 (en) 2017-09-27 2019-04-04 Solar Junction Corporation SHORT-LENGTH WAVELENGTH INFRARED OPTOELECTRONIC DEVICES HAVING DILUTED NITRIDE LAYER
CN107644921B (zh) 2017-10-18 2023-08-29 五邑大学 一种新型雪崩二极管光电探测器及其制备方法
TW202114242A (zh) 2019-06-04 2021-04-01 美商太陽結公司 具有梯度摻雜之稀氮化物光學吸收層

Also Published As

Publication number Publication date
TW201539772A (zh) 2015-10-16
US11233166B2 (en) 2022-01-25
US20180337301A1 (en) 2018-11-22
SG11201606353TA (en) 2016-09-29
CN106133923A (zh) 2016-11-16
US20190348562A1 (en) 2019-11-14
EP3761375A1 (en) 2021-01-06
TWI656651B (zh) 2019-04-11
EP3103142B1 (en) 2020-08-19
WO2015120169A1 (en) 2015-08-13
CN106133923B (zh) 2018-07-24
US20150221803A1 (en) 2015-08-06
EP3103142A1 (en) 2016-12-14
CN108807571A (zh) 2018-11-13
US20220102569A1 (en) 2022-03-31
SA516371606B1 (ar) 2020-11-26

Similar Documents

Publication Publication Date Title
ES2831831T3 (es) Convertidor de energía monolítico con múltiples uniones
US20240030864A1 (en) High voltage solar modules
US5897715A (en) Interdigitated photovoltaic power conversion device
CN100565939C (zh) 光电装置、光电系统和光发电方法
US9954128B2 (en) Structures for increased current generation and collection in solar cells with low absorptance and/or low diffusion length
US20170018675A1 (en) Multi-junction photovoltaic micro-cell architectures for energy harvesting and/or laser power conversion
BRMU9100797U2 (pt) um receptor de cÉlulas solares para uso em um sistema fotovoltÁico concentrado usando cÉlulas solares de semicondutor iii-v
US20100059097A1 (en) Bifacial multijunction solar cell
US20100263713A1 (en) Four Terminal Monolithic Multijunction Solar Cell
US10541345B2 (en) Structures for increased current generation and collection in solar cells with low absorptance and/or low diffusion length
Moon et al. Dual-junction GaAs photovoltaics for low irradiance wireless power transfer in submillimeter-scale sensor nodes
JP2015159154A (ja) 集光型光電変換装置及びその製造方法
US20100263712A1 (en) Three terminal monolithic multijunction solar cell
Cruz-Campa et al. Power maximization in III–V sub-millimeter, radial front contacted cells for thin micro-concentrators
CN106611805A (zh) 光伏器件及其制备方法、多结GaAs叠层激光光伏电池
US20110220173A1 (en) Active solar concentrator with multi-junction devices
US20240162362A1 (en) Antireflective structures for cover glasses in single or multijunction solar cells
Dey et al. Simulation of high efficiency InGaP/InP tandem solar cells under flat plate and concentrator conditions
US20180358480A1 (en) Multijunction solar cells having an interdigitated back contact platform cell
RU2491681C1 (ru) Фотоэлемент
Sheng et al. Printed high-efficiency quadruple-junction, four-terminal solar cells and modules for full spectrum utilization
US20120048344A1 (en) Cell modules having at least two assembled solar cells